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Finding Real-Valued Single-Source Shortest Paths in o(n?) Expected
Time

Stavros G. Kolliopoulos Clifford Stein*

Department of Computer Science
Dartmouth College®

Abstract

Given an n-vertex directed network ( with real costs on the edges and a designated source vertex
s, we give a new algorithm to compute shortest paths from s. Our algorithm is a simple deterministic
algorithm with O(n?logn) expected running time over a large class of input distributions.

The shortest path problem is an old and fundamental problem with a host of applications. Our
algorithm is the first strongly-polynomial algorithm in over 35 years to improve upon some aspect of
the running time of the celebrated Bellman-Ford algorithm for arbitrary networks, with any type of cost
assignments.

1 Introduction

Given a directed network G = (V, E, ¢) where ¢ is a real-valued function mapping edges to costs, the single-
source shortest path problem (abbreviated SSSP) consists of finding, for each vertex v € V, the simple
path of minimum total cost from a designated source vertex s. This is an old and fundamental problem in
network optimization with a plethora of applications in operations research, see for example [AMO93]. It
also arises as a subproblem in other optimization problems such as network flows.

The classic Bellman-Ford algorithm solves the SSSP problem in an n-vertex m-edge network in O(nm)
time [B58, FF62]. This simple algorithm has been widely used and studied for over 35 years, however,
in all that time, no progress has been made in improving the worst case bound for arbitrary real-valued
shortest path problems.

We cannot improve on the Bellman-Ford algorithm in the worst case for all networks. However, in this
paper, we will show that on any network with real edge costs chosen from a large class of input distributions,
we can provide a deterministic algorithm for SSSP that runs in O(n? logn) expected time. Our algorithm is
faster than Bellman-Ford in the case when m = w(nlogn), and, under the similarity assumption [AMO93],
faster than the recent scaling algorithm of Goldberg [G95], when m = w(n!®logn). To our knowledge,
this is the first strongly polynomial algorithm that solves SSSP in o(n®) time for networks with arbitrary
numbers of edges, arbitrary topology, and real-valued costs.

Our model of random edge costs is Bloniarz’s endpoint independent model [B83]. This model is the
most general studied in the shortest path literature [S73, B83, MT87, TMR0]. It includes the common
case of all edge costs drawn from the uniform distribution, and more generally any network in which the
only restriction is that all costs of edges emanating from a particular vertex v are chosen from the same
distribution. Our method uses ideas from Bellman-Ford and from an algorithm of Moffat and Takaoka
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[MT87] originally intended for nonnegative cost assignments, and turns out to be quite simple drawing on
the simplicity of these two algorithms.

We also show that in a restricted model of computation, the Bellman-Ford algorithm is the best possible.
We consider an oblivious model of computation, in which the decisions of which edges to relax are made in
advance, before seeing the input. We show that in this case, any algorithm whose basic operation is edge
relaxation has to perform Q(nm) edge relaxations in the worst case in order to correctly compute shortest
paths. The Bellman-Ford algorithm fits into this model.

Previous and Related Work. For arbitrary real costs the existence of negative cycles, i.e. paths with
negative cost where every vertex has degree 2, makes the SSSP problem NP-hard [GJ79]. In the absence
of negative cycles the fastest SSSP algorithm, as mentioned above, is attributed to Bellman and Ford
[B58, FF62] and can be implemented to run in O(nm) time, worst case. This is O(n®) for dense graphs.
Until recently all alternative implementations of Bellman-Ford first solve an assignment problem to find
vertex potentials which allows reweighting of edges so that all edge costs are nonnegative. Then Dijkstra’s
algorithm [D59] is applied to the reweighted network. The bottleneck in this approach is the solution of the
assignment problem. The first and fastest strongly polynomial time algorithm for the assignment problem
is Kuhn’s Hungarian algorithm [K55]. Implemented with Fibonacci heaps [FT87], this algorithm runs in
O(nm + n?logn) time. Gabow and Tarjan [GT87] have a scaling algorithm for the assignment problem
that runs in O(y/nmlog(nC')) time, where C is the absolute value of the most negative edge cost. Recently
Goldberg [G95] has given a scaling algorithm which finds shortest paths without solving an assignment
problem first; this algorithm has running time O(y/nmlog C'). All these algorithms detect the existence of
a negative cycle. We also note that if the costs are nonnegative, faster algorithms are possible, as Dijkstra’s
algorithm [D59] implemented with Fibonacci heaps [FT87] runs in O(nlogn + m) time.

We are not aware of any work on the average case complexity of the SSSP problem for real-valued edge
costs, the problem with nonnegative edge costs is well studied. In the all pairs shortest path problem,
(abbreviated APSP) we are interested in computing the shortest paths between all n(n — 1) pairs of
vertices. All previous work on the analysis of algorithms for networks with random nonnegative edge
costs has been for the APSP problem. An APSP algorithm with expected running time O(n?log®n) on
networks with random edge costs was presented in a classical paper by Spira [S73]. This result was
later refined ([CL77], [BMF79]) and improved in [TM80] where an O(n?lognloglogn) time algorithm
was given. Refinements included taking into account non-unique edge costs. Bloniarz [B83] achieved
an expected running time of O(n?lognlog* n) and relaxed Spira’s initial assumption that edge costs are
drawn independently from any single but arbitrary distribution. He introduced the endpoint independent
randomness model which is the most general in the shortest path literature. Frieze and Grimmet [FG85]
gave an (O(n(m 4 nlogn)) expected time algorithm, an improvement over Bloniarz’s when m is small
enough. They also gave an O(n?logn) expected time algorithm for the case where edge costs are identically
and independently distributed with distribution function F, where F(0) = 0 and F is differentiable at 0.
The fastest algorithm so far under the endpoint independent model is due to Moffat and Takaoka [MT87]
and runs in O(n?logn) time. Although these papers are concerned with the APSP problem, they all run
an SSSP routine n times, using each vertex as a source in turn. Because they all require an O(n?logn)
time preprocessing sorting phase, the running times are only reported for the APSP problem, but these
algorithms do give ideas for the SSSP problem. Recently some research has been done on randomized
algorithms that use ideas from matrix multiplication [AGM91, S92] but, for arbitrary cost assignments, only
pseudopolynomial algorithms exist. The extent to which randomization can be used for faster algorithms,
as was the case with e.g. minimum cut [KS93] and minimum spanning tree [KKT], is an open question.

The outline of the paper is as follows. In Section 2, we start with a high level description of the new
algorithm. Subsequently we present the randomness model, and give an implementation with fast average
case. In Section 3, we present the lower bound for oblivious algorithms. In Section 4, we conclude with
open questions.



procedure FasT_SSSP (Network G, source s)

for all » € V do
sort the list of edges out of v;
d®(v):= 0;

for i= 1 to n-1 do
d* =Pass(G,d™1);

for all edges (u,v)€ I do
if d"(u) + c(u,v) < d*~(v) then

report a negative cycle and break;

Figure 1: Algorithm FasT_SSSP

2 The Algorithm

In this section we give an algorithm for SSSP with average case running time O(n?logn) on a broad class
of networks with random edge costs. We will give the algorithm in two parts. In Section 2.1 we give a
modified version of the Bellman-Ford [B58, FF62] algorithm that reduces solving a shortest path problem
to a sequence of n shortest path problems in a simpler network. Then in Section 2.2 we show how to solve
this simpler shortest path problem in O(nlogn) time, on average.

We use n to denote |V| and m to denote |E| for the network of interest. The length of path p =
(v1,v2,...,0) is k — 1 while the cost is defined as ¢(p) = 357} e(v;,vi41). The shortest path between a
pair of vertices u, v is a minimum cost simple path joining the two vertices. This minimum cost is called
the distance, denoted d(u,v). Our algorithms will concentrate on finding the distance from the source s
to each vertex, and we will use d(v) to denote d(s,v). We concentrate on finding the distances but our

method can easily be modified to find the actual paths without asymptotic overhead.

2.1 Skeleton of the new algorithm

We begin by reviewing and modifying the Bellman-Ford algorithm. On a network where negative costs
are present Bellman-Ford performs n — 1 passes. Let d'(v) be the distance of the shortest path from s to
v that has been found during the first ¢ passes. During pass ¢, all edges (u, v) are relaxed in an arbitrary
order. More precisely, pass 4 is implemented by first assigning d'(v) = d'~*(v) for all » and then, for all
edges (u,v), if . ‘

d'(u) + c(u, v) < d'(v), (1)

then d*(v) is updated to d*(u) + ¢(u,v). This step is called relazing edge (u,v). An extra n-th pass will
reveal the existence of a negative cycle since any possible vertex cost decrease will be due to a non-simple
path. Adding a simple preprocessing phase to Bellman-Ford, in which we sort the edge lists, we get the
algorithm FAsT_SSSP, which appears in Figure 2.1.

It is easy to show by induction that after the ¢-th pass all shortest paths of length at most ¢ have
certainly been discovered, and possibly others. More precisely, let a?z(v) be the distance of the shortest
path from s to v of length at most ¢. Then it for all 7 and v, Bellman-Ford maintains the invariant that at
the end of pass i, di(v) < di(v).

In our statement of FAST_SSSP in Figure 2.1, all the work of the algorithm is done by procedure PAss,
which updates the distance labels. The standard Bellman Ford algorithm implements Pass by relaxing
(applying equation (1)) to all m edges yielding a total running time of O(nm).



Implementing Pass. Our improvements will come from implementing carefully procedure Pass, to
ultimately run in O(nlogn) expected time. We begin by observing that the correctness of Bellman-Ford
does not require that we compute the d*(v)’s during iteration ¢ , but rather, we only need compute the
cZi(v)’s, for after n — 1 iterations, we will then have computed ci”_l(v), which is exactly what we want.

This allows us to make the following modifications:

Modification 1. We can relaz all edges in “parallel”. Typically, a sequential implementation of
Bellman-Ford does not do this, as it only slows the algorithm down. However, we can accomplish this by
replacing condition (1) with the following condition:

A=) + c(u,v) < d'(v). (2)

If we apply this rule instead, it will clearly be the case that after pass i, d(v) = minyey {d*'(u) +
c(u,v)}. However, since we are only allowing the length of a path to grow by at most one edge in each
pass, we can show inductively that we are actually computing Jz(v) in iteration ¢.

Modification 2. During pass i only vertices already at length exactly + — 1 from the source need to
have their outgoing edges relazed. Consider a vertex v for which d*~'(v) = d‘~2(v), i.e. a vertex that is
not at length exactly ¢ — 1 from the source. Then this vertex had its outgoing edges relaxed at some prior
phase 7 <17 — 1, and hence for all neighbors w,

d'(w) < d(w) < & (v) + e(v,w) = d'7H(v) + e(v, w).

Thus, for all outgoing edges (v, w), d'(w) < d"~'(v) + ¢(v,w), and applying (2) to v’s outgoing edges will
not cause any vertex labels to be updated.

In light of the two observations above, we observe that during pass ¢, relaxing all edges in the set I,
of incoming edges to vertex v may be too much. Of all the edges in I, only one is crucial, namely the
one that will give the minimum value for d*(v). Of course, we don’t know which edge this is a priori, but
we will capture a set of edges that will contain it. To do this, we recast the implementation of pass ¢ as
a modified SSSP problem in an auxiliary network. Let a single-source, two-level network be a network
Ge = (V. E;, ¢c) where V. = sUVUV; and edges connect only the source to vertices in V; and the vertices
in V; to vertices in V5. The cost function ¢ ranges over the reals. We show how an auxiliary single source,
two-level network can be used in the implementation of Pass.

We define now a particular G, in terms of the input to Pass, namely G = (V, E,¢) and d*~*(.). Let
V' be the set of vertices in G whose current shortest path estimate derives from a path of length exactly
i—1,1e d'(v) < di~%(v). Then V; contains a copy of every vertex in V'. V; contains a copy of every
vertex v € V — 5. We introduce two types of edges in F.. First, for each pair (z,y) € V; x V3, where 2 is
a copy of u and y is a copy of v we add an edge (z,y) with c.(z,y) = ¢(u,v). Second for all x € Vi, z a
copy of v, we add an edge (s,z) with c.(s,2) = d*~1(v).

We use these definitions in the upcoming lemma.

Lemma 2.1 Let T = T(n,m) be the time to solve a SSSP pfoblem in a single-source, two-level network
with ©(n) vertices and O(m) edges. Then, routine PAss(G,d' 1) can be implemented to compute d'(.) in
O(T + n) time. Hence, FAST_SSSP is correct and has time complezity O(n? + T + mlogn).

Proof. The implementation of pass ¢ reduces to solving SSSP in the auxiliary network G followed by a
finishing step. Let SSSP_AuX(Gaux, 5) be any routine that solves SSSP on a network Gaux in time T
where § is the set of vertices in Ggux with known distances. We implement Pass as follows:

procedure Pass(G, d'™)
d. = SSSP_AUX(Ge, sUV1);
d'(v) = min{d.(v),d""1(v)};



By the construction of G., we can know that the value of d.(v) for v € V; is equal to di=1(v). Thus
computing distances d.(v) in G, for the vertices in V3 is equivalent to computing

m&n{di—l(u) + ¢(u,v)}, Yo

in GG. Note that this is the same as if (2) were applied to all edges in . Thus in the last step of Pass, when
di(v) is calculated as shown, it is equivalent to the process described above where d* is first initialized to
d=1 and then (2) is applied to every edge. Inductively if the given d'~!(.) is correct, d'(.) as output by
PAss captures the shortest paths of length at most ¢ in G and thus routine PAss is correct.

For the running time, we notice that G does not need to be explicitly constructed. All that is required
is to identify the set of vertices whose current shortest path length is exactly + — 1, and hence setting up
the modified SSSP computation can easily be done in O(n) time. The last step requires an additional O(n)
time, so the total time required for Pass is O(T"+ n) and the lemma follows. =

2.2 An implementation with fast average case

Our goal now is to implement the SSSP_AUX routine to run in o(n?) time on the particular network G..
We are unaware of a method achieving such a worst case bound but we show how to do it in O(nfog n)
expected time on networks with random edge costs. In this section we define the class of probability
measures for which our analysis holds and then present an algorithm by Moffat and Takaoka [MT87] and
show that it can be used to efficiently find shortest paths in G..

We define first the randomness model used for the analysis. The definition follows [B83] except that
we allow negative costs as well. Let G, be the set of all n vertex directed networks and suppose P is a
probability measure on G,,. We may identify G, with the set of all n X n matrices with entries in (=00, +00).
P is uniquely characterized by its distribution function Fp : G,, — [0, 1] defined by

FP(G) = P{G/ S g’n|CG’(i7j) < CG(iaj) for 1 < 27.7 < n}
We say that P is endpoint-independent if, for 1 < ¢,7,k <n and G € G,,, we have that
Fp(G) = Fp(G),

where (' is obtained from G by interchanging the costs of edges (¢,7) and (7, k). Intuitively exchanging
endpoints of edges emanating from any fixed vertex does not affect the probability.

Several natural edge cost assignments are endpoint-independent, including the one used by Spira [S73]
where edge costs are independently, identically distributed random variables. Another probability measure
that meets the endpoint independence criterion is when each source vertex ¢ has a probability measure F;
associated with it and the entries cq(%, ) of the matrix are drawn independently according to distribution
P;. The reader is referred to [B83] for further examples.

We proceed with a high level description of the Moffat-Takaoka method. Moffat and Takaoka give a
SSSP algorithm with expected running time O(nlogn) under the above input model for a nonnegative cost
assignment, assuming all of the edge lists are sorted. Their algorithm is similar to Dijkstra’s [D59] and
exploits the fact that vertices extracted in increasing cost order from a priority queue cannot have their
cost decreased later on; once a vertex v is removed from the priority queue, its distance estimate is the
cost of the actnal shortest path from the source to v. Of course this is not true, in general, when edges
with negative costs are present.

We now review the algorithm of Moffat and Takaoka. For concreteness, we will refer to the algorithm as
MT and assume that is takes, as input, a network G, and a set 5 of vertices whose shortest path distances
are already computed. Recall that it relies on all edges having non-negative costs. The set S of labeled
vertices is maintained throughout. These are the vertices for which the shortest paths are known. For
every element v in S a candidate edge (v,1) is maintained, known to be the least cost unexamined edge out



of v. Every candidate edge gives rise to a candidate path, there are at most |S| of them at any one time.
The candidate paths are maintained in a priority queue. At every step we seek to expand 5 by picking
the least cost candidate path p. If p with final edge (v,t) leads to an unlabeled vertex t, it is deemed to
be useful, and t is added to S. Otherwise, the path is ignored, but in both cases the candidate path (v,1)
is replaced by a different path ending in (v,t') with ¢(v,t) > ¢(v,t). There are two extremes in the policy
for picking this next candidate (v,t’): either select simply the next largest edge out of v or scan the sorted
adjacency list until a useful edge (v,t’) is found. Based on the policy selection we obtain Spira’s [S73] and
Dantzig’s [D60] methods respectively. The Moffat-Takaoka routine, M'T, uses Dantzig’s algorithm up to a
critical point with respect to the size of S and then switches to Spira’s. Using standard binary heaps we
can obtain the following theorem.

Lemma 2.2 Let G be a network of n vertices with nonnegative edge costs drawn from an endpoint inde-
pendent distribution and S a set of vertices of G whose shortest path distances have been computed. Then
MT(G, S) solves SSSP on G in O(nlogn) expected time given that the edge lists are presorted by cost.

Proof. See Theorem 1 in [MT87]. m

We note that, in general, the nonnegativity condition is necessary for correctness as e.g. in Dijkstra.
However, we will now show that for a a single-source, two-level network with real costs, such as G, MT
computes correctly shortest paths.

Lemma 2.3 Let G. = (sU V3 UV, Eg,c.) be the single-source, two-level network defined above. Then
MT (G, sU V;) solves SSSP on G¢ in O(nlogn) expected time given that the edge lists are presorted by
cost, and the edge costs are drawn from an endpoint independent distribution.

Proof (Sketch). MT will induce a total order on the candidate paths to vertices in V5. Since the length
of any path in G, cannot exceed 2, this total order computes correctly the shortest paths. For the running
time, it. suffices to notice that the analysis in Theorem 1 of [MT87] relies on the following fact. In an
endpoint independent distribution when |S| = j each candidate leads to each of the n — j unlabeled
vertices with equal probability. This fact is not harmed by the negativity of a candidate edge. Another
way to look at this is the following. A sufficiently large constant C' may be added to all edge costs in G,
to make them nonnegative. This reweighting increases the costs of all paths to v € V5 by 2C, so MT can
be used to compute the d.(v)’s correctly. In the context of FAST_SSSP where n — 1 different single-source,
two-level networks are processed we notice that reweighting the O(m) edges from V; X V, can be done once
for all the n — 1 auxiliary networks. Thus by Lemma 2.2 MT on G, has O(nlogn) expected time. ®
By Lemmata 2.1, 2.3 we obtain the following result.

Theorem 2.1 Let G be a network of n vertices with real edge costs drawn from an endpoint independent
distribution. Algorithm FAST_SSSP solves SSSP on G in O(n?logn) expected time if no negative cycle
exists. Otherwise it reports the existence of a negative cycle in the same time bound.

The worst case complexity of the Moffat-Takaoka subroutine is O(n?) therefore the worst case running
time of our algorithm is O(n?).

3 A Lower Bound

For over thirty years Bellman-Ford has been the fastest algorithm for the general SSSP problem with an
O(nm) worst case running time. It is thus natural to wonder whether one can show a lower bound on the
running time of SSSP in networks with real-valued edge costs. We do not know how to do this, but we can
show a lower bound in a restricted model of computation that captures Bellman-Ford-like algorithms.
Observe that the Bellman-Ford algorithm disregards any information about the network except the
number of edges, and performs a fixed sequence of edge relaxations until no vertex label can be decreased.



Motivated by this we define an oblivious algorithms for SSSP to be one that, given as input a network ¢ with
m edges numbered 1,...,m, decides on a sequence 5, = e;, €;,...€;, of k edge relaxations, 1 < e; <m
on the basis of m alone. An oblivious algorithm performs only the chosen relaxations and terminates when
no distance estimate can be decreased. We charge unit cost for every relaxation. Obviously Bellman-Ford
falls into the oblivious class, as do generalizations that do not restrict the algorithm to operate in phases.
In the following theorem we prove that the Bellman-Ford algorithm is asymptotically optimal within this
model. We call an edge optimal if it belongs to a shortest path.

Theorem 3.1 Let A be any oblivious SSSP algorithm. There exists a network G with with n vertices and
m edges on which A requires Q(nm) worst case time.

Proof. We restrict our attention to networks G, with m > n, in which the maximum length of a shortest
path is exactly n — 1, i.e. the shortest path tree is a single path. Let k be the length of the relaxation
sequence S, = €;, €, ...¢;, that A performs on input G. A subsequence o of S, is any sequence of the
form o = €ij, €ij, - - - €3 with 1 < j; < jo < ...J; < k. The correctness of any relaxation-based algorithm
comes by guaranteeing that the edges in the shortest path tree are relaxed in an order that is a topological
sort of the edges of the tree. In our case, in which the shortest path tree is a path, this means that the
edges of the path must be relaxed in the linear order specified by the path. Before seeing the input, it is
possible that any sequence s, of n — 1 out of the m edges can be the chain of optimal edges, and there are
———~—m~!—_——1-m such chains. A4 will correctly compute the shortest path distances only if s, is a subsequence of

(m—(n

Sm. The relaxation sequence of length k has exactly (nﬁl) subsequences of length n — 1. In order for the
algorithm A to be correct on all networks, it must be that

k m!
(n— 1) 2 m (=) (3)

For simplicity of presentation we replace n — 1 by n, this only affects the calculations below by an O(1)

factor. We want to compute kg, the smallest possible value of k, for which (3) holds. Increasing the left
hand side and decreasing the right hand side can only make this lower bound smaller. Let K (r(k)) denote
the minimum k such that r(k) holds. We assume, wlog, that 0 < n < k. We can upper bound the left-hand
side of (3) by using the identity [CLRI0]

k
i (k - Y 2 (i) | (4)

We can lower bound the right-hand side of (3) by

@@i@:m(m_u...(m—nu))z(m—-n)". (5)

By (4) and (5), we get
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It follows that kg = Q(nm). m

4 Conclusion and Open Problems

In this paper we provided the first algorithm in over 30 years that achieves o{(n®) running time for SSSP
with arbitrary real costs, although not worst case. The complexity gap between O(nm) time for for dense
graphs and O(n?logn) time is considerable. This raises the natural question of whether an o(nm) worst
case time algorithm for SSSP exists. If the answer is no, can one reason about a lower bound in a

non-oblivious computational model.
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working on shortest paths and all the valuable discussions.
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