
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

9-11-1995

Structured Permuting in Place on Parallel Disk Systems Structured Permuting in Place on Parallel Disk Systems

Leonard F. Wisniewski
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

 Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation
Wisniewski, Leonard F., "Structured Permuting in Place on Parallel Disk Systems" (1995). Computer
Science Technical Report PCS-TR95-265. https://digitalcommons.dartmouth.edu/cs_tr/119

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/119?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Structured Permuting in Place on Parallel Disk Systems

Leonard F. Wisniewski�

Department of Computer Science

Dartmouth College

Dartmouth College PCS-TR95-265

September 11, 1995

Abstract

The ability to perform permutations of large data sets in place reduces the amount of

necessary available disk storage. The simplest way to perform a permutation often is to read

the records of a data set from a source portion of data storage, permute them in memory, and

write them to a separate target portion of the same size. It can be quite expensive, however, to

provide disk storage that is twice the size of very large data sets. Permuting in place reduces

the expense by using only a small amount of extra disk storage beyond the size of the data

set.

This paper features in-place algorithms for commonly used structured permutations. We

have developed an asymptotically optimal algorithm for performing BMMC (bit-matrix-

multiply/complement) permutations in place that requires at most 2N
BD

�
2
l

rank

lg(M=B)

m
+ 7

2

�
parallel disk accesses, as long as M � 2BD, where N is the number of records in the data set,

M is the number of records that can �t in memory,D is the number of disks, B is the number

of records in a block, and
 is the lower left lg(N=B) � lgB submatrix of the characteristic

matrix for the permutation. This algorithm uses N +M records of disk storage and requires

only a constant factor more parallel disk accesses and insigni�cant additional computation

than a previously published asymptotically optimal algorithm that uses 2N records of disk

storage.

We also give algorithms to perform mesh and torus permutations on a d-dimensional mesh.

The in-place algorithm for mesh permutations requires at most 3 dN=BDe parallel I/Os and the

in-place algorithm for torus permutations uses at most 4dN=BD parallel I/Os. The algorithms

for mesh and torus permutations require no extra disk space as long as the memory size M

is at least 3BD. The torus algorithm improves upon the previous best algorithm in terms of

both time and space.

1 Introduction

Despite the decreasing cost per megabyte of providing high-bandwidth parallel disk systems with

large storage capacities, the total cost of very large disk systems remains high. Modern parallel

disk systems have gigabyte and terabyte capacities, and in the near future, petabyte- and exabyte-

capacity disk storage systems will appear. At $0.50 per megabyte of disk storage, a 1 terabyte

�Supported in part by a Dartmouth Fellowship and in part by the National Science Foundation under Grant

CCR-9308667.

1

system would cost $500,000. This cost does not even re
ect the higher cost per megabyte of

increasing the bandwidth with parallel disk arrays.

Out-of-core permutations are data-movement operations which can use a large amount of

costly extra storage if not performed conservatively. Recent theoretical work focuses on the I/O

complexity of various out-of-core permutations. Many of the permutation algorithms perform a

number of passes over the data. Each pass reads the source data set stored in one portion of

disk storage, permutes it in memory, and writes it to a separate target portion of disk storage.

Unfortunately, permuting in this manner requires that the capacity of the disk system be twice

the size of the data set, or that we limit the data set to be half the available storage capacity.

Permuting in place with only a small amount of extra disk storage greatly reduces this additional

expense or limitation.

We categorize a permutation algorithm as in-place if the algorithm performs the permutation

with additional disk storage that is asymptotically proportional to the size of memory. That is, we

permute a data set with N records in place if we use a total of N +O(M) records of disk storage,

where M is the number of records that can �t in main memory. Algorithms that use separate

source and target portions use 2N records of disk space, whereas the algorithms presented in this

paper use no more than N +M records.

In addition to reducing the amount of disk space required to perform the permutation, we

would like the algorithm to be e�cient in terms of I/O complexity and computation. We prefer

that the I/O complexity of an in-place algorithm not exceed that of an algorithm that uses

separate source and target portions of disk storage by more than a constant factor. We also do

not want the additional time to determine which disk blocks to read and write to be signi�cant.

In this paper, we examine in-place algorithms for several types of commonly used structured

permutations that have been shown to require an asymptotically lower number of parallel disk

accesses than general permuting. We show how to perform these permutations in place with no

more than M records of extra disk space. More speci�cally, the results of this paper include the

following:

1. An asymptotically optimal algorithm to perform BMMC (bit-matrix-multiply/complement)

permutations in place which takes at most 2N
BD

�
2
l

rank

lg(M=B)

m
+ 7

2

�
parallel disk accesses and

N +M records of disk space as long as M � 2BD, where D is the number of disks, B is

the number of records in a block, and
 is the lower left lg(N=B) � lgB submatrix of the

nonsingular characteristic matrix for the permutation.

2. An in-place algorithm to perform mesh permutations which requires at most 3 dN=BDe

parallel disk accesses and no extra disk space.

3. An in-place algorithm to perform d-dimensional torus permutations which uses at most

4dN=BD parallel disk accesses and 3BD records of memory, yielding an asymptotic im-

provement upon the I/O-complexity bound of the previous best algorithm.

4. In-place algorithms to perform several subclasses of BMMC permutations which take only

one pass and require no more than a memoryload of extra disk space.

2

Outline

The remainder of this paper is organized as follows. Section 2 provides the I/O complexity

model and a description of previous work on out-of-core permuting and in-place permuting. In

Section 3, we present the BMMC algorithm of [CSW94], adapt it to be performed in place, and

present algorithms to perform in place the one-pass permutation subclasses used by the BMMC

algorithm. Section 4 contains in-place algorithms to perform mesh permutations in one pass over

the data and to perform torus permutations in asymptotically fewer parallel disk accesses than

the previous best algorithm. Finally, Section 5 contains some concluding remarks.

The algorithms in Sections 3 and 4 are on-line in the sense that they take little computation

time and memory. (They do, however, require permutations to be performed in memory, and

various architectures may di�er in how e�ciently they do so.) The data structures are vectors

of length lgN or matrices of size at most lgN � lgN . Even serial algorithms for the harder

computations take time polynomial in lgN , in fact O(lg3N). When appropriate, we show that

any extra computation necessary to permute in place is insigni�cant.

2 Model and previous results

We use the parallel-disk model �rst proposed by Vitter and Shriver [VS90, VS94], who also gave

asymptotically optimal algorithms for several problems including sorting and general permuta-

tions. In the Vitter-Shriver model, N records are stored on D disks D0;D1; : : : ;DD�1, with N=D

records stored on each disk. The records on each disk are organized in blocks of B records each.

When a disk is read from or written to, an entire block of records is transferred. Disk I/O trans-

fers records between the disks and a random-access memory (which we shall refer to simply as

\memory") capable of holding M records. Each parallel I/O operation transfers up to D blocks

between the disks and memory, with at most one block transferred per disk, for a total of up to

BD records transferred. The parallel-disk model allows independent I/O, which accesses blocks

that may be at any locations on their respective disks in a single parallel I/O. Independent access

is more general than striped I/O, which has the restriction that the blocks accessed in a given

operation must be at the same location on each disk.

We measure an algorithm's e�ciency by the number of parallel I/O operations it requires.

Although this cost model does not account for the variation in disk access times caused by head

movement and rotational latency, programmers often have no control over these factors. The

number of disk accesses, however, can be minimized by carefully designed algorithms such as

those in [AP94, Arg95, CGG+95, Cor92, Cor93, CSW94, GTVV93, NV93, VS94] and this paper.

There are two restrictions implied by the Vitter-Shriver model. In order for the memory to

accomodate the records transferred in a parallel I/O operation to all D disks, we require that

BD � M . Also, we assume that M < N , since otherwise we can just perform all operations in

memory.

The Vitter-Shriver model lays out data on a parallel disk system as shown in Figure 1. A

stripe consists of the D blocks at the same location on all D disks. Record indices vary most

rapidly within a block, then among disks, and �nally among stripes.

Since each parallel I/O operation accesses at most BD records, any algorithm that must access

all N records requires
(N=BD) parallel I/Os, and so O(N=BD) parallel I/Os is the analogue

of linear time in sequential computing. An algorithm makes a pass over the data if it reads and

3

D0 D1 D2 D3 D4 D5 D6 D7

stripe 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

stripe 1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stripe 2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

stripe 3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Figure 1: The layout of N = 64 records in a parallel disk system with B = 2 and D = 8. Each box

represents one block. The number of stripes is N=BD = 4. Numbers indicate record indices.

writes each record exactly once, for a total of 2N=BD parallel I/Os. Vitter and Shriver showed

an upper bound of �
�
min

�
N
D ;

N
BD

lg(N=B)

lg(M=B)

��
parallel I/Os for general permutations, that is, for

arbitrary mappings � : f0; 1; : : : ; N � 1g
1-1
! f0; 1; : : : ; N � 1g. The �rst term comes into play

when the block size B is small, and the second term is the sorting bound �
�

N
BD

lg(N=B)

lg(M=B)

�
, which

was shown by Vitter and Shriver for randomized sorting and by Nodine and Vitter [NV93] and

by Arge [Arg95] for deterministic sorting. These bounds are asymptotically tight, for they match

the lower bounds proven earlier by Aggarwal and Vitter [AV88] using a model with one disk and

D independent read/write heads, which is at least as powerful as the Vitter-Shriver model.

Speci�c classes of structured permutations sometimes require fewer parallel I/Os than general

permutations. Vitter and Shriver showed how to transpose an R � S matrix (N = RS) with

only �
�

N
BD

�
1 +

lgmin(B;R;S;N=B)

lg(M=B)

��
parallel I/Os. Subsequently, Cormen [Cor93] and Cormen,

Sundquist, and Wisniewski [CSW94] also developed algorithms to perform several classes of bit-

de�ned permutations using fewer parallel I/Os than general permutations. The bit-de�ned classes

include matrix transposition with power-of-2 dimensions as a special case. Cormen [Cor93] also

shows how to e�ciently perform permutations on data with a mesh layout.

Several in-place algorithms have been developed with certain limitations. Fich, Munro and

Poblete [FMP95] provide in-place algorithms to perform general permutations in memory. These

algorithms, however, do not apply to permuting data sets that exceed the size of memory. Vitter

and Shriver did not design their out-of-core algorithm for general permuting to be performed

in place. Furthermore, the constants before the upper bound for this algorithm are rather high

compared to the constants in the worst cases for the structured permutation algorithms mentioned

above [VV95].

The next two sections present out-of-core in-place algorithms to perform several commonly

used structured permutations. We supply exact constants for the I/O complexity of both the

previous best algorithms and the in-place algorithms. With exact constants, we can examine

the tradeo�s between time and space when deciding whether to use an in-place algorithm. The

in-place algorithms require at most N +M records of disk space, a signi�cant savings over the

2N records of disk space required by the previous algorithms when N >> M .

3 Performing BMMC permutations in place

In this section, we give a brief overview of the algorithm in [CSW94] to perform BMMC permu-

tations on parallel disk systems. We shall then adapt that algorithm to be performed in place

4

 x0

 x1

 x2

 x3

 x4

 x5

 x6

 x7

 x8

 x9

 x10

 x11

 x12

b

d

s

offset

disk

stripe

n

relative
block
number

memoryload
number

m

Figure 2: Parsing the address x = (x0; x1; : : : ; xn�1) of a record on a parallel disk system. Here, n = 13,

b = 3, d = 4, m = 8, and s = 6. The least signi�cant b bits contain the o�set of a record within its block,

the next d bits contain the disk number, and the most signi�cant s bits contain the stripe number. The

most signi�cant n � m bits form the record's memoryload number, and bits b; b+ 1; : : : ;m � 1 form the

relative block number.

by showing how to perform two subclasses of BMMC permutations in place. The algorithms to

perform each of these subclasses use no more than 3N=BD parallel I/Os, in most cases 2N=BD

parallel I/Os, and at most an extra memoryload of disk space.

For this section, we use the following notation extensively:

b = lgB ; d = lgD ; m = lgM ; n = lgN :

We shall assume that b, d, m, and n are nonnegative integers, which implies that B, D,M , and N

are exact powers of 2. The two restrictions on the Vitter-Shriver model imply that b+d � m < n.

We indicate the address, or index, of a record as an n-bit vector x with the least signi�cant bit

�rst: x = (x0; x1; : : : ; xn�1). As Figure 2 shows, the o�set within the block is given by the least

signi�cant b bits x0; x1; : : : ; xb�1, the disk number by the next d bits xb; xb+1; : : : ; xb+d�1, and the

stripe number by the s = n � (b+ d) most signi�cant bits xb+d; xb+d+1; : : : ; xn�1. If we number

the blocks within each memoryload from 0 to M=B � 1, then the m � b bits xb; xb+1; : : : ; xm�1

indicate in which relative block number a record resides. We also partition the data into N=M

disjoint sets of M consecutive records which we call memoryloads. The most signi�cant n �m

bits of the source address designate in which memoryload number a record resides.

We shall use several other notational conventions in this section. Matrix row and column

numbers are indexed from 0 starting from the upper left. Vectors are indexed from 0, too. We

index rows and columns by sets to indicate submatrices, using \: :" notation to indicate sets of

contiguous numbers. We denote an identity matrix by I and a matrix whose entries are all 0s by 0;

the dimensions of such matrices will be clear from their contexts. All matrix and vector elements

are drawn from f0; 1g, and all matrix and vector arithmetic is over GF (2)1. When convenient,

we interpret bit vectors as the integers they represent in binary. Vectors are treated as 1-column

matrices in context.

1Matrix multiplication over GF(2) is like standard matrix multiplication over the reals but with all arithmetic

performed modulo 2. Equivalently, multiplication is replaced by logical-and, and addition is replaced by exclusive-or.

5

BMMC permutations

The most general class of bit-de�ned permutations is bit-matrix-multiply/complement, or BMMC,

permutations.2 For a BMMC permutation, we have an n � n characteristic matrix A = (aij)

whose entries are drawn from f0; 1g and is nonsingular (i.e., invertible) over GF (2), and we have

a complement vector c = (c0; c1; : : : ; cn�1) of length n. Treating a source address x as an n-bit

vector, we perform matrix-vector multiplication over GF(2) and then form the corresponding

n-bit target address y by complementing some subset of the resulting bits: y = Ax� c, or2
6666664

y0
y1
y2
...

yn�1

3
7777775
=

2
6666664

a00 a01 a02 � � � a0;n�1
a10 a11 a12 � � � a1;n�1
a20 a21 a22 � � � a2;n�1
...

...
...

. . .
...

an�1;0 an�1;1 an�1;2 � � � an�1;n�1

3
7777775

2
6666664

x0
x1
x2
...

xn�1

3
7777775
�

2
6666664

c0
c1
c2
...

cn�1

3
7777775
:

BMMC permutations include the subclass of BPC (bit-permute/complement) permutations,

which have characteristic matrices with exactly one 1 in each row and in each column. BPC

permutations include many common permutations such as matrix transposition, bit-reversal per-

mutations (used in performing FFTs), vector-reversal permutations, hypercube permutations,

and matrix reblocking. BMMC permutations also include non-BPC permutations such as the

standard binary-re
ected Gray code and its inverse.

We shall generally focus on the matrix-multiplication portion of BMMC permutations rather

than on the complement vector. The permutation �A characterized by a matrix A is the permu-

tation for which �A(x) = Ax for all source addresses x.

The following lemma from [CSW94] shows the equivalence of multiplying characteristic ma-

trices and composing permutations when the complement vectors are zero. For permutations �Y
and �Z , the composition �Z � �Y is de�ned by (�Z � �Y)(x) = �Z(�Y (x)) for all x in the domain

of �Y .

Lemma 1 Let Z and Y be nonsingular n � n matrices and let �Z and �Y be the permutations

characterized by Z and Y , respectively. Then the matrix product Z Y characterizes the composition

�Z � �Y .

After the factorization of a characteristic matrix A into the product of several nonsingular

matrices, each factor characterizes a BMMC permutation. The following corollary from [CSW94]

describes the order in which we perform these permutations to e�ect the permutation characterized

by A.

Corollary 2 Let the n�n characteristic matrix A be factored as A = A(k)A(k�1)A(k�2) � � �A(1),

where each factor A(i) is a nonsingular n�n matrix. Then we can perform the BMMC permutation

characterized by A by performing, in order, the BMMC permutations characterized by A(1); A(2);

: : : ; A(k). That is, we perform the permutations characterized by the factors of a matrix from right

to left.

2Edelman, Heller, and Johnsson [EHJ94] call BMMC permutations a�ne transformations or, if there is no

complementing, linear transformations.

6

BMMC algorithm

The BMMC algorithm presented in [CSW94] uses a matrix decomposition/composition method

which factors the characteristic matrix A of the BMMC permutation into at most
l

rank

lg(M=B)

m
+ 2

matrix factors, where
 is the submatrix Ab::n�1;0::b�1, i.e., the lower left (n� b)� b submatrix of

A. Each factor characterizes a permutation that can be performed in one pass over the data. The

algorithm �rst uses linear-algebraic techniques to decompose the characteristic matrix into at most

2
l

rank

lg(M=B)

m
+5 factors, each of which characterizes a one-pass permutation. After the factorization,

the algorithm uses composition properties among the classes of one-pass permutations to combine

pairs of one-pass permutations into single one-pass permutations. The compositions reduce the

number of one-pass factors to at most
l

rank

lg(M=B)

m
+ 2. Since one pass over the data requires

2N
BD parallel I/Os (i.e., each record is read and written once), the I/O complexity of the BMMC

algorithm is 2N
BD

�l
rank

lg(M=B)

m
+ 2

�
parallel I/Os. This upper bound on the number of parallel I/Os

asymptotically matches the lower bound also shown in [CSW94] and is, in fact, almost equal to

the best known exact lower bound.

All the one-pass permutations in the factorization of the matrix A have characteristic matrix

forms included in the the BMMC subclasses of MRC (memory-rearrangement/complement) and

MLD (memoryload-dispersal) permutations. The algorithms to perform MRC and MLD permu-

tations in [Cor93] and [CSW94], respectively, read the data from a source portion of N records of

disk storage, permute the data in memory, and write the data to a separate target portion of N

records of disk storage.

MRC permutations are BMMC permutations with the additional restrictions that both the

leading m � m and trailing (n � m) � (n � m) submatrices of the characteristic matrix are

nonsingular, the upper right m � (n �m) submatrix can contain any 0-1 values at all, and the

lower left (n�m)�m submatrix is all 0:

m n �m"
nonsingular arbitrary

0 nonsingular

#
m

n�m

:

Cormen [Cor93] shows that any MRC permutation requires only one pass of N=BD parallel reads

and N=BD parallel writes. We partition the N records into N=M disjoint memoryloads of M

consecutive records each. Each memoryload consists of M=BD consecutive stripes in which all

addresses have the same value in the most signi�cant n�m bits. Any MRC permutation can be

performed by reading a memoryload, permuting its records in memory, and writing them out to

a (possibly di�erent) memoryload number.

MLD permutations are BMMC permutations with a characteristic matrix that is nonsingular

and of the form

b

m� b

n�m

m n�m2
64

arbitrary

� arbitrary

�

3
75 ;

subject to the kernel condition. We de�ne the kernel of a matrix (also known as the nullspace)

as ker = fx : x = 0g. The kernel condition requires that ker� � ker� or, equivalently, �x = 0

7

implies �x = 0. We can perform any MLD permutation in one pass by reading each source

memoryload, permuting its records in memory, and writing these records out to M=BD target

blocks on each disk. Although the source blocks read from each memoryload must come from

M=BD consecutive stripes, the target blocks written may go to any locations at all, as long as

M=BD full target blocks are written to each disk. That is, MLD permutations use striped reads

and independent writes.

To perform a BMMC permutation in place, we would just need to develop algorithms to

perform MRC and MLD permutations in place. Unfortunately, we do not know how to perform

an arbitrary MLD permutation in O(N=BD) parallel I/Os using only O(M) records of extra disk

space. The dispersal of blocks from each source memoryload in the MLD algorithm to as many

as M=B di�erent target memoryloads does not allow us to easily reuse the vacated disk space

of the source memoryload. The MLD permutations produced by the decomposition phase of the

factoring method, however, belong to the even more restricted subclass of erasure permutations

which we shall de�ne later. Fortunately, we can easily perform erasure permutations with no

extra disk space.

The rest of this section shows how to perform MRC permutations and erasure permutations

in place using O(N=BD) parallel I/Os. After the matrix-decomposition phase of the BMMC

algorithm of [CSW94], the factorization is

A = F E�1
g S�1

g E�1
g�1 S

�1
g�1 � � � E

�1
1 S�1

1 R�1T�1 ; (1)

where the factors F , S�1
i , R�1 and T�1 characterize MRC permutations, the factors E�1

i charac-

terize erasure permutations, and g �
l

rank

lg(M=B)

m
+ 1. Thus, if we show how to perform MRC and

erasure permutations in place using O(N=BD) parallel I/Os, we would have an asymptotically

optimal algorithm that uses O
�

N
BD

�l
rank

lg(M=B)

m
+ 1

��
parallel I/Os. Each of the characteristic

matrices T�1, R�1, S�1
i , and E�1

i have special matrix forms which we shall discuss later in more

detail.

Performing MRC permutations in place

Here we show how to perform any MRC permutation in place using at most 3N=BD parallel I/Os

and only M records of extra disk space. Our in-place MRC permutation algorithm only requires

2N=BD parallel I/Os when we use half of memory in place of the extra disk space or when the

characteristic matrix is of a particular form, which we shall see later.

We examine more closely the restrictions on the characteristic matrix form to develop an

algorithm to perform MRC permutations in place. The following equation calculates a target

address y from an MRC characteristic matrix and a source address x:

�
y0::m�1

ym::n�1

�
=

m n �m"
� �

0 �

�
x0::m�1

xm::n�1

�
m

n�m

.

Since the lower left (n�m)�m submatrix of the characteristic matrix is 0, the target memoryload

number is ym::n�1 = �xm::n�1. Moreover, every record in a given source memoryload number

moves to the same target memoryload. Thus, the submatrix � de�nes a permutation on the

8

memoryload numbers. Because any permutation is the union of disjoint cycles, we can represent

the memoryload numbers as a set of s disjoint cycles a = (a(0); a(1); : : : ; a(s�1)), for some s in the

range 1 � s � N=M .

We perform MRC permutations in place by rotating each of the disjoint cycles once. We

rotate each disjoint cycle a(i) = (a
(i)
0 ; a

(i)
1 ; : : : ; a

(i)
k�1) of k memoryload numbers by �rst moving

memoryload a
(i)
0 into M records of extra disk space creating an empty memoryload slot where

memoryload a
(i)
0 initially resided on disk. We then �ll the empty memoryload slot by reading

memoryload a
(i)
k�1 into memory, permuting within the memoryload according to the upper m

rows of the characteristic matrix, and writing it to the empty memoryload slot. At this point,

there is a new empty memoryload slot where memoryload a
(i)
k�1 originally resided. By repeatedly

reading, permuting, and writing to the empty memoryload slot, we rotate each memoryload in

the cycle until we have written all but one memoryload to its correct target location. Finally, we

read memoryload a
(i)
0 back into memory from the extra disk space, permute it, and write it to

the remaining empty memoryload slot. Figure 3 shows the rotation of a 3-cycle of memoryload

numbers.

The only unresolved problem is to �nd the disjoint cycles without rotating any disjoint cycle

more than once. Fich et al. [FMP95] provide several algorithms to perform an arbitrary permu-

tation in place when the entire data set �ts into memory. The following theorem from [FMP95]

re
ects the tradeo� between time and additional space when permuting an array of length p in

memory when an extra q bits of storage are available.

Theorem 3 In the worst case, permuting an array of length p, given the permutation, can be

done in O(p2=q) time and q+O(log p) bits of auxiliary space (consisting of a bit vector of length q

plus a constant number of pointers) for q � p.

In this context, we show how to perform a permutation on the p memoryload numbers, where

p = N=M . We can adapt the simplest algorithm from [FMP95] which uses q = N=M bits of

extra space to rotate each memoryload exactly once. With current disk prices approximately

100 times less per megabyte than memory prices, current parallel disk systems do not typically

have a capacity of more than 1000 memoryloads of data storage. It is reasonable to assume,

therefore, that we can �t the extra q bits in memory. By Theorem 3, the additional computation

time is O(N=M), which is a constant number of operations per memoryload. Since we can easily

generate the inverse permutation from the characteristic matrix, we can also adapt the more

complex algorithms in [FMP95] to rotate the memoryloads when N >> M using O (log(N=M))

extra bits of storage and O

�
N
M log(N=M)

�
time. For simplicity of presentation, we adapt the

algorithm that uses N=M extra bits of storage.

Our algorithm maintains a rotate bit for each memoryload number to indicate whether that

memoryload has moved to its target location. In consecutive order, we examine the rotate bit

for each memoryload number l 2 f0; 1; : : : ; N=M � 1g. If the rotate bit is set, the disjoint cycle

with memoryload number l has already been rotated. Since we examine the rotate bits of the

memoryload numbers from lowest to highest, for each disjoint cycle, we always examine the rotate

bit of the lowest memoryload number in the cycle �rst. That is, if the rotate bit is not set, the cycle

containing memoryload number l has not been rotated. We proceed to rotate the memoryload

9

N = 3 M records

empty memoryload slot

(a) Initial state of disk storage

(b) Move source memoryload 0
 into extra storage

(c) Rotate source memoryload 2

(d) Rotate source memoryload 1 (e) Final state of disk storage

source memoryload 0

source memoryload 2

source memoryload 1

M records of extra storage

Figure 3: Rotating the 3-cycle of memoryload numbers 0, 1, and 2, where N = 3M and the cycle is

(0, 1, 2). We move each memoryload to an empty slot by reading it into memory, permuting it, then

writing it to the empty slot. We create the initial empty slot by reading source memoryload number 0 and

writing it into the extra M records of disk space.

numbers in this cycle by treating memoryload number l as memoryload number a
(i)
0 and setting

the rotate bit of each memoryload number in the cycle. Thus, the constant amount of extra

computation time per memoryload is to check and set the rotate bits.

For each disjoint cycle a(i), we read and write each memoryload once, except for memory-

load a
(i)
0 , which we read and write an extra time to empty a memoryload slot. Thus, if s < N=M ,

the MRC permutation requires 2(N + sM)=BD parallel I/Os to perform in place, i.e., a little

more than one pass over the data. In the worst case, an MRC permutation can have N=2M

2-cycles of memoryload numbers, resulting in a total of 3N=BD parallel I/Os.

If s = N=M , then the trailing (n�m)�(n�m) submatrix is the identity matrix, i.e., a source

memoryload number maps to the same target memoryload number. In this case, we read each

memoryload, permute it in memory, then write it back to its original location on disk. No extra

10

parallel I/Os are necessary to create an empty memoryload slot. This special case requires only

2N=BD parallel I/Os.

If BD �M=2, we have the option of reducing the amount of available memory to M 0 =M=2

records and storing memoryload a
(i)
0 in half of memory to avoid the expense of reading and writing

it an extra time. Consequently, we must reduce the size of memory to M 0 for the entire BMMC

factoring. Thus, the lg(M=B) denominator in the upper bound decreases by one, i.e., the number

of passes may increase.

Performing erasure permutations in place

We now show how to perform the MLD subclass of erasure permutations in place. Erasure

permutations have nonsingular characteristic matrices of the form

E�1 =

b m� b n�m2
64

I 0 0

0 I 0

0 � I

3
75

b

m� b

n�m

;

where � is arbitrary. The key parts of the characteristic matrix to observe are the lower left

(n � b) � b submatrix (which is all 0) and the trailing (n � b) � (n � b) submatrix. The most

signi�cant n � b bits of a source address, xb::n�1, represent the block number for each source

block. Since the lower left (n� b)� b submatrix is zero, the trailing (n� b)� (n� b) submatrix

must be nonsingular. The least signi�cant b bits of a source address do not come into play when

determining the target block number yb::n�1 to which a record maps. Thus, all the records in a

source block map to the same target block. Therefore, the trailing (n � b)� (n � b) submatrix

induces a cycle of blocks just as the trailing (n �m) � (n �m) submatrix of the characteristic

matrix for MRC permutations de�ned a cycle of memoryloads.

We cannot rotate blocks using the method of reading full source memoryloads and writing

them to full target memoryloads as in the in-place algorithm for MRC permutations. Since

memoryloads are evenly distributed across the disks, that method guaranteed full utilization

of available disk bandwidth when performing MRC permutations. For a permutation of block

numbers, there exist nonsingular trailing (n� b)� (n� b) submatrices for which all the blocks of

a full source memoryload do not map evenly across the disks.

The trailing (n � b)� (n � b) submatrix of the matrix E�1 has two properties that allow us

to use a simple algorithm for performing erasure permutations in place:

1. The middle m � b rows of the submatrix de�ne an identity mapping on the relative block

numbers.

2. The trailing (n�b)�(n�b) submatrix is self-invertible. Moreover, E�1 = E, i.e., the entire

erasure matrix is self-invertible.

Property 1 restricts the mapping of block numbers such that each source block moves to a target

block with the same relative block number, possibly in a di�erent memoryload. Property 2 implies

that there are N=2B disjoint 2-cycles of blocks. That is, the mapping swaps blocks.

We �nd the appropriate blocks to swap using the following sequential pseudocode (which is

easily parallelized):

11

1 for k 0 to N=M � 1 do

2 for j 0 to M=B � 1 do

3 k0 �j � k

4 if k0 > k then

5 swap blocks with relative block number j in memoryloads k and k0

Lines 4 compares the memoryload number of each block to the memoryload number of its swap

partner and line 5 performs a swap if the current block has the lower memoryload number in its

pair.

To guarantee the utilization of all the disks on each parallel I/O, we perform N=2M stages of

M=B swaps. During each stage, we swap the next pair of blocks for each relative block number.

By reading and writing two blocks with each relative block number, we evenly distribute the I/Os

across the disks.

We swap each block exactly once, reading and writing each record one time. Thus, we perform

any erasure permutation in place using exactly 2N=BD parallel I/Os. As long as 2BD � M ,

our algorithm for erasure permutations does not require any extra disk storage for temporarily

storing data.

The algorithm only requires an additive constant amount of extra computation time per block.

For each block, we test whether it has already been swapped. Since we perform the mapping of

each source block number in line 3 anyway, the only additional computation time is to make the

comparison in line 4.

Recap and further improvement

We now use the bounds on the in-place MRC and erasure permutation algorithms to determine

exact constants for the in-place BMMC algorithm. Each of the matrices in equation (1) belong to

subclasses of BMMC permutations with special matrix forms. The matrices T�1, R�1, and S�1
i

have the trailer, reducer, and swapper matrix forms, respectively, de�ned in [CSW94]. Figure 4

shows these matrix forms. Each of these matrix forms has an inverse of the same form.

Since the factors S�1
1 , R�1, and T�1 from equation (1) all characterize MRC permutations,

by the composition property shown in [CSW94], their product S�1
1 R�1 T�1 also characterizes an

MRC permutation. Furthermore, since the matrices S�1
1 , R�1, and T�1 have trailing (n�m)�

(n�m) identity submatrices and a lower left (n �m)�m submatrix that is all 0, so does their

product. Thus, the product S�1
1 R�1 T�1 requires only 2N=BD parallel I/Os to perform.

Our algorithm performs any BMMC permutation in at most 2N
BD

�
2
l

rank

lg(M=B)

m
+ 7

2

�
parallel

I/Os, which we see as follows. In equation (1), the factor F takes at most 3N=BD parallel I/Os

to perform and each of the factors S�1
i , E�1

i , and S�1
1 R�1 T�1 takes 2N=BD parallel I/Os. Since

g �
l

rank

lg(M=B)

m
+ 1, the algorithm takes at most

3N

BD
+

2N

BD

�
2

�
rank

lg(M=B)

�
+ 2

�
=

2N

BD

�
2

�
rank

lg(M=B)

�
+

7

2

�

parallel I/Os.

12

b m� b n�m

T�1 =

2
64

I 0 �

0 I �

0 0 I

3
75

b

m� b

n�m

b m� b n�m

R�1 =

2
64
� � 0

� � 0

0 0 I

3
75

b

m� b

n�m

(a) Trailer matrix form (b) Reducer matrix form

m n �m

S�1 =

"
permutation 0

0 I

#
m

n �m

b m� b n �m

E�1 =

2
64

I 0 0

0 I 0

0 � I

3
75

b

m� b

n�m

(c) Swapper matrix form (d) Erasure matrix form

Figure 4: Nonsingular column-addition matrix forms for special BMMC subclasses de�ned in [CSW94].

The factors T�1, R�1, S�1
i , and E�1

i in equation (1) belong to the trailer, reducer, swapper, and erasure

subclasses, respectively. An asterisk (*) indicates that the submatrix may be nonzero. The reducer matrix

form has a 1 in every location along the diagonal.

4 Performing mesh and torus permutations in place

In this section, we give in-place algorithms for performing mesh and torus permutations. The

algorithm for mesh permutations requires at most 3 dN=BDe parallel I/Os. The in-place algorithm

for torus permutations is asymptotically faster in terms of parallel I/Os than the previous best

algorithm which uses 2N records of disk space. The algorithms in this section do not require that

N , M , B, and D be powers of 2.

Some applications perform operations on data laid out in a d-dimensional mesh. Fig-

ure 5(a) shows the record layout on a 3 � 5 mesh. Let the dimensions of the mesh be

m = (m0; m1; : : : ; md�1), with positions in dimension i indexed from 0 to mi � 1. We asso-

ciate with each record a unique vector p = (p0; p1; : : : ; pd�1) for which pi indicates its location

along dimension i.

Several useful permutations move the data along one or more dimensions of the mesh. The

two types of permutations examined in this section handle the boundary conditions of the mesh

layout di�erently. A mesh permutation is a partial permutation that shifts records by a constant

number of locations in a speci�ed direction along each dimension of the mesh, but does not move

records that are shifted past any of the borders of the mesh. In a torus permutation, records wrap

around dimension boundaries as necessary. Thus, any torus permutation is a full permutation

which moves each record to a unique location in the mesh.

More formally, we can permute the data by adding an o�set vector o = (o0; o1; : : : ; od�1)

to the location of each record, where oi is the o�set in dimension i. We restrict the o�set in

each dimension such that �mi < oi < mi for mesh permutations and 0 � oi < mi for torus

permutations.

13

1211

6

10

5

1

9

4

87

30 2

131211

6

10

5

1

9

4

87

30 2

131211

6

10

5

1

9

4

87

30 2

14131211

6

10

5

1

9

4

87

30 2

1413

2 310 4 5 6 7 98 14131211102 310 4 5 6 7 98 1413121110

(a)

(b)

Figure 5: (a) Layout of data in a 3� 5 mesh. The wraparound lines show the axes of rotation along the

rows and columns for a torus permutation. (b) Row-major ordering of the records. We store as stripes

the consecutive BD records starting at each record indexed by x � 0 mod BD. In this example, BD = 2

and we denote stripe boundaries by thick lines.

Mesh permutations

First we examine mesh permutations, in which a record in position p moves to position

mesh(p; o) = (p0 + o0; p1 + o1; : : : ; pd�1 + od�1). We store the records in row-major order, with

0-origin indexing in each dimension, and we de�ne an index for each record of the mesh. The

indexing function � maps each grid position p = (p0; p1; : : : ; pd�1) to a unique index in row-major

order:

�(p;m) =
d�1X
i=0

2
4
0
@ d�1Y
j=i+1

mj

1
A pi

3
5 :

Figure 5(b) shows the one-dimensional row-major ordering of the records of the 3� 5 mesh.

The following lemma from [Cor92] states that the di�erence between the source and target

index of each record in row-major order is the same for every grid location mapped by a mesh

permutation.

Lemma 4 Let p = (p0; p1; : : : ; pd�1) be any grid location mapped by a mesh permutation with

o�set o = (o0; o1; : : : ; od�1) on a d-dimensional grid with dimensions m = (m0; m1; : : : ; md�1).

Then �(mesh(p; o); m)� �(p;m) = �(o;m).

This lemma implies that mesh permutations are monotonic routes, i.e., for any two grid loca-

tions p and q that can be mapped and �(p;m) < �(q;m), then �(mesh(p; o); m)< �(mesh(q; o); m).

Figure 6 shows two mesh permutations, one with a positive o�set and one with a negative o�set.

Cormen uses an algorithm for performing monotonic routes to perform mesh permutations

by reading source and target stripes in order, moving the source records to their correct target

locations, and writing the target stripes. This algorithm requires at most 3 dN=BDe parallel I/Os

and 2N records of disk space, where N = m0m1 � � �md�1 is the number of elements in the grid.

We derive a similar algorithm for performing mesh permutations in place. Since all the grid

locations to be mapped have the same o�set, we write the target stripes in order in an appropriate

14

2 310 4 5 6 7 98 1413121110

2 310 4 5 6 7 98 1413121110

2 310 4 5 6 7 98 14131211102 310 4 5 6 7 98 14131211102 310 4 5 6 7 98 1413121110

2 310 4 5 6 7 98 1413121110

2 310 4 5 6 7 98 1413121110

2 310 4 5 6 7 98 1413121110

2 310 4 5 6 7 98 14131211102 310 4 5 6 7 98 14131211102 310 4 5 6 7 98 1413121110

2 310 4 5 6 7 98 1413121110

(a)

(b)

Figure 6: Positive and negative o�set mesh permutations. On our 3 � 5 mesh, the indexing function

applied to the o�set for a mesh permutation may have either a positive or a negative sign. (a) A mesh

permutation with only positive o�sets (o = (1; 2)). (b) A mesh permutation with only negative o�sets

(o = (�1; 2)).

direction. We must be careful not to write into a location before moving the source record in that

location. Thus, based on the sign of the o�set, we process the target stripes in the appropriate

direction. If �(o;m) is positive as in Figure 6(a), we process the target stripes from highest (on

the right) to lowest (on the left); otherwise, �(o;m) is negative as in Figure 6(b), so we process the

target stripes from lowest to highest. This in-place algorithm also reads each stripe at most twice

(if a target stripe holds data not being overwritten, we have to read it before permuting into it)

and writes each stripe at most once for a maximum total of 3 dN=BDe parallel I/Os, requiring

only N records of disk space and two stripes of memory (2BD �M).

Torus permutations

Our algorithm for torus permutations improves on the algorithm of [Cor92], which performs a

torus permutation as a 2d-monotonic route, i.e., a superposition of 2d disjoint monotonic routes.

This algorithm uses at most (2d+1 + 1) dN=BDe parallel I/Os and requires 2N records of disk

space and 2d+1 stripes of memory. Our in-place algorithm for torus permutations rotates the data

along one dimension of the mesh at a time, at most reading twice and writing twice each stripe

of data per dimension. Thus, our algorithm uses at most 4dN=BD parallel I/Os and requires

only N records of disk space and 3 stripes of memory. Our in-place algorithm improves upon the

previous best algorithm in terms of time, disk space, and memory space.

15

2 310 4 5 6 7 98 1413121110

2 310 4 5 6 7 98 1413121110

2 310 4 5 6 7 98 14131211102 310 4 5 6 7 98 14131211102 310 4 5 6 7 98 1413121110

2 310 4 5 6 7 98 14131211102 310 4 5 6 7 98 14131211102 310 4 5 6 7 98 1413121110

Figure 7: Mapping a torus permutation along dimension 1. On our 3�5 mesh, we map a torus permutation

with positive index o�set (o0(p; 1) = (0; 2)) and negative index o�set (o0(p; 1) = (0;�3)). In this example,

the plain and dashed arrows indicate the majority and minority sets, respectively.

We now de�ne a torus permutation more formally. A torus permutation is a rotation of the

records along each dimension. The direction of movement in each dimension depends on both the

o�set vector o and each source position p. That is, for each dimension i, we rede�ne the o�set

vector o as an o�set vector o0(p; i) = (o00; o
0

1; : : : ; o
0

d�1) with elements

o0i =

�
oi if (pi + oi) modmi � pi ;

oi �mi if (pi + oi) modmi < pi :

We perform a torus permutation as a sequence of d permutations, each of which rotates along

a single dimension. That is, in the ith permutation, for i = 0; 1; : : : ; d� 1, we move a record at

position p = (p0; p1; : : : ; pd�1) to position �p = (p0; p1; : : : ; pi + o0i; : : : ; pd�1). If the o�set is zero,

we do not need to permute; otherwise the o�set o0i has two di�erent values. If we were to use the

algorithm for mesh permutations, we would write over unmoved source records at some point as

we sweep through the target stripes in one direction. Thus, we need a more clever algorithm to

perform torus permutations in place.

Since there are two di�erent o�sets, we view the permutation along each dimension as a 2-

monotonic route. To permute along dimension i, we partition the source records into two sets,

one set of source records with o�set oi and another set of source records with o�set oi �mi. The

majority set is the set with greater cardinality and the other set is the minority set. (If the sets

each have cardinality N=2, arbitrarily choose one as the majority set and the other as the minority

set.) Since we partition the source records into two sets, each of which is the input to a monotonic

route, a torus permutation along a single dimension is a 2-monotonic route. Unfortunately, we

do not know how to perform in place an arbitrary k-monotonic route, for k � 1, and so we make

some observations about this particular 2-monotonic route to perform it in place.

For each dimension, there may be multiple repetitions of a pattern of alternately � records

of the majority set and � records of the minority set. In Figure 7, for example, there are three

copies of the alternating majority/minority pattern. Without loss of generality, we limit ourselves

to a single copy of this image, which has N = �+ � records. In our analysis, we shall account for

the stripes that contain records in more than one copy of the pattern.

Three facts provide the structure necessary for our in-place algorithm to perform a toroidal

route along a single dimension using at most 4N=BD parallel I/Os and three stripes of memory

(i.e., 3BD �M). The �rst two facts are speci�c to this particular 2-monotonic route.

16

α

α − β

α mod β β

β

2 β

α mod β β

β

β
Initial data

After second swap

After first swap

Recurse on this data

Figure 8: Sliding the minority set toward the other end of the data set. We iteratively swap the �

records of the (light-shaded) minority set with the next � records of the (dark-shaded) majority set. After

the second swap, � mod � < �, preventing us from swapping one-to-one the records in the majority and

minority sets. If � + (� mod �) > M , we recurse on these records, reassigning the roles of the majority

and minority sets.

1. The records of the minority set initially reside in the � lowest or highest consecutively-

numbered locations. The records of the majority set reside in the other � = N�� locations.

2. The records of the minority set move from the � highest (lowest) numbered locations to the

� lowest (highest) numbered locations. Similarly, the records of the majority set move from

the � lowest (highest) numbered locations to the � highest (lowest) numbered locations.

3. Any consecutive BD records span no more than two stripes.

Figure 8 illustrates our algorithm to perform a toroidal route along a single dimension. We

repeatedly slide the � records of the minority set toward their �nal destination by swapping them

with the next � consecutive records of the majority set along its path until only � mod � < �

records of the majority set have not been swapped.3 At that point, there are not enough records

in the majority set left to swap. All the swapped records in the majority set have been shifted �

locations to their �nal locations (by Fact 2). If the � records of the minority set and the � mod �

remaining records of the majority set can �t into memory, then we complete the toroidal route

along a single dimension by reading these records into memory, permuting them into their correct

order, and writing them to their �nal locations. Otherwise, we recursively reassign the � records

of the minority set as the new majority set and the remaining � mod � records of the majority

set as the new minority set. We continue swapping and reassigning majority and minority sets

until � + (� mod �) �M .

Our algorithm has three cases, of which the �rst two are easy to analyze. In the �rst case, when

�+ � �M , we read the majority and minority sets into memory, permute them into the correct

3The sliding of the � records of the minority set toward the other end of the data set is similar to the process
by which a snake digests a mouse. Thus, one could say that this is a peristaltic algorithm.

17

order, and write them to their �nal locations. Thus, we perform this case using 2 d(�+ �)=BDe

parallel I/Os, making no restriction on the size of memory as long as �+ � �M .

In the second case, � + � > M and � � BD, and we require that 3BD � M . To perform

a swap, we begin by reading the �rst two stripes that contain records from the minority set.

These stripes may contain records from the majority set as well. Because � � BD, however,

Fact 3 implies that the entire minority set resides in memory at this point. For the remainder

of the algorithm, we keep the records of the minority set in memory and only read the stripes

of the majority set as needed. Thus, we read and write every stripe exactly once for a total of

2 d(�+ �)=BDe parallel I/Os. This case requires at most 3BD records of memory, which include

at most BD records to hold the � records of the minority set and at most 2BD records to hold

the two stripes containing the � records of the majority set involved in the current swap or the

� mod � records of the majority set for the �nal permutation.

In the third case, which is when � + � > M and � > BD, our algorithm again requires only

three stripes of memory. To begin any swap, we must have in memory the two stripes containing

the �rst records to swap from the majority and minority sets. Before or after a swap, we label a

stripe containing records from both the majority and minority sets as a boundary stripe. If the

stripe with the �rst records of the majority set is a boundary stripe, then we pin that stripe in

memory for the duration of the swap. Since the pinned stripe will already be in memory with

the �rst records of the minority set for the next swap or level of recursion, over the course of the

entire algorithm, we read and write each boundary stripe only once. We use the other two stripes

of memory to hold the stripes with the current records to swap from the majority and minority

sets when the records are not in the currently pinned stripe.

If we further de�ne �j and �j as the number of records in the majority and minority sets for

recursion level j, for j � 0, we can show that our algorithm uses at most 4(�j��j+1)=BD parallel

I/Os to perform level j in the recursion. (Note that �j+1 = �j and �j+1 = �j mod �j) Figure 9

shows the layout of records on the jth level of recursion. During a recursion level, we may read

a stripe containing just records from the majority set, write it back to disk with just records of

the minority set, read it back into memory again, and �nally write it back to disk containing just

records of the majority set. Thus, some stripes could account for a total of 4 parallel I/Os. After

completing the last swap of � records between the majority and minority sets on a given recursion

level, two boundary stripes remain in memory which contain the �rst records to swap in the next

recursion level. Since we have read these two stripes only once up to this point, we shall defer

counting the parallel I/Os for these two stripes until the next level of recursion. Thus, during the

jth level of recursion, we access at most (�j � �j+1 + �j)=BD stripes, requiring at most a total

of 4(�j � �j+1 + �j)=BD parallel I/Os. (We avoid using the ceiling function because we do not

count the two stripes that remain in memory.) Since we only read once and write once the �rst

�j and last �j of these records, we reduce our parallel I/O count for the jth level of recursion to

4(�j � �j+1 + �j)

BD
�

2(2�j)

BD
=

4(�j � �j+1)

BD
:

From the above descriptions, we de�ne the following equations for the three cases of our in-

place algorithm. Each bound represents a limit for the number of parallel I/Os performed within

18

βj+1 βj

αj − βj+1 + βj

αj

βj

Figure 9: Layout of data on jth level of recursion. This level of recursion accesses the upper �j��j+1+�j
records. We do not assess any parallel I/Os for the stripes within the dashed lines. These are the �rst

stripes accessed during the next level of recursion, so we do not have to write them during this level of

recursion. The two sections of �j records are read and written at most once on this level of recursion.

the jth level of recursion:

T (�j ; �j) �

8<
:

2 d(�j + �j)=BDe if �j + �j �M ,

2 d(�j + �j)=BDe if �j + �j > M and �j � BD ,

T (�j+1; �j+1) + 4(�j � �j+1)=BD if �j + �j > M and �j > BD .

If we let N = �0 + �0, the �rst two cases require 2 dN=BDe parallel I/Os. For the third case, we

use the substitution method to show that T (�j ; �j) � 4(�j + �j)=BD:

T (�j ; �j) = T (�j+1; �j+1) + 4(�j � �j+1)=BD

= T (�j; �j+1) + 4(�j � �j+1)=BD

� 4(�j + �j+1)=BD + 4(�j � �j+1)=BD

= 4(�j + �j)=BD :

We can extend our analysis to include multiple copies of the alternating pattern of majority and

minority sets by crediting the lowest level of the recursion (which uses only d2(�j + �j)=BDe

parallel I/Os) with the two parallel I/Os to access the uppermost stripe of a copy. Thus, our

algorithm for the 2-monotonic toroidal route along a single dimension uses at most 4N=BD

parallel I/Os. Since we perform at most d such permutations, we have an upper bound of 4dN=BD

parallel I/Os.

5 Conclusions

We have shown how to perform a number of commonly used structured permutations in place

with at most a constant factor more parallel I/Os and insigni�cant extra computation than the

best known algorithms that use 2N records of disk space. These in-place algorithms use at most

an extra memoryload of disk space, thereby requiring a little more than half of the disk space

required by previous algorithms.

We further ask the following questions:

� Are there other interesting out-of-core computations for which algorithms exist to more

e�ciently use the available disk space?

19

� Is it possible to reduce the constants even further for the problems addressed in this paper,

in particular, performing BMMC permutations in place?

� What are the exact constant factors for the general permuting algorithm of Vitter and

Shriver? How much extra disk space does their algorithm require? Can we develop general

algorithms that permute in place? Are there algorithms for general permuting that use 2N

records of disk space and result in lower constants than the known algorithms?

� How do out-of-core permutation algorithms that are in-place compare in practice with al-

gorithms that use 2N records of disk storage?

Acknowledgments

Thanks also to Tom Cormen and Tom Sundquist for many helpful discussions on in-place per-

mutations. Special thanks to Tom Cormen for challenging me to develop in-place algorithms for

torus permutations, and for believing that the solution would be simple and elegant.

References

[AP94] Alok Aggarwal and C. Greg Plaxton. Optimal parallel sorting in multi-level storage. In

Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pages

659{668, January 1994.

[Arg95] Lars Arge. The bu�er tree: A new technique for optimal I/O-algorithms. In 4th

International Workshop on Algorithms and Data Structures (Proceedings), Lecture

Notes in Computer Science, number 955, pages 334{345. Springer-Verlag, August 1995.

[AV88] Alok Aggarwal and Je�rey Scott Vitter. The input/output complexity of sorting and

related problems. Communications of the ACM, 31(9):1116{1127, September 1988.

[CGG+95] Yi-Jen Chiang, Michael T. Goodrich, Edward F. Grove, Roberto Tamassia, Dar-

ren Erik Vengro�, and Je�rey Scott Vitter. External-memory graph algorithms. In

Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages

139{149, January 1995.

[Cor92] Thomas H. Cormen. Virtual Memory for Data-Parallel Computing. PhD thesis, De-

partment of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, 1992. Available as Technical Report MIT/LCS/TR-559.

[Cor93] Thomas H. Cormen. Fast permuting in disk arrays. Journal of Parallel and Distributed

Computing, 17(1{2):41{57, January and February 1993.

[CSW94] Thomas H. Cormen, Thomas Sundquist, and Leonard F. Wisniewski. Asymptotically

tight bounds for performing BMMC permutations on parallel disk systems. Technical

Report PCS-TR94-223, Dartmouth College Department of Computer Science, July

1994. Preliminary version appeared in Proceedings of the 5th Annual ACM Symposium

on Parallel Algorithms and Architectures.

20

[EHJ94] Alan Edelman, Steve Heller, and S. Lennart Johnsson. Index transformation algo-

rithms in a linear algebra framework. IEEE Transactions on Parallel and Distributed

Systems, 5(12):1302{1309, December 1994.

[FMP95] Faith E. Fich, J. Ian Munro, and Patricio V. Poblete. Permuting in place. SIAM

Journal on Computing, 24(2):266{278, April 1995.

[GTVV93] Michael T. Goodrich, Jyh-Jong Tsay, Darren E. Vengro�, and Je�rey Scott Vitter.

External-memory computational geometry. In Proceedings of the 34th Annual Sympo-

sium on Foundations of Computer Science, pages 714{723, November 1993.

[NV93] Mark H. Nodine and Je�rey Scott Vitter. Deterministic distribution sort in shared

and distributed memory multiprocessors. In Proceedings of the 5th Annual ACM

Symposium on Parallel Algorithms and Architectures, pages 120{129, June 1993.

[VS90] Je�rey Scott Vitter and Elizabeth A. M. Shriver. Optimal disk I/O with parallel block

transfer. In Proceedings of the Twenty Second Annual ACM Symposium on Theory of

Computing, pages 159{169, May 1990.

[VS94] Je�rey Scott Vitter and Elizabeth A. M. Shriver. Algorithms for parallel memory I:

Two-level memories. Algorithmica, 12(2/3):110{147, August and September 1994.

[VV95] Darren Erik Vengro� and Je�rey Scott Vitter. I/O-e�cient scienti�c computation

using TPIE. In Seventh IEEE Symposium on Parallel and Distributed Processing,

October 1995. To appear.

21

	Structured Permuting in Place on Parallel Disk Systems
	Dartmouth Digital Commons Citation

	in-place.dvi

