
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Computer Science Technical Reports Computer Science 

5-19-1995 

Ph.D. Thesis Proprosal: Transportable Agents Ph.D. Thesis Proprosal: Transportable Agents 

Robert S. Gray 
Dartmouth College 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr 

 Part of the Computer Sciences Commons 

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation 
Gray, Robert S., "Ph.D. Thesis Proprosal: Transportable Agents" (1995). Computer Science Technical 
Report PCS-TR95-261. https://digitalcommons.dartmouth.edu/cs_tr/116 

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital 
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized 
administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/116?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


Ph.D. Thesis Proposal: Transportable Agents

Robert S. Gray

Department of Computer Science

Dartmouth College

6211 Sudiko� Laboratory

Hanover, New Hampshire 03755

19 May 1995

Abstract

One of the paradigms that has been suggested for allowing e�cient access to remote resources is trans-
portable agents. A transportable agent is a named program that can migrate from machine to machine in

a heterogeneous network. The program chooses when and where to migrate. It can suspend its execution

at an arbitrary point, transport to another machine and resume execution on the new machine. Trans-
portable agents have several advantages over the traditional client/server model. Transportable agents

consume less network bandwidth and do not require a connection between communicating machines {

this is attractive in all networks and particularly attractive in wireless networks. Transportable agents

are a convenient paradigm for distributed computing since they hide the communication channels but

not the location of the computation. Transportable agents allow clients and servers to program each

other. However transportable agents pose numerous challenges such as security, privacy and e�ciency.

Existing transportable agent systems do not meet all of these challenges. In addition there has been no

formal characterization of the performance of transportable agents. This thesis addresses these weakness.

The thesis has two parts { (1) formally characterize the performance of transportable agents through

mathematical analysis and network simulation and (2) implement a complete transportable agent system.

Thesis committee

Dr. George Cybenko, Thayer School of Engineering, Dartmouth College
Dr. David Kotz, Department of Computer Science, Dartmouth College

Dr. Daniela Rus, Department of Computer Science, Dartmouth College

Dr. Robert Sproull, Sun Microsystems

1



Contents

1 Introduction 4

2 Related work 6

2.1 Arti�cial intelligence : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

2.2 Personal assistants : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

2.3 Distributed information retrieval : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

2.4 Software interoperation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

2.4.1 Procedural : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

2.4.2 Declarative : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

2.4.3 Procedural versus declarative : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

2.5 Transportable agents : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

2.5.1 Message passing and remote procedure call : : : : : : : : : : : : : : : : : : : : : : : : 9

2.5.2 Remote evaluation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

2.5.3 Transportable agents : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

2.5.4 Distributed systems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

2.5.5 Weaknesses of existing systems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

3 Proposal 15

3.1 Performance modeling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

3.1.1 Predict agent performance : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

3.1.2 Select an agent : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

3.1.3 Select a network : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19

3.1.4 Modeling strategy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

3.2 Implementation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

3.2.1 System level : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

3.2.2 Agent level : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24

3.3 Performance evaluation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25

4 Status 27

4.1 Performance modeling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

4.2 Implementation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

4.3 Performance evaluation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32

5 Conclusion 32

6 Acknowledgements 32

A Schedule 35

B Documentation 36

B.1 Tcl : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36

2



B.2 Transportable agents : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37

B.2.1 Server : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37

B.2.2 Agent shell : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37

B.2.3 Variables : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 38

B.2.4 Commands : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 38

B.2.5 Caveats : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 46

B.2.6 Security : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

B.2.7 Advanced : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

List of Figures

1 Transportable agent abstraction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

2 Basic communication behaviors : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

3 System prototype : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28

4 Explicit stack : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

5 Sample agent : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 31

List of Tables

1 Existing transportable agent systems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

2 Agent variables : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 38

3 Agent commands : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

3



E-mail

Router

E-mail

Machine BMachine A

Figure 1: The transportable agent abstraction { an agent jumps from machine to machine and interacts with

resources on each machine. In this case an active E-mail message has jumped to interact with a router and

will jump again to interact with the recipient's mailbox. This �gure was adapted from [Whi94].

1 Introduction

One of the paradigms that has been suggested for allowing e�cient access to remote resources is trans-

portable agents. A transportable agent is a named program that can migrate from machine to machine in a

heterogeneous network. The program chooses when and where to migrate. It can suspend its execution at

an arbitrary point, transport to another machine and resume execution on the new machine. Although the

idea of a program that can move from machine to machine under its own control is not new [WVF89], it

is only in the last two years that production-quality systems have been implemented. The most notable is

General Magic's TelescriptTM [Whi94] which is being used in AT&T's new PersonaLinkTM network [Rei94].

The recent interest in transportable agents has been fueled by the growing inadequacy of the traditional

client/server model for distributed applications.

In the traditional client/server model the server provides a �xed set of operations. All operations that are

not provided in this �xed set must be performed at the client. If the server does not provide an operation

that matches the client task exactly, either the client must make a series of remote calls to the server or a

programmer must add a new operation to the server. The �rst option brings intermediate data across the

network on each call. This represents signi�cant wasted bandwidth if the data is not useful beyond the end

of the client task. The second option is an intractable programming task as the number of clients grows. In

addition it discourages modern software engineering. The server becomes a collection of complex, specialized

routines rather than a collection of simple primitives. Transportable agents avoid this wasted bandwidth

and allow e�cient execution even when the server does not provide specialized operations. This is because a

transportable agent migrates to the server where it can perform any desired processing before returning the

�nal result to the client. Agents that do more work avoid more intermediate messages and conserve more

network bandwidth. The performance advantage is greatest in low bandwidth and high latency networks

[Whi94].

Modern client/server models such as remote evaluation and SUPRA-RPC address the same problem by

sending subprograms to the server for evaluation. However these subprograms are anonymous entities.

There is no convenient way for two subprograms to communicate with each other which makes it di�cult

to share partial results. At worst a subprogram must be divided into multiple subprograms. At best the

partial results must be transmitted twice (once as they are sent to the home machine and once as the home

machine distributes the partial results to the appropriate remote subprograms). Most transportable agent

systems support direct communication between agents and avoid this extra communication overhead when

4



exchanging partial results.

Transportable agents do not require a connection between the local and remote sites and do not require state

information at both sites. This makes transportable agents more fault-tolerant [WVF89] and in combination

with their low use of network bandwidth, makes them ideally suited to mobile computing [Whi94]. Mobile

computing is characterized by low bandwidth, high latency and periods of disconnection from the network.

Transportable agents are a convenient paradigm for distributed computing. First, the communication chan-

nels are hidden from the programmer but the location of the computation is not [JvRS95]. The agent

speci�es when and where to migrate and the system handles the transmission. This makes transportable

agents easier to use than low-level facilities in which the programmer must explicitly handle communication

but more exible and powerful than schemes such as process migration in which the system decides when

to move a program based on a small set of �xed criteria. Second, transportable agents allow the implicit

transfer of information. A migrating agent carries all of its internal state with it which eliminates the need for

separate communication steps. Third, many tasks { especially network management, information retrieval

and workow { �t naturally into the jump-do-jump model of transportable agents. The agent migrates to

a machine, performs a task, migrates to a new machine, performs a task that might be dependent on the

outcome of the �rst task and so on. Finally, transportable agents allow a distributed application to be

written as a single program.

Transportable agents are useful even when viewed as an extension of the traditional client/server model.

Clients and servers can program each other which greatly extends the functionality that application and

server developers can provide to their customers. In addition an application can dynamically distribute its

server components when it starts execution [JvRS95].

Applications that have been suggested for transportable agents include distributed information retrieval,

network management, active e-mail, active documents, controlling remote devices, workow and electronic

shopping [Ous95, Whi94]. Any application in which it makes sense to move the program to the remote data or

resource is a candidate for the transportable agent paradigm. The limiting factors are technical. For example

there must be su�cient security precautions so that malicious agents can not damage a resource. The main

weakness of existing systems is that they do not meet all of the technical challenges. They arti�cially limit

the set of potential applications by not providing su�cient security, exibility and e�ciency. The second

weakness of existing work is that there has been no formal characterization of the relationship between

network conditions and agent performance. This makes it di�cult to select the appropriate implementation

when developing distributed applications and { just as importantly { makes it di�cult for a transportable

agent to select an appropriate communication strategy in the face of changing network conditions.

This thesis seeks to address these two weaknesses. First we seek to develop a formal model for transportable

agents and use this model to explore agent performance under di�erent network, data and application

characteristics. This exploration will consists of mathematical analysis and extensive simulation since the

model is likely to be complex enough to make most mathematical analysis intractable. Second we seek to

implement a complete transportable agent system that meets all of the technical challenges. Particular areas

of concern are security, privacy, e�ciency, a exible development environment and low-level support for high-

level agent tasks such as negotiation, coordination and planning. Partial solutions are scattered throughout

the distributed computing, operating system, programming language, arti�cial intelligence and transportable

agent literature. These solutions need to be identi�ed, extended and integrated into a coherent whole. The

implementation will be evaluated in light of the formal model. The evaluation consists of instrumenting

the system and representative agent applications in order to con�rm or reject and rework the model. An

accurate model should be made available to agents so that they can select the appropriate communication

strategy for current network conditions.

Section 2 discusses existing transportable agent systems and related work. Section 3 explains the proposed

thesis work. Section 4 provides an overview of the existing prototype. A schedule and documentation for

the prototype are attached as appendices.

5



2 Related work

The popular de�nition of an agent is an intelligent software servant that either (1) relieves the user of routine,

burdensome tasks such as appointment scheduling and e-mail disposition or (2) �lters the overwhelming

volume of electronic information so that the user sees only the information that is relevant to her current

interests and needs [Haf95, Rog95]. This de�nition { due to its broadness and its ability to capture the

imagination { has made \agent" a buzzword within both the academic and commercial worlds. Applications

are often described as agent-based solely to draw attention or increase sales. For example No Hands Software

describes its MagnetTM program as the \�rst intelligent agent for the Macintosh" even though it is essentially

a �le-�nder [Fon93]. This inappropriate use of the term makes it di�cult to separate hype from actual

research. However there appear to be �ve legitimate contexts in which the term \agent" is used { arti�cial

intelligence, personal assistants, distributed information retrieval, software engineering and interoperation

and transportable agents. These �ve contexts are far from disjoint.

First we present brief examples of personal assistants and the agent-based approach to distributed information

retrieval. This underscores the di�erence between the various kinds of agents and illustrates potential

applications for transportable agents. Then we discuss the agent-based approach to software interoperation

in detail since the ideas developed in this area will be critical in allowing e�ective communication between

transportable agents. Finally we describe the precursors to transportable agents and existing transportable

agent systems.

2.1 Arti�cial intelligence

Here an agent is an entity that perceives its environment with sensors and acts on its environment with

e�ectors [RN95]. Such an agent can be either hardware with physical sensors and e�ectors or software with

simulated sensors and e�ectors. This de�nition of an agent is used when attempting to provide a uni�ed

framework for arti�cial intelligence, when discussing software artifacts from a robotics viewpoint and of

course when discussing physical robots. This de�nition is not considered further except to note that it

subsumes the de�nitions below. The term agent is also used to describe certain kinds of arti�cial intelligence

programs such as programs that automatically negotiate with each other in order to obtain a desired service.

Automated negotiation will play an important role in a commercial transportable agent system.

2.2 Personal assistants

Here an agent is a program that relieves the user of a routine, burdensome task such as appointment

scheduling or e-mail disposition. These agents are distinguished from traditional utilities by (1) their use of

machine learning so that they can adapt to user habits and preferences [Mae94] or (2) their use of automated

reasoning so that they can make complex inferences about the work environment [Rie94].

Maes presents a series of four agents that start with a minimum amount of domain knowledge and learn how

to perform the task by observing and interacting with the user and other agents [Mae94]. This approach

addresses the di�cult problems of competence and trust. The agent is competent to perform the task for a

speci�c user because it has learned to mimic user decisions. The user trusts the agent because it gradually

takes over the performance of the task and makes the same decisions that the user would. The four agents

are an electronic mail handler, a meeting scheduler, an electronic news �lter and a reviewer that recommends

books, music and other entertainment. The electronic mail handler uses memory-based reasoning to �lter

mail. It remembers every situation-action pair that occurs when the user �lters her mail manually { e.g.

she deleted a certain message. When a new situation occurs, the agent predicts what action should be

taken by comparing the new situation with the nearest memorized neighbors. Depending on its con�dence

in the prediction, the agent will perform the action, suggest the action to the user or let the user handle

the situation herself. In addition to learning from example, the agent accepts directives from the user and

solicits suggestions from other mail agents. The other three agents share the same basic design.

Riecken has developed a more complex system called M that is designed to automatically group the doc-

6



uments that are presented during the course of a virtual multimedia conference [Rie94]. The heart of the

system is �ve inference engines { functional, structural, causal, spatial and temporal { that attempt to infer

relationships among documents based on the actions that the users apply to the documents. For example

if two documents are placed close together within the virtual conference room, the spatial engine might

suggest that the documents deal with the same subject. The engines develop theories on a dynamic set

of blackboards. Each blackboard contains one potential theory that explains the relationships among the

documents. The engines post their conclusions to the blackboards and use the conclusions of the other

engines to continue the reasoning process and determine the correctness of the competing interpretations.

Eventually one interpretation emerges as the most likely.

A transportable agent system should be able to support these applications in a distributed setting. At a

minimum this means that transportable agents should be able to easily access external resources that provide

learning and reasoning capabilities.

2.3 Distributed information retrieval

Here an agent is a program that searches multiple information resources for the answer to a user query.

Typically the resources contain large volumes of data and are distributed across a network of heterogeneous

machines. In addition the agents are characterized by (1) the use of knowledge-intensive techniques to avoid

brute-force search and extensive manual intervention and in some cases (2) the concurrent execution of

multiple subsearches and communication of partial results from one subsearch to the others. The partial

results from one subsearch are used to narrow the scope of other subsearches.

Etzioni and Weld present a softbot-based interface to the Internet which accepts a request and then develops

a plan that satis�es the request using available Internet resources. Softbot stands for \software robot" and

comes from the arti�cial intelligence de�nition of an agent { i.e. an agent is an entity that acts on the

environment with e�ectors and perceives the environment with sensors. In this case the sensors are Internet

resources such as archie, gopher and net�nd. The e�ectors are resources such as ftp, telnet and mail. The

softbot uses declarative logic to encode knowledge about the available Internet resources and about how

to map requests into resource invocations. The softbot accepts requests that are expressed in a subset of

�rst-order logic and performs a standard backtracking search to develop an appropriate plan. The request

can be anything as long as the necessary knowledge is encoded in the knowledge base. The example in

the paper uses a combination of Internet resources to resolve underspeci�ed e-mail addresses when sending

messages.

Vesser has written a succession of papers that develop a model for distributed searching. The most recent

is [OPL94] which recasts the model in terms of agents. In the model a search involving multiple distributed

resources is performed by a collection of cooperating agents. There is one agent for each resource. Each

agent is responsible for searching its assigned resource and for communicating partial search results to the

other agents. The partial results are used to narrow the scope of each search to more relevant sections of

the resource. The standard example is a vacation planner that searches multiple information resources {

a weather database, a car rental database, a hotel database and a \places of interest" database { in order

to plan an appropriate vacation for the user. There is one agent in charge of searching each database.

The agents must communicate since there are complex interdependencies between the information in each

database { i.e. the information discovered in one database could invalidate the information discovered in

another. For example the beach is a poor \place of interest" if there are thunderstorms forecast. At the same

time the agents must not deadlock with each waiting for a piece of information that one of the others must

provide. Therefore each agent assumes enough information so that it can proceed completely independently

if necessary. For example the place agent might assume good weather. Partial results are communicated

from agent to agent in order to refocus the searches. Eventually the agents arrive at a consistent vacation

plan.

These examples and this de�nition of an agent do not demand a particular implementation. Indeed the search

could run entirely at a single site and simply invoke the necessary remote services. However transportable

agents provide a natural and e�cient method of implementing such a search. A transportable agent could

7



be sent to the site of each relevant resource. Each agent is responsible for searching the resources at its site

and for communicating partial search results to the other transportable agents.

2.4 Software interoperation

Here an agent is a program that communicates correctly in a universal communication language. An agent

can interoperate with any other agent { even if they have di�erent underlying implementations { since they

use the same communication language. This de�nition of an agent is closely related to agent-based software

engineering in which applications are implemented as a collection of autonomous, cooperating peers. There

are two approachs to agent-based interoperation { procedural and declarative.

2.4.1 Procedural

In this approach agents exchange procedural directives. The recipient executes the procedure in order to

perform some task on behalf of the sender. Most existings systems that use the procedural approach are

based around high-level scripting languages. Applications are sent scripts that guide the application through

the desired task. These applications are said to be scriptable or programmable. Notable examples of the

script-based approach include Tcl, Telescript, Apple Script, Hewlett-Packard's NewWave environment and

the Autonomous Knowledge Agents (AKA) project [GK94, Joh93]. The Tk extension to Tcl provides the

send command which is used to send Tcl scripts from one application to another. Telescript allows agents to

send scripts to each other once the agents have established a direct connection. Apple Script and NewWave

provide similar scripting functionality. The main goal of the AKA project is to \develop an architecture for

creating and running personalized software agents". However a key component of the system is a uniform

interface for all electronic resources. Each electronic resource such as WAIS and FTP is surrounded with a

Tcl interface. Agents communicate with the resource using the procedures in the Tcl interface rather than

the resource's native communication language. This makes agents much easier to write. In addition the Tcl

interface can remain constant across di�erent architectures which makes agents much easier to port.

2.4.2 Declarative

Genesereth [GK94] points out several disadvantages of the procedural approach. Writing procedures might

require information about the recipient that is not available to the sender; procedures only compute in one

direction; and procedures are di�cult to merge. Genesereth argues for a declarative approach in which

agents exchange declarative statements. The recipient performs an inference process in order to derive

results from the sender's declarative statements. These declarative statements are written in the Agent

Communication Language (ACL). ACL has three components { a vocabulary, an inner language called the

Knowledge Interchange Format (KIF) and an outer language called the Knowledge Query and Manipulation

Language (KQML) [GK94]. The vocabulary is a dictionary of words speci�c to the application area. Each

word has an English de�nition and a set of formal annotations written in KIF. KIF is a pre�x version of �rst

order predicate calculus which can express data, relationships among the data and procedures or scripts.

The atoms of KIF are the words from the vocabulary. A KQML expression consists of a directive followed

by one or more KIF expressions. Directives include telling an agent that a KIF expression is true, asking an

agent if a KIF expression is true and so on. KQML o�ers more e�cient communication than KIF alone.

Agents that use KQML can communicate with each other directly. However this places the burden of in-

teroperation squarely on the programmer. Instead Genesereth proposes a federated architecture in which

facilitators handle interoperation [GSS94]. Essentially each agent is assigned a facilitator. An agent commu-

nicates only with its facilitator but facilitators communicate with each other. Each agent posts its capabilities

and application-speci�c facts to its facilitator. Capabilities are a description of the services that the agent

provides. Capabilities and facts are expressed in KIF. When an agent needs information, it sends a request

to its facilitator. The facilitator uses backward inference to �nd an answer to the request. The inference

process might involve decomposing the request into subrequests and invoking other agents to handle each

subrequest. The advantage of the facilitator approach is that each agent communicates with a a single

8



system agent that appears to handle all requests itself. The main concern with the facilitator approach is

scalability { i.e. the size of the shared vocabulary, the cost of the inference process and the size of the

facilitator's knowledge base. The �rst problem is addressed by allowing agents to use di�erent vocabularies

and providing translation features; the second and third problems are addressed by limiting the amount and

kind of information that each facilitator stores internally.

The federated approach is similar to directory assistance, distributed object managers and automatic bro-

kers. Directory assistance allows a program to �nd a desired service. Distributed object managers provide

transparent access to a distributed collection of objects. Messages are automatically routed to the desti-

nation object even if the sender does not know the object's network location. Automatic brokers provide

both functions by �rst identifying an appropriate recipient for a message and then forwarding the message.

An example of directory assistance is the X.500 protocol; distributed object managers include CORBA,

DSOM, OLE and OpenDoc; automatic brokers include ToolTalk and the Publish and Subscribe Service on

the Macintosh [GK94]. The federated approach is distinguished by the amount of processing done in the

facilitator [GK94]. Each facilitator performs backward inference rather than simple pattern matching.

2.4.3 Procedural versus declarative

It is unclear whether the procedural or declarative approach is better. The procedural approach is suggested

when the sender is requesting a task that the recipient does not know how to perform in its entirety.

The declarative approach is suggested for knowledge-intensive applications in which assertions need to be

exchanged or in which planning and inference are required. Transportable agents represent a hybrid approach.

The transportable agent itself is a procedure that migrates to a remote machine so that it can execute at the

location of the data. However transportable agents do not have to communicate with procedural directives.

The communication facilities are exible enough to allow any communication protocol including the exchange

of declarative statements. In addition the agent can make use of external services that provide planning and

inference capabilities. There is no need to build declarative logic into the agent language.

One of these approaches to software interoperation { directory assistance, distributed object managers,

automatic brokers or federated inference engines { will be essential in a transportable agent system so that an

agent can (1) �nd agents that perform a needed task and (2) communicate with agents without knowing their

current network location. This is particularly essential since transportable agents are mobile. Keeping track

of recipient locations without system support would be a nearly intractable programming challenge even if all

the agents came from the same application and communicated only among themselves. Whichever solution is

adopted, it must be extended so that it performs e�ectively in a highly dynamic environment. Transportable

agents come into existence, change network location and terminate continuously. These changes must be

visible to other agents.

2.5 Transportable agents

Transportable agents are the focus of the thesis. A transportable agent is a named program that can migrate

from machine to machine in a heterogeneous network. The program chooses when and where to migrate. It

can suspend its execution at an arbitrary point, transport to another machine and resume execution on the

new machine. First we discuss message passing, remote procedure calls and remote evaluation which are the

forerunners of transportable agents. Then we describe existing transportable agent systems.

2.5.1 Message passing and remote procedure call

The message passing model provides two communication primitives. send transmits a message to a des-

tination process while receive accepts an incoming message. Message passing can be used in client/server

computation. The client sends a request message to the server. The server handles the request and sends

a reply message to the client. The reply message contains the result of the request. The send and receive

primitives can be blocking or nonblocking and can be synchronous or asynchronous. Blocking means that the

9



primitives do not return control to the caller until the message has been successfully sent or received; non-

blocking means that the primitives return immediately. Synchronous means that the send primitive does not

return until the recipient issues a corresponding receive; asynchronous means that the send primitive returns

as soon as the message arrives on the destination machine. The destination machine bu�ers the message

until the recipient issues a receive. Message passing is powerful and exible but requires the programmer to

handle low-level details { keeping track of which response goes with which request, converting data between

client and server formats, determining the address of the server and handling communication and system

errors [SS94].

Remote procedure call (RPC) [BN84] was designed to relieve the programmer of these details. RPC allows

a program on the client to invoke a procedure on the server using the standard procedure call mechanism.

The most common implementation { which is the implementation of [BN84] { uses stub procedures [SS94].

A client that makes a remote procedure call is actually calling a local stub. This client stub puts the

procedure name and parameters into a message and sends the message to the remote machine. A server stub

on the remote machine receives the message, extracts the procedure name and parameters and invokes the

appropriate procedure. The server stub waits for the procedure to �nish and then sends a message containing

the result to the client stub. The client stub returns the result to the client. The original RPC mechanism

blocked the client until the server returned the result. Most extensions to traditional RPC allow concurrent

invocation of the same procedure on multiple servers or make RPC asynchronous [SS94]. These variations

are more exible but make programming more di�cult.

Other disadvantages of traditional RPC were described in [GG88]. It is di�cult to send incremental results

from the server to the client; implementations are commonly optimized for short results rather than bulk

data transfer; and there is no way to pass a procedure { or more precisely a reference to a procedure { to

the server. This last limitation obviates any protocol that requires the server to invoke a client-speci�ed

procedure on the client machine. [GG88] addresses these problems by allowing procedure references to be

passed as arguments and by introducing the pipe abstraction. A pipe is a connection between the client and

the remote procedure that exists for the duration of the remote procedure call. Incremental results and bulk

data are transferred along the pipe. There are additional stubs at either end of the pipe to handle the data

transfer.

2.5.2 Remote evaluation

A minor problem with RPC is that a distributed application must be written as two distinct pieces { i.e. the

client and the remote procedures. This is a step backwards from a precursor of RPC. Hamlin's programming

system at the University of North Carolina was designed for graphics applications. The programmer wrote a

single program which the compiler divided into interactive and computation-intensive pieces. The interactive

piece was executed at the graphics terminal while the computation-intensive piece was executed on the

mainframe. The two pieces were tied together with stubs as in RPC [Spr95]. The critical problem with

RPC is that the client is limited to the operations provided at the server. Since it is unlikely that the server

provides an operation that meets the client's needs exactly, the client must make several remote procedure

calls, bringing intermediate data across the network on every call. If the intermediate data is not useful

beyond the end of the client's task, a signi�cant amount of network bandwidth has been wasted. To address

these two problems, researchers have turned to remote evaluation in which a subprogram is sent from the

client to the server. The subprogram executes on the server and returns its result to the client.

Falcone [Fal87] describes a system in which clients and servers program each other using the Network

Command Language (NCL). NCL is a variant of Lisp. Each server provides a library of NCL functions. A

client that requires a service sends an NCL expression to the appropriate server. The expression can use any

functions provided at the server or sent as part of the expression. The server evaluates the expression and

returns the result to the client. The result is an NCL expression itself and can perform arbitrarily complex

processing on the client. The important point is that an NCL expression can contain functions that act

as control structures. Thus the NCL expression can invoke multiple functions at the server and avoid the

overhead of multiple remote procedure calls. The prototype system provides implicit access to servers by

translating systems calls into appropriate service requests. First the system identi�es the appropriate server

10



to handle the system call; the system call is translated into an NCL expression; the NCL expression is sent to

the server and evaluated; the server returns an NCL expression which is evaluated on the client to produce

the return value of the system call.

Remote evaluation (REV) is similar to NCL in that a procedure can be sent to a remote server for evaluation

[SG90]. However REV can be used with any language. It uses client and server stubs in much the same

way as RPC. All that is needed for a new language is stub generators and linking facilities so that the

procedure can invoke the procedures provided at the server. The procedure can be transmitted as source,

intermediate or compiled code. The choice of transmission format depends on the language, the desired level

of security and the heterogeneity of the network. Stamos and Gi�ord identify four security considerations

{ authentication, availability, secrecy and integrity. Authentication and availability consist of checking the

identity of the client and preventing malicious denial of service. These can be handled with well known

techniques [SG90]. Secrecy and integrity consist of preventing unauthorized access to and destruction of

server information. These are more di�cult. Stamos and Gi�ord present three solutions { separate address

spaces for each procedure, careful interpretation in a single address space and digital signatures with a single

address space. The �rst and third support compiled code while the second avoids the overhead of multiple

address spaces. Digital signatures is an open research area in which a program is compiled by a trusted third

party. The third party checks the program for security violations and applies a cryptographic signature to

the compiled code if no security violations are present. The server knows that certain security checks have

been performed already if it receives a digitally signed procedure. The advantage of REV over NCL is that

REV can be incorporated into any programming language which allows the programmer to use the most

appropriate language for the application. On the other hand NCL is symmetric in that procedures can be

sent from the client to the server and from the server to the client.

REV and NCL impose signi�cant restrictions on the procedures that can be sent to the remote machine.

The main limitation is that the procedure must be self-contained. All functions and variables referenced

in the procedure must be provided at the server or sent along with the procedure. This means that the

semantics of a procedure call are di�erent for remote calls than for local calls - i.e. a remote procedure

can not access anything that is external to the passed subprogram. The developers of REV and NCL were

primarily concerned with moving computation to a remote machine and imposed this limitation to simplify

implementation. SURPRA-RPC (SUbprogram PaRAmeters in Remote Procedure Calls) on the other hand

seeks to allow normal procedure call semantics for both local and remote calls [Sto94]. Essentially SUPRA-

RPC extends traditional RPC with additional stubs that are invoked whenever a procedure references an

out-of-scope variable or function. The server makes a callback to the client in order to handle the out-

of-scope reference. SUPRA-RPC implementations exist for C, C++ and Lisp although the C and C++

implementations work only in a homogeneous environment since compiled code is passed from machine to

machine.

2.5.3 Transportable agents

Transportable agents extend the remote evaluation schemes by allowing autonomous programs to migrate

from machine to machine. This approach is a convenient paradigm for distributed applications and simpli�es

the task of communicating among distributed subprograms. Table 1 summarizes the existing transportable

agent systems. Some of these systems �t the de�nition better than the others in that they actually allow a

program to suspend its execution at an arbitrary point and resume execution on a new machine. The others

allow subprograms to be sent to a remote site but not the internal state of executing subprograms.

There are several schemes that fall between remote evaluation and transportable agents. Postscript programs

are often sent to remote printers and displays. Scripting systems such as Apple Script allow scripts to be

sent from one application to another [Joh93]. MIME/Safe-Tcl allows Tcl scripts to be embedded in e-mail

messages. These scripts are executed automaticallywhen the message is received or viewed [BR93]. The IBM

Intelligent Communications NetworkTM uses Intelligent ObjectsTM . These objects can contain procedures

and can be sent from an application on one site to an application on another. The recipient can execute the

embedded procedures [Rei94]. Oracle Mobile Agents is meant for mobile computing and associates an agent

with each mobile user. However the agent is not transportable. It resides in the central network and acts as

11



System Language Language Suspendable Communication Security Crash

features Recovery

Jodler Tcl Imperative No Invocation of Authentication No

(extended) Interpreted object members Access/clearance

Object-oriented Cost/allowance

Obliq Custom Imperative No Invocation of Protected objects No

Interpreted object members Lexical scope

Object-oriented

TACOMA Tcl Imperative No meet UNIX Rear guards

Interpreted

Routers Custom Expression Yes Yes Unknown ISIS

Interpreted

Kotay Custom Imperative Yes No Access lists No

and Kotz Interpreted

Telescript Custom Imperative Yes meet Credentials Backing store

Interpreted connect Permits

Object-oriented

Agent Tcl Tcl Imperative Yes send No No

Interpreted receive

Table 1: A comparison of existing transportable agent systems { Agent Tcl is the system that is being

implemented as part of this thesis. It is far from complete.

the user representative when the user is disconnected from the network or when the user does not want to

receive intermediate data due to low transmission rates and high latencies [ora94]. Some of these schemes do

not support arbitrary distribution and migration. The rest are application-speci�c and ill-suited to general

computation. These schemes are not included in the comparison of existing transportable agent systems.

SodaBot { an agent environment and construction system { was developed to facilitate the creation of personal

assistant agents [Coe94]. The system provides a high-level scripting language, a basic software agent (BSA)

that controls the execution of all agents associated with a particular user and a graphical interface to the

BSA. Users can change the access rights for each agent running on their BSA and can visually inspect agents

for security threats. SodaBot supports limited migration in that the components of an agent application

are automatically distributed to the appropriate network sites when the application is �rst used [Coe94].

However this is far removed from true migration. SodaBot is not included in the comparison of existing

transportable agent systems.

Jodler is an object-oriented extension to the Tool Command Language (Tcl) [Ott94]. which object in Jodler

consists of named slots which can contain either functions or values. A value can be a reference to another

object. The transfer primitive moves an object to a new network location. A member function executes at

the location of its object. Thus an application can create an object, transfer the object to a remote site and

invoke the object's member function in order to perform computation on the remote site. Jodler incorporates

two security mechanisms. Access/clearance associates a clearance level with each object and an access level

with each slot. An object can access a slot only if its clearance level is higher than the slot's access level.

Cost/allowance associates an allowance with each object and a cost with each slot. When an object accesses

a slot, its allowance is decremented by the slot's cost. Access is denied if the cost is greater than the object's

remaining allowance. The weakness of Jodler is that no distributed version has been implemented. In other

words there is no version in which objects can actually migrate. The author states that this is because he

has been unable to develop an object identi�cation scheme that works across multiple Tcl interpreters {

i.e. across multiple network sites. This is a puzzling statement since there are a wide range of successful

approaches to distributed object management. Until an identi�cation scheme is developed and the migration

feature is implemented, Jodler will be just an object-oriented extension to Tcl with rudimentary security

features.

12



Obliq is similar to Jodler except that it has a fully realized { and more elegant { implementation [Car94].

Obliq is an interpreted, lexically scoped and object-oriented. An Obliq object is a collection of named �elds

which contain methods, aliases and values. A value can be a network reference. Obliq objects are technically

immobile and tied to a speci�c site. However an object can be created at a remote site, cloned onto a remote

site or e�ectively migrated with a combination of cloning and redirection. In the latter case a copy of the

object is created at the remote site and all references to the original are redirected to the copy. An Obliq

program { just like a Jodler program { can create an object at a remote site and perform remote computation

through member invocation. However Obliq extends Jodler in two signi�cant ways. First the Obliq system

provides a name server. Objects register their location and a descriptive name with the server. Objects use

the server to locate other objects. Second the Obliq system allows procedures to be migrated in addition

to objects. A procedure can be sent to a generic compute engine on the remote site. The compute engine

executes the procedure and returns the result. The procedure can contain unbound variables which are

variables de�ned within the lexical scope of the procedure but not in the procedure itself. These unbound

variables are automatically replaced on the remote machine with network references to the local copies.

Thus Obliq remains lexically scoped even when a computation is spread across multiple sites. In addition to

making programs easier to reason about, lexical scoping is an important security mechanism. A procedure

can access only those objects de�ned in its scope or given to it as procedure arguments. This means that

it is impossible for a procedure to access resources on a remote machine without explicit cooperation from

the server. The second security feature of the Obliq language itself is that objects can prevent other objects

from cloning and modifying them. Higher-level security measures are not addressed.

TACOMA (Troms� and COrnell Moving Agents) is a mobile agent system that uses Tcl/Horus. [JvRS95].

Tcl/Horus is a version of the Tcl scripting language which uses Horus to provide group communication and

fault-tolerance. TACOMA agents are written in Tcl. Each agent has a briefcase of folders. Folders contain

Tcl data and procedures. The single abstraction is the meet operation which an agent uses to execute another

agent. The meet operation passes a briefcase to the invoked agent. The briefcase contains the information

that the agent needs to perform its task. All services except for meet are provided directly by other agents.

For example an agent executes a Tcl script on a remote machine by sending the script to the rexec agent. An

agent can migrate by sending itself to the rexec agent. However TACOMA does not support the interruption

of executing Tcl scripts. As in Jodler and Obliq the migrated script does not continue from the point of

interruption. Instead it is executed from the beginning. This lack of true migration makes it di�cult to

implement certain distributed applications but not impossible since state information can be explicitly stored

in the data that accompanies the script. Important features of the TACOMA system include rear guards,

electronic cash and brokers. Rear guard agents handle machine failures. A rear guard is left behind whenever

an agent migrates to a new machine. The rear guard restarts the agent if the agent suddenly \vanishes"

[JvRS95]. Electronic cash is used to pay for services and is intended as a security measure. Runaway agents

are impossible since an agent can not continue once its �nances are exhausted. TACOMA relies on the

underlying UNIX system for additional security. Broker agents provide directory and scheduling services.

Intelligent routers support true migration - i.e. the migration of executing scripts [WVF89]. An intelligent

router is a software analogy for the run card that travels with a manufacturing lot. A run card speci�es

the steps that need to be taken in order to correctly manufacture the �nal product as well as the results of

previous steps. Intelligent routers are written in MP1 and MP2 which are interpreted, expression languages.

Routers are evaluated by an interpreter at each site. A router can request migration to a new site in which

case the current state of the router is captured and sent to the new machine. The router resumes execution

on the new machine from the point of interruption. Each machine has a dispatcher that accepts the incoming

routers. Routers written in MP2 can communicate with each other, spawn child routers and catch exceptions.

MP1 is simpler and does not provide these facilities. A version of the router system that runs on homogeneous

machines uses ISIS to detect and recover from node failures and other faults [WVF89]. However there is no

corresponding fault-tolerant implementation for heterogeneous machines. There apparently is a mechanism

for detecting malicious routers but this mechanism is not speci�ed. In addition the current status of the

router research is unclear. However intelligent routers have been used in a wafer routing application [Voo91]

and have been suggested for a range of workow applications [WVF89] in which certain people or machines

must perform certain steps of a task. Intelligent routers are a natural mechanism for workow applications

since they can physically move from machine and machine and person to person as each step in the task

13



is completed. The router carries data relevant to the task along with it and performs arbitrarily complex

processing when deciding which step to perform next.

Kotay and Kotz [KK94] describe a prototype system that was implemented as a starting point for future

research. Transportable agents are written in a simple scripting language that includes most of the features

of AWK as well as \traditional imperative language features" such as if-then and while [KK94]. An agent

migrates with the moveto command. The moveto command captures the internal state of the agent and

transports this state to a new machine. The agent continues execution on the new machine from the

statement after the moveto. Three transport mechanisms were tested { electronic mail, UNIX remote shell

and TCP/IP. The authors note that the actual transport mechanism is unimportant since the agent cares only

that it has changed location rather than how it arrived. Security is provided with access lists which specify

the external programs that an agent is allowed to invoke on the remote machine. The system is missing

important components but it was intended as a testbed rather than for industrial-strength applications.

It has been used to search distributed collections of technical reports. The authors suggest six areas for

future work { an interagent communicationmechanism, replacement of the custom scripting language with a

standard scripting language such as Tcl, an agent reproduction mechanism, improved security, improved error

handling and navigation issues such as accessing replicated resources and searching for relevant resources

[KK94].

Telescript is a General Magic product that is being used in AT&T's new PersonaLink network. It is one

of the most robust transportable agent systems although it is a commercial product and unfortunately is

not available to researchers. Each network site is divided into one or more virtual places. Telescript agents

are written in an object-oriented scripting language. An agent uses the go command to migrate to a new

place. The agent continues executing at the new place from the statement after the go. Agents can interact

with other agents in two ways. An agent can meet with an agent that is in the same place. The two agents

receive references to each other and communicate using standard object-oriented programming techniques.

In addition an agent can connect to a remote agent. The agents pass objects along the connection. Each

network site runs a Telescript engine or server that maintains the places at the site and executes incoming

agents. The Telescript engine continuously writes the internal state of executing agents to nonvolatile store

so that the agents can be restored after a node failure. In addition the Telescript engines enforce two security

mechanisms. Each agent carries cryptographic credentials. Each place checks these credentials in order to

authenticate the agent's identity. In addition each agent has certain permits which are renegotiated whenever

the agent enters a new place. Permits give an agent the right to use a certain Telescript instruction or to use

a certain amount of an electronic resource. For example a permit could specify a maximum agent lifetime

or a maximum �scal budget. Agents that attempt to violate the conditions of their permits are terminated

immediately [Whi94]. The current applications of Telescript are electronic shopping (where each place is the

electronic representative of a sales organization), active e-mail (where each place is a mailbox or router) and

certain network management tasks [Rei94].

2.5.4 Distributed systems

Transportable agents can spread across a network and cooperate to perform a task. These cooperating agents

behave like a distributed system. Therefore many of the services that will be necessary or convenient in agent

applications have been addressed in distributed systems research. These services include synchronization,

mutual exclusion, deadlock detection, agreement, shared memory, scheduling, transactions, crash recovery,

fault tolerance and reliable broadcast [SS94]. These services must be available to transportable agents.

However it is unreasonable to provide all of these services at the system level. Such a system would be

unwieldy and ine�cient. Instead most of these services should be provided with other agents. The challenge

is to identify those services that must be incorporated into the system and those that can be e�ciently

provided with other agents. Then the existing solutions can be copied and pieced together into a complete

suite of services.

14



2.5.5 Weaknesses of existing systems

The main weakness of existing transportable agent systems { except for the systems that do not support

arbitrary migration { is that they focus on certain technical challenges to the exclusion of others. For example

Telescript has impressive security and low e�ciency. The second weakness of existing work is that there has

been no formal characterization of agent performance.

3 Proposal

This these addresses these two weaknesses by formally characterizing the performance of transportable agents

and implementing a complete system.

3.1 Performance modeling

There has been no formal characterization of agent performance. Instead researchers and developers assume

that transportable agents consume fewer network resources than the client/server models. Evidence for this

assumption is either anecdotal or missing. Although the assumption clearly holds for speci�c applications,

the range of applications for which it holds is unknown. This means that it is di�cult to choose a communi-

cation paradigm for a distributed application. And since the relationship between performance and network

characteristics is unknown, it is di�cult for an agent to select an appropriate communication strategy in the

face of changing and unexpected network conditions. For example a transportable agent could limit itself

to the equivalent of remote procedure calls if (1) bandwidth is high, (2) latency and the chance of network

disconnection are low and (3) servers charge less for remote procedure calls since extensive security checks

are not required. The di�culty lies in determining the exact point at which it becomes cost e�ective to

switch from migration to remote procedure calls.

Therefore the �rst phase of the thesis is to determine the network, data and application parameters under

which transportable agents o�er the best performance. A transportable agent can engage in four basic

communication behaviors.

1. Naive { The agent downloads data to its current location. This can be viewed as a special case of

remote procedure call in which each call is a blind request for data.

2. Remote procedure call { The agent makes a call across the network in order to invoke a remote service.

3. Remote evaluation { The agent sends a child agent to a remote machine. The child agent executes and

returns its result. The child agent can send out children of its own.

4. Migration { The agent migrates from machine to machine.

A simple representation of the four models is shown in �gure 2. Naive involves a single request to the server

and then a bulk transfer of all data. Remote procedure call involves a sequence of requests and responses.

Remote evaluation involves the transmission of a child agent and its result. Migration involves transmission

of the agent from site to site. A transportable agent can limit itself to any of these communication behaviors.

There are two essential performance measures.

1. Tra�c { the total network tra�c produced by a distributed application

2. Compute cycles { the total number of compute cycles consumed by a distributed application (on both

local and remote machines)

In addition a wide range of cost functions can be de�ned. Three cost functions are immediately apparent.

15



Download request

All data

x N

Request

Response

Naive 

(FTP)

Remote

procedure

Remote

evaluation

Program
Migration

Program, incremental directives

Result, incremental results

Program

Figure 2: The four communication behaviors of interest { naive, remote procedure, remote evaluation and

migration. The cloud-shaped objects indicate where custom client computation can be performed.

16



1. Latency { the total time that the distributed application takes to complete its task (in isolation and

in the presence of competing applications)

2. Money { the total �nancial cost incurred by a distributed application. This is an important cost

function since it is likely that remote machines will charge for certain services.

3. Latency and money { the combination of latency and �nancial cost

There are three tasks for which a performance model will be used { predict the performance of a given

agent, select the agent that can most e�ciently perform a given task and select the network that can most

e�ciently support a collection of agents. E�ciency can be measured in terms of any cost function.

3.1.1 Predict agent performance

Here the task is to predict the performance of a well-known agent given the current network conditions. It

is assumed that we have an exact description of the agent's behavior. This assumption will be relaxed in

subsequent sections. The parameters that must be considered in making such a prediction include

1. the topology of the network

2. the bandwidth and latency of the network links

3. the current load on the network links

4. the �nancial cost associated with each service

5. the exact description of the agent's behavior. This includes the path that the agent takes as it migrates

through the network, the size of the agent's code section and the reduction in this code section between

successive migrations, the processing time at each network site, when and where the agent spawns

children, when and where the agent communicates with local or remote peer agents, when and where

the agent interacts with a local service, when and where the agent invokes a remote service and pulls

data across the network, when and where the agent blindly downloads data, and how much data is

carried along with the agent on each migration. Each child agent has its own behavior and there is a

size associated with each message or data item that is passed across the network. Broadly speaking

a description of an agent's behavior speci�es how the agent combines the four basic communication

behaviors in order to accomplish its task.

Under our assumption that an agent can precisely describe its behavior none of these parameters are di�cult

to model. The parameter that will be the most di�cult to obtain in a real network is the current load on

the network links. It clear that we can not ask one of the sites connected to the link for the link's current

load. This would signi�cantly increase the load on all the links in the network. In addition the load could

uctuate rapidly in which case the load �gure would be inaccurate by the time that it was returned to the

home site and passed into the performance model. It seems clear the we must predict the expected load on

the basis of past observation or settle for the load �gures that are passed from adjacent site to adjacent site

anyways for use in routing algorithms.

3.1.2 Select an agent

Here the task is to select the agent that can most e�ciently accomplish the given task or more precisely for an

agent to select the most e�cient communication strategy. It is assumed that we have a precise description of

the agent's task. This assumption will be relaxed in subsequent sections. E�ciency can be measured in terms

of any cost function. The communication strategy includes all of the items that made up the description of

an agent's behavior in the previous section. An agent can exert at least indirect control over all these items

and direct control over most. In addition to the parameters from the previous section we must now consider

17



1. Distribution of resources across the network

2. Data relevance. This speci�es how much data at each resource is relevant to the agent's task and how

much of this relevant data must be transferred o� site.

3. Data redundancy. This includes both the presence of replicated resources and the number of duplicates

when items obtained from two di�erent resources are merged. its search.

4. Dependencies. This includes whether certain steps must be executed at certain sites or against cer-

tain resources and whether certain steps can be executed in parallel. These dependencies determine

whether it is worthwhile to spawn child agents to perform subtasks, whether these child agents need

to communicate partial results and whether the agent can choose from one of a number of functionally

equivalent resources.

5. Existing agents and services. This speci�es whether there are existing agents and services that the

agent can use to accomplish part of its task. In e�ect this is a measure of the complexity of the task

since a complex task is less likely to be implemented as a third party service. If the third party service

is not available, the agent must perform the processing itself and can not possibly make a call across

the network. It must either download the data or migrate.

Again none of these parameters are hard to model since we assume that we have a precise description of

the task. However we should model expected rather than exact relevance and redundancy since in a real

application it is unreasonable to assume that we know a priori how much data at each resource is relevant

or duplicated. In a boolean search application we might model expected relevance on the basis of the size of

the collection and the expected number of documents per term. Such predictions could be provided by the

resource on demand or could be cached at the home site if network latency is high relative to the processing

time at the resource. The redundancy and relevance parameters can be incorporated into the prediction

model from the previous section to relax the assumption that the agent's behavior is known precisely. The

control strategy of the agent remains known but now the amount of data that it obtains at each step is

nondeterministic. This leads to a more general prediction of performance.

It is worthwhile to examine a concrete example of strategy selection. Consider an agent whose task is to

search a distributed collection of resources. The resources contain generic items. The user of the agent

speci�es a query against which items are ranked and a threshold, The agent must �nd all items whose rank

is greater than the threshold. There are two extremes. The agent can migrate from resource to resource

or the agent can spawn one child per resource. The children search the resources and return the retrieved

items to the parent. These extremes are speci�c cases of two general partitioning strategies. The agent

can partition the network sites and spawn one child agent per partition. Each child migrates sequentially

through the network sites in its partition. Alternatively the agent can partition the network sites and proceed

sequentially through the partitions. At each partition the agent spawns one child agent for each network

site in the partition. The agent proceeds to the next partition only when the children have �nished. The

agent's task is to choose the partitioning strategy, the partitions and either the ordering of the partitions

or the ordering of the sites within each partition. The agent's choice should minimize some cost function.

We will consider both latency and cost. To ease the discussion, assume a simpli�ed model in which the only

relevant parameters are network bandwidth and the number of items obtained from each site. To make the

discussion nontrivial, assume that the resources contain redundant items. The agent expects that d items

will be above the threshold at each site and that d�f(n) of these items will be unique where n is the number

of sites searched.

Latency is the time that it takes the agent to complete its task. It might appear reasonable to minimize

latency by sending one agent to each site. However this is reasonable only when the communication links have

in�nite capacity. Consider the case of performing a search with a personal communicator in a moving car.

The connection to the network is low-bandwidth wireless and is often unusable due to noise or obstruction.

If f(n) is n1=2, sending an agent to each of four sites brings twice as much data across the wireless connection

as sending a single agent that migrates sequentially through the sites and throws out duplicates. If the

transmission dominates the search time, sending one agent to each site would take nearly twice as long. The

18



same argument holds for any slow or heavily loaded link especially when one considers that there could be

thousands of agents making the same decision. Sending one agent to each of �ve machines at the University of

Melbourne in Australia is a bad idea for a user at Dartmouth. If an agent can spawn children regardless of its

current network site, it is of course most e�cient for the agents to fan out through the network and eliminate

redundant items as they fan back in. However it is likely that many machines will impose strict limits on

the depth and degree of the child hierarchy in order to prevent virus-like behavior. Under these conditions

the agent must partition the network and send one migrating agent to each partition. The partitions must

be chosen so that the time gained from parallel execution is exactly balanced with the time gained due to

lower network tra�c. It is conceivable that this partitioning problem is NP-complete. However there are

several approximations such as clustering the network sites in order of decreasing link performance. The

clustering process stops when the next union would cause an increase in latency. The agent must be able to

determine the current relationship between the e�ective transmission rate of a link and the amount of data

that it wants to send across the link.

Resources can charge for the services that they provide. In this case the arguments developed for latency

become even more persuasive. For example if a resource charges for each item that is obtained from the

resource, �nancial cost is minimized by sending out a single agent that migrates sequentially through the

sites. The agent carries previously discovered items along with it so that it can recognize redundant items.

At each site the agent obtains and is charged for new items only. If a machine charges for each byte that it

receives or transmits on behalf of an agent or if a network link charges for each byte that is transferred across

it, the cost of retrieving redundant items must be balanced against the cost of carrying previously seen items

along with the agent. Here an agent can de�ne the �nancial cost of a link as the cost of transferring data

along the link plus the cost of bringing data onto the destination machine minus the cost of being unable

to check for redundant items. The cost of being unable to check for redundant items would include the cost

of eventually transmitting a redundant item to the home machine. Then the agent can proceed as in the

latency case. The agent must be able to determine the price of a service before it uses the service. Combining

latency with �nances produces a more complicated optimization problem. Adding back the remainder of the

parameters makes matters even worse.

3.1.3 Select a network

Four distinct tasks are collected under this heading { predict the performance of a class of agents, select an

agent communication strategy for a class of applications, predict the performance of a network that is being

subjected to agent tra�c, and select an appropriate network architecture for agent tra�c. The common

thread in all of these tasks is that it must be possible to model the behavior of a typical agent. There is

no longer a precise description of the task or of the agent's behavior. In other words we need to model the

typical machine access pattern or the typical resource usage pattern. Modeling of typical access patterns has

been one of the most di�cult aspects of machine and network simulation [Spr95]. If the model is too general,

model results will not agree with actual performance. If the model is tuned to particular applications, model

results will agree with actual performance only for a particular mix of applications. One possible approach

is to identify typical applications and then characterize the behavior of each application. However it is

conceivable that agents will fall neatly into categories according to their dominant communication behavior.

For example some agents will primarily migrate from site to site while others spawn a hierarchy of children.

This suggests that we can use the four basic communication behaviors as categories and characterize the

behavior of a typical agent from each category. The characterization could be made in terms of Markov

decision processes. For example the Markov decision process for migrating agents might indicate that these

agents rarely reproduce. Simpler characterizations could be possible. For example it is not unreasonable

to suggest that agents that invoke remote services extensively will migrate so seldomly that is is not worth

considering. Similarly it might be reasonable to model the migration behavior of migrating agents as a

simple rate. The models for typical agents must be re�ned in parallel with application development so that

we can examine and capture the behavior of actual agents. At the same time we will not be implementing

a large number of applications so we will need to make intelligent assumptions along the way. An e�ective

model for typical agents will allow the consideration of network architectures and will allow the prediction

of agent behavior and the selection of agent strategy in much more general situations.

19



3.1.4 Modeling strategy

It is likely that the relationships between the parameters and agent performance are complex enough to make

mathematical analysis nearly intractable. Instead network simulation and experimental veri�cation will be

used to determine the relationships numerically. Then we must explicitly state the model such that an agent

can select parameters on the basis of desired performance levels. How the model will be expressed depends on

what relationships are suggested through the simulation work. Hopefully mathematical relationships, rules

and algorithmic procedures will become apparent for common cases. Alternatively simulation results can be

memorized. An agent will use a nearest-neighbor scheme to select the simulation result that is closest to the

current network conditions and the desired performance. The parameters for that simulation result are the

parameters for the agent. In parallel the agent can run a simulation for the current conditions and add a

new point to the memorized set. It is unreasonable to run the simulation and then perform the task since

the latency will be severe and the observed network conditions will change by the time that the simulator

�nishes and the agent begins executing. Other automated learning techniques such as neural networks will

be explored as necessary if we are unable to obtain e�ective prediction. The �nal task is to use the model

to select appropriate networks. This is the most complicated task and could reduce to running multiple

simulations with careful enumeration of possible network topologies { i.e. we do not want to enumerate all

of them. The critical concern with selecting a network is modeling a typical agent. A concern with any use

of the model is the timely delivery of current network and resource conditions to the machine on which the

model is being used. Delivery in a few speci�c cases was mentioned above and will be considered throughout

the implementation phase.

3.2 Implementation

A transportable agent system must support two basic tasks { the migration of an agent from one network site

to another and communication between distributed agents. In addition the system should be e�cient, fault

tolerance, exible, private and secure. Existing transportable agent systems do not meet all of these criteria.

Even the commercial language Telescript focuses on some technical challenges to the exclusion of others.

Therefore the second phase of the thesis is to implement a complete transportable agent system. A large

portion of this work will involve identifying and extending existing solutions in the distributed computing,

operating system, programming language, arti�cial intelligence and transportable agent literature.

The components that must be implemented are listed below. The list is divided into two broad categories

{ components whose functionality requires support at the system level and components whose functionality

can be provided in agents running on top of the system. The division of components is preliminary and could

change as the components are integrated into a coherent whole. In addition there is no review of the existing

research that is relevant to each component. The amount of relevant research is so large and scattered that

it is beyond both the time frame and scope of this thesis proposal. Research into each component will occur

throughout the course of the thesis as each component is developed. Here we simply highlight the approaches

taken in existing transportable agent systems.

3.2.1 System level

1. migration. A transportable agent can suspend its execution at an arbitrary point, migrate to a

new machine and resume execution on the new machine. This requires support at two levels. The

programming language must provide a mechanism for capturing the internal state of an executing

agent. In addition there must exist an entity that can transmit agents to other sites and execute

agents arriving from other sites. All existing systems that support true migration have a server on

each machine that sends and receives agents. Agents are written in a custom scripting language that

is designed to allow the capture of internal state. The scripts are interpreted rather than compiled for

security and portability reasons. A special language primitive such as the go instruction in Telescript

captures the internal state of an executing script and passes the state to the local server for transmission

to the destination server. A similar migration mechanism must be implemented in our transportable

20



agent system. However we seek to extend a standard scripting language such as Tcl rather than design

a custom language.

2. communication Agents must be able to communicate among themselves. The �rst issue is the level of

the communication primitives. Low-level primitives such as send and receive are exible but impose a

signi�cant burden on the programmer [SS94]. High-level primitives are restrictive but easier to use. The

existing transportable agent systems provide either implicit communicationor high-level primitives such

as meet. For example communication in Obliq requires nothing more than the invocation of a member

function. The member function can belong to a local or remote object. TACOMA and Telescript use

the meet primitive which contacts the recipient and returns when the recipient has explicitly accepted

or rejected the meeting. This is safer but less exible than send and receive. We seek to provide both

low and high-level primitives. It should be possible to build the high-level primitives on top of the

low-level primitives with careful implementation. The second issue is maintaining communication with

agents that are continuously changing network location. This can be partially supported with a low-

level forwarding scheme although e�cient support will demand one of the interoperation techniques

that were discussed in related work.

3. interaction with electronic resources. An agent must be able to access the electronic re-

sources that are available at each machine. There are three possibilities. The agent can interact with

the resource using the resource's native communication mechanism; the resource can provide a library

of procedures that can be called from inside an agent; or the resource can be encapsulated within an

agent. The �rst approach is unsafe and nonportable. The second approach is attractive for resources

such as �lesystems. The third approach involves more communication overhead but provides a uni-

form interface across all resources { i.e. accessing a resource means communicating with the agent that

controls the resource. The third approach can be subdivided into transducers, wrappers and rewrites.

A transducer is an agent that communicates with the resource in the resource's native communication

language. Transducers work with any resource but involve more communication overhead. An alterna-

tive approach is to place a wrapper around the application that e�ectively turns the application into an

agent by rede�ning its interface. This approach involves less communication overhead but the source

code of the application must be available. The third approach is to rewrite the application which is the

most time-consuming but allows optimization for an agent environment [GK94]. We seek to support

both procedure libraries and agent encapsulation. Agent encapsulation means that an agent must be

able to directly access any resource at the site. However only the agents that encapsulate the resources

will actually be allowed to do so.

4. security. There are two aspects of security. First a resource must be protected against malicious

or badly programmed agents. These malicious agents might access restricted information or damage

the resource. All existing transportable agent systems use interpreted languages so that there is an

additional layer between the agents and the bare hardware. The existing systems provide di�erent

degrees of security on top of the interpreted language. Telescript provides the most complete security.

All Telescript agents have permits and credentials. Credentials are used to continuously authenticate

the identity of an agent's owner while permits limit the scope of an agent's actions and resource

usage [Whi94]. The Telescript security mechanisms appear to be su�cient. We seek to con�rm their

su�ciency and either copy or redesign as appropriate.

The second and more subtle security issue is that an agent must be protected from a malicious machine

or resource. This issue has been mentioned extensively in the literature but has seen no implementation

work or proposed solutions. It is clear that it is impossible to protect an agent from the machine on

which the agent is executing. It is equally clear that it is impossible to protect an agent from a resource

that willfully provides false information. However it is essential that there be a way to detect whether

an agent has been modi�ed inappropriately by a previous machine when it migrates to a new machine.

Otherwise the new machine might assign a security violation to the owner of the agent. The owner

would then be subject to undeserved sanctions. We seek to implement a veri�cation mechanism so that

each machine can check whether an agent was modi�ed unexpectedly after it left the home machine.

Such a veri�cation mechanism might involve communication with the home machine.

21



5. privacy. A transportable agent might contain information about its owner in order to make appropri-

ate decisions. A third party can infer information about the agent's owner by examining this internal

information or simply by observing the external behavior of the agent. It is impossible to prevent a

machine from examining an agent that is executing under its control. Instead we must hide the identity

of the agent's owner while allowing the service to perform security checks and bill for services rendered.

Di�erent services will allow di�erent levels of privacy. Providing privacy is trivial if there is an indepen-

dent third party that is trusted by both the service provider and the agent's owner. For example the

AT&T PersonaLink network is currently organized around a centralized AT&T server that is implicitly

trusted. Therefore the server can submit an agent to a service on behalf of an anonymous user. The

service sends billing information to the server which forwards it to the actual user [Rei94]. Privacy

becomes much more di�cult and perhaps impossible if there is no trusted third party. Fortunately

high-privacy applications are often low-security while high-security applications are often low-privacy

{ e.g. browsing an online store catalog versus accessing classi�ed military information. This should

greatly extend the range of potential solutions. We seek to provide as much privacy as possible while

maintaining billing and security.

6. efficiency. One of the key factors that will determine the success or failure of a transportable agent

system is the e�ciency with which an agent can carry out its assigned task. E�ciency issues arise

in every phase of the implementation. However three issues warrant special attention { accessing

replicated resources, caching the results of previous agents in case the next agent wants to perform the

same task, and e�ciently executing agent code. It is unclear how much can de done at the system level

in terms of accessing replicated resources and caching results. The problem with replicated resources

is how to redirect an agent to a lightly loaded copy when it is explicitly requesting migration to a

speci�c copy at a speci�c network site. The problem with caching is how to detect when an agent

or an agent fragment will produce a result that was recently produced by another agent. Agents are

written in a general-purpose scripting language so detecting functionally identical agents is extremely

di�cult unless we consider only those agents that are lexically identical as well. Support for replicated

resources might have to be moved to the agent level where an agent can query a resource manager

about the copies that are available and which copy will provide the fastest turnaround. Caching might

have to be provided by each resource individually or in the application itself.

E�ciently executing the agent code can be done no where but the system level. Existing systems

use interpreted languages for security and portability. However the interpretative overhead is severe.

For example Tcl runs ten thousand times slower than native C [SBD94]. The clear solution is to

either compile agents into a low level representation that can be interpreted much faster or to compile

agents into actual machine code. The JavaTM programming environment takes both approaches. A

high-level Java program is compiled into bytecodes. The bytecodes can be interpreted or translated

into machine code. Interpreted bytecodes are much faster than Tcl. Bytecodes converted to machine

code are nearly as fast as native C [jav94]. Alternatively several groups are working on faster Tcl

interpreters [Sah94] and Tcl compilers [SBD94]. These groups have achieved notable success even

though Tcl was never meant to be compiled. There are other reasonable choices for an agent language.

The tradeo� is that security mechanisms become more complicated as the agent gets closer to the

bare hardware. It would not be unreasonable for a site to charge more for a compiled agent than an

interpreted one or to disallow compiled agents altogether. Therefore the challenges are to (1) select a

language that supports interpretation and compilation, (2) allow the agent to request compilation once

it reaches the destination machine and (3) meet security requirements even if the agent is compiled. It

is not critical which language is used in the thesis work as long as it supports both interpretation and

compilation. We plan to use Tcl as discussed in the next section. The important questions are how

much the system would need to change if we switched to a di�erent language and whether the system

can support multiple languages at the same time. A di�erent language should require nothing more

than an appropriate interpreter, compiler and security module. The rest of the system should remain

unchanged. Multiple languages will require a uniformmeans of identifying the language of an incoming

agent. A compiled agent must be compiled on the destination machine since it is unreasonable to expect

a machine to produce correct machine code for every potential destination machine. In addition the

destination machine can perform as much security checking during the compilation process as desired.

22



We feel that the best approach is a two phase scheme. First a distribution agent migrates to each

machine, compiles the code and registers the code with a special-purpose agent. Then the application

agent migrates from machine to machine using the precompiled code as needed. Such an approach

allows the detection of compiler errors before the application begins running.

7. data types The basic data types that transportable agents use must be identi�ed and incorporated

directly into the language. In addition it must be possible to access arbitrarily complex data struc-

tures that are de�ned externally to the agent language { i.e. data structures whose operations are

implemented in some other language with an interface for transportable agent use. For example trans-

portable agents that learn might need neural networks. The challenge with external data structures is

transmitting their internal state and their implementation to the remote machine.

8. network and resource awareness. A transportable agent should be able to determine the char-

acteristics of the current machine and of the network between the current machine and any destination

machine. Relevant characteristics include capacity, latency and load. The agent can make processing

and communication decisions on the basis of these characteristics. For example if the destination ma-

chine is connected over a low-bandwidth wireless network, the agent might choose to transmit image

titles rather than image thumbnails. Similarly the agent should be able to determine the status of any

resource or agent.

9. cross platform. Transportable agents are speci�cally meant for a heterogeneous environment.

Therefore we must ensure that the transportable agent system will work on arbitrary platforms across

arbitrary communication channels. In practical terms this means that we can not limit the implemen-

tation to Unix workstations since it is not di�cult to port programs from Unix to Unix and all of

the workstations use the same communication protocol (TCP/IP). The most reasonable choice of a

non-Unix platform at Dartmouth is a Macintosh communicating over an AppleTalk network. Here the

key issue is allowing migration between the Unix and AppleTalk networks while maintaining transpar-

ent communication. The agent should be unaware of the communication mechanisms even if it has to

cross the network boundary. Fortunately the underlying network hardware and software should handle

most of this task. Potentially the single consideration in the agent system itself will be to provide

an appropriate naming scheme so that an agent can refer to any connected machine with a high level

name.

10. development environment. Transportable agents { like all distributed paradigms { demand care-

ful programming. A robust development environment is essential in order to ease the programming

task. It is not the intention of this thesis to implement a production-quality development environment.

However three development tools will be implemented. First there is a need for a exible debugging

facility that can track transportable agents as they migrate through the network. Second most users

will not have the desire or the pro�ciency to write a transportable agent. Instead most applications

will translate high-level user actions into low-level transportable agents. For example an informa-

tion retrieval application would translate a query and a list of potentially relevant resources into a

transportable agent that migrates from resource to resource in order to answer the query. We seek

a toolkit of functions that will simplify the task of turning a high-level representation into a trans-

portable agent. Such a toolkit can be used directly in an application or can be used as the basis for an

application-speci�c toolkit. Third it has been suggested that it should be possible to modify an agent

while the agent is executing. [WVF89]. It is unclear whether the ability to modify an agent is useful

in the general case. However it is certainly useful in network management and workow applications.

Workow applications require that certain people or machines perform certain steps of the task. The

person responsible for each step or the steps themselves can change in midstream. It must be possible

to modify the agent that is directing the task without restarting the task from scratch. However this

modi�cation is accomplished, it must be noted that there is no need for arbitrary modi�cation. It

is more a matter of replacing a well-de�ned piece of the agent while the agent is suspended or while

independent pieces continue executing.

The following components are critical in a robust, exible system but have seen extensive development in

23



the context of distributed systems. We expect to use the existing solutions rather than develop novel ones.

The challenge is to integrate the existing solutions with the other system components.

1. crash recovery The transportable agents executing on a node should not be lost forever if the node

crashes. Instead it is desirable to perform as much automatic recovery as possible. TACOMA leaves a

rear guard agent behind whenever an agent migrates to a new network site [JvRS95]. The rear guard

is responsible for restarting the agent if the agent disappears. The rear guard scheme quickly becomes

complex since an agent that migrates several times will lead to chains or cycles of rear guards. Telescript

takes an alternative approach and continuously backs up the internal state of an executing agent to

nonvolatile store [Whi94]. All agents can be restored from the nonvolatile store if the site crashes. An

issue that does not seem to be considered in the TACOMA or Telescript implementation is that there

might be other agents that depend on one of the agents on the crashed machine. These agents must

wait until the machine comes back, �nd an alternative resource or terminate. The system must at least

notify these agents that the machine has crashed so that they can take the appropriate action. Ideally

the system would provide an option to freeze a dependent agent when a machine crashes and unfreeze

the agent when the machine comes back up. However this scheme quickly becomes complex since

the dependents of the dependents must be frozen and so on. A related issue is that if an application

assumes that a child agent on a crashed machine is gone forever and takes alternative action, the child

agent should remain gone. It should not come back when the machine comes back.

2. fault tolerance Many other faults can occur besides site crashes. At the system level we seek to

detect these faults and take simple corrective action { e.g. a single retry. Transportable agents will be

noti�ed of the faults if the corrective action fails.

3. synchronization. Agents that cooperate to perform some task must be able to synchronize their

actions. Agents should be able to synchronize whether they are local to one machine or distributed

across multiple machines. At the system level we are concerned with low level mechanisms such as

barrier synchronization.

4. interrupts. It should be possible to asynchronously notify a transportable agent that some event

has occurred. This is similar to standard operating system interrupts except that we would expect

the events to be at a much higher semantic level. There are two challenges { (1) provide the language

primitives that establish interrupt handlers and tell the system which events should generate interrupts

and (2) allow interrupts to cross the network. It should be possible for a transportable agent to receive

an interrupt whenever an event occurs on some other machine.

5. deadlock. The potential exists for a collection of agents to deadlock. This is particularly true if an

agent can hold exclusive access to a resource across multiple program instructions or if an agent can

block for an arbitrarily long period of time while waiting for communication from some other agent.

Deadlocks must be detected and broken. It is possible that deadlock handling will fall out of the

security mechanisms and no dedicated deadlock detection mechanism will be required. For example if

each agent has a maximum wall clock lifetime, deadlocks are guaranteed to be broken after su�cient

time has elapsed. Each resource might specify a maximum time that an agent can hold mutually

exclusive access to the resource. More complex schemes that are required in speci�c applications might

be implemented at the agent rather than system level.

3.2.2 Agent level

The agent level is concerned with services that can be provided with other agents. Here we present some

of the services that will be critical in certain applications. The focus of the thesis is to ensure that the

facilities at the system level allow e�cient implementation of the services at the agent level. As part of this

work we will implement at least a simple version of each service. Each of these services has been researched

extensively. Again this research is not summarized here. A key aspect of the work will be surveying the

existing approaches and determining the ease with which they can be implemented on top of the system.

24



1. coordination. This includes high level mechanisms such as process group tools, simulated shared

memory and so on.

2. fault tolerance and crash recovery. This includes high level mechanisms such as transactions

and reliable transmission of the same message to distributed agents.

3. learning Some agents must learn how the user performs a task or must improve their future per-

formance based on past experience. Such learning involves indirect observation of the user and other

agents as well as direct feedback.

4. planning and inference Some agents must plan how to accomplish their task.

5. finances. Transportable agents may need to pay for certain services. TACOMA [JvRS95] uses a

trusted money server that assigns a large random integer to each piece of electronic cash. When an

agent transfers electronic cash to another agent, the recipient veri�es that the cash has not been spent

by contacting the authentication server. The server assigns a new random integer to the cash so that

the recipient can spend the money that it has just received. There is a clear window of opportunity for

a malicious agent or agents to spend the same piece of cash over and over again in the time that it takes

the �rst recipient to contact the money server. TACOMA allows agents that feel cheated to request

an audit from an impartial third party. Therefore each TACOMA agent must document its actions

if it wants to take part in the audit process. TACOMA's electronic cash has the important security

bene�t of preventing runaway agents. An agent can not continue onces its �nances are exhausted.

PersonaLink is a commercial network that is centered around billing [Rei94]. However the exact billing

mechanism is unknown.

6. negotiation Transportable agents may need to negotiate with one or more other agents in order to

settle on a satisfactory price for the service.

7. Resource description, organization and discovery. These issues arise in information retrieval

applications. Each resource should have a high level description that summarizes the contents of the

resource. Transportable agents can examine this description in order to make a broad determination as

to the resources relevance or irrelevance. This would allow the agent to immediately eliminate some re-

sources from consideration. In addition resources should be organized into hierarchies, lattices or some

other structure where groups of summaries are summarized themselves. The agent could then elimi-

nate entire groups of resources from consideration. Finally an agent must be able to e�ciently search

collections of resource descriptions in order to identify previously unknown but relevant resources.

8. scheduling. Scheduling is the task of selecting a machine for an agent when there are several machines

that can satisfy the agent's needs. A scheduling mechanism will be critical in supporting access to

replicated resources.

9. interface to RPC and remote evaluation servers. There should be auxiliary agents that

provide interfaces to existing remote procedure and remote evaluation systems. This would allow

transportable agents to easily access traditional servers.

3.3 Performance evaluation

The �nal phase of the thesis is to build several applications on top of the transportable agent system and

evaluate system performance. The applications should exercise all components of the system and therefore

should cover the range of agent behavior. There are three basic agent behaviors. An agent can communicate

with resources and agents across the network; an agent can migrate from site to site; or an agent can spawn

child agents and coalesce the child results. Most applications exhibit more than one of these behaviors but

often one behavior dominates. We have not determined the exact applications that will be implemented.

However we seek to build one or more applications from each of four categories. Each category focuses on a

di�erent behavior.

25



1. distributed information retrieval. Here we intend to focus on search applications in which agents

fan out through the network and then fan back in. The agents coalesce and summarize their results as

they fan back in. Three search domains are under consideration { two dimensional images, mechanical

parts and medical records. Prototypes of the medical record and mechanical parts applications have

been implemented on top of the prototype agent system. The prototype system is described in the next

section. In addition to agent reproduction these applications will be a test of (1) agent compilation

since the queries will involve mathematically intensive comparison and redundancy metrics for which

compiled speed is essential, (2) resource description, organization and discovery since an agent should

be able to discover previously unknown resources, (3) scheduling since an agent should be sent to a

lightly loaded copy of a replicated resource and (4) caching since search results from previous agents

should be stored and reused.

2. personal assistants. A personal assistant relieves the user of a routine, burdensome task. Here we

plan to focus on interagent communication and interaction with resources. In other words the personal

assistants should achieve their goals using the services of existing agents and resources. Three personal

assistants are under consideration. All three have information retrieval aspects as well. The �rst

personal assistant watches the user's calendar and to-do list and searches the Internet for information

relevant to each item. The hope is that the assistant will identify useful information between the time

that the user adds an item and the time that the user begins to address the item. The second personal

assistant accepts a stream of information { e.g. a news feed { and throws away the items in which

the user is not interested and searches for additional information on the items in which the user is

extremely interested. The job of this assistant can be viewed as creating a personalized newspaper

or news broadcast for the user. The third personal assistant is perhaps the most ambitious and most

entertaining. We seek to implement part of Nicholas Negroponte's digital house [Neg95] in which smart

appliances communicate with each other in order to accomplish a task for the owner. For example it

is easy to imagine an assistant that coordinates with the alarm clock, hot water heater, co�ee pot and

microwave (into which a dish of oatmeal has been placed the night before) and with an external taxi

service in order to ensure that the owner gets up, cleans up and makes it to the airport in time for

his ight. Most importantly this assistant should adjust every component accordingly when the airline

noti�es it that the ight has been delayed. In addition to interagent communication and resource

interaction these applications will be a test of (1) the learning capabilities of an agent since it must

improve its future performance based on past experience, (2) the planning and inference capabilities of

an agent since it must identify possible solutions to the task and select the best solution according to

some criteria, (3) �nances and negotiation since it is likely that the agent will need to pay for certain

services, (4) interfaces to traditional servers since it is unlikely that the agent system is available at

each Internet site, (5) the privacy mechanisms that guard a user's identity and (6) the mechanisms

that allow an agent to determine resource status since resource could be unavailable or heavily loaded.

The latter four are less applicable to the digital house so it is unlikely that the digital house will be

the primary application.

3. workflow. A workow agent provides the overall control for a task in which certain people or

machines must perform certain steps. The agent migrates from site to site and person to person

according to who is responsible for the current step. The processing to decide which step is performed

next can be as complex as desired. Three workow applications are under consideration. The �rst is

procurement in which the task is to identify a needed part or service, identify the organizations that can

provide the part or service, solicit bids from these organizations, select the winning bid and order the

service or part from the winner. Di�erent people are responsible for the procurement process at di�erent

points. For example the initiator submits the initial request, the comptroller approves the expenditure

and the auditor reviews the bid selection process. The second application is robotic manufacturing.

Here we imagine that a company produces custom parts on a robotic manufacturing line. The robots

must be told what steps to take for each part. As the part moves along the assembly line and passes

through each manufacturing tool, an agent migrates through the corresponding controllers. The agent

guides the tool through the appropriate steps for the current part, records the results and handles

exceptional conditions. This application is an extended version of the wafer routing application in

26



[Voo91]. The third application is software development. Here an agent guides a software package

and its components through the software life cycle. In addition to migration these applications are

a test of (1) fault tolerance and crash recovery since losing a workow agent in midstream would be

catastrophic, (2) coordination since there might be one agent for each parallel track of the task and (3)

the mechanisms that allow an agent to determine the status of other agents since it must be possible

to examine the task progress.

4. active e-mail or documents. Active e-mail allows each message to include one or more scripts.

The scripts are executed automatically when the message is received or viewed. Active documents

are similar. The scripts embedded in active documents are executed when the document is received

or viewed or when a portion of the document is selected. Here the focus is to demonstrate the ease

with which active e-mail and documents can be implemented on top of the agent system since these

applications are seeing extensive discussion in the literature.

All of these applications will be a test of the security precautions, the basic data types that are available

to the agent and the toolkit that converts high-level user actions into actual transportable agents. There

is no point in developing production-quality interfaces for every application however. Most of the interface

work will be concentrated on the personal assistants. In addition I have associated each system component

with the application for which the component seems to be most critical. This is not to suggest that the

component is unimportant in the other applications. For example resource discovery might be critical for

the �rst two personal assistants. Most large applications will exercise a signi�cant portion of the system.

These applications and the system itself will be instrumented to obtain exact performance �gures. Perfor-

mance �gures include measures such as load, latency and �scal cost. The observations will be used to verify

the accuracy of the models that were discussed in the modeling section. The models must be re�ned if they

are inconsistent with actual performance. Once an accurate model is developed, a transportable agent can

use the model to select an appropriate communication and migration strategy. Using the model allows the

agent to adapt to changing and unexpected network conditions. To test strategy selection, we plan to modify

the applications listed above. Each of these applications was associated with a particular control strategy in

order to fully exercise the system. However although these control strategies are a reasonable choice for these

applications, they are not the most e�cient for certain network and agent characteristics. The guts of the

applications will be replaced with code that obtains the current network, resource and agent characteristics

and then combines these characteristics with the model in order to select the best control strategy. As noted

above we do not want each agent to implement its own version of the model. Instead there should be a

generic third party that suggests good strategies based on network conditions and as good a description of

the task as the agent can provide.

The instrumentation will be a documented part of the system so that it can be used in future work. Of

course it will be possible to turn o� the instrumentation in order to avoid measurement overhead.

4 Status

4.1 Performance modeling

No work on performance modeling has been done so far. However we are in the process of identifying existing

network simulation tools. We expect to use the architecture simulation language CARL which is an extension

of the discrete event simulator PARSIM. CARL was designed for the simulation of CPU internals but can

be used equally well for computer networks.

4.2 Implementation

We have implemented a prototype system that uses the Tool Command Language (Tcl) as the transportable

agent language. The architecture of the system is shown in �gure 3 and described in detail below. The

casual reader may wish to skip to the �nal paragraph in this section.

27



(agent commands)

Agent script

Tcl core

UNIX
sockets

(TCP/IP)

...
UNIX

Tcl extension

fork

UNIX pipe
Socket

watcher

Agent
Tables

Client
Server

Figure 3: The prototype transportable agent system

Tcl is a high-level scripting language that was developed by Dr. John Ousterhout at the University of

California at Berkeley in 1987 and has enjoyed enormous popularity since then. Tcl has several advantages

as a transportable agent language [Ous94]. Tcl is interpreted. This makes Tcl scripts highly portable and

simpli�es the implementation of security precautions. Tcl can be embedded in other applications due to

its dual existence as a stand-alone interpreter and a function library. This makes it easy for applications

to implement part of their functionality with transportable agents. Tcl can be extended with user-de�ned

commands. This allows each information resource to provide a package of Tcl commands that can be used to

access the resource. Agents dynamically load the command package and then invoke the desired commands.

Such dynamic loading of resource-speci�c commands is a lower level but more e�cient alternative than

encapsulating the resource within a transportable agent. Finally Tcl is freely available to researchers unlike

the commercial language Telescript. Several existing systems use Tcl as the agent language as noted in

related work.

However Tcl has several disadvantages. Tcl is ine�cient compared to other interpreted languages such as Perl

[Ous95]. Tcl is not object-oriented and provides no code modularization except for procedures. This makes

it di�cult to write large scripts. Fortunately several groups are working on more e�cient Tcl interpreters

[Sah94] and on Tcl compilers [SBD94]. In addition the lack of object-oriented features has not been an issue

with the Tcl agents developed so far since these agents have been small even though they perform signi�cant

processing at the remote site. However it will become an issue as script size increases. In this case there are

several existing object-oriented extensions to Tcl. It will be interesting to see if a transportable agent can use

the object-oriented extensions without object-speci�c support from the underlying system. This should be

possible if each extension provides procedures to save and load its internal state. The system can call these

procedures during state capture and restoration without any knowledge of the extension's purpose. This

assumes that the extension is available on both the source and destination machines. Some existing systems

use the object-oriented extensions to Tcl but provide object-speci�c support in the underlying system.

Capturing the internal state of Tcl extensions is future work. First we need to capture the internal state of

ordinary Tcl scripts. Unfortunately the �nal disadvantage of Tcl is that it provides no facilities for capturing

the internal state of an executing script. Adding such facilities turned out to be relatively straightforward but

required the modi�cation of the Tcl core. The essential problem is that the Tcl interpreter evaluates a script

28



WHILE_EXPRESSION while expr body WHILE_EXPRESSION

if (expr)

     

else

          set flag to NEXT_COMMAND

          set flag to WHILE_BODY

          push body onto stackwhile expr bodyWHILE_BODY

bodyPARSE_COMMAND

while expr bodyWHILE_BODY

Command

WHILE_BODY

if (error in body)

          set flag to NEXT_COMMAND

          set flag to WHILE_EXPRESSION

else

evaluate and pop body

Flag

Figure 4: The interaction between the explicit stack and the two handlers for the while command

by making recursive calls to the main evaluation procedure Tcl Eval. This means that the most important

part of the script's state { namely its command stack { is implicitly stored in the interpreter's stack to which

there is no easy access. The solution was to add an explicit stack to the Tcl core and replace each recursive

call to Tcl Eval with a push onto the stack. Tcl Eval was expanded with a loop that iterates until the stack

is empty. On each iteration Tcl Eval calls the evaluation procedure associated with the command on the top

of the stack. The command is popped o� the stack once it has been evaluated.

We have implemented a prototype system that uses the Tool Command Language (Tcl) as the transportable

agent language. The architecture of the system There are two complications with this simple scheme. The

�rst complication is that some command procedures perform command-speci�c processing both before and

after the recursive call. An example is while procedure which recursively calls Tcl Eval to evaluate the body

of the while loop. The solution was to divide these procedures into two or more new procedures. Each

procedure contains the code that previously appeared between two successive calls to Tcl Eval. The while

procedure was divided into a procedure that evaluates the control expression and a procedure that handlers

error conditions in the body. A state ag is associated with each command on the stack. The state ag

speci�es which of the new procedures is the current handler for the command. Each new procedure sets the

state ag as it �nishes. For example the procedure that evaluates the control expression of a while loop either

sets the state ag to next command or pushes the body of the loop onto the stack and sets the state ag to

while body. In the second case Tcl Eval evaluates the body, returns to the while loop on the stack and calls

the procedure that handles error conditions in the body. This procedure sets the state ag to either next

command or while expression depending on whether or not an error occurred. In the second case Tcl Eval

calls the procedure that evaluates the control expression and the sequence repeats. A command is popped

o� the stack as soon as its ag is set to next command. This process is illustrated in �gure 4. Careful choice

of state ags meant that just those procedures that involve a recursive call to Tcl Eval had to be touched.

29



The second complication is that the programmer might wish to capture the script state in the middle of a

command substitution. The problem is that command substitutions are evaluated while the command is

being parsed which made it nearly impossible to eliminate the recursive call to Tcl Eval. Thus we kept the

recursive call but added a special variable table into which is stored the value of each command substitution.

When the state is captured during a command substitution, the table is captured as well. When the state

is restored, the interpreter parses the entire command again but checks the table whenever it performs a

command substitution. If the command substitution has already been performed, it uses the value in the

table rather than evaluating the substitution again.

Once the explicit command stack was added to the core, it was trivial to write procedures that save and

restore the state of an executing Tcl script. These procedures save and restore the stack, the variable tables,

the procedure tables, the commands in the script, the procedure call frames and certain global parameters.

These procedures are the heart of the transportable agent system.

The transportable agent system has two components. The �rst component is a server that runs on each

machine to which transportable agents can be sent. The server is implemented as two cooperating processes.

The socket process watches the network connection and accepts incoming agents. The table agent keeps

track of the transportable agents that are executing on its machine and bu�ers messages that have been sent

to an agent but not received. The second component of the system is the modi�ed Tcl core as described

above and a Tcl extension that provides agent commands. The most important commands are agent submit,

agent fork, agent jump, agent send and agent receive. These commands are used to move the agent through

the network and to send and receive messages. Transportable agents are written in standard Tcl except that

they must be evaluated with an interpreter that uses the modi�ed Tcl core and includes the extension.

agent submit sends a Tcl script to a remote machine for evaluation. The agent submit command connects

to the socket process on the remote machine and sends the script over the connection. The socket process

creates a child process to handle the script. The child communicates with the table process in order to

obtain a unique local identi�er for the agent. Then the child creates a Tcl interpreter, evaluates the agent

and noti�es the table process when the agent terminates or migrates.

agent submit sends a complete Tcl script which is executed from the beginning. agent fork and agent jump

send the internal state of an executing script. These two commands capture the internal state of the script,

connect to the socket process and send the internal state over the connection. The socket process creates

a child process which obtains a unique local identi�er from the table process, creates a Tcl interpreter,

loads the state image into the interpreter and continues evaluating the agent from the point at which it was

interrupted. agent jump terminates the original script { i.e. the agent is migrated to the remote machine.

agent fork does not terminate the original script { i.e. the agent is cloned onto the remote machine. The

table process is noti�ed when the agent terminates or migrates.

agent send and agent receive provide a rudimentary message service. agent send sends a message to a desti-

nation agent. The destination agent is speci�ed by providing the network location of the agent and its local

identi�er. This location-dependent addressing is easy to implement but makes it di�cult to communicate

with an agent that is migrating from machine to machine. agent send connects to the socket process on

the destination machine. The socket accepts the message and immediately passes the message to the table

process. The table process holds the message until the destination agent issues an agent receive command.

agent receive communicates with the table process in order to obtain the most recent message. Successive

calls to agent receive obtain successively older messages.

An important feature of the message service is automatic result passing. The result of a Tcl script is the

result of the last command executed in the script. When an agent �nishes executing, the script result is

automatically sent to the top level agent as a message. The top level agent is the agent at the root of the

hierarchy created by the submit, fork and jump commands. The top level agent can receive the result just

like any other message. Figure 5 shows a sample transportable agent that illustrates these commands. The

agent submits a second agent. This second agent jumps from machine to machine and executes the Unix

\who" command at each machine. The list of users on each machine is concatenated onto a growing list.

When the second agent �nishes, the list is automatically sent to the �rst agent as a message. The �rst agent

receives the list and displays it to the user. The use of two agents is a side e�ect of a current technical

30



set num 4

set machine(1) {muir.cs.dartmouth.edu}

set machine(2) {tenaya.cs.dartmouth.edu}

set machine(3) {tioga.cs.dartmouth.edu}

set machine(4) {tuolomne.cs.dartmouth.edu}

agent_begin tioga

# submit the script that will jump from machine to machine. We send the

# scalar variable "num" and the array "machine" since the script needs

# these two variables. Note the msg variable in the submitted script. At

# each machine we append the who list for that machine to msg.

agent_submit tioga -vars num machine \

-script {

set msg ""

for {set i 1} {$i <= $num} {incr i} {

agent_jump [set machine($i)]

set who_info [exec who]

set location $agent(local)

append msg "$location:\n$who_info\n"

}

# We want to return the concatenated who lists so we just do

# a "return $msg". This is the last command in the submitted

# script so the script result ends up being the value of msg.

# The script result is automatically returned to the submitter

# as a message.

return $msg

}

# get the result from the submitted script

set result -1

while {$result == -1} {

set result [agent_receive msg]

}

puts $msg

agent_end

Figure 5: A sample transportable agent that executes the \who" command on multiple machines

31



limitation. When an agent migrates, it loses its connection to the terminal device and can not regain this

connection even when it jumps back to the original machine.

The prototype system implements only two of the components that were discussed in the proposal { migration

and rudimentary communication { and has several implementation weaknesses that must be addressed { lack

of a blocking or timeout facility for the agent commands, extraneous copying of messages to and from the

table process and loss of terminal connection. However the system has been used successfully to search

distributed collections of medical records and mechanical parts. The transportable agents were easy to write

and Tcl was more than e�cient enough for the searching task. Because of this initial success, Tcl and the

existing prototype system will be used as the starting point for the remainder of the thesis work.

4.3 Performance evaluation

No work on performance evaluation has been done so far since we have just �nished the prototype system.

However application development is underway. Two information retrieval applications are being developed

on top of the system. One application is concerned with the retrieval of medical records while the other is

concerned with the retrieval of mechanical parts. There are working prototypes of both of these applications.

5 Conclusion

Transportable agents are a more e�cient means of accessing remote resources than traditional client/server

models. However existing research into transportable agents has two weaknesses. There has been no formal

characterization of the relationship between network, data and agent characteristics and agent performance.

In addition current implementations focus on certain technical challenges to the exclusion of others. This

thesis addresses these two weaknesses. Simulation and instrumentation will be used to explore the perfor-

mance of transportable agents under di�erent network conditions. In addition we will implement a complete

transportable agent system that is exible, secure and e�cient. The implementation will involve identifying

and extending existings solutions as well as developing novel ones. We have implemented a prototype system

that uses Tcl as the agent language. This prototype shows promise and will be used as the starting point

for the implementation work.

6 Acknowledgements

Many thanks to my advisor { Professor George Cybenko { for his encouragement and support; to the members

of my thesis committee { Professor George Cybenko, Professor David Kotz, Professor Daniela Rus and Dr.

Robert Sproull from Sun Microsystems { for their time and insight; to Keith Kotay for extensive discussion;

to Yunxin Wu, Aditya Bhasin, Kurt Cohen and Katsuhiro Moizumi for implementing their information

retrieval applications on top of the prototype system and providing useful feedback; and, as always, to

Jennifer and Stephen Gray for reminding me that there is life outside graduate school.

References

[BN84] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Transactions on

Computer Systems, 2(1):39{59, February 1984.

[BR93] Nathaniel Borenstein and Marshall T. Rose. Mime extensions for mail-enabled applications:

application/Safe-Tcl and mulitpart/enabled-mail. Bellcore Memo, Bellcore, 1993. This memo

is a working draft and should not be cited in published work.

32



[Car94] Luca Cardelli. Obliq: A language with distributed scope. Digital White Paper, Digital

Equipment Corporation, Systems Research Center, 1994. This white paper is available at

http://www.research.digital.com/SRC/Obliq/Obliq.html.

[Coe94] Michael D. Coen. SodaBot: A software agent environment and construction system. In Yannis

Labrou and Tim Finin, editors, Proceedings of the CIKM Workshop on Intelligent Information

Agents, Third International Conference on Information and Knowledge Management (CIKM 94),

Gaithersburg, Maryland, December 1994.

[Fal87] Joseph R. Falcone. A programmable interface language for heterogeneous systems. ACM Trans-

actions on Computer Systems, 5(4):330{351, November 1987.

[Fon93] Leonard N. Foner. What's an agent anyway: A sociological case study. Agents Memo 93-01,

Agents Group, MIT Media Lab, 1993.

[GG88] D. K. Gi�ord and N. Glasser. Remote pipes and procedures for e�cient distributed communication.

ACM Transactions on Computer Systems, 6(3):258{283, August 1988.

[GK94] Michael R. Genesereth and Steven P. Ketchpel. Software agents. Communications of the ACM,

37(7):48{53, July 1994.

[GSS94] Michael Genesereth, Narinder Singh, and Mustafa Syed. A distributed and anonymous knowledge

sharing approach to software interoperation. In Yannis Labrou and Tim Finin, editors, Proceedings

of the CIKM Workshop on Intelligent Information Agents, Third International Conference on

Information and Knowledge Management (CIKM 94), Gaithersburg, Maryland, December 1994.

[Haf95] Katie Hafner. Have your agent call my agent. Newsweek, 75(9), February 27 1995.

[jav94] The Java language: A white paper. Sun Microsystems White Paper, Sun Microsystems, 1994.

[Joh93] Raymond W. Johnson. Autonomous knowledge agents: How agents use the tool command lan-

guage. In Proceedings of the 1993 Tcl Workshop, 1993.

[JvRS95] Dag Johansen, Robbert van Renesse, and Fred B. Scheidner. Operating system support for mobile

agents. In Proceedings of the 5th IEEE Workshop on Hot Topics in Operating Systems, 1995.

[KK94] Keith Kotay and David Kotz. Transportable agents. In Yannis Labrou and Tim Finin, edi-

tors, Proceedings of the CIKM Workshop on Intelligent Information Agents, Third International

Conference on Information and Knowledge Management (CIKM 94), Gaithersburg, Maryland,

December 1994.

[Mae94] Pattie Maes. Agents that reduce work and information overload. Communications of the ACM,

37(7):48{53, July 1994.

[Neg95] Nicholas Negroponte. Being digital. Alfred A. Knopf, 1995.

[OPL94] Tim Oates, M. V. Nagendra Prasad, and Victor Lesser. Networked information retrieval as dis-

tributed problem solving. In Yannis Labrou and Tim Finin, editors, Proceedings of the CIKM

Workshop on Intelligent Information Agents, Third International Conference on Information and

Knowledge Management (CIKM 94), Gaithersburg, Maryland, December 1994.

[ora94] Oracle Mobile Agents. Oracle Press Release, Oracle, 1994.

[Ott94] Max Ott. Jodler - a scripting language for the infobahn. In Proceedings of the 1994 Tcl Workshop,

1994.

[Ous94] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley Professional Computing Series.

Addison-Wesley, Reading, Massachusetts, 1994.

33



[Ous95] John K. Ousterhout. Scripts and agents: The new software high ground. Invited Talk at 1995

Winter USENIX Conference, January 1995.

[Rei94] Andy Reinhardt. The network with smarts. Byte, pages 51{64, October 1994.

[Rie94] Doug Riecken. M: An architecture of distributed agents. Communications of the ACM, 37(7):48{

53, July 1994.

[RN95] Stuart Russell and Peter Norvig. Arti�cial intelligence: A modern approach. Prentice-Hall Series

on Arti�cial Intelligence. Prentice-Hall, Englewood Cli�s, New Jersey, 1995.

[Rog95] Adams Rogers. Is there a case for viruses? Newsweek, 75(9), February 27 1995.

[Sah94] Adam Sah. TC: An e�cient implementation of the Tcl language. Master's thesis, University of

California at Berkeley, May 1994. Available as technical report UCB-CSD-94-812.

[SBD94] Adam Sah, Jon Blow, and Brian Dennis. An introduction to the Rush language. In Proceedings

of the 1994 Tcl Workshop, June 1994.

[SG90] J. Stamos and D. Gi�ord. Remote evaluation. ACM Transactions on Programming Languages

and Systems, 12(4):537{565, October 1990.

[Spr95] Robert Sproull. Sun Microsystems, personal communication with the author, May 1995.

[SS94] Mukesh Singhal and Niranjan G. Shivaratri. Advanced concepts in operating systems: Distributed,

database and multiprocessor operating systems. McGraw-Hill Series in Computer Science. McGraw-

Hill, New York, 1994.

[Sto94] A. D. Stoyenko. SUPRA-RPC: SUbprogram PaRAmeters in Remote Procedure Calls. Software-

Practice and Experience, 24(1):27{49, January 1994.

[Voo91] Ellen M. Voorhees. Using computerized routers to control product ow. In Proceedings of

the Twenty-Fourth Annual Hawaii International Conference on System Sciences, pages 275{282.

IEEE, January 1991.

[Whi94] James E. White. Telescript technology: The foundation for the electronic marketplace. General

Magic White Paper, General Magic, 1994.

[WVF89] C. Daniel Wolfson, Ellen M. Voorhees, and Maura M. Flatley. Intelligent routers. In Proceedings

of the Ninth International Conference on Distributed Computing Systems, pages 371{376. IEEE,

June 1989.

34



A Schedule

Below is the schedule for the thesis work. The prototype system has been implemented and is described

in section 4. The base system adds synchronization, security, access to external resources and improved

communication. The extended system adds the additional components discussed in section 3.

system

Base

system

Models

and

simulator

code

Simulator

studies

Extended

System

Tuning

and

evaluation

Jun 95

Aug 95

Oct 95

Dec 95

Feb 96

Apr 96

Jun 96

Aug 96

Prototype

and model

Applications

Final writeup and defense

Benchmarking

verification

This is a reasonable schedule for three reasons - I am a fast, pro�cient programmer; I am �nished with formal

coursework; and other people have already begun to build applications on top of the prototype.

35



B Documentation

This documentation was provided to the two groups that are using the prototype system. People who are

not in these two groups will need to contact the author to obtain the source code for the prototype system

or an account on one of the system on which the prototype is running get an account on one of the systems

on which the prototype is running. The latter is limited to people that the author personally knows.

B.1 Tcl

The transportable agents are written in the Tool Command Language (Tcl). Tcl was created by Dr. John

Ousterhout at the University of Berkeley in 1987 and has enjoyed enormous popularity since then. Tcl is

a general-purpose scripting language that has two components. The �rst component is a stand-alone shell

similar to the C and Korn shells. The shell allows the user to interactively execute Tcl commands and

scripts. The second component is a library of C functions. The library provides functions to create a Tcl

interpreter, de�ne new Tcl commands and submit Tcl scripts to the interpreter for evaluation. The library

allows Tcl to be embedded inside any desired application { i.e. an application that needs a scripting language

can include the library and have the user write Tcl scripts. The application can de�ne application-speci�c

commands for use in the scripts.

A tutorial on Tcl is beyond the scope of this documentation. However Tcl is relatively easy to learn and is

similar to other scripting languages such as Perl and C shell. For example the following Tcl script computes

factorials.

#!tclsh

proc factorial x {

if {$x <= 1} {

return 1;

}

expr $x * [factorial [expr $x - 1]]

}

set number 0

while {$number != -1} {

puts "Enter a nonnegative integer (-1 to quit): "

gets stdin number

if {$number != -1} {

puts "$number! is equal to [factorial $number]"

}

}

The two most important aspects of this script are the command and variable subsitutions. For example in

the command

expr $x * [factorial [expr $x - 1]]

$x is a variable substitution and [factorial [expr $x - 1]] is a command substitution. $x will be replaced by

the value of variable x when the command is evaluated. [factorial [expr $x - 1]] will be replaced by the result

of the command factorial [expr $x - 1].

36



There are two ways to execute the script. If the Tcl shell is called tclsh and the script is in �le factorial, then

you can type tclsh to start the shell and then source factorial to load and execute the script. Alternatively

you can turn on the execution permission for �le factorial and just type factorial. This works because the

�rst line in the script �le is

#!tclsh

which tells the current shell { e.g. Korn shell or C shell { to run the script using the tclsh shell. In other

words the current shell will start tclsh which will then run factorial. tclsh will terminate when factorial

terminates.

There are numerous sources of information on Tcl. I recommend the Tcl book by Dr. Ousterhout [Ous94]

and the Tcl news group comp.lang.tcl. I have two copies of the Tcl book and can help with whatever Tcl

questions you have.

B.2 Transportable agents

B.2.1 Server

The transportable agent system is an extension of Tcl. A transportable agent is just a Tcl script that uses

a special set of commands. The system has two components. The �rst component is a server that accepts

Tcl scripts from remote machines and executes those scripts on the current machine. Transportable agents

can be sent only to those machines on which the server is running. There are currently two sets of servers.

Members of the arti�cial intelligence class can use the servers on

muir.cs.dartmouth.edu

tioga.cs.dartmouth.edu

tenaya.cs.dartmouth.edu

tuolomne.cs.dartmouth.edu

These machines are all DEC alphas. Members of the Thayer research group can use the servers on

bald.cs.dartmouth.edu

cosmo.dartmouth.edu

lost-ark.dartmouth.edu

temple-doom.dartmouth.edu

bald is an IBM-compatible personal computer running a shareware distribution of Linux; cosmo is an IBM

workstation; lost-ark and temple-doom are Silicon Graphics workstations. Please be careful when using bald

since it is exceptionally easy to overwhelm the networking component of the Linux kernel. The networking

component will stop working if bald receives more than a few scripts or messages per second. The two sets

of servers are completely disjoint. It is impossible to transport an agent from a server in one set to a server

in the other. In addition the server can be installed on a new machine in less than ten minutes so please see

me if you need the server to run on your \favorite" machine or on a larger number of machines.

B.2.2 Agent shell

The second component of the system is an agent shell. This shell is the same as the Tcl shell tclsh except

for the addition of agent commands and variables. The commands move a Tcl script from one machine to

the other. The variables keep track of the current network location of the script. The shell is called agent

and is found in directory

~bob/CODE/agent-tcl

37



agent(local-server) Name of the local server { i.e. the server that controls the agent

agent(local-id) Numeric id that the local server has assigned to the agent

agent(root-server) Name of the root server - i.e. the server that controls the top-level agent

agent(root-id) Numeric id that the root server has assigned to the top-level agent

Table 2: Agent variables

on cosmo and in directory

~rgray/CODE/agent-tcl

on all other machines. The process of running a script with the agent shell is the same as for the Tcl shell

except that the �rst line of the script should be changed to

#!agent

and the shell is started by typing agent rather than tclsh. The agent shell can run on a machine even if the

server is not running on that machine. Remember however that transportable agents can be sent only to

those machines on which the server is running.

B.2.3 Variables

The agent shell provides four variables that keep track of the network location of the agent. The variable

agent(local-server) is the name of the machine whose server currently controls the agent. In general this is

the name of the machine on which the agent is currently executing. Exceptions are discussed below. The

server that currently controls the agent will be referred to as the local server. The variable agent(local-id) is

the integer id that the local server has assigned to the agent.

Transportable agents can create child agents. This leads to a parent-child hierarchy with a single agent at

the top. This agent is the top-level agent for itself and all of its children. The variable agent(root-server)

is the name of the machine whose server controls the top-level agent. In general this is the name of the

machine on which the top-level agent is executing. Exceptions are discussed below. The server that controls

the top-level agent will be referred to as the root server. The variable agent(root-id) is the integer id that

the root server has assigned to the top-level agent.

These variables are global variables and are always available inside an agent script. The variables are read-

only. Their values change automatically as the agent moves through the network. Table 2 is a summary of

the variables.

B.2.4 Commands

The agent shell provides seven commands that are used to move a Tcl script through the network, send

messages to another agent and receive messages.

1. agent begin server

The top-level agent uses agent begin to acquire a controlling server. The server argument is the name of the

machine on which the server is running. For example if the top-level agent issues the command

agent_begin muir.cs.dartmouth.edu

then the server on muir becomes the controlling server for the agent. The top-level agent must always issue

an agent begin command since an agent can not create child agents or send and receive messages until it has

a controlling server. In general an agent should use the server on its own machine as the controlling server.

38



This reduces the amount of network tra�c. The most compelling reason to use the server on a di�erent

machine is if there is no server on the agent's machine.

The agent begin command returns a two-element list on success. The �rst element of the list is the name

of the controlling server. The second element of the list is the integer id that the server has assigned to the

agent. In addition the command sets the four agent variables. agent(root-server) and agent(local-server) are

set to the name of the server. agent(root-id) and agent(local-id) are set to the integer id. In other words

the root and local id's of the top-level agent are the same. The children of the top-level agent will have

the same root id but di�erent local id's. Before the agent begin command is issued, agent(root-server) and

agent(local-server) are the empty string and agent(local-id) and agent(root-id) are -1.

agent begin can fail. In this case the command raises a standard Tcl error and returns an error message.

The possible error messages are

wrong number of arguments

agent has been registered

unable to send to server

server unable to comply (no response)

server unable to comply (server error)

server unable to comply (bad response)

The �rst message means that you provided the wrong number of arguments. The second message means

that the agent already has a controlling server. The last four messages generally indicate a transient error

due to network contention. Thus the appropriate action is to try the command again. If trying again does

not work, please bring the problem to my attention immediately since the server has undoubtedly crashed.

Server crashes and and network errors are rare. I have numerous agents that do no error checking at all and

have never failed. However a robust agent should check for these errors. Since a Tcl error causes the script

to halt { this is standard Tcl semantics { you will need to encapsulate the agent begin command within a

catch command in order to check for errors.

2. agent end

The top-level agent uses agent end to tell the controlling server that it no longer needs the server's services.

The server removes the agent from its internal tables. In general agent end should be called just before the

top-level agent exits. On success agent end returns an empty string. In addition it resets agent(root-server)

and agent(local-server) to the empty string and agent(root-id) and agent(local-id) to -1. On failure agent end

raises a standard Tcl error and returns an error message. The possible error messages are

wrong number of arguments

agent has NOT been registered

unable to send to server

server unable to comply (no response)

server unable to comply (server error)

server unable to comply (bad response)

The �rst message means that you have provided the wrong number of arguments. The second message means

that the agent does not have a controlling server. The last four messages are the same as for agent begin.

They indicate a server crash or a transient error due to network contention.

In light of the previous discussion all transportable agents have the form

#!agent

# This is the top-level agent.

# preprocessing

39



agent_begin muir # or any other machine with a server

# processing

# create child agents

# send and receive messages

agent_end

# postprocessing

3. agent send destination [integer] string

agent send sends a message to another agent. A message consists of an integer code and a string. integer is

the integer code. The code defaults to 0 if it is not speci�ed. string is the string. destination speci�es the

destination agent. destination is a two-element list where the the �rst element is the name of the destination

agent's local server and the second element is the destination agent's local integer id. For example the

following command sends a message to the agent with local integer id 4 on tuolomne.

agent_send "tuolomne 4" 2 "DOC 1 = YES, DOC 2 = NO, DOC 3 = YES, DOC 4 = NO"

agent send returns the empty string on success. agent send raises a standard Tcl error and returns an error

message on failure. The possible error messages are

wrong number of arguments

agent has NOT been registered

second argument must be a two-element list: server followed by id

the id must be an integer

unable to send to server

server unable to comply (no response)

server unable to comply (server error)

server unable to comply (bad response)

The �rst four error messages are self-explanatory or the same as before. The last four error messages are

the same as before except that server unable to comply (server error) probably means that the speci�ed

agent does not exist. However it could indicate a server crash or a transient network error as before. These

two cases will be split into separate error messages soon. You must be careful when using agent send. If

the destination agent moves to a new machine, it is assigned a new local server and a new local integer id.

You must use the new id when sending messages. Any message sent to the old id will be lost. The system

does not have the capability to forward messages to the new location. This is a weakness of the current

implementation.

4. agent receive variable

agent receive is used to receive a message that has been sent to the agent. If no message is available,

agent receive returns -1 and sets the variable to the empty string. If a message is available, agent receives

returns the message code and sets the variable to the message string. agent receive is a nonblocking call.

It returns -1 immediately if no message is available. Therefore most calls to agent receive are placed inside

a loop that iterates until agent receive returns a code other than -1. The lack of a blocking capability is a

weakness of the current implementation. Continuing with the agent send example from above, suppose that

the agent with local integer id 4 on tuolomne issues the command

agent\_receive val

The command returns 2 since this is the message code that was speci�ed in the agent send. In addition

the command sets val to \DOC 1 = YES, DOC 2 = NO, DOC 3 = YES, DOC 4 = NO" since this is the

40



message string that was speci�ed in the agent send. If for some reason the message had not arrived when

agent receive command was issued, agent receive would return -1 and the script would have to issue the

command again.

agent receive can fail with one of the following error messages.

wrong number of arguments

agent has NOT been registered

unable to send to server

server unable to comply (no response)

server unable to comply (server error)

server unable to comply (bad response)

unable to set variable

These errors are the same as before except for unable to set variable. This means that the agent receive

commandwas unable to access and set the speci�ed variable. Either the variable is read-only or a pathological

error has occurred. Running out of memory is an example of a pathological error. Pathological errors are

rare in correct Tcl scripts.

5. agent submit server [-procs name name : : : ] [-vars name name : : : ] -script script

agent submit submits the Tcl script script to server server. The script becomes an agent under that server's

control. The agent that issues the agent submit command is the parent of the new agent. If the new agent

needs to use variables or procedures that have been de�ned in the parent, the names of these variables and

procedures are speci�ed in the agent submit command after the -vars and -procs ags. The variables and

procedures are sent to the server along with the script. Note that the transmitted variables are copies. There

is no connection between the child and parent variables. Changes in one are never seen in the other. In

addition the transmitted variables become global variables in the child.

The agent submit command returns a two-element list on success. The �rst element is the name of the

server to which the child was submitted. The second element is the integer id that the server has assigned

to the child. In other words the command returns the local server and local integer id of the new child. In

the child the variables agent(root-server) and agent(root-id) are the same as in the parent. The variables

agent(local-server) and agent(local-id) are set to the local server and local integer id of the child.

Every Tcl script has a result. The result of the script is the result of the last command executed. When the

child agent �nishes executing and terminates, a message containing the script result is automatically sent to

the top-level agent { i.e. the agent speci�ed in agent(root-server) and agent(root-id). The top-level agent

uses agent receive to receive the result. The message string is the script result. The message code indicates

the way in which the child terminated. The four possible message codes are

0 = normal

1 = error

3 = break command was issued

4 = continue command was issued

As an example the following agent asks for an integer and then computes the factorial of the integer on a

di�erent machine. For clarity the script does not perform any error checking.

#!/a/quimby/usr/toe/grad/rgray/CODE/agent-tcl/agent

proc factorial x {

if {$x <= 1} {

return 1;

}

41



expr $x * [factorial [expr $x - 1]]

}

set number 0

# make muir the controlling server

agent_begin muir

while {$number != -1} {

puts "Enter a nonnegative integer (-1 to quit): "

gets stdin number

if {$number != -1} {

# compute the factorial on tioga. We submit the script "factorial

# $number" along with procedure "factorial" and variable "number"

# since the script needs these two things.

agent_submit tioga -vars number -procs factorial \

-script {factorial $number}

# the result of the submitted agent is the result of the last command

# executed -- i.e. the return value of the factorial procedure.

# When the submitted agent ends, this result is automatically sent to

# the top-level agent (which is this agent). We just loop until we

# receive the message.

set result -1

while {$result == -1} {

set result [agent_receive value]

}

puts "$number! is equal to $value"

}

}

# tell muir that the agent is done

agent_end

agent submit can fail with one of the following error messages.

wrong number of arguments

you must specify a script

"-script" must be followed by a script

procedure XXX does not exist

variable XXX does not exit

unable to send to server

server unable to comply (no response)

42



server unable to comply (server error)

server unable to comply (bad response)

These error messages are self explanatory or the same as before.

6. agent jump server

The agent jump command suspends the execution of the agent. The agent is transported to server server

where it resumes execution at the point at which it was suspended. agent jump returns the empty string

on success. In addition agent(local-server) and agent(local-id) are set to the new local server and the new

local integer id. agent(root-server) and agent(root-id) are unchanged. The top-level agent can not jump.

Since there is no message forwarding capability, if the top-level agent jumps to a new location, all of the

results that are automatically sent back to the top-level agent will be lost. In addition the agent will lose its

connection to the display device and can not regain the connection even when it jumps back to the home

machine. If you want an agent that jumps, you should have the top-level agent submit a second agent using

agent submit. The second agent can then jump at will. As an example here are two agents. The �rst agent

executes the who command on multiple machines by submitting one agent to each machine. Note that the

agent performs no error checking.

#!/a/quimby/usr/toe/grad/rgray/CODE/agent-tcl/agent

set num 4

set machine1 {muir.cs.dartmouth.edu}

set machine2 {tenaya.cs.dartmouth.edu}

set machine3 {tioga.cs.dartmouth.edu}

set machine4 {tuolomne.cs.dartmouth.edu}

# start up the agent

agent_begin tioga.cs.dartmouth.edu

# submit child agents on each machine

# each child agent does an "exec who" to get the list of logged-on users

for {set i 1} {$i <= $num} {incr i} {

agent_submit [set machine$i] -script {

set who_info [exec who]

set location $agent(local-server)

set result "$location:\n$who_info"

}

}

# collect the results from each child agent

# these results are automatically sent by the children

set r_count 0;

while {$r_count < $num} {

if {[agent_receive result] != -1} {

incr r_count;

puts $result

}

}

agent_end

43



The second agent executes the who command on multiple machines by having a single agent jump from

machine to machine.

#!/a/quimby/usr/toe/grad/rgray/CODE/agent-tcl/agent

set num 4

set machine(1) {muir.cs.dartmouth.edu}

set machine(2) {tenaya.cs.dartmouth.edu}

set machine(3) {tioga.cs.dartmouth.edu}

set machine(4) {tuolomne.cs.dartmouth.edu}

agent_begin tioga

# submit the script that will jump from machine to machine. We send the

# scalar variable "num" and the array "machine" since the script needs

# these two variables. Note the msg variable in the submitted script. At

# each machine we append the who list for that machine to msg.

agent_submit tioga -vars num machine \

-script {

set msg ""

for {set i 1} {$i <= $num} {incr i} {

agent_jump [set machine($i)]

set who_info [exec who]

set location $agent(local-server)

append msg "$location:\n$who_info\n"

}

# we want to return the concatenated who lists so we just do

# a return $msg -- this is the last command in the submitted

# script so the script result ends up being the value of msg

return $msg

}

# get the result from the submitted script

# this result is automatically returned

set result -1

while {$result == -1} {

set result [agent_receive msg]

}

puts $msg

agent_end

Both of these scripts produced the following output during a test run.

tioga.cs.dartmouth.edu:

rgray ttyp1 Mar 29 13:49

44



songbac ttyp2 Mar 29 10:53

tuolomne.cs.dartmouth.edu:

rgray

tenaya.cs.dartmouth.edu:

rgray

muir.cs.dartmouth.edu:

rgray

agent fork can fail with one of the following error messages.

wrong number of arguments

unable to send to server

server unable to comply (no response)

server unable to comply (server error)

server unable to comply (bad response)

These error message are the same as before. Note that the agent never changes location when agent jump

fails.

7. agent fork server

agent fork is analogous to Unix fork. The command creates a copy of the agent on the speci�ed server.

The parent and the child then continue execution from the point at which the fork occurred. On success

agent fork will return a two-element list in the parent and the string \CHILD" in the child. The two-element

list contains the local server and local integer id of the child agent. In the child agent(local-server) and

agent(local-id) are set to the local server and the local integer id. agent(root-server) and agent(root-id) are

the same as in the parent. All variables are unchanged in the parent. As an example here is the skeleton of

a top-level agent that performs a fork.

#!/a/quimby/usr/toe/grad/rgray/CODE/agent-tcl/agent

agent_begin muir

if {[agent_fork tioga] == "CHILD"} {

# child processing here

} else {

# parent processing here

# wherever you put the agent_end, make sure that only the parent does it

agent_end

}

agent fork can fail with one of the following error messages.

wrong number of arguments

unable to send to server

server unable to comply (no response)

server unable to comply (server error)

server unable to comply (bad response)

45



These error message are the same as before. Note that a child is never created when agent fork fails.

Table 3 summaries the agent commands. The scripts that were developed above are in

~bob/CODE/agent-tcl/scripts

on cosmo and

~rgray/CODE/agent-tcl/scripts

on all other machines. The best way to get a feel for the system is to �rst understand the sample scripts. Then

start up the agent shell and try some of the commands interactively. Note that the agent send command is

hard to try interactively. Then write some simple agents.

B.2.5 Caveats

There are several limitations with the current system asides from the ones metioned above. First there are

four commands that the standard Tcl shell supports but the agent shell does not.

1. All history list commands are not available in the agent shell.

2. The case command is not available.

3. The info script command is not available.

4. The info level command is available but you can not use the form that takes an argument { i.e. info

level integer is not available.

These commands { except for the case command which is anachronistic { will be supported soon. However

please do not develop a transportable agent that requires them since I can not guarantee any particular time

frame.

Second there are some limitations on agent fork and agent submit. These two commands capture the internal

state of an executing Tcl script and transmit this state to another machine. The limitations relate to those

portions of the state that currently can not be captured.

1. Do not unset an array element that has an upvar pointing to it and then jump or fork. The array

element will not be captured in the state image and will not be available on the destination machine.

There is rarely a need to unset such an array element so this is not a a large problem.

2. Do not fork or jump inside a variable trace or inside a procedure that the sort command is using to

compare list elements. The state image will not be captured correctly. This should never be done

anyways since it is a terrible side e�ect { e.g. the script has moved to a new machine in the middle of

the sort.

3. The following portions of the state are ignored: deletion callbacks, open �les, linked variables, variable

traces, command traces, interrupt handlers, child processes, array searches, user-de�ned math functions

and the internal state of allTcl extensions. This is not a large problem since most of these are inherently

nontransportable due to their close ties to a particular machine or to underlying C code. The rest such

as array searches, user-de�ned math functions and the internal state of Tcl extensions do not need to

be transmitted often. Thus this should not be a limiting factor in initial agent development. Note

that you can use all of the listed constructs. The limitation is that you can not create or de�ne the

construct on one machine and then transmit it to another machine.

All of these constructs are described in [Ous94]. The most important thing to note is that it is nearly

impossible to use them accidentally. If you do not know what they are or do not think that you are using

them, you are not using them.

46



agent begin server Tell the server that an agent has started

agent end Tell the server that the agent has �nished

agent submit server Execute a script on a remote machine

[-procs name name : : : ]

[-vars name name : : : ]

-script script

agent fork server Create a copy of the agent on a remote machine

agent jump server Transfer the agent to a remote machine

agent receive variable Receive a message

agent send id [integer] string Send a message

Table 3: Agent commands

B.2.6 Security

The system has no security features and does not identify the user who has submitted the agent. I have not

reached the security part of the implementation. Currently all submitted agents run with my userid and

my access permissions. This means two things. (1) Please be careful with your agents so that you do not

delete my �les or the �les of someone using the agent system. This is not a large concern since you can not

possibly a�ect a �le unless your agent explicitly issues a remove command or explicitly opens the �le. (2)

Your script can do only what my userid has the authority to do. You will have to make sure that my userid

has the necessary access rights. In general this should mean nothing more than making some �les publicly

readable or a particular directory publicly writable.

B.2.7 Advanced

There is a library of C functions associated with the agent shell that is similar to the Tcl library. This

allows transportable agent capability to be embedded in other applications. In addition all extensions that

can be used with standard Tcl can be used with the agent version. The compiled agent library is linked

with the compiled extension library as usual. If you want to embed the system in another application or use

one of the extensions { such as Tk which provides an interface between Tcl and X-windows { I can provide

necessary guidance.

47


	Ph.D. Thesis Proprosal: Transportable Agents
	Dartmouth Digital Commons Citation

	thesis.dvi

