
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Computer Science Technical Reports Computer Science 

9-13-1995 

Interfaces for Disk-Directed I/O Interfaces for Disk-Directed I/O 

David Kotz 
Dartmouth College 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr 

 Part of the Computer Sciences Commons 

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation 
Kotz, David, "Interfaces for Disk-Directed I/O" (1995). Computer Science Technical Report PCS-TR95-270. 
https://digitalcommons.dartmouth.edu/cs_tr/122 

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital 
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized 
administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601174?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/122?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


Available at URL ftp://ftp.cs.dartmouth.edu/TR/TR95-270.ps.Z

Interfaces for Disk-Directed I/O

David Kotz

Department of Computer Science

Dartmouth College

Hanover, NH 03755-3510

dfk@cs.dartmouth.edu

Technical Report PCS-TR95-270

September 13, 1995

Abstract

In other papers I propose the idea of disk-directed I/O for multiprocessor �le systems. Those

papers focus on the performance advantages and capabilities of disk-directed I/O, but say little

about the application-programmer's interface or about the interface between the compute pro-

cessors and I/O processors. In this short note I discuss the requirements for these interfaces, and

look at many existing interfaces for parallel �le systems. I conclude that many of the existing

interfaces could be adapted for use in a disk-directed I/O system.

1 Introduction

In other papers I propose the idea of disk-directed I/O for multiprocessor �le systems [Kot94,

Kot95a, Kot95b]. Those papers show that disk-directed I/O can be used to substantially improve

performance (higher throughput, lower execution time, or less network tra�c) when reading input

data, writing results, or executing an out-of-core computation. They show that the concept of

disk-directed I/O can be extended to include data-dependent �ltering, data-dependent distribution

patterns, and both regular and irregular requests.

Those papers do not address the interfaces necessary to make disk-directed I/O work. In

particular, what would the application-programmer's interface (API) look like? What interface is

appropriate for communicating between the compute processors (CPs) and I/O processors (IOPs)?

This paper discusses these issues, and the possibility of using existing interfaces for disk-directed

I/O.

This research was funded by NSF under grant number CCR-9404919, and by NASA Ames under agreements
numbered NCC 2-849.

1



I �nd that many existing interfaces could be adapted for use in a disk-directed I/O system. For

most purposes, no additional or unusual interfaces are necessary to make disk-directed I/O work.

A quick summary of disk-directed I/O. Disk-directed I/O is primarily intended for use in

multiprocessors that look like that in Figure 1. In a system supporting disk-directed I/O, a parallel

application (running on compute processors) makes a single collective request for I/O to the �le

system, which passes the request on to servers (running on I/O processors). Each IOP examines the

request independently, makes a list of local disk blocks that will be read or written, and sorts the list

to produce an I/O schedule. Then, using double bu�ering, each IOP runs through its I/O schedule

to transfer data between its disks and the appropriate remote compute-processor memories. To

do so, it needs to understand how the data is distributed among and within compute-processor

memories. In particular, it needs to be able to compute a mapping function from a �le-block

number to the set of (CP number, CP o�set) locations of the data in that �le block. For a

complete understanding of disk-directed I/O, see [Kot94, Kot95a, Kot95b].

2 Application-programmer's interface (API)

The concept of disk-directed I/O depends on the ability of the programmer to specify large, col-

lective, possibly complex I/O activities as single �le-system requests. Since there are many pro-

gramming languages, paradigms, and styles, I do not believe that there is any one speci�c interface

that is best. Thus, I examine the characteristics of an appropriate interface, and then discuss the

capabilities of existing interfaces.

Large... Clearly, it is not di�cult to specify a large I/O request. Simply provide a large bu�er

and ask for a lot of data.

Collective... It is also not di�cult to specify a collective I/O request. In a SIMD or SPMD

language (such as CM Fortran, High-Performance Fortran (HPF), Maspar MPL, and so forth),

all actions (including I/O) are collective by de�nition. In a MIMD-style language (typically C

or Fortran plus some form of message passing or shared memory), each process (or thread) acts

independently of all other processes. A collective activity requires all participating processes to call

the same function, preferably at nearly the same time. In my experience [Kot95a], it it sometimes

useful to require only a subset of processes to contribute to a collective request. MPI-IO will have

2



Network

Memory

Memory

Memory

Disk

Disk

Disk

I/O Processor

I/O Processor

I/O Processor

Memory

Memory

Memory

Compute Processor

Compute Processor

Compute Processor

Interconnection

Figure 1: A multiprocessor architecture with compute processors (CPs) and dedicated I/O processors

(IOPs).

3



such support [CFH+95], as may Intel PFS for the Paragon [RP95]. It would also be useful to have

some control over whether the collective request enforces a barrier synchronization.

Complex... The interesting characteristic of the API is its capability to specify which part of the

�le is desired, and how the data is distributed among the CPs' bu�ers. Perhaps the most common

behavior is to collectively transfer a data set that is contiguous within the �le, but distributed

among processor memories in some interesting way. There are at least three fundamental styles of

API for parallel I/O, each of which provides a di�erent kind of solution to this problem.

The �rst style allows the programmer to directly read and write data structures such as matrices;

Fortran provides this style of interface, as do many libraries [GGL93, KGF94, BdC93, BBS+94,

SCJ+95, TBC+94]. Some object-oriented interfaces go even further in this direction [Kri94, KGF94,

SCJ+95]. As long as your data structure can be described by a matrix, and the language or library

also provides ways to describe distributed matrices, this interface provides a neat solution.

The second style provides each processor its own \view" of the �le, in which non-contiguous

portions of the �le appear to be contiguous to that processor. By carefully arranging the processor

views, the processors can use a traditional I/O-transfer call that transfers a contiguous portion

of the �le (in their view) to a contiguous bu�er in their memory, and yet still accomplish a non-

trivial data distribution. The most notable examples of this style include a proposed nCUBE �le

system [DdR92], IBM PIOFS (Vesta) [CFP+95], and MPI-IO [CFH+95].

The third style has neither an understanding of high-level data structures, like the �rst, nor

per-process views of the �le, like the second. Each call speci�es the bytes of the �le that should

be transferred. This interface is common when using the C programming language in most MIMD

systems, although many have special �le-pointer modes that help in a few simple situations (Intel

CFS [Pie89], Intel PFS [RP95], and TMC CMMD [BGST93], for example). None of these allow the

processor to make a single �le-system request for a complex distribution pattern. More sophisticated

interfaces, such as the nested-batched interface [NK95], can specify a list, or a strided series, of

transfers in a single request. This latter interface is perhaps the most powerful (e�cient and

expressive) of this style of interface.

Any of the above interfaces that support collective requests and can express non-trivial dis-

tributions of data among the processor memories, would be su�cient to support disk-directed

I/O. These include (at least) HPF and other SPMD languages, the nested-batched inter-

face [NK95], IBM PIOFS (Vesta) [CFP+95], MPI-IO [CFH+95], and most of the matrix li-

4



braries [GGL93, KGF94, BdC93, BBS+94, SCJ+95, TBC+94]. The new nCUBE [DdR92] interface

would work if it was extended to support collective I/O. Of course, each of these interfaces has

distributions that it can express easily, distributions that it can express with di�culty, and distri-

butions that it cannot express at all. While the \best" interface for a programmer depends on the

particular needs of that programmer, any of them could be used to drive an underlying disk-directed

I/O system.

3 CP{IOP interface

Once the application programmer has expressed the desired data transfer, how do the compute pro-

cessors communicate that information to all of the IOPs, and how do the IOPs use the information

to arrange the data transfer?

In my original disk-directed I/O study [Kot94], all of the possible data-distribution patterns

(e.g., block-cyclic) were understood by the IOPs, so the CPs needed only to request a particular

distribution pattern and to provide a few parameters. A more realistic system should be more


exible: it should support the common matrix distributions easily, and it should support arbitrary

distributions and irregular data structures.

Fortunately, several compiler groups have developed compact parameterized formats for describ-

ing matrix distributions [BMS95, BdC93]. This compact description of the distribution pattern,

generated by a compiler or matrix-support library, can be passed to the IOPs. A few calculations

can tell the IOP which �le blocks it should be transferring, and for each �le block, the location of

the data (CP number and o�set within that CP's bu�er).

To support more complex distributions, or irregular requests, each CP can send a single nested-

batched request [NK95] to each IOP. Such requests can capture complex but regular requests in a

compact form, but can also capture completely irregular requests as a list. A nested-batched request

is essentially a nested list, or (looked at another way) a tree. Indeed, with some preprocessing it

can be treated much like an interval tree [CLR90, section 15.3], which can be used to perform the

necessary mapping from �le-block numbers to (CP number, CP o�set) tuples.1 For a collective

request, an IOP receives one such request from each CP. It is easy to traverse the trees to produce

1Rather than expanding a nested-strided request into a set of intervals, and building a large interval tree, it is

better to augment the interval-tree data structure to deal with strided intervals. This very compact data structure can
represent and search a large set of intervals extremely quickly. In arbitrarily irregular requests, the nested-batched

request is simply a list of n intervals, which can be preprocessed into an interval tree (in O(n) time if the list is

already sorted) so that each lookup only requires O(log n) time, which is still likely to be small compared to the I/O
time.

5



a list of �le blocks that should be transferred. Then, as each block is transferred, the IOP uses

the trees to determine which CP(s) requested parts of that block, and where in the CP the data is

located.

The combination of the compact parameterized descriptions for common matrix distributions,

and the fully general nested-batched interface [NK95], are su�cient to e�ciently support disk-

directed I/O.

4 Conclusion

While I do not propose any speci�c API or internal interface in this paper, I believe it is possible to

use any of a number of existing such interfaces in the construction of a disk-directed I/O system.

Many existing interfaces support the common case of distributed multidimensional matrices, and

there are compact forms for representing the common distributions. For more unusual (or irregular)

distributions or data structures, the nested-batched interface [NK95] provides at least an internal

representation for communicating between the CP and the IOP; ideally, an application-speci�c

library would support the programmer when manipulating such data structures.

There are some capabilities of disk-directed I/O which cannot be represented as a set of read

and write transfers, including data-dependent �ltering and distribution functions [Kot95b]. To

support this level of functionality essentially requires the user to specify an arbitrarily complex

function (a program), rather than a simple set. This topic represents future work.

References

[BBS+94] Robert Bennett, Kelvin Bryant, Alan Sussman, Raja Das, and Joel Saltz. Jovian: A

framework for optimizing parallel I/O. In Proceedings of the Scalable Parallel Libraries

Conference, pages 10{20. IEEE Computer Society Press, October 1994.

[BdC93] Rajesh Bordawekar, Juan Miguel del Rosario, and Alok Choudhary. Design and evalua-

tion of primitives for parallel I/O. In Proceedings of Supercomputing '93, pages 452{461,

1993.

[BGST93] Michael L. Best, Adam Greenberg, Craig Stan�ll, and Lewis W. Tucker. CMMD I/O:

A parallel Unix I/O. In Proceedings of the Seventh International Parallel Processing

Symposium, pages 489{495, 1993.

[BMS95] Peter Brezany, Thomas A. Mueck, and Erich Schikuta. Language, compiler and parallel

database support for I/O intensive applications. In High Performance Computing and

Networking 1995 Europe, pages 14{20, Springer-Verlag, LNCS 919, May 1995.

6



[CFH+95] Peter Corbett, Dror Feitelson, Yarson Hsu, Jean-Pierre Prost, Marc Snir, Sam Fineberg,

Bill Nitzberg, Bernard Traversat, and Parkson Wong. MPI-IO: a parallel �le I/O in-

terface for MPI. Technical Report NAS-95-002, NASA Ames Research Center, January

1995. Version 0.3.

[CFP+95] Peter F. Corbett, Dror G. Feitelson, Jean-Pierre Prost, George S. Almasi, Sandra John-

son Baylor, Anthony S. Bolmarcich, Yarsun Hsu, Julian Satran, Marc Snir, Robert

Colao, Brian Herr, Joseph Kavaky, Thomas R. Morgan, and Anthony Zlotek. Parallel

�le systems for the IBM SP computers. IBM Systems Journal, pages 222{248, 1995.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algo-

rithms. McGraw Hill, 1990.

[DdR92] Erik DeBenedictis and Juan Miguel del Rosario. nCUBE parallel I/O software. In Pro-

ceedings of the Eleventh Annual IEEE International Phoenix Conference on Computers

and Communications, pages 0117{0124, April 1992.

[GGL93] N. Galbreath, W. Gropp, and D. Levine. Applications-driven parallel I/O. In Proceedings

of Supercomputing '93, pages 462{471, 1993.

[KGF94] John F. Karpovich, Andrew S. Grimshaw, and James C. French. Extensible �le systems

ELFS: An object-oriented approach to high performance �le I/O. In Proceedings of the

Ninth Annual Conference on Object-Oriented Programming Systems, Languages, and

Applications, pages 191{204, October 1994.

[Kot94] David Kotz. Disk-directed I/O for MIMD multiprocessors. In Proceedings of the 1994

Symposium on Operating Systems Design and Implementation, pages 61{74, November

1994. Updated as Dartmouth TR PCS-TR94-226 on November 8, 1994.

[Kot95a] David Kotz. Disk-directed I/O for an out-of-core computation. In Proceedings of the

Fourth IEEE International Symposium on High Performance Distributed Computing,

pages 159{166, August 1995.

[Kot95b] David Kotz. Expanding the potential for disk-directed I/O. In Proceedings of the 1995

IEEE Symposium on Parallel and Distributed Processing, October 1995. To appear.

Currently available as Dartmouth PCS-TR95-254.

[Kri94] Orran Krieger. HFS: A 
exible �le system for shared-memory multiprocessors. PhD

thesis, University of Toronto, October 1994.

[NK95] Nils Nieuwejaar and David Kotz. Low-level interfaces for high-level parallel I/O. In

IPPS '95 Workshop on Input/Output in Parallel and Distributed Systems, pages 47{62,

April 1995.

[Pie89] Paul Pierce. A concurrent �le system for a highly parallel mass storage system. In

Proceedings of the Fourth Conference on Hypercube Concurrent Computers and Appli-

cations, pages 155{160. Golden Gate Enterprises, Los Altos, CA, March 1989.

[RP95] Brad Rullman and David Payne. An e�cient �le I/O interface for parallel applications.

DRAFT presented at the Workshop on Scalable I/O, Frontiers '95, February 1995.

[SCJ+95] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-directed collec-

tive I/O in Panda. In Proceedings of Supercomputing '95, December 1995. To appear.

7



[TBC+94] Rajeev Thakur, Rajesh Bordawekar, Alok Choudhary, Ravi Ponnusamy, and Tarvinder

Singh. PASSION runtime library for parallel I/O. In Proceedings of the Scalable Parallel

Libraries Conference, pages 119{128, October 1994.

Many of the above references are available via URL http://www.cs.dartmouth.edu/pario.html

8


	Interfaces for Disk-Directed I/O
	Dartmouth Digital Commons Citation

	paper.dvi

