
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

2-1-1996

Fast compression of transportable Tcl scripts Fast compression of transportable Tcl scripts

Robert S. Gray
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

 Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation
Gray, Robert S., "Fast compression of transportable Tcl scripts" (1996). Computer Science Technical
Report PCS-TR96-279. https://digitalcommons.dartmouth.edu/cs_tr/130

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/130?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Fast compression of transportable Tcl agents

Robert S. Gray

Department of Computer Science

Dartmouth College

Hanover, NH 03755

E-mail: robert.s.gray@dartmouth.edu

Abstract

An information agent is charged with the task of searching a collection of electronic resources for
information that is relevant to the user's current needs. These resources are often distributed across a

network and can contain tremendous quantities of data. One of the paradigms that has been suggested

for allowing e�cient access to such resources is transportable agents { the agent is sent to the machine
that maintains the information resource; the agent executes on this remote machine and then returns

its results to the local machine. We have implemented a transportable agent system that uses the Tool

Command Language (Tcl) as the agent language. Each Tcl script can suspend its execution at an
arbitrary point, transport itself to another machine and resume execution on the new machine. The

execution state of the script { which includes the commands that have not been executed { must be

transmitted to the new machine. Although the execution state tends to be small, there will be a large

number of agents moving across the network in a large-scale system. Thus it is desirable to compress

the execution state as much as possible. Furthermore any compression scheme must be fast so that it

does not become a bottleneck between the transportable agent system and the network routines. In this
paper we explore several fast compression methods.

1 Introduction

An information agent is charged with the task of searching a collection of electronic resources for information

that is relevant to the user's current needs. These resources are often distributed across a network and can

contain tremendous quantities of data. One of the paradigms that has been suggested for allowing e�cient

access to such resources is transportable agents [KK94] { the agent is sent to the machine that maintains

the information resource; the agent executes on this remote machine and then returns its results to the local

machine. We have implemented a transportable agent system. The agents are written in the Tool Command

Language (Tcl) { a high-level command language that was created by Dr. John Ousterhout at the University

of California at Berkeley [Ous94]. Tcl is an attractive language for transportable agents. It is popular, easy

to use, widely available and platform independent. It can be embedded in other applications due to its dual

existence as a stand-alone interpreter and a programming library. Finally Tcl is extendible which means

that each resource can provide a set of Tcl commands that an agent can use to access the resource.

In the prototype system a Tcl script can suspend its execution at an arbitrary point, transmit itself to

another machine and resume execution on the new machine. The execution state of the script { which

includes the commands that have not been executed { must be transmitted to the new machine. Although

the execution state tends to be small, there will be a large number of agents moving across the network in a

large-scale system. Each execution state should be compressed as much as possible in order to reduce network

contention. In addition the compression scheme must be fast since the execution state is compressed on its

way to the network; a compression scheme that is signi�cantly slower than the kernel routines that inject

packets into the network will become a bottleneck. In this paper we implement several fast compression

methods and examine their performance on a small corpus of Tcl scripts. The next section explains the

pieces that make up the execution state of a Tcl script. The following sections describe the compression

methods and their performance.

1

2 Tcl state

The execution state of a Tcl script consists of four pieces { a global variable table, the names and bodies of

de�ned procedures, a call frame for each active procedure and a command stack. The variable table contains

one entry for each de�ned variable. Each entry is a �ve-tuple. The �rst element is a ag that indicates

whether the variable is de�ned or unde�ned { a variable is unde�ned if the variable has not been assigned

a value but has been referenced in some way (such as specifying a \trace" procedure that will be called

whenever the variable is accessed). The second element is the name of the variable. The third element is a

reference count that indicates how many variables are aliases for the given variable. The fourth element is a

ag that indicates whether the variable is an alias, a string or an array. The �fth element is either an integer

that identi�es the variable to which the alias refers, a string value or a variable table that contains the array

elements and their values. The alias ids should be coded with a �xed-length binary code (the upper bound

is the total number of variables). The reference counts should be coded with a �xed-length binary code or

with a Hu�man or arithmetic coder since small reference counts are much more likely than large counts.

The ags exhibit no correlation from one entry to the next so they should be coded in binary or with an

arithmetic coder if we are willing to sacri�ce speed. An arithmetic coder takes advantage of the fact that

some ags are much more likely than others { i.e. scalars are much more common than arrays and aliases;

de�ned variables are much more common than unde�ned variables. In any case we would take advantage of

the fact that an array of arrays is not allowed so the array ag can not occur in a table of array elements.

Each call frame contains an integer that speci�es the dynamic scoping level and a variable table for local

variables. The dynamic scoping level should be coded with a phased-in binary code since the dynamic

scoping level can not be greater than the number of enclosing scopes. The variable table should be coded in

the same manner as the global variable table.

The command stack contains the sequence of nested scripts that are currently being evaluated. Each element

on the stack contains a Tcl script and a state ag that indicates the current execution status of that script.

For example, immediately after a procedure call at the top level, there would be two elements on the stack.

The �rst element would contain all of the remaining commands at the top level (i.e. a closure) and a state ag

indicating that execution should proceed to the next command as soon as the procedure call has �nished.

The second element would contain the body of the procedure and a state ag indicating that execution

should proceed to the �rst command in the body. The state ags tend to be small - i.e. almost always in

the range 0 to 2 { but have no �xed upper bound. They should be coded with one of the variable-length

integer codes such as or � [BCW90].

The remaining parts of the state are the names and values of variables, the names of procedures, the

Tcl scripts that make up the procedure bodies and the Tcl scripts on the command stack. Due to time

constraints we will focus on compressing the Tcl scripts. In addition we will focus on compressing the

original Tcl script rather than the fragments of the original script that appear in the execution state. This

is not unreasonable since the execution state essentially contains two copies of the original script { one copy

contains the commands from the original script while the second copy contains these same commands after

variable, command and backslash substitutions have been performed. It should be noted that we are ignoring

part of the problem by taking this simpli�ed approach { i.e. how to take advantage of the fact that the

two copies are nearly identical. This probably involves some manner of \di�" operation and will have to be

considered in future work.

3 Compression of Tcl scripts

Several compression methods were considered. Since one of the goals is to compress the Tcl scripts fast

enough to keep up with the network routines in the system kernel, only nonadaptive compression methods

were implemented.

2

Method Comment parray dialog init menu Total

B0 No compression 850 (189%) 3,327 (209%) 7,615 (159%) 22,300 (248%) 34,092 (216%)

B1 Strip 449 (100%) 1,585 (100%) 4,787 (100%) 8,961 (100%) 15,782 (100%)

B2 Hash table 308 (68%) 1,038 (65%) 2,706 (57%) 4,564 (51%) 8,616 (55%)

B3 Hash table with

Hu�man code

237 (53%) 818 (52%) 2,053 (43%) 3,341 (37%) 6,449 (41%)

B4 gzip 256 (57%) 716 (45%) 1,650 (34%) 2,396 (27%) 5,018 (32%)

Table 1: Baseline compression methods (sizes expressed in bytes)

Method Context Size parray init menu

H0 1 character 294 (65%) 2,990 (62%) 5,276 (59%)

H1 2 characters 308 (68%) 2,706 (57%) 4,564 (51%)

H2 3 characters 332 (74%) 2,936 (61%) 4,853 (54%)

Table 2: E�ect of context size on hash table compression (sizes expressed in bytes)

3.1 Baseline methods

Five baseline methods were implemented. The compression performance of these methods on a test corpus

of Tcl scripts is shown in Table 1. Four Tcl scripts were used as the test corpus. parray lists the elements of

an array, init handles unde�ned commands, dialog handles dialog boxes and menu handles pulldown menus.

The scripts range from 850 characters to 22,300 characters which is relatively large for a Tcl script. The

test scripts are not transportable agents since only the most trivial transportable agents were available. It is

hoped that transportable agents will be roughly similar to the test scripts in terms of command and symbol

usage.

Method B0 performs no compression on the Tcl scripts. B1 removes all comments and extraneous whitespace

from the Tcl scripts. B1 is a valid compression method since we are compressing the scripts for transmission

to a remote machine where they will be evaluated and forgotten. The remote machine does not need

comments or whitespace since it is not interested in recreating the original script. B1 cuts the size of the

original scripts in half (it should be noted that the test scripts are heavily commented; the size of the test

scripts drops by just ten percent if B1 removes only the extraneous whitespace). In the tables and in the

remainder of the paper, compression performance is measured relative to the performance of B1 since B1

eliminates the information that does not need to be transmitted at all.

B2 is based on the hash table scheme in [BJLM92] and [Wil91]. The compression algorithm uses a 4096-

element hash table. Each hash bucket contains a 4-character move-to-front (MTF) list. Every character

in the hash table is initialized to the null character. The algorithm performs a linear scan through the

script (ignoring comments and extraneous whitespace). For each character the algorithm calculates a hash

index based on the 2 preceding characters and looks for the character in the corresponding MTF list. If

the character appears in the MTF list, the algorithm outputs a 0 followed by a 2-bit integer that gives the

position of the character in the MTF list. Then the algorithm moves the character to the front of the MTF

list. If the character does not appear in the list, the algorithm outputs a 1 followed by a 7-bit character

code. Then the algorithm puts the character at the front of the MTF list (dropping the least recently used

character o� the end). B2 approaches 50% compression as the size of the scripts increases.

The number of buckets in the hash table and the number of elements in each MTF list do not signi�cantly

a�ect compression performance (the number of hits at each position in the MTF list drops exponentially

as we move towards the end of the list) unless we make the number of hash buckets absurdly small. The

context size is more critical. Table 2 shows compression performance as a function of how many characters

are used to calculate the hash index. Using only 2 preceding characters is best so all of the compression all

of the compression methods use only 2 preceding characters. The hash function for the 2 character case is

index = (c1 << 4) ^ c0

3

index = index&4095

where c0 is the preceding character, c1 is the character before c0, << is shift left, ^ is xor and & is and.

This is similar to the hash function used in [Wil91] except that we have removed a multiplication (at no cost

in compression performance). For the 3 character case we add another shift and xor operation to get

index = (((c2 << 4) << c1) << 4) ^ c0

index = index&4095

These hash functions have the advantage of being exceptionally fast.

Method B3 combines the hash table of B2 with a static Hu�man code. There are 132 codes. There is

one code for each position in the MTF list and one code for each possible miss (any one of 128 di�erent

characters might not appear in the MTF list). The Hu�man code used is the one that minimizes the total

size of the four compressed scripts { i.e. we obtained the frequency distribution of hits and misses for each

script, summed the four distributions and calculated the optimal Hu�man code for the summed distribution.

B3 approaches 40% compression as the size of the scripts increases.

Method B4 applies \gzip" to each script (after comments and extraneous whitespace have been removed).

B4 approaches 30% compression as the size of the scripts increases.

3.2 Syntactic compression

The best compression for programs is achieved through syntax-directed compression in which the program

is parsed and then the parse tree is encoded. This approach has two disadvantages in our situation { (1)

the time needed to construct the parse tree is substantial and (2) Tcl can not be parsed easily with only

one symbol of lookahead unless its syntax is changed. However it is likely that the syntax of Tcl will be

changed anyways for e�ciency { i.e. the speed of the Tcl interpreter can be increased substantially by

adding a preprocessing phase that parses the entire script and then passes the parse tree to the evaluation

routines. Furthermore such a preprocessing phase means that the parse tree would already be available

when it came time to compress and transmit the script. A walk through the parse tree would be no more

more expensive than a linear scan through the original script. Thus it seems reasonable to explore syntactic-

directed compression methods for Tcl scripts. We use the modi�ed syntax that is proposed in [SBD94]

and used in the Tcl-like Rush language. The main syntactic di�erence between Tcl and Rush is that Rush

enforces consistent use of delimiters { i.e. strings must be delimited by double quotes, subcommands must

be delimited by curly brackets and so on. The Rush research group has a program that semi-automatically

converts Tcl scripts to Rush scripts. This program is not publicly available so we converted the corpus of

test scripts to Rush syntax by hand. This manual conversion was the limiting factor on the size of the test

corpus.

[Cam88] and [KPT86] are the primary references for syntax-directed compression. Both of these researchers

compress Pascal programs. [KPT86] constructs a parse tree for the Pascal program, removes all nodes that

have only one child and then linearizes the parse tree. All user-de�ned symbols are added to a symbol

table as the parse tree is constructed. Associated with each node in the tree is an integer that identi�es

the grammer production that was used to expand the node. The output of the compression program is the

symbol table followed by an encoding of the linearized parse tree { i.e. the symbol and production indices

in the parse tree are coded with a �xed-length binary code. [KPT86] achieves 50% compression.

[Cam88] constructs a parse tree for the Pascal program, performs a preorder walk through the tree and uses

arithmetic coding to encode the tree during the course of the walk. For each non-terminal the compression

algorithm encodes the probability of the production that was used to expand the non-terminal. This ap-

proach has two advantages { only a few productions apply to each non-terminal so the probability of most

productions are zero for a given non-terminal and certain productions associated with a non-terminal are

far more likely than others. The production probabilities are static and are based on evaluation of a corpus

of Pascal programs. All user-de�ned symbols are coded on a character-by-character basis with an adaptive

probability model. The order of the model was not speci�ed. [Cam88] achieves 25% compression using this

base technique and 15% compression with multiple symbol tables and grammar reorginization.

4

Method Comment parray dialog init menu Total

S0 Binary 173 (39%) 881 (56%) 1,814 (38%) 3,149 (35%) 6,017 (38%)

S1 Phased binary 163 (36%) 821 (52%) 1,709 (36%) 2,851 (32%) 5,544 (35%)

S2 Integers 159 (35%) 812 (51%) 1,687 (35%) 2,826 (32%) 5,484 (35%)

S3 Hu�man on

hash table

156 (35%) 793 (50%) 1,629 (34%) 2,775 (31%) 5,353 (34%)

S4 MTF for symbol

table

157 (35%) 795 (50%) 1,607 (34%) 2,645 (30%) 5,204 (33%)

S5 Better Hu�man

on hash table

139 (31%) 696 (44%) 1,445 (30%) 2,493 (28%) 4,773 (30%)

S6 Arithmetic 143 (32%) 660 (42%) 1,346 (28%) 2,188 (24%) 4,337 (27%)

S7 No symbol table 158 (35%) 801 (51%) 1,626 (34%) 3,160 (35%) 5,745 (36%)

Table 3: Syntactic compression methods (sizes expressed in bytes)

3.3 Syntactic compression methods for Tcl

Eight syntax-directed compression methods were implemented { these methods focus on reducing the size

of the compressed symbols since even the naive method S0 compresses the parse tree well. These methods

are based on the techniques of [Cam88] except that we do not use arithmetic or adaptive coding due to the

need for fast compression. An LR(1) grammer was written for Tcl scripts (or more precisely Rush scripts

since we are using a modi�ed syntax). All productions that can expand a given non-terminal are assigned

unique integral indices starting with 0. Each of the eight encoders parses the Tcl script and constructs a

parse tree. Then the encoder performs a preorder walk through the tree. For each non-terminal the encoder

encodes the index of the production that was used to expand the non-terminal. The decoder starts with the

top level non-terminal (e.g. command list). This �rst production index in the compressed script speci�es

which production should be used to expand this non-terminal and so on. As long as the decoder walks the

tree in the same order as the encoder, it will be able to decode the compressed parse tree. Thus there is

no need to have a unique integer id for every production in the grammer. [Cam88] uses the same technique

except that the productions are assigned probabilities instead of indices. The eight methods di�er in their

handling of terminal symbols and the coding methods used for the production indices.

S0 codes the production indices using a �xed-length binary code (the upper bound is the number of pro-

ductions associated with the current non-terminal). Strings are coded with the hash table scheme of B2.

Symbols { i.e. integers, variable names and procedure names { are added to a global symbol table and coded

with the hash table scheme of B2 on their �rst occurrence. On successive occurrences the symbol table

index is coded using a �xed-length binary code (the upper bound is the number of symbols in the table). A

single-bit ag indicates whether the next symbol has been seen before. S0 achieves 38% compression.

S1 takes advantage of the fact that the upper bound on the production and symbol indices is rarely an exact

power of two. It encodes the indices using the e�cient phased-in scheme of [BCW90] { i.e. if a number i is

known to be in the range 0 � i < p, then i is coded in (k � 1) bits if it is less than 2(dlogpe) � p; otherwise i

is coded in k bits. S1 achieves 35% compression.

S0 and S1 treat integers as symbols that are no di�erent than procedure and variable names. S2 treats

integers as integers. A signal-bit ag indicates whether the integer is positive or negative; the magnitude

of the integer is coded using the code of [BCW90]. The savings are small for the four test scripts but

should be signi�cant for scripts that contain a larger number of integers. Floating point numbers are not

treated separately since the test scripts do not contain any oating point numbers. This must be considered

in future work.

S3 adds a static Hu�man code to the hash table scheme that is used to encode strings and new symbols.

There are �ve codes. One code indicates that the current character was not found in the MTF list; the other

four codes indicate the position in the MTF list in which the character appeared. For each character the

appropriate code is output with the code for an MTF miss followed by the 7-bit character code. As before

5

Method Component parray dialog init menu

B0 Parse Tree 251 (100%) 464 (100%) 2,346 (100%) 4,152 (100%)

B4 Parse Tree 105 (42%) 120 (26%) 625 (27%) 855 (21%)

S5 Parse Tree 55 (22%) 177 (46%) 514 (22%) 1,139 (27%)

S6 Parse Tree 48 (19%) 113 (24%) 387 (17%) 794 (19%)

B0 Symbols 198 (100%) 1,121 (100%) 2,441 (100%) 4,809 (100%)

B4 Symbols 151 (76%) 596 (53%) 1,025 (42%) 1,541 (32%)

S5 Symbols 84 (42%) 519 (46%) 931 (38%) 1,354 (28%)

S6 Symbols 95 (48%) 547 (49%) 959 (39%) 1,394 (29%)

Table 4: Compression of syntactic versus symbolic information (sizes expressed in bytes)

we obtained the frequency distribution of hits and misses for each script, summed the four distributions and

calculated the optimal Hu�man code for the summed distribution. S3 achieves 34% compression.

S4 adds a move-to-front list to the symbol table. The eight most recent symbols are kept in an MTF list.

There is a three-element static Hu�man code. One code indicates that the symbol was found in the MTF

list; the second code indicates that the symbol was found in the symbol table but not in the MTF list; and

the third code indicates that the symbol is a new symbol. The code for a hit in the MTF list is followed by

a 3-bit index. The code for a hit in the symbol table is followed by the symbol table index as before. The

code for a miss is followed by the character-by-character encoding as before. The optimal Hu�man code was

calculated as before. S4 achieves 33% compression but the the savings are insigni�cant except on the largest

script. A ten-element Hu�man code with a code for each position in the MTF list made compression worse

since the distribution of hits in the MTF list varied too widely from script to script.

S5 abandons the simple Hu�man code of S3 and uses the full Hu�man code of method B3 { i.e. there are 132

codes, four codes for hits in the MTF list and 128 codes for misses. S5 achieves 30% compression and seems

to be the best that can be done with non-adaptive and non-arithmetic techniques. It is competitive with

gzip and with the base technique of [Cam88]. [Cam88] cites 25% compression for the base technique but is

measuring compression against programs that contain whitespace. If we count whitespace, the compression

percentages for S5 are around 26% for every script except dialog.

The most time-consuming aspect of S5 { and the aspect that perhaps will be di�cult to implement in

hardware { is the memory management and string comparisons associated with the symbol table. Method

S7 eliminates the symbol table and encodes all symbols on a character-by-character basis. S7 achieves 36%

compression and is competitive with gzip except on the largest script.

The main problem with S5 is that binary and Hu�man coding is ine�cient for small alphabets (especially

the production indices since there are only a handful of non-terminals associated with each non-terminal). S6

uses adaptive arithmetic coding for the sake of comparison. S6 uses �ve adaptive order-0 models. The �rst

model gives the probability that a given production will be used to expand a given non-terminal. The second

model gives the probability of hits and misses in the MTF lists in the hash table. The last three models give

the probability of positive and negative integers, the probability of a 0 or 1 bit in the integer magnitudes and

the probability of hits and misses in the MTF symbol list. All models are initialized so that all symbols are

equally probable. S6 is slower but achieves 27% compression. S6 can be improved signi�cantly with grammar

reorginization, more complex models, more symbol tables and better initial values for the probabilities as

was done in [Cam88].

All of the syntax-directed methods outcompress B3 which uses just the hash table and a static Hu�man code.

However only S5 and S6 outcompress B4 which is the standard \gzip" program. In addition S5 signi�cantly

outcompresses B4 only on parray and init and actually does worse on the largest script menu. Table 4

compares the compression performance of B4, S5 and S6. The table is divided into two sections { bytes

needed for the compressed parse tree and bytes needed for the compressed symbols (for \gzip" the symbols

and strings were extracted from the scripts and compressed separately to get the symbol bytes; the di�erence

between the symbol bytes and the total bytes was taken to be the parse tree bytes; this is unscienti�c but

seemed to be the only way to come close to the desired data without modifying the \gzip" source code to

6

collect statistics). S5 compresses the symbols better than \gzip" which is heartening since S5 uses just a

hash table and a global symbol table. However S5 performs worse on the parse trees for dialog and menu.

Part of the problem seems to be that dialog and menu use the same commands over and over. \gzip" { which

just looks for previous occurrences of a string { ends up compressing entire commands into a single pointer

while S5 wastes bits by separating the script into syntax and symbols and compressing the syntax separately.

In addition dialog and menu have a higher proportion of user-de�ned commands which have a high overhead

in terms of parse tree nodes. This leads to a large bit overhead since we are using integral numbers of bits

to encode the production indices. The problem disappears when we move to arithmetic coding in S6 which

compresses all the parse trees signi�cantly better than \gzip" (S6 compresses the symbols worse than S5 but

this is because all characters start with equal probabilities; for example an initial probability distribution

that reected the Hu�man code lengths in S5 would lead to performance no worse than S5).

init and parray have more varied command usage and use a higher-proportion of built-in commands. S5

shows signi�cantly better performance on these scripts and outcompresses \gzip". In addition S5 and S6

give more consistent compression performance than \gzip" { i.e. performance does not vary widely as the

size of the script changes. dialog is an exception and shows notably worse compression performance than

the other three scripts. This is because of a particularly bad parse tree (in terms of the number of nodes

per command) and because dialog contains more user-de�ned symbols relative to its length. As shown in

table 4 the symbols do not compress as well as the parse trees. In addition dialog and parray contain far

fewer repeated symbols which reects itself in the poor compression performance on the symbols; init has

more repeats and better compression performance on symbols; while menu has the most repeats and the

best compression on symbols.

It is interesting to conjecture whether the typical transportable agent will be closer to init or to dialog.

Transportable agents tend to have large amounts of control wrapped around calls to library routines that

are available on the remote machine. This should mean that the agents will exhibit command and symbol

usage similar to init rather than dialog and will compress well.

3.4 Speed

It is di�cult to make meaningful speed comparisons since none of the code has been optimized. Currently

all of the compression methods run twice as slowly as gzip (except for B2 which just strips the comments

and whitespace out of a script and runs as fast as gzip). There are four contributing factors { the �le I/O

and memory allocation is being done in the easiest rather than the most e�cient manner (i.e. read a byte

at a time and do not preallocate memory); the code is written in C++ rather than C which is a substantial

performance hit in and of itself; \ex" does not necessarily produce the fastest lexer for Tcl scripts; and most

of the encoding routines can be made tighter or even reimplemented in machine code. It has been shown that

the hash table schemes such as B2 and B3 can run much faster than gzip with appropriate implementation

[BJLM92, Wil91]. The syntax-directed encoders { with the exception of S6 which uses adaptive arithmetic

coding { should run much faster than \gzip" if the parse tree is already available and should at least be

competitive if the parse tree must be constructed from scratch. This is especially true for S5 which does not

use a symbol table.

4 Conclusions

If the original script is being compressed directly, the hash table scheme B3 or the gzip program B4 would

give the fastest compression. S5 would give better compression at the cost of constructing a parse tree for

the script. Improved versions of S6 would give the best compression at a substantial speed penalty. If the

parse tree is already available, S5 and S7 give the fastest compression with S7 having the edge over S5 since

it does not use a symbol table. Improved versions of S6 will again give the best compression. B3 and S7

{ the fastest of these algorithms { achieve 35 to 40 percent compression. B4 achieves 32 percent with S5

achieving 30 percent { the performance of these two methods is so close that gzip should be chosen over S5

when compressing the original script directly. Improved versions of S6 should achieve well below 25 percent

7

compression but would be much slower. In a real application we would need to choose the method that gave

the best balance between low network tra�c and low network latency.

There are two issues that need to be addressed in future work. The �rst issue is to optimize the source

code for the better methods. In particular we need optimized versions of B3, S5 and S7 so that reasonable

execution time comparisons can be made. The second issue is to compress the rest of the execution state.

There are clear choices for encoding much of the state as discussed above (such as the ags in the variable

table). However it is less clear how to compress the variable names and values and how to compress the

script fragments. A reasonable �rst pass for the variables is to use the same hash table scheme that was

used in the script compression. For the script fragments it is necessary to develop the equivalent of a \di�"

operation so that two fragments that are almost identical will be compressed e�ciently. This is not di�cult if

the Tcl interpreter is maintaining a parse tree for e�ciency reasons since the interpreter can set appropriate

pointers as it performs variable, command and backslash substitutions. It is more di�cult if only the script

fragments are available.

5 Acknowledgements

Many thanks to Professor John Danskin for useful discussions; to my advisor, Professor George Cybenko,

for his encouragement and support; and, as always, to Jennifer and Stephen Gray for reminding me that

there is life outside graduate school.

References

[BCW90] Timothy C. Bell, John G. Cleary, and Ian H. Witten. Text Compression, chapter A (Variable-

length Representations of the Integers), pages 290{295. Prentice-Hall, Englewoord Cli�s, New

Jersey, 1990.

[BJLM92] Michael Burrows, Charles Jerian, Butler Lampson, and Timothy Mann. On-line data compression

in a log-structured �le system. In Fifth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS-V). ACM, October 1992.

[Cam88] Robert D. Cameron. Source encoding using syntactic information source models. IEEE Trans-

actions on Information Theory, 34(4):843{850, July 1988.

[KK94] Keith Kotay and David Kotz. Transportable agents. In CIKM Workshop on Intelligent In-

formation Agents (held in conjunction with the Third International Conference on Information

and Knowledge Managament), Gaithersburg, Maryland, December 1994. National Institute of

Standards and Technology.

[KPT86] Jyrki Katajainen, Martti Penttonen, and Jukka Teuhola. Syntax-directed compression of program

�les. Software { Practice and Experience, 16(3):269{276, March 1986.

[Ous94] John K. Ousterhout. Tcl and the Tk toolkit. Addison-Wesley, Reading, Massachusetts, 1994.

[SBD94] Adam Sah, Jon Blow, and Brian Dennis. An introduction to the Rush language. In Proceedings

of the 1994 Tcl Workshop, June 1994.

[Wil91] Ross N. Williams. An extremely fast Liv-Zempel data compression algorithm. In IEEE Data

Compression Conference, Snowbird, Utah, April 1991. IEEE.

8

	Fast compression of transportable Tcl scripts
	Dartmouth Digital Commons Citation

	lex.dvi

