
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

11-1-1994

Distributed Scheduling in Finite Capacity Networks Distributed Scheduling in Finite Capacity Networks

Perry Fizzano
Dartmouth College

Clifford Stein
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

 Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation
Fizzano, Perry and Stein, Clifford, "Distributed Scheduling in Finite Capacity Networks" (1994). Computer
Science Technical Report PCS-TR94-236. https://digitalcommons.dartmouth.edu/cs_tr/107

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/107?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Distributed Scheduling in Finite Capacity Networks

Perry Fizzano & Cli�ord Stein

Department of Computer Science

Dartmouth College

In this paper, we show that a simple distributed algorithm for network scheduling in arbi-

trary m processor networks with unit capacity links is an O(logm)-approximation algorithm

if the optimal schedule length is su�ciently large. We will assume that there are m machines

or processors labeled p1; p2; : : : ; pm, such that processor pi has ji jobs and
P

i ji = n. Let d be

the maximum degree in the network and let L be the length of the optimal schedule. We also

assume that each processor knows the current number of jobs on its neighboring processors.

In one step of the algorithm, which we will refer to as Eager-scheduler, a processor

with ji jobs will pass one job to each of its neighbors with less than ji � 2d jobs. A precise

statement of Eager-scheduler appears in Figure 1.

This algorithm was analyzed for the load balancing problem by Aiello et al. [1] and Ghosh

and Muthukrishnan [2]. The di�erence between the load balancing problem and network

scheduling is that in the load balancing problem there is no overlap of communication and

computation. The objective is to balance (either perfectly or approximately, depending on

the variation of the problem) the number of jobs on each machine. The bounds of [1, 2] are

not in terms of an actual lower bound but instead an existential lower bound. They can

prove that their algorithm balances the number of jobs on each processor so that no two

neighbors are more than d apart. Let � be the average number of jobs in a network with edge

expansion �. Their algorithm will perform this approximate balancing in O(�=�) steps where

� = maxi(ji��) and is referred to as the imbalance in the network. Further, they show that

there exists a network with imbalance � and edge expansion � that requires O(�=�) steps

to balance. Thus, their algorithm is not an approximation algorithm by the usual de�nition

since the lower bound is not necessarily for the instance at hand but instead an existential

lower bound. While their algorithms may produce a short schedule by load balancing, our

algorithm gives a guarantee that the schedule produced is no more than an O(logm) factor

longer than the shortest possible schedule for the instance given.

Eager-scheduler

if ji 6= 0

then process a job, set ji = ji � 1

for each neighbor pk such that ji � jk > 2d do

pass a job to neighbor pk
update ji accordingly

receive jobs from other neighbors, update ji accordingly.

Figure 1: One step of Eager-scheduler for processor pi.

1

1 Algorithm and Analysis

At each step of the algorithm, we can classify each processor, pi, by the number of jobs it

has compared to L. If pi has more than L jobs, we call it a surplus processor with surplus

si = ji � L. Similarly, if pi has fewer than L jobs, we call it a de�cit processor with de�cit

di = L� ji. We de�ne S =
P

si and D =
P

di. Note that L does not change over the course

of the algorithm, but ji does.

We begin the analysis by proving some bounds on the distribution of jobs and on the

amount of the surplus and de�cit processors.

Lemma 1 Let L be the optimal schedule length. Any connected region of p processors that

has q neighbors outside of the region must have less than (p+ q)L jobs at time 0.

Proof: The maximum number of jobs that could be processed in L time steps by the region

of p processors is pL. The maximum number of jobs that can be passed out of this region

and still processed by time L is q(L� 1). Thus the maximum number of jobs that could have

started in the connected region is pL+ qL� q. 2

Fact 1 di � L for all i.

Lemma 2 D � S.

Proof: Denote the number of processors with surplus by x, the number of processors with

de�cit by y and the number of processors with exactly L jobs by z. Then the total number

of jobs in the system is (xL+ S) + (yL�D) + zL. We know that x+ y + z = m since every

processor is counted exactly once. Thus, the total number of jobs in the system is mL+S�D.

If S > D then the total number of jobs would be greater than mL which we know can't be

true if the optimal schedule length is L. 2

Lemma 3 There are no more than m=2 processors with si � L.

Proof: Assume there are more than m=2 processors with si � L. This implies that S >
m

2
L.

Since di � L for all pi (by Fact 1) we can say that D � m

2
L < S. This contradicts Lemma 2.

2

Informally, passing jobs to neighbors with fewer jobs is a good idea, we now formally prove

that in the following lemma. This will be used to handle one case in the more complicated

analysis below.

Lemma 4 If S is the length of the schedule in which no jobs are passed and S
0
is the length

of the schedule produced by Eager-scheduler then S
0 � S.

Proof: Let m(t) denote the maximum number of jobs on any processor on time step t. We

know that when no jobs are passed m(t+ 1) = m(t)� 1, thus S = m(0). We will show that

m(t+ 1) � m(t)� 1 if Eager-scheduler is used, which will imply that S0 � S.

Notice that no processor with more than m(t) � 2d � 1 jobs will receive any jobs by

de�nition of the algorithm. If m(t) � 2d then this means that no passing will occur, thus

m(t + 1) = m(t) � 1. If m(t) > 2d then since all processors that have jobs process a job,

and no processor can receive more than d jobs, we can see that no processor that receives a

job can end up with more than m(t) � d � 1 jobs. Thus, the maximum number of jobs any

processor will have after this step is m(t)� 1. 2

2

Ck. C1 C2 C3

Figure 2: Example of edges in the network with respect to classes. Notice that the edges on

the top will de�nitely have a job passed over them, while the edges on the bottom may not.

To analyze algorithm Eager-scheduler, we'll further classify each processor based on

the number of jobs it has. This classi�cation parallels one by Maggs and Leighton ([3] as

communicated by Bruce Maggs) which they used for the approximate load balancing problem.

In addition, the proof of Theorem 1 follows a similar structure to that of Maggs and Leighton

[3] even though the details are quite di�erent due to the di�erence between the two problems.

Let class Ci contain all processors, pk, with between L + 2d(i � 1) � sk � L + 2di � 1

surplus. We'll say that all processors with L + 2di or more surplus are in class C>i and all

processors with less than L+ 2d(i � 1) surplus are in C<i. A class, Ci, is good if half of the

neighbors of processors in C>i are in C<i. A class is bad if it is not good. Notice that any

edge that goes between processors in C>i and C<i will have a job passed across it in a time

step. We use jCij to denote the number of processors in class Ci.

We need to introduce the concept of expansion to facilitate the analysis. Let G be an m

vertex graph and let S be any subset of vertices such that jSj � m=2. Finally, let the number

of neighbors of vertices in S that are outside of S be denoted by N(S). We say the expansion

� = minS jN(S)j=jSj. The values of � can range from 1=m to 1. Let � = 1
1�(�=2)

.

Lemma 5 ([3]) At least half of the �rst 2 log�m classes are good.

Proof: Consider the classes by increasing index starting with C1. Notice, all classes with

index higher than one have less than m=2 nodes by Lemma 3. Any class, Cj , that is bad has

at least �

2
jC>j j processors since at least half the neighbors of C>j are in Cj . So each time we

encounter a bad class the number of possible processors in subsequent classes is decreased by

a factor of 1=�. Since there are no more than m=2 processors in C>1 we can only have log�m

bad classes. Hence, at least half of the �rst 2 log�m classes must be good. 2

Figure 2 gives an pictorial example of the classi�cation of the processors and what edges

jobs will get passed over. Now, we prove the main result of the paper.

Theorem 1 Eager-scheduler is an O(logm)-approximation algorithm if L > m
2
.

Proof: Assume that Eager-scheduler runs for T steps.

Since half of the �rst 2 log�m classes are good for all T time steps then at least one of

those classes must be good for T=2 of the steps by a pigeonhole argument. Call one such class

Ck. We will group the steps when Ck is good into phases. Denote the number of processors in

3

C>k at the start of phase i by xi and the number of neighboring processors outside of C>k at

the start of phase i by yi. Recall, on the steps when Ck is good at least half of the neighbors

of C>k are in C<k. We'll say that phase i ends when one of the following two conditions occur.

1. The number of neighbors of processors in C>k that are outside of C>k has dropped

below yi=2.

2. There have been 4L� 4dk=yi steps completed in phase i.

If the �rst condition happens on phase i, then we start phase i+ 1 with yi+1 equal to the

current number of neighbors outside of C>k.

If the second condition happens in phase j then we claim that no processor has more than

2L+ 2dk jobs. Notice that X

ijpi2C>k

si � yjL

at the start of phase j by Lemma 1. Furthermore, the amount of surplus over L + 2dk in

C>k at the start of phase j is yjL � 2xjdk. Thus, if we show that at least yjL � 2xjdk jobs

are passed out of C>k then we can conclude that no processor is in C>k and therefore no

processor has more than L+ 2dk surplus.

Since 4L� 4dk=yj steps occur such that on each step at least yj=4 jobs are passed out of

C>k then at least

(yj=4)(4L � 4dk=yj) = yjL� dk > yjL� 2xjdk

jobs are passed out of the region. Since the number of jobs passed out is greater than the

amount of surplus over L + 2dk we can conclude that there are no processors remaining in

C>k.

Notice that X

ijpi2C>k

ji � (L+ 2dk)

does not increase even though some processor can be reclassi�ed as being in C>k. This is

because the job that caused a processor to be reclassi�ed must have come from C>k.

So, since each phase has no more than 4L�4dk=yi steps and there are no more than logm

phases, the maximum number of steps needed to get every processor below 2L + 2dk jobs

is (4L � 4dk=yi) logm. Recall that we have only been counting the steps when Ck is good.

Class Ck is bad for at most T=2 steps so the actual bound on the total number of steps is

(8L� 8dk=yi) logm.

Now we know it will take no longer than 2L+2dk to �nish the remaining work by Lemma

4. Thus, the total time is

(8L � 8dk=yi) logm+ 2L+ 2dk � O(logm)L

if L > (2dk)=(logm).

Recall that k � 2 log�m. So, in the worst case the expansion is 1=m, thus k = m logm,

and the maximum degree in the network is m then L needs to be at least m2. Many networks,

including random networks and uniform degree networks, have constant expansion. In these

cases, L only needs to be larger than m. 2

We note that this analysis provides a weak bound in some cases. We know from Lemma 1

and Lemma 4 that this algorithm is a (d+ 1)-approximation algorithm. Thus, for d < logm

the analysis above is loose, but it does guarantee that in any network Eager-scheduler

produces schedules within a logm factor of optimal given a su�ciently long optimal schedule

length.

4

References

[1] W. Aiello, B. Awerbuch, B. Maggs, and S. Rao. Approximate load balancing on dynamic

and asynchronous networks. In Proceedings of the 25th Annual ACM Symposium on Theory

of Computing, pages 632{641, 1993.

[2] B. Ghosh and S. Muthukrishnan. Dynamic load balancing on parallel and distributed

networks by random matchings. In Proceedings of the 6th ACM Symposium on Parallel

Algorithms and Architectures, pages 226{235, 1994.

[3] B. Maggs and F. T. Leighton, September 1994. Private communication.

5

	Distributed Scheduling in Finite Capacity Networks
	Dartmouth Digital Commons Citation

	tmp.1600203243.pdf.gKbBu

