Dartmouth College
Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

8-26-1994

A New Approach to the Minumum Cut Problem

David R. Karger
Stanford University

Clifford Stein
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

O‘ Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation
Karger, David R. and Stein, Clifford, "A New Approach to the Minumum Cut Problem" (1994). Computer
Science Technical Report PCS-TR94-229. https://digitalcommons.dartmouth.edu/cs_tr/102

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.


https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/102?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

A NEW APPROACH TO THE MINIMUM
CUT PROBLEM

David R. Karger
Clifford Stein

Technical Report PCS-TR94-229

8/94



A New Approach to the Minimum Cut Problem

David R. Karger*
Department of Computer Science
Stanford University
karger@cs.stanford.edu

Clifford Stein'
Department of Mathematics and Computer Science
Dartmouth College
cliffOcs.dartmouth.edu

August 26, 1994

Abstract This paper presents a new approach to finding minimum cuts in undirected
graphs. The fundamental intuition is simple: the edges in a graph’s minimum cut form
an extremely small fraction of the graph’s edges. Using this idea, we give a randomized,
strongly polynomial algorithin that finds the minimum cut in an arbitrarily weighted undi-
rected graph with high probability. The algorithm runs in O(n? log® n) time, a significant
improvement over the previous O(mn) time bounds based on maximum flows. It is simple
and intuitive and uses no complex data structures. Our algorithm can be parallelized to
run in RAC with n? processors; this gives the first proof that the minimum cut problem
can be solved in RN C. The algorithm does more than find a single minimum cut; it finds
all of them.

With minor modifications, our algorithm solves two other problems of interest. Our
algorithm finds all cuts with value within a multiplicative factor of « of the minimum
cut’s in O(n?®) time, or in RAVC with n?* processors. The problem of finding a minimum
multiway cut of a graph into r pieces is solved in ON(nE(’"‘l)) time, or in RAC with n20"—1)
processors. The “trace” of the algorithm’s execution on these two problems forms new
compact data structures for representing all small cuts and all multiway cuts in a graph.

1 Introduction

1.1 The Problem

This paper studies the minimum cut problem. Given a graph with n vertices and m (possibly
weighted) edges, we wish to partition the vertices into two non-empty sets so as to minimize
the number (or total weight) of edges crossing between them. More formally, a cut (A, B)
of a graph G is a partition of the vertices of G into two nonempty sets A and B. An edge
(v, w) crosses cut (A, B) if one of v and w is in A and the other in B. The value of a cut is
the number of edges that cross the cut or, in a weighted graph, the sum of the weights of
the edges that cross the cut. The minimum cut problem is to find a cut of minimum value.
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Throughout this paper, the graph is assumed to be connected, since otherwise the prob-
lem is trivial. We also require that all edge weights be non-negative, because otherwise the
problem is A"P-complete by a trivial transformation from the maximum-cut problem [GJ79,
page 210]. We distinguish the minimum cut problem from the s-t minimum cut problem in
which we require that two specified vertices s and ¢ be on opposite sides of the cut; in the
minimum cut problem there is no such restriction.

Particularly on unweighted graphs, solving the minimum cut problem is sometimes re-
ferred to as finding the connectivity of a graph, that is, determining the minimum number
of edges (or minimum total edge weight) that must be removed to disconnect the graph.

1.2 Applications

The minimum cut problem has many applications, some of which are surveyed by Picard
and Queyranne [PQ82]. We discuss others here.

The problem of determining the connectivity of a network arises frequently in issues of
network design and network reliability [Col87]: in a network with random edge failures, the
network is most likely to be partitioned at the minimum cuts. For example, consider un
undirected graph in which each edge fails with some probability p, and suppose we wish to
determine the probability that the graph becomes disconnected. Let fi, denote the number
of edge sets of size k whose removal disconnects the graph. Then the graph disconnection
probability is >, fep®(1 — p)™~F. If p is very small, then the value can be accurately
approximated by considering fi only for small values of k. It therefore becomes important
to to enumerate all minimum cuts and, if possible, all nearly minimum cuts [RC87].

In information retrieval, minimum cuts have been used to identify clusters of topically
related documents in hypertext systems [Bot93]. If the links in a hypertext collection are
treated as edges in a graph, then small cuts correspond to groups of documents that have
few links between them and are thus likely to be unrelated.

Minimum cut problems arise in the design of compilers for parallel languages [Cha94].
Consider a parallel program which we are trying to execute on a distributed memory ma-
chine. In the alignment distribution graph for this program, vertices correspond to program
operations and edges corresponds to flows of data between program operations. When the
program operations are distributed among the processors, the edges connecting nodes on
different processors are “cut.” These cut edge are bad because they indicate a need for
interprocessor communication. It turns out that finding an optimum layout of the program
operations requires repeated solution of minimum cut problems in the alignment distribution
graph.

Minimum cut problems also play an important role in large-scale combinatorial opti-
mization. Currently the best methods for finding exact solutions to large traveling salesman
problems are based on the technique of cutting planes. The set of feasible traveling sales-
man tours in a given graph induces a convex polytope in a high-dimensional vector space.
Cutting plane algorithms find the optimum tour by repeatedly generating linear inequalities
that cut off undesirable parts of the polytope until only the optimum tour remains. The
inequalities that have been most useful are subtour elimination constraints, first introduced
by Dantzig, Fulkerson and Johnson [DFJ54]. The problem of identifying a subtour elim-
ination constraint can be rephrased as the problem of finding a minimum cut in a graph
with real-valued edge weights. Thus, cutting plane algorithms for the traveling salesman
problem must solve a large number of minimum cut problems (see [LLKS85] for a survey
of the area). Padberg and Rinaldi [PR90] recently reported that the solution of minimum
cut problems was the computational bottleneck in their state-of-the-art cutting-plane based
algorithm. They also reported that minimum cut problems are the bottleneck in many other
cutting-plane based algorithms for combinatorial problems whose solutions induce connected
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Figure 1: Bounds For the Minimum Cut Problem

graphs. Applegate [App92] made similar observations and also noted that an algorithm to
find all nearly minimum cuts might be even more useful.

1.3 History

Several different approaches to finding minimum cuts have been investigated. Until recently,
the most efficient algorithms used maximum flow computations. As the fastest known
algorithms for maximum flow take Q(mn) time, the best minimum cut algorithms inherited
this bound. Recently, new and slightly faster approaches to computing minimum cuts
without maximum flows have appeared. Parallel algorithms for the problem have also been
investigated, but until now processor bounds have been quite large for unweighted graphs,
and no good algorithms for weighted graphs were known.

Previously best results, together with our new bounds, are summarized in Figure 1,
where ¢ denotes the value of the minimum cut.

1.3.1 Flow based approaches

The first algorithm for finding minimum cuts used the duality between s-f minimum cuts
and s-t maximum flows [FF56, EFS56]. Since an s-t maximum flow saturates every s-t
minimum cut, 1t is straightforward to find an s-¢ minimum cut given a maximum flow—for
example, the set of all vertices reachable from the source in the residual graph of a maximum
flow forms one side of such an s-¢ minimum cut. An s-¢ maximum flow algorithm can thus
be used to find an s-¢ minimum cut, and minimizing over all (g) possible choices of s and
t yields a minimum cut. In 1961, Gomory and Hu [GH61] introduced the concept of a
flow equivalent tree and observed that the minimum cut could be found by solving only
n — 1 maximum flow problems. In their classic book Flows in Networks [FF62], Ford and
Fulkerson comment on the method of Gomory and Hu:

Their procedure involved the successive solution of precisely n — 1 maximal flow
problems. Moreover, many of these problems involve smaller networks than the
original one. Thus one could hardly ask for anything better.

This attitude was prevalent in the following 25 years of work on the minimum cut problem.
The focus in minimum cut algorithms was on developing better maximum flow algorithms
and better methods of performing series of maximum flow computations.

Maximum flow algorithms have become progressively faster over the years. Currently, the
fastest algorithms are based on the push-relabel method of Goldberg and Tarjan [GT88]. An
early implementation of this method by Goldberg and Tarjan [GT88] runs in O(nmlog(n?/m))



time. Many subsequent algorithms have reduced the running time. Currently, the fastest
deterministic algorithms, independently developed by King, Rao and Tarjan [KRT92] and
by Phillips and Westbrook [PW92]) run in O(nm(logﬁ_ﬁ n)) time. Randomization has
not helped significantly. The fastest randomized maximum flow algorithm, developed by
Cheriyan, Hagerup and Melhorn [CHM90] runs in O(mn + n?log? n) time. Finding a mini-
mum cut by directly applying any of these algorithms in the Gomory-Hu approach requires
Q(mn?) time.

There have also been successful efforts to speed up the series of maximum flow compu-
tations that arise in computing a minimum cut. The basic technique is to pass information
among the various flow computations, so that computing all n maximum flows together takes
less time than computing each one separately. Applying this idea, Podderyugin [Pod73],
Karzanov and Timofeev [KT86], and Matula [Mat87] independently discovered several al-
gorithms which determine edge connectivity in unweighted graphs in O(mn) time. Hao and
Orlin [HO92] obtained similar types of results for weighted graphs. They showed that the
series of n — 1 related maximum flow computations needed to find a minimum cut can all
be performed in roughly the same amount of time that it takes to perform one maximum
flow computation, provided the maximum flow algorithm used is a non-scaling push-relabel
algorithm. They used the fastest such algorithm, that of Goldberg and Tarjan, to find a
minimum cut in O(mnlog(n?/m)) time.

1.3.2 Cuts without flows

Recently, two approaches to finding minimum cuts without computing any maximum flows
have appeared. One approach, developed by Gabow [Gab91al, is based on a matroid char-
acterization of the minimum cut problem. According to this characterization, the minimum
cut in a graph is equal to the maximum number of disjoint directed spanning trees which
can be found in it. Gabow’s Algorithm finds the minimum cut by finding such a max-
imum packing of trees. This approach finds the minimum cut of an unweighted graph
in O(emlog(n?/m)) time, where ¢ is the value of the minimum cut. Although flows are
not used, the trees are constructed through a sequence of augmenting path computations.
Rather than computing the minimum cut cut directly, Gabow’s algorithm computes a flow-
like structure that saturates the minimum cut of the graph. In [Kar94a], randomization is
used to speed up Gabow’s algorithm to run in O~(m\/5) time with high probability.!

The second new approach bears some similarity to our own work, as it uses no flow-
based techniques at all. The central idea is to repeatedly identify and contract edges that
are not in the minimum cut until the minimum cut becomes apparent. It applies only
to undirected graphs, but they may be weighted. Nagamochi and Ibaraki [NI92] give a
procedure called scan-first search that identifies and contracts an edge that is not in the
minimum cut in O(m+nlogn) time. This yields an algorithm that computes the minimum
cut in O(mn + n?logn) time. Scan-first search is also used by Gabow [Gab91a] to improve
the running time of his matroid algorithm to O(m + ¢®nlog(n/c)) on undirected graphs.
Matula [Mat93] uses scan-first search in an algorithm that approximates the minimum cut
to within a multiplicative factor of (2 + ¢) in O(m) time.

1.3.3 Parallel algorithms

Parallel algorithms for the minimum cut problem have also been explored, though with much
less satisfactory results. For undirected and unweighted graphs, Khuller and Schieber [KS91]
gave an algorithm that uses cn? processors to find a minimum cut of value ¢ in O(c) time;

15(f) denote O(f polylog f).



this algorithm is therefore in RAC when c¢ is polylogarithmic in n.? For directed unweighted
graphs, the RAC matching algorithms of Karp, Upfal, and Wigderson [KUW86] or Mul-
muley, Vazirani, and Vazirani [MVV87] can be combined with a reduction of s-{ maximum
flow to matching [KUW86] to yield RAC algorithms for s-f minimum cuts. We can find a
minimum cut by performing n of these s-t cut computations in parallel (number the vertices,
and find a minimum v;, v(; £1)modn-cut for each i). Unfortunately, the processor botnds are
quite large—the best bound, using Galil and Pan’s [GP88] adaptation of [KUWS86], is n-37.

These unweighted directed graph algorithms can be extended to work for weighted graphs
by treating an edge of weight w as a set of w parallel edges. If W is the sum of all the edge
weights then the number of processors needed is proportional to W; hence the problem is
not in RANC unless the edge weights are given in unary. If we combine these algorithms
with the scaling techniques of Edmonds and Karp [EK72], as suggested in [KUWS86], the
processor count is mn*37 and the running times are proportional to log W. Hence, the
algorithms are not in RAVC unless W = plos”n

The lack of an RANC algorithm is not surprising. Goldschlager, Shaw, and Staples [GSS82]
showed that the s-t minimum cut problem on weighted directed graphs is P-complete. In
section 7 we note a simple reduction to their result that proves that the weighted directed
minimuam cut problem is also P-complete. Therefore, a (randomized) parallel algorithm for
the directed minimum cut problem would imply that P C NC (RANC), which is believed to
be unlikely.

1.4 Our Contribution

We present a new approach to the minimum cut problem that is entirely independent of
maximum flows. Our randomized Recursive Contraction Algorithm is strongly polynomial®
and runs in O(n?log® n) time—a significant improvement on the previous O(mn) bounds.
We also give a slightly faster algorithm for a class of graphs that includes all planar graphs.
With high probability? it finds the minimum cut—in fact, it finds ¢/l minimum cuts. This
suggests that the minimum cut problem may be fundamentally easier to solve than the
maximum flow problem. The parallel version of our algorithm runs in polylogarithmic time
using n? processors on a PRAM. It thus provides the first proof that the minimum cut
problem with arbitrary edge weights can be solved in RAVC. It is also an efficient RANC
algorithm for the minimum cut problem in that the total work it performs is within a
polylogarithmic factor of that performed by the best sequential algorithm (namely, the one
presented here). In a contrasting result, we show that the directed minimum cut problem
is P-complete and thus appears unlikely to have an RAC solution.

Qur algorithm is extremely simple and, unlike the best flow-based approaches, does not
rely on any complicated data structures such as dynamic trees [ST83]. The most time
consuming steps of the sequential version are simple computations on arrays, while the
most time consuming steps in the parallel version are sorting and computing connected
components. All of these computations can be performed practically and efficiently.

With slight modifications, the Recursive Contraction Algorithm can be used to compute
minimum multi-way cuts. The minimum r-way cut problem is to find a minimum weight
set of edges whose removal partitions a given graph into r separate components. Previ-
ously, the best known sequential bound, due to Goldschmidt and Hochbaum [GH88], was

2RNC is the class of problems that can be solved by a randomized algorithm in polylogarithmic time
using a PRAM with a polynomial number of processors.

3 An algorithm is strongly polynomial if the number of operations it performs can be bounded by a
polynomial independent of the size of the input numbers.

% An event occurs with high probability if on problems of size n it occurs with probability greater than
(1— -1:}1;) for some constant k > 1.



O(n"*/2=7+11/2) "and no parallel algorithm was known. QOur algorithm runs in O(n2("=1)
time, and in RAC using n?("=1) processors. This shows that the minimum r-way cut prob-
lem is in RAC for any constant 7. In contrast, it is shown in [DJP*92] that the multiway
cut problem in which 7 specified vertices are required to be separated (i.e., a generalization
of the s-t minimum cut problem) is N'P-complete for any r > 2.

In a similar vein, our algorithm can be used to compute all approzimately minimum culs
(those with a value any constant factor times the minimum cut’s) in polynomial time and
in RAC. There was no previously known algorithm for doing so.

An important consequence of our analysis is new theorems regarding the struture and
enumeration of approximately minimal and multiway cuts. In particular, we give tight
bound on the number of approximately minimum and multiway cuts in a graph. These
result have improtant applications in the study of network reliability [RC87]. They have
also been used in the development of fast algorithms for approximate solutions to minimum
cut, maximum flow, and other graph problems [Kar94b, Kar94a].

A minor modification of our algorithm lets us use it to construct the cactus representation
of minimum cuts introduced in [DKL76]. We improve the sequential time bound of this
construction to O(n?). We give the first RAC algorithm for weighted graphs, improving
the previous (unweighted graph) processor bound from mn*® to n*.

A drawback of our algorithms is that they are Monte Carlo. Monte Carlo Algorithms
give the right answer with high probability but not with certainty. For many problems,
such a flaw can be rectified because it is possible to verify a “certificate” of the correctness
of the output and rerun the algorithm if the output is wrong. This turns the Monte Carlo
Algorithms into Las Vegas algorithms, that are guaranteed to produce the right answer but
have a small probability of taking a long time to do so. Unfortunately, all presently known
minimum cut certificates (such as maximum flows, or the complete intersections of [Gab91a])
take just as long to construct when the minimum cut is known as when it is unknown. Thus
we can provide no speedup if a guarantee of the minimum cut value is desired.

The original Contraction Algorithm with an ON(mnz) running time and processor bound,
as well as the connections to multiway and approximately minimum cuts and analyses of
network reliability, originally appeared in [Kar93]. The improved algorithm with faster
running times and processor bounds originally appeared in [KS93]. This paper combines
results from those two conference papers. Lomonosov [Lom94] independently developed
some of the basic intuitions leading to the Contraction Algorithm, using them to investigate
questions of network reliability.

1.5 Subsequent Work

Subsequent to the initial presentation of this work [Kar93, KS93], several other papers
based upon it have appeared. In [Kar93], the structure of minimum cuts is used to obtain
bounds on the reliability of a network with random edge failures. [Kar94b] shows how
to approximate the minimum cut to within any constant factor in O(m + nlog2 n) time
sequentially, and to within a factor of 2 in parallel using a linear number of processors.
Algorithms for dynamically maintaining approximate minimum cuts during edge insertions
and deletions are also presented. [Kar94a] gives an @(m\/z)-time Las Vegas algorithm for
finding minimum cuts in unweighted undirected graphs (the question of a fast Las Vegas
algorithm for weighted graphs remains open). It also gives techniques for approximating s-¢
minimum cuts quickly, as well as for finding fast solutions to other cut related problems such
as network synthesis. Karger and Motwani [KM93] have shown that in fact the minimum cut
problem for weighted graphs is in A'C. Rather than derandomizing the algorithms presented
here, they develop a new algorithm based on the combinatorial aspects of minimum cuts
that follow from this work. Benczur [Ben94] has used the Contraction Algorithm to get



improved sequential and parallel algorithms for augmenting the connectivity of a graph to
a given value.

1.6 Presentation Overview

The starting point of our work is an abstract formulation of the Contraction Algorithm in
Section 2. This extremely simple algorithm has an Q(1/n?) probability of outputting a
minimum cut. It is based on the observation that the edges of a graph’s minimum cut form
a very small fraction of the graph’s edges, so that a randomly selected edge is unlikely to be
in the minimum cut. Therefore, if we choose an edge at random and coniract its endpoints
into a single vertex, the probability is high that the minimum cut will be unaffected. We
therefore find the minimum cut by repeatedly choosing and contracting random edges until
the minimum cut is apparent.

Moving from the abstract formulation to a more concrete algorithm divides naturally into
two stages. In the first stage, we show how to efficiently implement the repeated selection
and contraction of edges which forms a single trial of the Contraction Algorithm. Section 3
uses a simple adjacency matrix scheme to implement the algorithm in O(n?) time.

The second stage deals with the need for multiple trials of the Contraction Algorithm.
Given the Q(1/n?) success probability of the Contraction Algorithm, repeating it O(n?logn)
times gives a high probability of finding the minimum cut in some trial. However, this yields
undesirably high sequential time and parallel processor bounds of O~(n4). Thus in Section 4
we show how the necessary O(n®logn) trials can share their work so that the total work
performed by any one trial is O(1). This gives our O(n?) sequential time bounds.

We next give parallel implementations of the Contraction Algorithm. To achieve par-
allelism, we “batch together” numerous selections and contractions, so that only a few
contraction phases are necessary. We present a simple but slightly inefficient (by logarith-
mic factors) parallel implementation in Section 6. This suffices to show that minimum cuts
of undirected graphs can be found in RAC. In conftrast, in Section 7 we show that the
corresponding directed graph problem is P-complete.

In section 8, we give an improved (and still practical) implementation of the Contraction
Algorithm that runs in linear time sequentially and is more efficient in parallel than our
previous implementation. This gives us improved sequential time bounds on certain classes
of graphs and a more efficient parallel algorithm.

In Sections 10 and 9, we show how to find minimum multiway cuts and approximate
minimum cuts. Our techniques have important implications for the combinatorial structure
of nearly minimum and multiway cuts; these results have since been used to good effect in
other minimum cut algorithms and in analyzing network reliability.

In Section 11 we discuss the cactus representation for minimum cuts [DKL76], and show
how the Contraction Algorithm leads to more efficient algorithms for cnstructing it. In
Section 12 we discuss how to trade time for space, showing that we can still match the
é(mn) time bounds of previous minimum cut algorithms, even if our computational space
is restricted to O(n).

2 The Contraction Algorithm

In this section we restrict our attention to unweighted multigraphs (i.e., graphs that may
have multiple edges between one pair of vertices), and present an abstract version of the
Contraction Algorithm. This version of the algorithm is particularly intuitive and easy to
analyze. In later sections, we will describe how to implement it efficiently.

The Contraction Algorithm uses one fundamental operation, contraction of graph ver-
tices. To contract two vertices v; and vy we replace them by a vertex v and let the set
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Figure 2: contraction

of edges incident on v be the union of the sets of edges incident on v, and vy. We do not
merge edges from vy and vy that have the same other endpoint; instead, we create multiple
instances of those edges. However, we remove self loops formed by edges originally connect-
ing vy to vy. Formally, we delete all edges (v1,vs), and replace each edge (vi,w) or (va, w)
with an edge (v,w). The rest of the graph remains unchanged. We will use G/(v,w) to
denote graph G with edge (v, w) contracted (by contracting an edge, we will mean contract-
ing the two endpoint of the edge). Extending this definition, for an edge set F' we will let
G/ F denote the graph produced by contracting all edges in /' (the order of contractions is
irrelevant up to isomorphism). An example of an edge contraction is given in Figure 2.
Assume initially that we are given a multigraph G(V, E) with n vertices and m edges.
The Contraction Algorithm is based on the idea that since the minimum cut is small, a
randomly chosen edge is unlikely to be in the minimum cut. The Contraction Algorithm,
which is described in Figure 3, repeatedly chooses an edge at random and contracts it.

Procedure CONTRACT(()

repeat until G has 2 vertices

choose an edge (v, w) uniformly at random from G

let G — G/(v,w)

return G

Figure 3: The Contraction Algorithm

When the Contraction Algorithm terminates, each original vertex has been contracted



into one of the two remaining “metavertices.” This defines a cut of the original graph: each
side corresponds to the vertices contained in one of the metavertices. More formally, at any
point in the algorithm, we can define s(a) to be the set of original vertices contracted to a
current metavertex a. Initially s(v) = v for each v € V', and whenever we contract (v, w)
to create vertex x we set s(z) = s(v) U s(w). We say a cut (A, B) in the contracted graph
corresponds to a cut (A’, B') in G, where A’ = Uzeas(a) and B’ = Useps(b). Note that a
cut and its corresponding cut will have the same value, where we define the value of a cut
to be the sum of the weights of the edges crossing the cut.

When the Contraction Algorithm terminates, yielding a graph with two metavertices
a and b, we have a corresponding cut (A, B) in the original graph, where A = s(a) and
B = s(b).

Lemma 2.1 A cut (A, B) is output by the Contraction Algorithm of and only if no edge
crossing (A, B) is contracted by the algorithm.

Proof: The only if direction is obvious. For the other direction, consider two vertices on
opposite sides of the cut (A4, B). If they end up in the same metavertex, then there must be
a path between them consisting of edges that were contracted. However, any path between
them crosses (A, B), so an edge crossing cut (4, B) would have had to be contracted. This
contradicts our hypothesis. O

Lemma 2.1 is also the basis of Nagamochi and Ibaraki’s min-cut algorithm [N192]. They
give a linear-time deterministic algorithm for identifying and contracting a non-minimum-
cut edge. Doing this n times (for a total running time of O(mn)) yields two vertices which
by Lemma 2.1 define the minimum cut of the graph.

Theorem 2.2 A particular minimum cut in G is returned by the Contraction Algorithm
with probability at least (’2‘)*1 = Q(n72).

Proof:  Fix attention on some specific minimum cut (A, B) with ¢ crossing edges. We
will use the term minimum cut edge to refer only to edges crossing (A4, B). From Lemma
2.1, we know that if we never select a minimum cut edge during the Contraction Algorithm,
then the two vertices we end up with must define the minimum cut.

Observe that after each contraction, the minimum cut of the new graph must still be at
least ¢. This is because every cut in the contracted graph corresponds to a cut of the same
value in the original graph, and thus has value at least ¢. Furthermore, if we contract an
edge (v, w) that does not cross (A, B), then the cut (A, B) corresponds to a cut of value ¢
in G/(v,w); this corresponding cut is a minimum cut (of value ¢) in the contracted graph.

Each time we contract an edge, we reduce the number of vertices in the graph by one.
Consider the stage in which the graph has r vertices. Since the contracted graph has a
minimum cut of at least ¢, it must have minimum degree ¢, and thus at least rc/2 edges.
However, only ¢ of these edges are in the minimum cut. Thus, a randomly chosen edge is
in the minimum cut with probability at most 2/r. The probability that we never contract
a minimum cut edge through all n — 2 contractions is thus at least

(-2 (-9 = (-0
0

Q(n~?).

Il

fl

[}
This bound is tight. In the graph consisting of a cycle on n vertices, there are (’;’)
minimum cuts, one for each pair of edges in the graph. Each of these minimum cuts is

produced by the Contraction Algorithm with equal probability, namely (g)ql.



An alternative interpretation of the Contraction Algorithm is that we are randomly
ranking the edges and then constructing a minimum spanning tree of the graph based on
these ranks (using Kruskal’s minimum spanning tree algorithm [Krub6]). If we remove the
heaviest edge in the minimum spanning tree, the two components that result have an Q(n=2)
chance of defining a particular minimum cut. This intuition forms the basis of the approach
of Section 8.

The Contraction Algorithm can be halted when k vertices remain. We refer to this as
contraction to k vertices. The following result is an easy extension of Theorem 2.2:

Corollary 2.3 A particular mintmum cut (A, B) survives conitraction to k vertices with
probability at least (£)/(2) = Q((k/n)?).

2.1 Weighted Graphs

Extending the Contraction Algorithm to weighted graphs is simple. For a given weighted
graph G, we consider a corresponding unweighted multigraph G on the same set of vertices.
An edge of weight w in G is mapped to a collection of w parallel unweighted edges in G
The minimum cuts in G and G are the same, so it suffices to run the Contraction Algorithm
on GG'. We choose a pair of vertices to contract in G’ by selecting an edge of G’ uniformly at
random. Therefore, the probability that we contract u and v is proportional to the number
of edges connecting uw and v in (7, which is just the weight of the edge (u,v) in G. This
leads to the weighted version of the Contraction Algorithm given in Figure 4.

Procedure CONTRACT(()

repeat until G has 2 vertices

choose an edge (v, w) with probability proportional to the weight of (v, w)

let G« G/{v,w)

return

Figure 4. The Weighted Contraction Algorithm

The analysis of this algorithm follows immediately from the unweighted case.

Corollary 2.4 The Weighted Coniraction Algorithm ouipuls a particular minimum cut of
G with probability Q(1/n?).

3 Implementing the Contraction Algorithm

We now turn to implementing the algorithm described abstractly in the previous section.
First, we give a version that runs in O(n?) time and space. Later, we shall present a version
that runs in O(m) time and space with high probability, and is also parallelizable. This
first method, though, is easier to analyze, and its running time does not turn out to be the
dominant factor in our analysis of the running time of our algorithm.

To implement the Contraction Algorithm we use an n x n weighted adjacency matrix,
which we denote by W. The entry W(u,v) contains the weight of edge {u, v}, which can
equivalently be viewed as the number of multigraph edges connecting v and v. If there is
no edge connecting v and v then W{u,v) = 0. We also maintain the total (weighted) degree
D(u) of each vertex u, thus D(u) =5, W(u,v).

We now show how to implement two steps: randomly selecting an edge and performing
a contraction.
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3.1 Choosing an Edge

A fundamental operation that we need to implement is the selection of an edge with prob-
ability proportional to its weight. A natural method is the following. First, from edges
€1,...,em With weights wq, ... wy, construct cumulative weights Wy = Ele w;. Then
choose an integer r uniformly at random from 0, ..., W,, and use binary search to identify
the edge e; such that W1 < r < W;. This can easily be done in O(log W) time. While this
is not a strongly polynomial bound since it depends on the edge weights being small, we
will temporarily ignore this issue. For the time being, we assume that we have a black-box
subroutine called RANDOM-SELECT. The input to RANDOM-SELECT is a cumulative weight
array of length . RANDOM-SELECT runs in O(log m) time and returns an integer between
1 and m, with the probability that ¢ is returned being proportional to w;. In practice the
lack of strong polynomiality is irrelevant since implementors typically pretend that their
system-provided random number generator can be made to return numbers in an arbitrarily
large range by scaling. We will provide theoretical justification for using RANDOM-SELECT
by giving a strongly polynomial implementation of it in Section 5. Note that the input
weights need not be edge weights, but are simply arbitrary measures of proportionality.

We now use RANDOM-SELECT to find an edge to contract. Our goal is to choose an
edge (u,v) with probability proportional to W(u,v). To do so, choose a first endpoint u
with probability proportional to D(u), and then once u is fixed choose a second endpoint v
with probability proportional to W (u,v). Each of these two choices requires O(n) time to
construct a cumulative weight array one O(log n)-time call to RANDOM-SELECT, for a total
time bound of O(n).

The following lemma, similar to one used by Klein, Plotkin, Stein and Tardos [KPST91],
proves the correctness of this procedure.
Lemma 3.1 If an edge is chosen as described above, then Pr(u,v) is chosen] is proportional
to Wiu,v).
Proof: Let o =), D(v). Then

Pr[choose(u,v)] = Pr[choose u]- Pr[choose (u,v) | chose u]

+ Pr[choose v] - Pr[choose (u,v) | chose v]
D(u) W(u,v) D(v) W(u,v)

o D(u) o D(v)
2W (u, v)

o
x W(u,v).

O

3.2 Contracting an Edge

Having shown how to choose an edge, we now show how to implement a contraction. Given
W and D, which represent a graph 7, we explain how to update W and D to reflect the
contraction of a particular edge (u, v). Call the new graph (' and compute its representation
via the algorithm of Figure 3.2. Intuitively, this algorithm moves all edges incident on v to
u. The algorithm replaces row u with the sum of row u and row v, and replaces column u
with the sum of column u and column v. It then clears row v and column »v. W and D now
represent (7 since any edge that was incident to u or v is now incident to v and any two
edges of the form (u,w) and (v, w) for some w have had their weights added. Furthermore,
the only vertices whose total weighted degrees have changed are u and v, and D(u) and
D(v) are updated accordingly. Clearly, this procedure can be implemented in O(n) time.
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Procedure to contract edge (u,v)

Let D(u) — D(u) + D(v) — 2W (u, v)
Let D(v) « 0

Let W(u,v) — W(v,u) <0

For each vertex w except u and v

Let W(u,w) — W(u,w)+ W(v, w)
Let W(w,u) — W(w,u)+ W(w,v)
Let W(v,w) — W(w,v) <0

Figure 5: Contracting an Edge

Summarizing this and the previous section, we have shown that in O(n) time we can choose
an edge and contract it. This yields the following result:

Corollary 3.2 The Contraction Algorithm can be implemented to run in O(n?) time.

Observe that if the Contraction Algorithm has run to completion, leaving just two ver-
tices u and v, then we can determine the weight of the implied cut by inspecting W{u, v).
In order to contract to k vertices we only need to contract an edge n — & < n times.

For the rest of this paper, we will use the Contraction Algorithm as a subroutine
CoNTRACT(G, k), that accepts a weighted graph G and a parameter k and, in O(n?) time,
returns a contraction of G to k vertices. With probability at least (g) / (g) (Corollary 2.3},
a particular minimum cut of the original graph will be preserved in the contracted graph.
In other words, no vertices on opposite sides of this minimum cut will have been merged,
so there will be a minimum cut in the contracted graph corresponding to the particular
minimum cut of the original graph.

We can in fact implement the Contraction Algorithm using only O(m) space. We do so
by maintaining an adjacency list representation. All the edges incident to vertex v are in
a linked list. In addition, we have pointers between the two copies of the same edge (v, w)
and (w,v). When v and w are merged, we traverse the adjacency list of v, and for each
edge (v, u) find the corresponding edge (u, v) and rename it to (u,w). Note that as a result
of this renaming the adjacency lists will not be sorted. However, this is easy to deal with.
Whenever we choose to merge two vertices, we can merge their adjacency lists by using
a bucket sort into n buckets based on the edges’ other endpoints; the time for this merge
thus remains O(n) and the total time for the algorithm remains O(n?). In the worst case
m = ©(n?), but for sparse graphs using this approach will save space.

4 The Recursive Contraction Algorithm

The Contraction Algorithm can be used by itself as an algorithm for finding minimum cuts.
Since each trial has an Q(n~?) probability of success, performing O(n? logn) trials will give
a high probability of finding a minimum cut. However, the resulting sequential running time
of 6(n4) is excessive. We therefore show how to wrap the Contraction Algorithm within
the Recursive Contraction Algorithm. The idea of this new algorithm is to share the bulk
of the work among the O(n?logn) Contraction Algorithm trials so as to reduce the total
work done.

We begin with some intuition as to how to speed up the Contraction Algorithm. Consider
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the contractions performed in one trial of the Contraction Algorithm. The first contraction
has a reasonably low probability of contracting an edge in the minimum cut, namely 2/n.
On the other hand, the last contraction has a much higher probability of contracting an
edge in the minimum cut, namely 2/3. This suggests that the Contraction Algorithm works
well initially, but has poorer performance later on. We might improve our chances of success
if, after partially contracting the graph, we switched to a (possibly slower) algorithm with
a better chance of success on what remains.

One possibility is to use one of the deterministic minimum cut algorithms, such as that
of [NI92], and this indeed yields some improvement. However, a better observation is that
an algorithm that is more likely to succeed than the Contraction Algorithm is twoe trials of
the Contraction Algorithm.

This suggests the Recursive Contraction Algorithm described in Figure 6. As can be
seen, we perform two independent trials. In each, we first partially contract the graph,
but not so much that the likelihood of the cut surviving is too small. By contracting the
graph until it has n/\/2 vertices, we ensure a roughly 50% probability of not contracting
a minimum cut edge, so we expect that on the average one of the two attempts will avoid
contracting a minimum cut edge. We then recursively apply the algorithm to each of the
two partially contracted graphs. As described, the algorithms returns only a cut value; it
can easily be modified to return a cut of the given value. Alternatively, we might want to
output every cut encountered, hoping to enumerate all the minimum cuts.

Algorithm RECURSIVE-CONTRACT((, n)

input A graph G of size n.
if G has 2 vertices @ and b
then return the weight of cut (A = s(a), B = s(b))

else repeat twice

G’ + CoNTRACT(G, n//2)
RECURSIVE-CONTRACT(G', n//2).

return the smaller of the two resulting values.

Figure 6: The Recursive Contraction Algorithm

We now analyze the running time of this algorithm.
Lemma 4.1 Algorithm RECURSIVE-CONTRACT runs in O(n?logn) time and uses O(n?)
or O(mlog(n?/m)) space (depending on implementation).
Proof: One level of recursion consists of two independent trials of contraction of G to
n//2 vertices followed by a recursive call. Performing a contraction to n/ V2 vertices can
be implemented by Algorithm CONTRACT from Section 3 in O(n?) time. We thus have the
following recurrence for the running time:

T(n) =2 @Mﬂ(%)). (1)

T(n) = O(n*logn),

and the depth of the recursion is 2log, n.
Note that we have to store one graph at each level of the recursion, where the graph at
the k%" level has nj, = n/v/2* vertices. If we use the original formulation of the Contraction

This recurrence is solved by
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Algorithm, then the space required is O(Y, n?/2¥) = O(n*). To improve the space bound,
we can use the linear-space variant of procedure CONTRACT. Since at each level the graph
has no more than min(m,n?) edges and can be stored using O(min(m, n?)) space, the total
storage needed is 3, O(min(m, n)) = O(mlog(n?/m)). O

This analysis shows why the running time of the Contraction Algorithm is not the bot-
tleneck in the Recursive Contraction Algorithm. We shall later present a linear time (in the
number of edges) implementation of the Contraction Algorithm. However, since the recur-
rence we formulate must apply to the contracted graphs as well, there is no a priori bound
on the number of edges in the graph we are working with. Therefore n? is the only bound
we can put on the number of edges in the graph, and thus on the time needed to perform a
contraction to n/v/2 vertices. Furthermore, the existence of n? leaves in the recursion tree
gives a lower bound of n? on the running time of RECURSIVE-CONTRACT, regardless of the
speed of CONTRACT. This is why the linear-time implementation of CONTRACT that we
shall give in Section 6 provides no speedup in general.

We now analyze the probability that the algorithm finds the particular minimum cut
we are looking for. We will say that the Recursive Contraction Algorithm finds a certain
minimum cut if that minimum cut corresponds to one of the leaves in the computation tree
of the Recursive Contraction Algorithm. Note that if the algorithm finds any minimum cut
then it will certainly output some minimum cut.

Lemma 4.2 The Recursive Contraction Algorithm finds a particular minimum cut with
probability Q(1/logn).

Proof:  Suppose that a particular minimum cut has survived up to some particular node
in the recursion tree. It will survive to a leaf below that node if two criteria are met: it must
survive one of the graph contractions at this node, and it must be found by the recursive call
following that contraction. Each of the two branches thus has a success probability equal
to the product of the probability that the cut survives the contraction and the probability
that the recursive call finds the cut. The probability that the cut survives the contraction
is, by Corollary 2.3, at least

(n/v2)(n/v2~1)

n(n — 1)

1
= § - O(l/?’b)

This yields a recurrence P{n) for a lower bound on the probability of success on a graph of

size n: Pln)=1— (1_%13 <%>>2~O(1/n). (2)

We will assume for now that the O(1/n} is factor is negligible, and ignore it. We solve
this recurrence through a change of variables. Letting py = P(v/2*), the recurrence above
can be rewritten and simplified as

1 2
Pr+1 = Pk — ;ka'

Let zp = 4/py — 1, so pr, = 4/(z +1). Substituting this in the above recurrence and solving
for zp4y yields
Zhe1 = 2+ 141/ 2.

It follows by induction that
k<zp<k+Hp_i+3,

where Hy is the k' harmonic number. Thus z = k -+ O(logk) and py = 4/(zx + 1) =
4/(k + O(logk) + 1) = ©(1/k). It follows that

P(n) = paiog,n = ©(1/log n).
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In other words, one trial of the Recursive Contraction Algorithm finds any particular mini-
mum cut with probability ©(1/logn).

To handle the O(1/n) term that we ignored, we can make a small change to the Recursive
Contraction Algorithm and contract from n vertices to 1 + n/v/2 instead of n/\/2 before
recursing. This makes the probability that a minimum cut survives exceed 1/2, but also
keeps a depth of recursion of O(logn), so the analysis of P(n) becomes completely correct
without changing the running time analysis. O

Those familiar with branching processes might see that we are evaluating the probability
that the extinction of contracted graphs containing the minimum cut does not occur before
depth 2logn.

Theorem 4.3 All minimum cuts in an arbitrarily weighted undirected graph with n vertices
and m edges can be found with high probability in O(n®log® n) time and O(mlog(n?/m))
space.

Proof: It is known ([DKLT76], see also Lemma 9.3) that there are at most (") minimum
cuts in a graph. Repeating RECURSIVE-CONTRACT O(log? n) times gives an O(1/n%) chance
of missing any particular minimum cut. Thus our chance of missing any one of the at most
(g) minimum cuts is negligible. O

It is noteworthy that unlike the best algorithms for maximum flow this algorithm uses
no non-trivial data structures. The algorithm has proven to be practical and easy to code.

We can view the running of the Recursive Contraction Algorithm as a binary computa-
tion tree, where each vertex represents a graph with some of its edges contracted and each
edge represents a contraction by a factor of v/2. A leaf in the tree is a contracted graph
with 2 metavertices and defines a cut, potentially a minimum cut. The depth of this tree
is 2log, n, and it thus has n? leaves. This shows that the improvement over the direct use
of n? trials of the Contraction Algorithm comes not from generating a narrower tree (those
trials also define a “tree” of depth 1 with n? leaves), but from being able to amortize the
cost of the contractions used to produce a particular leaf.

If it suffices to output only one minimum cut, then we can keep track of the smallest cut
encountered as the algorithm is run and output it afterwards in O(n) time by unraveling
the sequence of contractions that led to it. If we want to output all the minimum cuts, then
this might in fact become the dominant factor in the running time: there could be n? such
cuts, each requiring O(n) time to output as a list of vertices on each side of the cut. This is
made even worse by the fact that some minimum cuts may be produced many times by the
algorithm. Applegate [App92] observed that there is a simple hashing technique that can
be used to avoid outputting a cut more than once. At the beginning, assign to each vertex
a random Of{logn)-bit key. Whenever two vertices are merged by contractions, combine
their keys with an exclusive-or. At a computation leaf in which there are only two vertices,
the two keys of those vertices form an identifier for the particular cut that has been found.
With high probability, no two distinct cuts we find will have the same identifiers. Thus by
checking whether an identifier has already been encountered we can avoid outputting any
cut that has already been output.

An alternative approach to outputting all minimum cuts is to output a concise repre-
sentation of them; this issue is taken up in Section 11.

In [Kar93], several simple implementation of the Contraction Algorithm for unweighted
multigraphs were given. However, in the context of the Recursive Contraction Algorithm
the unweighted graph algorithms are no longer useful. This is because our time bound
depends on the many subproblems deep in the recursion tree being small. The contractions
reduce the number of vertices in the subproblems, but need not in themselves reduce the
number of edges. If we worked with multigraphs, it is entirely possible that each of the
O(n?) subproblems on 4 vertices would have n? edges, causing the algorithm to be slow.
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With weighted graph algorithm, it becomes possible to merge parallel edges, thus ensuring
that every k vertex graph we encounter has at most k2 edges.

5 Strongly Polynomial Random Selection

In this section, we finish showing how the Recursive Contraction Algorithm can be im-
plemented in the claimed time bound by implementing the procedure RANDOM-SELECT.
The input to RANDOM-SELECT is an array W of length n. This cumulative weight array
is constructed from n weights w; by setting Wy = ZKk w;. Procedure RANDOM-SELECT
implements the goal of choosing an index ¢ at random with probability proportional to
weight w;. This problem of nonuniform selection is not new. It has been known for some
time [KY76] that the fastest possible algorithm for random selection has expected running
time proportional to the entropy; this section essentially uses similar techniques to get high
probability amortized bounds.

Let M = W,, be the sum of all weights. If the edge weights w; (and thus the total weight
M) are polynomial in n, then it is simple to implement Procedure RANDOM-SELECT in
O(logn) time: simply generate a uniformly distributed (log M)-bit number k in the range
[0, M] (all logs are base 2), and return the value 7 such that W;_; <k < W;. This can be
done even in the model where only a single random bit, rather than an O(logn)-bit random
number, can be generated in unit time.

When the weights are arbitrary integers that sum to M, the time needed for an exact
implementation is Q(log M). However, we can modify the algorithm to introduce a negligible
error and run in O(logn) time. Suppose we know that only ¢ calls to RANDOM-SELECT will
be made during the running of our algorithm. To select an edge from the cumulative
distribution, even if the sum of the edge weights is superpolynomial in n, we let N = tn?,
generate s uniformly at random from [0, N], and choose the edge i such that W;_; <
Wns/N < W;. The edge that we choose differs from the one that we would have chosen
using exact arithmetic only if Wi, s/N and Wy, (s+1)/N specify different indices. But there
can only be at most n such values in the “boundaries” of different indices, so there are at
most n values that we could chose for s that would cause an error. Thus the probability that
we make an error with one selection is less than n/N = O(1/tn®) and the probability that we
make any errors is O(1/n3). This approach reflects what is typically done in practice—we
simply use the random number generator available in a system call, perform rounding, and
ignore the possible loss of precision that results.

A drawback of this approach in theory is that even if a particular input to RANDOM-
SeLECT has only two choices, we still need to use Q(logt) bits to generate a selection.
Using this approach adds an extra logn factor to the running time of RANDOM-SELECT on
constant size inputs (which arise at the leaves of the recursion tree of our algorithm) and
thus increases the running time of RECURSIVE-CONTRACT.

A better approach is the following. Intuitively, we generate the log M random bits
needed to select uniformly from the range [0, M], but stop generating bits when all possible
outcomes of the remaining bits yield the same selection. Given the length n input, partition
the range [0, M] into 2n equal sized intervals of length M /2n. Use 1 +logn random bits to
select one of the intervals uniformly at random—this requires O(log n) time spent in binary
search among the cumulative weights. If this interval does not contain any of the cumulative
weight, values WW; (which happens with probability 1/2, since at most n of the 2n intervals
can contain one of the cumulative weight values), then we have unambiguously selected a
particular index because the values of the remaining bits in the (log M)-bit random number
are irrelevant. If the interval contains one or more of the cumulative values, then divide
this one interval into 2n equal sized subintervals and again use 1 + logn bits to select
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one subinterval. If the subinterval contains a cumulative weight value, then we subdivide
again. Repeat this process until an index is unambiguously selected. Each subdivision
requires O(logn) time and O(logn) random bits, and successfully identifies an index with
probability 1/2.

Lemma 5.1 On an input of size n, the expected time taken by RANDOM-SELECT is O(logn).
The probability the RANDOM-SELECT takes more than tlogn time to finish 1s O(27%).
Proof:  Each binary search to select a subinterval requires O(logn) time. Call an interval
search a success if it selects a unique index, and a failure if it must further subdivide an
interval. The probability of a success is then 1/2. The total number of interval searches is
therefore determined by how many failures occur before a success. Since each search fails
with probability 1/2, the probability that ¢ failures occur before a success is O(27%) and the
expected number of failures preceding the first success is 2. O

Lemma 5.2 Suppose that t calls are made to RANDOM-SELECT on inputs of size n. Then
with probability 1 — e=®) the amortized time for each call is O(logn).

Proof:  Each interval search in a call requires O(logn) time. It therefore suffices to prove
that the amortized number of interval searches used is O(1), i.e. that the total number is
O(t). We use the definitions of success and failure from the previous lemma. We know the
number of successes over the ¢ calls to RANDOM-SELECT is ¢, since each success results in
the termination of one call. The total number of searches is therefore determined how many
trials occur before the #** success. This number is simply the negative binomial distribution
for the t** success with probability 1/2. Since the chances of success and failure are equal,
we expect to see roughly the same number of successes as failures, namely ¢, for a total of 2¢
trials. The Chernoff bound (cf. [Mul94, page 427]) proves the probability that the number
of trials exceeds 3¢ is exponentially small in ¢. O

Theorem 5.3 If n calls are made to RANDOM-SELECT and each input is of size n
then with high probability in n the amoriized time for RANDOM-SELECT on an input of size
s 1s O(log s).

Proof: Let the it input have size n; and let ¢; = [logn;]. From above, we know that
the expected time to run RANDOM-SELECT on input ¢ is O(t;). We need to show that the
total time to run RANDOM-SELECT on all the problems is O(3"¢;) with high probability.
Note that the largest value of ¢; is O(logn).

Call the i** call to RANDOM-SELECT typical if there are more than 5logn calls with the
same value t;, and atypical otherwise. Since the largest value of ¢; is O(logn), there can be
only O(log? n) atypical calls. For atypical call i, by Lemma 5.1 and since t; = O(logn), we
know that the time for call 7 1s O(log2 n) with high probability. Thus the time spent in all
the atypical calls is O(log4 n) with high probability. By Lemma 5.2, if ¢ is a typical call then
its amortized cost 1s O(¢;) with high probability in n. Therefore, the total time spent on all
calls is O(log* n + S ¢;), which is O(n + 3_#;). Since there are n calls made, the amortized
cost for call 7 is then 1 +1t; = O(logn;). O

We have therefore shown how to implement RANDOM-SELECT in O(log n) amortized time
on size n inputs, assuming a simple condition on the inputs. To see that this condition is
met in the Recursive Contraction Algorithm, note that we perform Q(n) calls to RANDOM-
SELECT (for example, the ones in the two calls to CONTRACT at the top level of the recur-
sion), while the largest input is of size n (since no graph we contract has more vertices).
This concludes the proof of the time bound of the Recursive Contraction Algorithm.

Note that while the analysis of this section is necessary to prove the desired time bound
of RECURSIVE-CONTRACT, it is unlikely that it would be necessary to actually implement
the procedure RANDOM-SELECT in practice. The system supplied random number generator
and rounding will probably suffice.

o(1)
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6 A Parallel Implementation

We now show how the Recursive Contraction Algorithm can be implemented in RNC. To
do so, we give an m processor RAC implementation of the CONTRACT by eliminating
the apparently sequential nature of the selection and contraction of edges one at a time.
Parallelizing RECURSIVE-CONTRACT is then easy.

As a first step, we will show how a series of selections and contractions needed for the
Contraction Algorithm can be implemented in O(m) time. The previous O(n?) time bound
arose from a need to update the graph after each contraction. We circumvent this problem
by grouping series of contractions together and performing them all simultaneously. As
before, we focus initially on unweighted multigraphs. We start by giving our algorithms as
sequential ones, and then show how they can be parallelized.

6.1 Using A Permutation of the Edges

We reformulate the Contraction Algorithm as follows. Instead of choosing edges one at
a time, we begin by generating a random permutation L of the edges according to the
uniform distribution. Imagine contracting edges in the order in which they appear in the
permutation, until only two vertices remain. This is clearly equivalent to the abstract
formulation of the Contraction Algorithm. We can immediately deduce that with probability
Q(n~2), a random permutation will yield a contraction to two vertices which determine a
particular minimum cut.

Given a random permutation L of the edges, contracting the edges in the order specified
by the permutation until two vertices remain corresponds to identifying a prefix L' of L
such that contracting the edges in L' yields a graph with exactly two vertices. Equivalently,
we are looking for a prefix L’ of edges such that the graph H = (V,L’) has exactly two
connected components. Binary search over L can identify this prefix, because any prefix
that is too short will yield more than two connected components, and any prefix that is
too long will yield only one. The correct prefix can therefore be determined using O(logm)
connected component computations, each requiring O(m 4+ n) time. The total running time
of this algorithm (given the permutation) is therefore O(mlogm).

We can Improve this running time by reusing information between the different connected
component computations. Given the initial permutation L, we first use O{m + n) time to
identify the connected components induced by the first m/2 edges. If exactly two connected
components are induced, we are done. If only one connected component is induced, then
we can discard the last m/2 edges because the desired prefix ends before the middle edge,
and recurse on the first half of L. If more than two connected components are induced,
then we can contract the first m/2 edges all at once in O(m) time by finding the connected
components they induce and relabeling the last m/2 edges according to the connected com-
ponents, producing a new, m/2 edge graph on which we can continue the search. Either
way, in O(m + n) time, we have reduced the number of edges to m/2. Since the graph is
assumed to be connected, we know that n < m as m decreases. Therefore, if we let T'(m) be
the time to execute this procedure on a graph with m edges, then T'(m) < T'(m/2) + O(m),
which has solution T'(m) = O(m). In Figure 7 we formally define this CompacT subrou-
tine. We describe CoMPACT with a parameter k describing the goal number of vertices.
Our running time analysis assumes that & is two. Clearly, running times do not increase
when k is larger. Recall the notation GG/F that denotes the result of contracting graph G
by edge set F. We extend this definition to as follows. If F is a set of edges in G, then E/F
denotes a corresponding set of edges in G/F: an edge {v,w} € E is transformed in E/F
to an edge connecting the vertices containing v and w in G/F. Constructing E/F requires
merging edges with identical endpoints. Since each endpoint is an integer between 1 and n,
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we can use a linear-time sorting algorithm, such as bucket sort, to merge edges, and thus
CompacT still runs in O(m) time.

CompacT(G, L, k)
input: A graph G and list of edges L and a parameter k

if G has k vertices or L = §)
then
return ¢
else
Let L and L3 be the first and second halves of L
Find the connected components in graph H = (V, L)
if H has fewer than k components
then
return CoMPACT(G, Ly, k)
else
return COMPACT(G/ L1, Lo/ L1, k).

Figure 7: Procedure Compact

6.2 Generating Permutations using Exponential Variates

The only remaining issue is how to generate the permutation of edges that is used as the list
L in CompracT. To show how the permutation generation can be accomplished in RAVC, we
give in this section an approach to the problem that is easy to explain but gives somewhat
worse than optimal bounds in both theory and practice. In Section 8, we describe a more
efficient (and practical) but harder to analyze approach.

For unweighted graphs, a simple method is to assign each edge a score chosen uniformly
at random from the unit interval, and then to sort the edges according to score. To extend
this approach to weighted graphs, we use the equivalence between an edge of weight w in
a weighted graph and a set of w parallel edges in the natural corresponding unweighted
multigraph. We use the term multiedge to mean an edge of the multigraph corresponding
to the weighted graph, and simulate the process of generating a random permutation of the
multiedges. The entire multiedge permutation is not necessary in the computation, since as
soon as a multiedge is contracted, all the other multiedges with the same endpoints vanish.
In fact, all that matters is the earliest place in the permutation that a multiedge with
particular endpoints appears. This information suflices to tell us in which order vertices
of the graph are merged: we merge u and v before © and y precisely when the first (u,v)
multiedge in the permutation precedes the first (z,y) multiedge in the permutation. Thus
our goal is to generate an edge permutation whose distribution reflects the order of first
appearance of endpoints in a uniform permutation of the corresponding multigraph edges.

As in the unweighted case, we can consider giving each multiedge a score chosen uni-
formly at random from a large ordered set and then sorting according to score. In this
case, the first appearance in the permutation of a multiedge with w copies is determined
by the minimum of w randomly chosen scores. We can therefore generate an appropriately
distributed permutation of the weighted edges if we give an edge of weight w the minimum
of w randomly chosen scores and sort accordingly.

Consider multiplying each edge weight by some value k, so that an edge of weight w
corresponds to wk multiedges. This scales the value of the minimum cut without changing
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its structure. Suppose we give each multiedge a score chosen uniformly at random from the
continuous interval [0, k]. The probability distribution for the minimum score X among wk

edges is then
Pr[X > 1] = (1 —t/k)“*.

If we now let k become arbitrarily large, the distribution converges to one in which an edge
of weight w receives a score chosen from the exponential distribution

Pr[X > 1] = e~ %"

Thus if we can generate an exponential random variable in O(1) time, then we can
generate a permutation in O(m) time. As in the unweighted case, we do not actually have
to sort based on the scores: once scores are assigned we can use median finding to split the
edge list as needed by CoMPACT in O(m) time. If all we have is coin flips, it is possible to
use them to sample from an approximately exponential distribution in polylogarithmic time
and introduce a negligible error in the computation [Neubl]. As we shall be describing a
better method later, we only sketch the details of this approach. Perhaps the simplest way
to generate a variable X with probability density function e=*? is to generate a variable U
uniformly distributed in the [0,1] interval, and then to set X = —(InU)/w. Two obstacles
arise in practice. One is that we cannot sample uniformly from [0,1]. Instead, we choose
an integer M = n°%M) | select uniformly from the integers in [1, M] using O(logn) random
bits, and then divide by M. This gives us an approximation U’ to the uniform distribution.
Another obstacle is that we cannot exactly compute logarithms. Instead, given U’, we
use the first O(logn) terms of the Taylor expansion of the natural logarithm to compute
an approximation to InU’. This gives us an approximation X’ to the desired exponential
distribution. It is now straightforward to show that with high probability, the permutation
that results from these approximate values is exactly the same as it would be if we were
using exact arithmetic and continuous distributions. We summarize this in the following
lemma:

Lemma 6.1 In Iogo(l)m time per edge, it is possible 1o assign 1o each edge an approzi-
mately exponentially distributed score that, with high probability, yields the same results in
COMPACT as if we had used exact exponential distributions,

6.3 Parallelizing the Contraction Algorithm

Parallelizing the previous algorithms is simple. To generate the permutation, given a list of
edges, we simply assign one processor to each edge and have it generate the (approximately)
exponentially distributed score for that edge in polylogarithmic time. We then use a parallel
sorting algorithm on the resulting scores. Given the permutation, it is easy to run COMPACT
in parallel. RANC algorithms for connected components exist that use m/logn processors
and run in O(logn) time on a CRCW PRAM [SV82] or even on the EREW PRAM [HZ94].
Procedure CompacT, which terminates after O{logn) iterations, is thus easily seen to be
parallelizable to run in O(log? n) time using m processors. As a result, we have the following:
Theorem 6.2 The Contraction Algorithm can be implemented to run in RNC using m
processors on an m edge graph.

Using the linear-processor RAC implementation of CONTRACT, we can give the first
efficient RAC algorithm for the minimum cut problem. Consider the computation tree gen-
erated by RECURSIVE-CONTRACT. The sequential algorithm examines this computation
tree using a depth-first traversal of the tree nodes. To solve the problem in parallel, we
instead use a breadth-first traversal. The subroutine CONTRACT has already been paral-
lelized. We can therefore evaluate our computation tree in a breadth-first fashion, taking
only polylogarithmic time to advance one level. Since the depth of the tree is logarithmic,
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and since the total size of all subproblems at a particular level of the tree is O(n?), we
deduce:

Theorem 6.3 The minimum cut problem can be solved in RN'C using n® processors.

The space required is now the space needed to store the entire tree. The sequential running
time recurrence T(n) also provides a recursive upper bound on the space needed to store
the tree. Thus the space required is O(n? log3 n) (on the assumption that we perform all
O(log? n) trials of the Recursive Contraction Algorithm in parallel).

6.4 Maximizing Speed

If speed is of the utmost importance, we can decrease the parallel running time to O(logn)
on unweighted graphs, even on an EREW PRAM. We modify the original implementation of
a single trial of the Contraction Algorithm. Recall that in the case of an unweighted graph,
a permutation of the edges can be generated in O(logn) time by assigning a random score to
each edge and sorting. After generating the permutation, instead of using COMPACT to iden-
tify the correct permutation prefix, we examine all prefixes in parallel. Each prefix requires
a single connected components computation, which can be performed in O(logn) time, even
on an EREW PRAM, using m/logn processors [HZ94]. We can therefore perform a single
trial of the Contraction Algorithm in O(logn) time using m? processors. As was mentioned
in the overview, running this algorithm n?logn times in parallel yields the minimum cut
with high probability. All of this takes O(logn) time. This matches the Q(logn) EREW
lower bound of [CDR86], and closely approaches the Q(logn/loglogn) CRCW lower bound
of [Has86]. However, the processor bounds are quite large.

7 Comparison to Directed Graphs

The previous section indicates a distinction between minimum cut problems on directed
and undirected graphs. In a directed graph, the s-f minimum cut problem is the problem
of finding a partition of the vertices into two sets S and T, with s € S and ¢t € T, such
that the weight of edges going from S to T is minimized. Note that the weights of edges
going from 7" to S is not counted in the value of the cut. The s-{ minimum cut problem on
directed graphs was shown to be P-complete [GSS82]. A similar result holds for the global
minimum cut problem:

Lemma 7.1 The global minimum cul problem is P-complele for directed graphs.

Proof:  Given an algorithm the finds global minimum cuts, we find a minimum s-¢ cut
as follows. We add, for each vertex v, directed edges of infinite weight from ¢ to v and from
v to s. The global minimum cut in this modified graph must now have s € S and t € T,
for otherwise some of the edges of infinite weight will appear in the cut. Hence the global
minimum cut, if finite, must be a minimuwm s-¢ cut of the original graph. O

The minimum cut problem is therefore in the family of problems, such as reacha-
bility, that presently have dramatically different difficulties on directed and undirected
graphs [KK90, NSW92].

8 A Better Implementation

We now discuss a conceptually more complicated (but still easy to implement) version of the
Contraction Algorithm based on permutations. It has several advantages, both theoretical
and practical, over the exponential variates approach. First, it does not need to approximate
logarithms. Although we have argued that such a computation can be done in O(logn) time
in theory, in practice we would like to avoid any use of complicated floating point operations.
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Second, the sequential implementation runs in linear time, As we have discussed, this will
not produce any improvement in the worst-case running time of the Recursive Contraction
Algorithm on arbitrary graphs, since such graphs might have n? edges. However, it does
give a slightly improved time bounds for finding minimum cuts in certain classes of sparse
graphs. Yet another advantage is that it uses O(m) space without using the pointers and
linked lists needed in the O(m)-space adjacency list version of the sequential implementation
in Section 3. Finally, the parallel version of this algorithm performs less work (by several
polylogarithmic factors) than the exponential variates implementation.

As in the exponential variates algorithm of Section 6.2, we generate a permutation
by treating each weighted edge as a collection of paralle] unweighted edges. Rather than
generating scores, we repeatedly simulate the uniform selection of a multigraph edge by
choosing from the graph edges with probabilities proportional to the edge weights; the
order of selection then determines the order of first appearance of multigraph edges.

Suppose we construct an array of m cumulative edge weights as we did in the sequential
algorithm. We can use the procedure RANDOM-SELECT to select one edge at random in
O(logm) amortized time. Since it takes O(m) time to recompute the cumulative distri-
bution, it is undesirable to do so each time we wish to sample an edge. An alternative
approach is to keep sampling from the original cumulative distribution and to ignore edges
if we sample them more than once. Unfortunately, to make it likely that all edges have
been sampled once, we may need a number of samples equal to the sum of the edge weights.
TFor example, if one edge contains almost all the weight in the graph, we will continually
select this edge. We solve this problem by combining the two approaches and recomputing
the cumulative distribution only occasionally. For the time being, we shall agsume that the
total weight of edges in the graph is polynomial in n.

Procedure ITERATED-SAMPLING (G, k)

input A graph ¢
Let s = n'*¢, for some constant 0 < ¢ < 1.
repeat

Compute cumulative edge weights in G

Let M be alist of s edge selections using RANDOM-SELECT on the cumulative edge
weights

G — CowmpacT(G, M, k)

until G has k vertices

Figure 8: Iterated-Sampling Implementation

An implementation of the Contraction Algorithm called ITERATED-SAMPLING is pre-
sented in Figure 8. Take € to be any constant (say 1/2). We choose s = n!*¢ edges from the
same cumulative distribution, contract all theses edges at once, recompute the cumulative
distribution and repeat.

We now analyze the running time of ITERATED-SAMPLING. We must be somewhat
careful with this analysis because, as in RANDOM-SELECT, we call ITERATED-SAMPLING
on very small problems that arise in the recursive computation of RECURSIVE-CONTRACT.
Therefore, events that are “low probability” may actually happen with some frequency in the
context of the original call to RECURSIVE-CONTRACT. We will therefore have to amortize
these “low probability” events over the entire recursion, as we did for RANDOM-SELECT.
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To analyze the running time of ITERATED-SAMPLING, we use the following lemmas:
Lemma 8.1 The worst case running ttme of ITERATED-SAMPLING s O(n®).

Proof:  Each iteration requires O(m + slogn) = O(n?) time. The first edge chosen in
each iteration will identify a pair of vertices to be contracted; thus the number of iterations
is at most n. O

Lemma 8.2 Call an iteration of ITERATED-SAMPLING successful ¢f it finishes contracting
the graph or if it reduces the total weight in the graph by a factor of 2n/s = O(n™°) for the
next iteration. Then the probability that an iteration is not successful is =",

Proof:  We assume that the weight reduction condition does not hold, and show that the
iteration must then be likely to satisfy the other success condition. Consider contracting
the edges as they are chosen. At any time, call an edge good if its endpoints have not yet
been merged by contractions (since ITERATED-SAMPLING is not aware of the contractions, .
it may choose non-good edges). The total weight of edges in the next iteration is simply
the total weight of good edges at the end of this iteration. Suppose that at the start of the
iteration the total (all good) weight is W. By assumption, at the end the total good weight
exceeds 2nW/s. Since the total good weight can only decrease as contractions occur, we
know that the total good weight at any time during this iteration exceeds 2nW/s.

It follows that each time an edge is selected, the probability that it will be a good edge
exceeds 2n/s. Given that we perform s selections, the expected number of good selections
exceeds 2n. Then by the Chernoff bound [Che52, Mul94], the probability that fewer than n
good edges are selected is exponentially small in n.

The number of contractions performed in an iteration is simply the number of good edges
selected. Thus, by performing more than n good selections, the iteration will necessarily
finish contracting the graph. O
Corollary 8.3 On ann vertezx graph, the number of iterations before completion of ITERATED-
SAMPLING is at most t with probability 1 — e~ ),

Proof: Recall our assumption that W = n°®), Thus, in the language of Lemma 8.2,
after a constant number of successful iterations ITERATED-SAMPLING will terminate. Thus
the only way for it to take more than ¢ iterations is for there to be roughly ¢ failures, each
with probability e=*") according to Lemma 8.2 O

Corollary 8.4 On an n vertex graph, the running time of ITERATED-SAMPLING is O(t(m-+
nt+€)) with probability 1 — e~ ),

Note that we set s = n'*¢ to make the analysis easiest for our purposes. A more natural
setting is s = m/logm since this balances the time spent sampling and the time spent
recomputing cumulative edge weights. Setting s = m/logm yields the same time bounds,
but the analysis is more complicated.

8.1 A Strongly Polynomial Version

We now show how to make ITERATED-SAMPLING remove the assumption that W is poly-
nomial in 7, while maintaining the same running times. The obstacle we must overcome is
that the analysis of the number of iterations of ITERATED-SAMPLING deals with the time
to reduce W to zero. If W is arbitrarily large, this can take an arbitrarily large number of
iterations.

To solve the problem, we use a very rough approximation to the minimum cut to ensure
that Corollary 8.3 applies even when the edge weights are large. Let w be the largest edge
weight such that the set of edges of weight greater than or equal to w connects all of . This
is just the minimum weight of an edge in a maximum spanning tree of G, and can thus be
identified in O(mlogn) time using any standard minimum spanning tree algorithm [CLR90].
Even better, it can be identified in O(m) time by the CoMPACT subroutine if we use the

23



inverses of the actual edge weights as edge scores to determine the order of edge contraction.
It follows that any cut of the graph must cut an edge of weight at least w, so the minimum
cut has weight at least w. Tt also follows from the definition of w that there is a cut that
does not cut any edge of weight exceeding w. This means that the graph has a cut of weight
at most mw and hence the minimum cut has weight at most mw < n?w. This guarantees
that no edge of weight exceeding n?w can possibly be in the minimum cut. We can therefore
contract all such edges, without eliminating any minimum cut in the graph. Afterwards the
total weight of edges in the graph is at most n*w. Since we merge some edges, we may
create new edges of weight exceeding n?w; these could be contracted as well but it is easier
to leave them.

Consider running ITERATED-SAMPLING on this reduced graph. Lemma 8.2 holds un-
changed. Since the total weight is no longer polynomial, Corollary 8.3 no longer holds as a
bound on the time to reduce the graph graph weight to 0. However, it does hold as bounds
on the number of iterations needed to reduce the total remaining weight by a factor of n?, so
that it is less than w. Since the minimum cut exceeds w, the compacted graph at this point
can have no cuts, since any such cut would involve only uncontracted edges and would thus
have weight less than w. In other words, the graph edges that have been sampled up to this
peint must suffice to contract the graph to a single vertex. This proves that Corollary 8.3
and 8.4 also hold in the case of arbitrary weights.

8.2 Sequential Implementation

Using the new, O(m + n*¢)-time algorithm allows us to speed up RECURSIVE CONTRACT
on graphs with excluded dense minors.® Assume that we have a graph such that all r-vertex
minors have O(r?~¢) edges for some some positive constant ¢. Then we can be sure that
at all times during the execution of the Recursive Contraction Algorithm the contracted
graphs of r vertices will never have more than r?~¢ edges. We use the O(m + n'*¢) time
bound of Corollary 8.4 to get an improved running time for RECURSIVE-CONTRACT.

Theorem 8.5 Let G have the property that all r-vertez minors have O(r*=¢) edges for some
some positive constant €. Then with high probability the Recursive Contraction algorithm
finds a minimum cut of G in O(n210g2 n) time.

Proof:  We need to bound the time spent in all calls to ITERATED-SAMPLING over all
the various calls made to CONTRACT in the computation tree of RECURSIVE-CONTRACT.
An expected time analysis is quite easy. By Corollary 8.4, the expected time of ITERATED-
SAMPLING on a problem with m edges is O(m + n**?). By the assumption about graph
minors, this means that the expected running time of CONTRACT on an r-vertex subproblem
will be O(r?~¢). This gives us an improved recurrence for the running time:

T(n) = 2(n* ¢+ T(n/V2)).

This recurrence solve to T'(n) = O(n?).

To improve the analysis to a high probability result, we consider two cases. At depths
less than logn in the computation tree, where the smallest graph has at least /n vertices,
Corollary 8.4 says that the expected time bound for ITERATED-SAMPLING is in fact a high
probability time bound, so the recurrence holds with high probability at each node high in
the computation tree. Below depth logn, some of the problems are extremely small. How-
ever, Corollary 8.3 proves that each such problem has a running time that is geometrically
distributed around its expectation. Since there are so many problems (more than n), the

5 A minor of graph G is a graph that can be derived ;from & by deleting edges and vertices and contracting
edges.
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Chernoff bound can be applied to prove that the amortized time per problem is propor-
tional to its expected value with high probability, much as was done to amortize the time
for RaNnpoM-SELECT. Thus at lower depths the recurrence holds in an amortized sense
with high probability. O

Planar graphs fall into the class just discussed, as all r-vertex minors have O(r) edges.
Observe that regardless of the structure of the graph minors, any attempt to reduce the
running time below n? is frustrated by the need to generate n? computation leaves in order
to ensure a high probability of finding the minimum cut.

8.3 Parallel Implementation

The iterated sampling procedure as also easy to parallelize. To perform one iteration of
ITERATED-SAMPLING in parallel, we use m/logn + n't¢ processors to first construct the
cumulative edge weights and then perform n'*¢ random selections. We call the selection
by processor 1 the “first” selection, that by processor 2 the “second” selection, imposing
a selection order even though all the selections take place simultaneously. We use these
selections in the parallel implementation of the procedure CompacT. Corollary 8.4 proves
that until the problem sizes in the RECURSIVE-CONTRACT computation tree are smaller
than Q(logn), each application of ITERATED-SAMPLING runs in O(log® n) time with high
probability. At levels below logn, we can use the worst case time bound for ITERATED-
SAMPLING to show that the running time remains polylogarithmic.

9 Approximately Minimum Cuts

The Contraction Algorithm can also be used to find cuts that are not minimum but are
relatively small. The problem of finding all nearly minimum cuts has been shown to have
important ramifications in the study of network reliability, since such enumeration allow one
to drastically improve estimates of the reliability of a network. This was shown in [RC87],
where an O(nf*2m*) bound was given for the number of cuts of value ¢ + k in a graph
with minimum cut ¢, and an algorithm with running time O(n*+2m*) was given for finding
them.

Definition 9.1 An a-minimal cut is ¢ cut of value within a multiplicative factor of « of
the minimum.

Theorem 9.1 For k a half-integer, the probability that a particular k-minimal cut survives
contraction to 2k vertices is Q((;ki)d).

Proof: We consider the unweighted case; the extension to the weighted case goes as
before. The goal is to again apply Lemma 2.1. Let £ be a half-integer, and ¢ the minimum
cut, and consider some cut of weight at most kc. Suppose we run the Contraction Algorithm.
If with » vertices remaining we choose a random edge, then since the number of edges is at
least cr/2, we take an edge from a cut of weigh k¢ with probability at most 2k/r. If we do
this until » = 2k, then the probability that the cut survives is

2k 2%k 2%k n\"*!
(1"7)(1_(n~1))”‘<1"(21e+1)) - <2k>
[

As with the minimum cut theorem, a ring on n vertices shows this theorem is tight.

We can use this theorem to find k-minimal cuts. Since we stop before the number of
vertices reaches 2, we still have to finish selecting a cut. Do so by randomly partitioning
the remaining vertices into two groups. Since there are less than 22* partitions, it follows

that the probability of a particular cut being chosen is at least 272* (Z"k)—l.
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Corollary 9.2 For arbitrary real values of k, the probability that a particular k-minimal
cut is found by the Contraction Algorithm is Q((2n)=2*).

Proof: let » = [2k]. Suppose we contract the graph until there are only » vertices
remaining, and then pick one of the 2" cuts of the resulting graph uniformly at random.
The probability that a particular k-minimal cut survives the contraction to r vertices is

2% 2% (0
(- Zy- 20 A = 2

=7

(52)
(s3)

where in the above equations we use generalized binomial coefficients for non integral argu-
ments (see Knuth [Knu73, Sections 1.2.5-6] for details). From [Knu73, Exercise 1.2.6.45],
we know that () = ©(n?*) for fixed k. Since (;k) is a constant independent of n, the
overall probability is ©(n~2F). Multiplying this by the probability that pick the correct one
of the 2" = 22F remaining cuts yields the desired result. O

It follows from the above proof that we can in fact find all approximately minimal cuts in
polynomial time. The first step towards proving this is a corollary regarding the number of
such cuts that can exist in a graph. This corollary has other important applications which
are investigated in [Kar94b, KM93]. Further exploration of this theorem can be found in
those papers.
Theorem 9.3 In any graph, the number of a-minimal cuts is O((2n)**).
Proof: Since the above algorithm outputs only one cut, the survivals of the different
cuts are disjoint events. Thus, the probability that one of the is output is the some of the
probabilities that each is output. This sum must be less than 1. By Corollary 9.2, every
such cut has an Q((2n)~2%) probability of being produced by the Contraction Algorithm.
The bound on the possible number of cuts follows. O

A previous bound of O(n?) for the number of minimum cuts was proved by other means
in [DKL76]. No previous bound on the number of cuts of by value was known.

Theorem 9.4 All cuts with weight within a multiplicative factor o of the minimum cut can
be found in O(n?*log® n) time.

Proof: Change the reduction factor from /2 to *%/2 in the Recursive Contraction
Algorithm. Stop when the number of vertices remaining is 2[«], and check all remaining
cuts. The probability that any one cut is missed can be made polynomially small, and thus,
since there are only polynomially many approximately minimal cuts, we will find all of them
with high probability. O

Vazirani and Yannakakis [VY92] give algorithms for enumerating cuts by rank, finding
the k** smallest cut in O(n3%) time, while we derive bounds based on the value of a cut
relative to the others. They also give a bound of O(n®*~1!) on the number of cuts with the
k" smallest weight. Note that their bounds are incomparable with ours.

This theorem gives another way to make the Recursive Contraction Algorithm strongly
polynomial. Essentially, we scale and round the edge weights in such a way that all edges
become polynomial sized integers. At the same time, we arrange that no cut changes in value
by more than a small amount; it follows that the minimum cut in the original graph must
be a nearly minimum cut in the new graph. Thus an algorithm that finds all approximate
minimum cuts will find the original minimum cut. It is arranged that the relative change
in any cut value is 1/n, so that the running time is changed only by a constant factor. This
method is necessary in the derandomization of [KM93].
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10 Multiway Cuts

With a small change, the Contraction Algorithm can be used to find a minimum weight
r-way cul that partitions the graph into r pieces rather than 2. As before, the key to the
analysis is to apply Lemma 2.1 by bounding the probability p that a randomly selected
graph edge is from a particular minimum r-cut. Throughout, to simplify our assymptotic
notation, we assume r 1s as constant.

Lemma 10.1 The number of edges in the minimum r-way cut of a graph with m edges and
n vertices ts at most 1

- (-0 - e

Proof:  We use the probabilistic method. Suppose we choose r — 1 vertices uniformly at
random, and consider the r-way cut defined by taking each of the chosen vertices alone as
of the r — 1 vertex sets of the cut and all the other vertices as the last set. An edge is in
an r-way cutb if its endpoints are in different partitions. The probability that a particular
edge is in the cut is thus the probability that either of its endpoints is one of the r — 1
single-vertex components of the cut, which is just

r—1
n—1

1-(1_7’;1)(1w )

Let f be the number of edges cut by this random partition, and m the number of graph

edges. The number of edges we expect to cut is m times the probability that any one edge

1s cut, .e.
r—1 r—1

Bl =[1-(- =)= =)m,

Since f can be no less than the value of the minimum r-way cut, E[f] must also be no less
than the minimum r-way cut. O

The quantity in brackets is thus an upper bound on the probability that a randomly
selected edge is an r-way minimum cut edge.
Theorem 10.2 Stopping the Conlraction Algorithm when r vertices remain yields a par-
ticular minimum r-way cut with probabilily at least

n \"H/n—1\""
- — —2(r—1)
r(r_ 1) (7’_1) Qn ).

Proof: By the previous lemma, arguing as in Lemma 2.2, the probability that a particular
minimum r-cut survives the reduction process until there are r vertices remaining is at least

H (1_r;1)(1_r»~1)

wmri1 u—1

7

Ta-=5 1] a-=

um=r41 u=r+1
n \ t/n=-1\""!
r .
r—1 r—1
]

Corollary 10.3 The probability that a particular minimum r-way cul survives contraclion
to k > r vertices is Q((k/n)?"=1).
Corollary 10.4 There are 0(712("'1)) minimum multiwaey cuts in a graph.
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Proof:  Use the same argument as for counting approximately minimum cuts. O

Theorem 10.5 All minimum r-waycuts in a graph can be found with high probability in
O(n2=Vlog?n) time, or in RNC using n*"=1) processors.

The disappearance of an O(logn) factor that was present in the 2-way cut case was brought
to our attention by Jan Hvid Sorensen.

Proof:  Apply the Recursive Contraction Algorithm, but contract at each level by a factor
of *"=%/2 and stop when r vertices remain. The recurrence for the probability of success is
unchanged. The running time recurrence becomes

T(n) = n? 4 20 (n/2M % =1))

and solves to T'(n) = O(n?"=1)). The fact that all cuts are found follows as in the approxi-
mately minimal cuts case. O

This is a significant improvement over the previously best known sequential time bound
of 0(71’"2“"“1/2) reported in [GH88]. This also provides the first proof that the multiway
cut problem is in RAC for constant r. The extension of these techniques to approximately
minimum multiway cuts is an easy exercise which we omit due to rather complicated notation
needed.

11 Cut Data Structures

Researchers have investigated several representations of the minimum cuts of a graph. De-
sirable properties of such representations include small space requirements and, perhaps
more importantly, the ability to quickly answer queries about the minimum cuts in the
graph. Several representations are known [DKL76, Gab91b]. We concentrate on the cac-
tus representation [DKL76]. This data structure represents all (72") minimum cuts via an
n-node, O{n)-edge graph. It can be used to quickly identify, for example, all minimum cuts
separating a particular pair of vertices. Karzanov and Timofeev [KT86] give an algorithm
for constructing the cactus sequentially; their algorithm is parallelized by Naor and Vagzi-
rani [NV91]. We describe the general framework of both algorithms below. The reader is
referred to [NV91] for a much more detailed description.

1. Number the vertices so that for each vertex (except vertex 1) is connected to at least
one lower numbered vertex.

2. For each i > 2, compute the set S; of cuts that separate vertices {1,...,¢~ 1} from
vertex ¢.

3. Form a cactus out of U;S;.

Step 2 turns out to be the crux of the algorithm. The sets S; form what we call the
chain representation of minimum cuts, for reasons we now explain. For our explanation, it
is convenient to slightly change our definition of cuts. Given a cut (4, B), we can identify
the cut with either set A or set B since one is a complement of the other. To make the
identification unique we take the set containing vertex 1. Thus a cut is simply a set A of
vertices containing vertex 1, and its value is weight of edges with exactly one endpoint in
A. We will say that the vertices in A are inside the cut, and those in A are outside the cut.
We let the size of a cut be the number of vertices in its representative set.

Given the numbering of Step 1 and our redefinition of cuts, each 5; has a particularly
nice structure. Namely, given any two cuts A and A’ in S;, either A C A’ or A’ C A. This
property is typically referred to the non-crossing cut property. It follows that the cuts in 5;
form a chain, i.e. the cuts can be numbered as A; such that A; C Ay C -+ C Ag. Therefore,
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it is easy to represent each set S; in O(n) space, meaning that the S; form an O(n?)-size
chain represeniation of the minimum cuts of (.

We now consider the implementations of the cactus construction. Step 1 of the algorithm
can be implemented easily: find a spanning tree of G and then number the vertices according
to a preorder traversal. This can be done in O(m) time sequentially and also in O{logn)
time using m/ log n processors in parallel [KR90]. Step 3 can also be implemented relatively
efficiently. Karzanov and Timofeev [KT86] describe a sequential implementation that, given
the set of chains for each S;, takes O(n?) time. Naor and Vazirani [NV91] do not explicitly
bound their implementation of Step 3, but it can be shown to run in O(log2 n) time using n*
processors. For both the sequential and parallel algorithms, the bottleneck in performance
turned out to be Step 2, constructing the chain representation.

11.1 Constructing the Chain Representation

In Step 2, each S; can be found via a maximum flow computation and a strongly connected
components computation and thus Step 2 can be done by n such computations. This led to
a sequential algorithm that took O(n®m) time [KT86] and an O(log? ) time randomized
algorithm that used n*®m processors on unweighted graphs [NV91]. We will explain how to
implement Step 2 to run using the same amount of resources as the Recursive Contraction
Algorithm (up to constant factors), thus leading to improved sequential time and parallel
processor bounds.

Suppose that for each vertex number j, we know the size of the smallest cut in S;
containing j (that is, with j on the same side as vertex 1). Then it is straightforward
to construct S; in O(n) time. Bucket-sort the vertices according to the smallest S;-cut
containing them. Those inside the smallest cut form A;; those inside the next smallest form
Ag — A1, and so on. Therefore, we have reduced the problem of constructing the S; to the
following: for each ¢ and j, identify the smallest S;-cut containing j. We now show how to
modify the Recursive Contraction Algorithm to recursively compute this information. For
simplicity, assume that we have already run the Recursive Contraction Algorithm once so
that the value of the minimum cut is known.

We begin by adding two information fields to each metavertex v which arises during
the Recursive Contraction Algorithm’s execution. Let size(v) be the number of vertices
contained in v, and let min(v) be the smallest label of a vertex in v. Note that these two
quantities are easy to update as the algorithm executes; when we merge two metavertices,
the updated values are determined by a sum and a minimum operation. Now consider a
leaf in the computation tree of the Recursive Contraction Algorithm. One metavertex v in
this leaf will have min(v) = 1 while the other metavertex w will have min(w) = ¢ for some
i. If this leaf corresponds to a minimum cut of G, then we call it an i-leaf. Each i-leaf
must correspond to a cut in S;, since by the labeling, vertices 1,...,7— 1 must be in v while
vertex ¢ must be in w. Furthermore, size(v), which we also call the size of the i-leaf, is just
the number of vertices inside the corresponding minimum cut. We have therefore reduced
our chain construction problem to the following: for each pair of labels ¢ and j, find the
minimum size i-leaf containing j (where we identify an i-leaf with the cut (set of vertices)
it represents).

We solve this problem by generalizing it while running the Recursive Contraction Algo-
rithm. Consider some graph ¢ which arises at some point in the computation tree. We solve
the following problem: for each pair of labels ¢ and j of vertices in (7, consider all i-leaves
which are descendants of (¢, and find ug(j), the smallest i-leaf descendant of & contain-
ing j. Recalling that in the computation tree G has two contracted graphs G’ and G” as
children, we show that it is easy to compute ut, from pf, and pi,,. Note that each i-leaf
descended ;from ( is descended from either G' or G”. Consider graph . The metavertices
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with labels ¢ and 7 in & are merged into metavertices with labels i and 7' in /. Suppose
i # i'. Then there is no vertex labeled 7 in G’, and it follows by induction that there is no
i-leaf descended from G’. If ¢ = ¢/, then the smallest #-leaf descendent of G/ containing j is
just the smallest ¢'-leaf descendant of G containing j/, namely ;LiG/,(j/). Applying the same
argument to G, it follows that

p(5) = min(ui (77), pen (7)),

where pi%,() is defined to be infinite if there is no vertex labeled i in G

We have therefore shown that, after the recursive calls to G’ and G” which return per
and pgr, the new pi(j) can be computed in constant time for each pair of labels ¢ and j
in G. Therefore, if G has n vertices and thus n labels, the time to compute all ui(j) is
O(n?%). Since the original contraction algorithm already performs O(n?) work at each size
n graph in the computation, the additional O(n?) work does not affect the running time
bound. This procedure is easy to parallelize, as computing p,(j) for all pairs ¢ and j can
be done simultaneously, and the sorting can also be done efficiently in NC.

Finally, recall that we run the Recursive Contraction Algorithm ©(log” n) times in order
to get a high probability of finding every minimum cut. It is trivial to combine the resulting
4t values from these O(log® n) computations in O(n?log® n) time or with the same number
of processors in O(logn) time. We have therefore shown:

Theorem 11.1 The chain representation of minimum cuts in a weighted labeled graph can
be computed with high probability in O(n® log3 n) time, or in RA'C using n? processors.
Corollary 11.2 The cactus representation of minimum culs in a graph can be computed in
O(n210g3 n) time or in RNC using n* processors.

12 Optimizing Space

In this section, we show how the Contraction Algorithm can be implemented to run in O(n)
space, though with an increase in running time. The Union-Find data structure of [Tar83,
page 23] provides for an implementation of the Contraction Algorithm. We use the Union-
Find data structure to identify sets of vertices that have been merged by the contractions.
Initially, each vertex is in its own set. We repeatedly choose an edge at random, and apply
a union operation to its endpoints’ sets if they do not already belong to the same set. We
continue until only two sets remain. Each choice of an edge requires one find operation, and
we will also perform a total of n—2 union operations. Furthermore, after O(mlogm) random
selections, the probability is high that we will have selected each edge at least once. Thus, if
the graph is connected, we will have contracted to two vertices by this time. Therefore the
total running time of the Contraction Algorithm will be O(mlogm) with high probability.
The use of path compression in the union-find data structure provides no improvement in
this running time, which is dominated by the requirement that every edge be sampled at
least once.

The results of this section can be summarized as follows:

Theorem 12.1 On unweighted graphs, the Contraction Algorithm can be implemented to
run in O(mlogm) time and O(n) space with high probability.

We can find a minimum cut by running this algorithm O(n? logn) times and taking the
best result. An improved approach is the following. First, use the contraction algorithm to
reduce the graph to 1/n vertices. Afterwards, since the resulting graph has O(y/n) vertices
and thus O(n) edges, we can build the contracted graph in memory and run the Recursive
Contraction Algorithm in O(n) time. The minimum cut survives the contraction to /n
vertices with probability €(1/n), so we need to run the space-saving algorithm n times in
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order to have a high probabilty of finding the minimum cut. This means the overall running
time is O(mn). More generally, we have the following:

Lemma 12.2 Using s > n space, it is possible to find the minimum cut in an unweighted
graph in O(ms/n?) time with high probability.

We can extend this unweighted-graph approach to weighted graphs, although the time
bound becomes worse. As before, we use the union-find data structure of [Tar83] to contract
edges as we select them. Instead of maintaining a list of all unsampled edges, we maintain a
threshold X (t) such that any edge of weight exceeding X (¢) has a high probability of being
sampled within ¢ trials. After time ¢ we sample only from among those edges that have
weight less than this threshold. This gives a running time of O(mlog W).

13 Conclusions

We have given efficient and simple algorithms for the minimum cut problem, yet several
interesting open questions remain. One desirable result would be to find a determinis-
tic version of the algorithm with matching sequential time and parallel processor bounds.
Karger and Motwani [KM93] have used the Contraction Algorithm to prove that the min-
imum cut can be found in ANC; however, the resulting processor bounds are prohibitively
large for practical purposes.

An important first step towards derandomization would be a so-called Las Vegas algo-
rithm for the problem. The Recursive Contraction Algorithm has a very high probability
of finding a minimum cut, but there is no fast way to prove that it has done so, as the
only known certificate for a minimum cut is a maximum flow, which takes too long to com-
pute. The Contraction Algorithm is thus Monte Carlo. A fast Las Vegas Algorithm for
unweighted graphs that is faster than the Recursive Contraction Algorithm for ¢ = O(n*3
is given in [Kar94a}, but the problem remains open for weighted graphs.

Another obvious goal is to find a faster algorithm. There are several probably unnec-
essary logarithmic factors in the running time of the Recursive Contraction Algorithm.
However, it seems unlikely that the techniques presented here will yield an o(n?) algorithm,
as our algorithm finds not just one minimum cut, but all of them. Since there can be Q(n?)
minimum cuts in a graph, any algorithm that finds a minimum cut in o(n?) time will either
have to somehow break the symmetry of the problem and avoid finding all the minimum
cuts, or will have to produce a concise representation (for instance the cactus representation)
of all of them. The ideal, of course, would be an algorithm that did this in linear (O(m))
time.

Since we are now able to find a minimum cut faster than a maximum flow, it is natural
to ask whether it is any easier to compute a maximum flow given a minimum cut. Ra-
machandran [Ram87] has shown that knowing an s-f minimum cut is not helpful in finding
an s-t maximum flow. However, the question of whether knowing any or all minimum cuts
may help to find an s-f maximum flow remains open.

Another obvious question is whether any of these results can be extended to directed
graphs. It seems unlikely that the Contraction Algorithm, with its inherent parallelism,
could be applied to the P-complete directed minimum cut problem. However, the question
of whether it is easier to find a minimum cut than a maximum flow in directed graphs
remains open.

The minimum cut algorithm of Gomory and Hu [GH61] not only found the minimum cut,
but found a flow equivalent tree that succinctly represented the values of the (g) minimum
cuts. No algorithm is known that computes a flow equivalent tree or the slightly stronger
Gomory-Hu tree in time that is less than the time for n maximum flows. An intriguing open
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question is whether the methods in this paper can be extended to produce a Gomory-Hu

tree.
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