Dartmouth College
Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

6-27-1995

Deciding Finiteness for Matrix Groups Over Function Fields

Robert Beals
Institute for Advanced Study

Daniel N. Rockmore
Dartmouth College

Ki-Seng Tan
Columbia University

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

b Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation

Beals, Robert; Rockmore, Daniel N.; and Tan, Ki-Seng, "Deciding Finiteness for Matrix Groups Over
Function Fields" (1995). Computer Science Technical Report PCS-TR94-227.
https://digitalcommons.dartmouth.edu/cs_tr/101

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.


https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/101?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

DECIDING FINITENESS FOR MATRIX GROUPS
OVER FUNCTION FIELDS

Robert Beals
Daniel N. Rockmore
Ki-Seng Tan
Technical Report PCS-TR94-227

Revised 6/95



Deciding Finiteness for Matrix Groups over Function Fields

Robert Beals
Institute for Advanced Study
School of Mathematics
Princeton, NJ 08540

Daniel N. Rockmore*
Department of Mathematics Dartmouth College
Hanover, NH 03755

Ki-Seng Tan
Dept. of Mathematics
Columbia University
NY, NY 10027

June 27, 1995

Abstract

Let S be any finite subset (VL,(F(¢)) where F is a field. In this paper we give algorithms to
decide if the group generated by S is finite. In the case of characteristic zero, slight modifications
of earlier work of Babai, Beals and Rockmore [1] give polynomial time deterministic algorithms
to solve this problem. The case of positive characteristic turns out to be more subile and our
algorithms depend on a structure theorem proved here, generalizing a theorem of Weil, We also
present a fairly detailed analysis of the size of finite subgroups in this case and give bounds which
depend upon the number of generators. To this end we also introduce the notion of the diameter
of a finitely generated algebra and derive some upper bounds related to this quantity. In positive
characteristic the deterministic algorithms we present are exponential. A randomized algorithm
based on ideas of the Meat-Axe is also given. While not provably efficient, the success of the
Meat-Axe suggests the randomized algorithm will be useful,

1 Introduction

The finiteness problem for finitely generated groups can be stated as follows: let I' be an infinite group,
then give an efficient algorithm for deciding for any finite subset § C I', if & = (§) < I' is finite. Such
an algorithm is said to decide finiteness for subgroups of T'.

In the case of [ = GL(n, K), for K a number field, [1] gives polynomial time (in |.5], n and [K : Q]}
deterministic and randomized {Monte Carlo) algorithms to decide finiteness. The purpose of this note
is to extend those results to the case of function fields, i.e. fields K (1), where K is a field (possibly of

*. Rockmore supporied in part by an NSF Math Sciences Posdoctoral Fellowship as well as NSF DMS Award
9404275



positive characteristic) and ¢ is an indeterminate, so that A (¢} represents the field of rational functions
over K. Thus, any element f ¢ K({) can be written as

=2
q{t)
for some polynomials p(t), ¢(t) € K[t
The ideas of [1] extend fairly readily to K'(t) when K has characteristic 0. Consequently, in this case
polynomial time algorithms for deciding finiteness are obtained (Theorem 2.1}. The techniques used in
characteristic 0 depend quite heavily on two conditions which do not extend $o positive characteristic:

(1) The enveloping algebra of any finite matrix group over a field of characteristic ¢ will be semisim-
ple.

(2) Finite subgroups of G'L{n, K({)) are necessarily conjugate to finite subgroups of GL(n, K).
Thus it would seem that new ideas may be needed to give efficient algorithms in positive charac-

teristic. Qur results in positive characteristic are a first step in this direction. Towards the goal of
efficient algorithms to determine finiteness in this case we prove the following result:

Theorem 3.3 Let G < GL(n,Fy(1)) be finite, Then (7 is conjugate to o subgroup of GL(n,F,(t)) of
the form

A o+ e
0 Ay - #
0 0 : *
o ¢ - A4

where the A; € GL(n,F,} and the elements in the upper triangle are all in ¥,[t] and of bounded
degree.

Theorem 3.3 is in fact a special case of a general decomposition theorem for matrix groups over
local fields (Theorem 3.1), externding an earlier result of Weil ([12], Theorem 1).

Thus, Theorem 3.3 essentially reduces the problem of deciding finiteness in positive characteristic
to finding invariant subspaces of V' & (F {t})". Once an invariant subspace is found it is easy to
check if the associated restricted representation is defined only over Fy. At present we can only give
provably exponential deterministic algorithms for deciding finiteness in this case.

However in this case randomized techniques should be very useful. Parker’s “Meat-Axe” [9] is a
randomized algorithm used to decompose modular representations of finite groups. While to date,
there are 1o theoretical bounds for its expected running time, a wealth of experience shows it to be
a very useful and efficient algorithm. We outline how an adaptation of this method could be used in
our situation.

An interesting difference in the case of positive characteristic is that here, arbitrarily large finite
subgroups may occur. We devote a fair amount of Section 3 (as well as an Appendix) to deriving
bounds on the size of finitely generated subgroups in terms of the number of generators. Partially to
this end we introdnce and briefly discuss the notion of the diameter of finitely generated algebra.

2 Characteristic Zero

By the results of [1], to give a polynomial time algorithm to decide finiteness for K'{t} for char(K) = 0,
it is enough to give a polynomial time reduction to the case of GL(n, Q).
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Theorem 2.1 Let (5) = G < GL{n,Q{t)). Then in polynomial time either G can be iransformed
into an equivalent subgroup of GL(n,Q), or shown to be infinile.

Lemma 2.2 Let G < GL(n, Q(1)} be finile, then G is conjugate over Q(t) to a subgroup of GL{n,Z).

Proof: By ([i], Proposition 2.3) it is enough to show that if G is finite then G is conjugate over
GL{n,Q(t)) to a subgroup of GL(n,Q). For this, notice that if G is finite, then there exists a
finite extension K of Q such that the defining representation of & in GL(n, Q(¢)) is equivalent to a
representation of G'in G L(n, K'). In this case, there exists a matrix X € GL(n, K(t)) such that

XAX1eGL(n, K) (1)

forall A € & < GL(n,Q(1)). Since G is finite, there exists a rational number o such that « is not a
root of any denominator in any 4 € G, X or X!, For any matrix B € GL(n, K(1)) let B}, denote
the evaluation of B at « (assuming it is defined). Thus, by (1),

Xla Ala X_llcv = Alicv = A (2)

where the last equality follows from the fact that A" € G'L(n, K) by {1).
Since G < GL(n,Q(t)) and « € Q, A, € GL(n, Q). Thus, combining (1}, (2) and the fact that
XY, = (X1{,)7! we have that for all 4 € G,

XU, X A XX, = Al € GL(n, Q).

Corollary 2.3 If G < GL{n,Q{t)) is finite, then trace{A) € Z for all A € G.

Lemma 2.2 shows that if G is finite, then dimgq{envg{G)} < n*. Consequently, this gives a simple
test for infiniteness. Independent elements for envg((7) can be generated until either more than n? of
these elements are obtained, or a basis over Q of dimension less than n* is found. In the former case
the group is infinite. In the [atter case, the basis over Q can be used to potentially find a representation
of G in GL(d,Q) for d < n? or again prove infiniteness (c¢f. Lemma 2.7).

Proposition 2.4 If G < GL{n, Q1)) is finite then env(G) is semisimple over Q(1).

Proof: This is a simple application of Maschke’s theorem ([3], Theorem 10.8).

By successive matrix multiplications and Gaussian elimination we have the following result.

Lemma 2.5 Let (§) = G < GL(n,Q(t)). Then a basis Ay,. .., Ag for envquya) (s0 d < n?j can be
constructed in polynomial time. Furthermore, the A; can be taken to be in 51,

Lemma 2.6 Let all notation be as in Lemma 2. Let T = {{trace{ A;A;)). Then envg(G) is semisim-
ple iff T € GL{n, Q1))

Proof: This is essentially a classical result of Dickson [4], restated in [2].



Lemma 2.7 Let G < GL(n,Q(t)) be such that trace(A) € Z for all A € G. If envgy(G) is
semisimple, then in polynomial time an isomorphism can be constructed between (¢ and a subgroup of

GL(d, Q) where d = dim(envgy(G)).

Proof: Asin Lemma 2.5, let Ay,..., Ag be a basis for envgy(G) with A; € Sl G Let A e G
Then we may write

d
A= Z oy Ay (E}
1=1
where each «; € Q(1). We will show that in fact, each a; € Q.

To show this, let & = (ay,...,a2) € Q(H)%. Let T = ((trace(A;4;)). By the semisimplicity of
envgp{G), we know that T' € GL(n, Q(t)). However, by the assumed condition on the traces of the
elements of (7, and the fact that each A;4; € G, we see that in fact, 7' € GL(d, Q). Thus, let £ = Ta.
Note that

o= E?zl trace( A; A )y
= trace(4; }:fﬁl oA
= troce( A;A).

Thus, again, assuming that each element in ' has trace in Z, we see that 7 € 77, Hence ¢ =
T-ir € Q4.

Consequently, by considering the action of G on the Q-span of A;,..., Az we get a representation of
G in GL{(d, Q). The representation is faithful since AA4; = A4, for all { implies that A = 1. Furthermore,
it suflices to determine the action of § on A4, ..., Ag. In polynomial time we can either find this faithful
representation of G in GL(d, Q) or we will discover that for some 4 € 5, the product AA; cannot be
represented as a @ linear sum of the Ay,..., 4; and then G is not finite,

In fact, as H. Bass has pointed out to us, it is easy to see that this argument works for any finite
number of indeterminates and thus,

Theorem 2.8 Let {S) = G < GL{(n,Qlty,...,tn)) for independent indeterminates ty,...,1,,. Then
in polynomial time either G can be transformed into an equivalent subgroup of GL(n,Q), or shown to
be infinate.

3 Positive Characteristic

It appears that the arguments used in the characteristic zero case are not applicable to positive
characteristic. For example, in general, if the group is finite, the associated enveloping algebra will not
be semisimple. Also, subgroups of GL(n,¥,(t}} can be arbitrarily large. (When n = 2, consider the
upper triangular subgroups generated by elements with monomials of differing degrees in the upper
corner.) Consequently, new ideas seem to be necessary. As a first step we prove a structure theorem for
finite subgroups of GL{n,F,(t)). This will follow from a much more general decomposition theorem,
generalizing slightly a classical result of Weil [12] as well as other work related to computing L-series
for modular functions over funciion fields [11].

Notice that a subgroup of GL(n,F (1)) is finite if and only if its enveloping algebra over F, is
finite, or equivalently, finite dimensional. The structure theorem (Theorem 3.3) allows us o give some
hounds on the size of the enveloping algebra over F,, and consequently some coarse bounds on the
size of finite subgroups of (ZL(n, F,(¢)) generated by a fixed number of elements { Corollary 3.5).

With these results in hand we may then give some naive algorithms for determining finiteness. We
anticipate that there is much room for improvement.



3.1 Structure Theorems for GL(n,F,(1))

We first introduce some notation which will be in use throughout this section.
Let K = F,((1)), and O = F,[[3]]. Let I' = GL(n, F,[t]) C GL{n, K ). Define

R={r={r...m)r€Z,0<r <rp <<y}

and for each r € R, define

0 e 0
0 2 ... D
Pr = : s :
[} O - trn

Theorem 3.1 With the notation above, for each g € GI{n, K) there existy € T, r ¢ R, £ € G L(n,O)
and { € Z such that
g=7po €4

The proof of Theorem 2 requires the following lemma (a decomposition lemma) which generalizes
the dimension two result given by Lemma 3 in [11].

Lemma 3.2 [Decomposition lemma)} Let

S={{Haip1,-- i t=1 . n F=1, o n—10 a4y € Fgh

I 0 0
P;ﬁ(o T &i+1~-an)
0

0 -[n~i—1

For each s € 8, let

where I, denotes the m x m identity matriz.

Then
r 0 ... O
o0 1 0
GL(n,O)-} . . | = U pL - GL(n,O).
. - * - SES
6 6 ... 1

Assuming the decomposition lemma, we prove Theorem 3.3,
Proof: {of Theorem 3.3) After multiplication by a suitable element { € Z we can assume that all the
entrices of ¢ are in O.

By the elementary divisor theorem {[8], Theorem 3.8), there exists ¢ € GL(n, O} and 5, > $pm1 >
a2 s 20, s; € Z such that

™ 0 - 0
geo- | 4T Y G0
0 0 -
Now we have the factorizations
= 4 .- 0 = 0 - 0N /1 0. 0 2 1 0. 0 n
6 =% .- 0 |01 0 6 =~ - 0 6 1 - 0
G 0 i 0 0 0 0 1 0 0 T

[adea ]



and

L 0 0-.-0
- 0 1 .. 0 )
0 7 0. 0)=FEy-|. . . .| B
0 0 Jyim o _'
00 - 1

where for any m > 0, I, denotes the m X m identity matrix and £;; = E{:"ll ¢ GL(n,F;) is the
appropriate permutation matrix interchanging I and ¢.
By indaction on 8 = 8y -+ 83 b ... -+ 8, and using the decomposition lemma we now have

= 0 --- 0
o1 -+ 0 .
g = "‘;"’-p;rm.' col B - S BTV gl (v el EeGL(n,F,), &0 € GL(n, 0), ()€ Z)
o ¢ -1
L 0 0
= 7yl 0 T @i ..., | BTV
0 0 In—i—l
I; 0 0 L 0 0
= ’}"’-pfmf- 0 1 L1 N/ g = 0...0 E—l’go'é}r)
0 0 In—‘i—l 0 0 In-—iwl
But
L0 0
,oﬂf-((} I aip1 oo | = a-py,
0 0 lneje

for some o € T, Since 7 = %, by multiplying by an appropriate power of ¢ (as an element of 2), and
conjugation by an appropriate permufation mafrix, we can write

5 0 0
Pt 0 = 0...0 xP-pL.Pml.g
0 0 fnin

for P e GL{n,F,), ¢}/ € Z and rR.
Taking y =9 a P, £ = P71 E7 . £, and { = (f - ¢, the theorem is proved.

To complete things, we now prove the decomposition lemma.
Proof: {of the decomposition lemma.) For o = {{0;)) € GL(n, O} we have

= 6 - 0 TO11 Tiz *° Olp

0 1 ] TFyy Opa o O
c | . . = . : .

00 -1 TTni Opz ' Tap

For a € O let @ denote its residue class in Fy. Then let v; = (o9;,...,00;) = 1,...,n and
T = (&3, .., 0mi) 1= 1,...,n. Note that the {Ti}i=1, » has rank n — 1 over F,.



Let i be the largest index such that
Ti= Y a7
J>i
Then
v, = wu -+ Zaj?)j
Fps

for some w € O™,

Suppose w = (wz, ..., ws). Let o' = (o} ;) be such that

o for k#1144
. woy  for k=1,15#1

Tk = wp Tor k#£1,i=1
ay; for E=1,1=1,
Then

T 0 . 0 o 0

0 & --- 0 g

a - . : ., . E(O T ai+1...an)-a’.

o o 0 0 Ly
00 - 1 !

Define now subgroups I', < T by
Up=Ay=(y) e T 1" Vy; e O}

Note that I', is a finite subgroup of I'. In particular, let v € T, then (1) if r; = r;, then v;; € Fy;
(2) il 7; > 7y, then v;; = 05 (3) if r; < r; then deg(v;;) < r; — ;. Up to conjugacy, these are the only
finite subgroups which can occur.
Theorem 3.3 Suppose G < GL{n,F,{1)) is finite. Then there exists A € GL{n,Fy(t)) andr € R
such thot

AG-ATH LT,

Proof: Since G is finite, under its natural action on F, ()", (& stabilizes a rank n free F,[t] submodule.
This shows that 7 is conjugate to a subgroup of I'. Without loss of generality, we assume that G is
a subgroup of T'. As a subgroup of GL{(n, K), G also acts on K™ Again, the finiteness of (¢ implies
that there exists g € G L(n, K} such that G- ¢ C g-GL(n,O). By Theorem 3.1 we can write

g=7p 0

Then for z € (4,
prtoy ey pp e GL(R, 0) - 2.

Let y ="t .z -v. Then

=T 0 e D 0 - 0
0o "= ... 0 - g "™ ... 0
: . . . ; (fh Ts '!sz) . : : . : — 5{ . CI
0 0 A L 0 0 ce. o fTn

for some (' € Z and for some & ¢ GL(n,0)}.
Since y € T, det(p;* -y - p.) € ", and det(£') € Fl[2]]*, we have '™ = det({') € F,{[+]]*. Hence,
¢ e B3 € GE(n, O). Thus, t" "iy; € Oand y € T,
|



3.2 Bounds for finite subgroups of GL(n,F,(1))

In characteristic 0 finite subgroups of G'L(n, K (1)) are bounded in size. All such bounds derive from
bounds for on the size of subgroups of GL(n,Z). For this situation, W. Feit has recently announced
[5] that by using some unpublished results of B. Weisfeiler and the classification of finite simple groups
(cf. [7]), except for n = 2,4,6,7,8,9, and 10 the these subgroups can have size at most 2"n!, for which
the signed permutation matrices provide an example. In the other cases, the Weyl groups of some of
the exceptional groups provide larger bounds. (We also remark that some simple asymptotic analysis
allows one to show that for any € > 0, there exists a constant ¢ > 2 that depends only on ¢ such that
the size of finite subgroups of (+L{n,Z) is bounded by (n!)!*c" [10].)

Other interesting results on finite subgroups of G L(n, Q) and a wealth of references can he found
in Friedland’s recent paper [6].

In positive characteristic the situation is very different. Here, finite subgroups can be arbitrarily
large. However, for a fixed number of generators a bound can be given. More precisely, if a finite
subgroup is generated by r elements of G L(n, F,(t)) then a bound on the dimension of the algebra over
F, can be determined, and hence a bound on the size of the subgroup given. We present two different
approaches towards such results. The former uses a simple analysis of the matrix multiplications which
can occur (Section 3.2.1) while the latter (Section 3.2.2) introduces the notion of the diameter of a
finitely generated algebra and is able to obtain bounds in terms of the diameters of certain subalgebras
of M(n;, F)) for n = (n1,...,n,) = n. We discuss the issue of the “tightness” of these bounds and
show that in the case of n = 17, the bounds obtained are indeed tight.

3.2.1 General upper bounds.

To begin, let us introduce some notation. Let n = (ny,...,n4) be a composition of n, denoted as
nf= n. Let U(n, Fy(t)) < GL(n,F,(t}) be defined as the block upper triangular matrices X = (X,;)
such that X;; is n; X n; and

Xi € GL{n,Fy)

Xy = 0ifi>y

Note that [, < U(n, Fy(t)).
Theorem 8.4 Let {5} = G < GL{n,Fy(t}) such that |S| = r and G is finite. Then

) I ifr=1 and
dim (envp, (G)) < { Y4 1) z‘j:r > 1.

Proof: First let » = 1, so that ¢ = {A) and A has finite order. By Theorem 3.3, we know that
A~ A € Uln,F,(1)) for some n a composition of n. In particular, the characteristic polynomial of 4
is of degree n with coefficients in F,. Since A will satisfy its characteristic polynomial, its powers will

span a space of at most dimension n over F,.
Now let r > 1. We will repeatedly make use of the following very pessimistic bound.

Claim Let X; ;41 € M4 (B[t]) for i = 1,.. . d and let G; < GL{(n;,Fy) fori=1,...,d+1. Let

V = spang ({91 Xy g2 KXoz ga-ga Xadel - Gae1 | gi € Gi})

Then
: 2,2 2
dimp (V) < ning - ngyq.



Proof: Notice that the entries of X ; are contained in an ¥, vector space of at most dimension nyng
{a set of nyng polynomials over any fleld will span a vector space of at most dimension nyng over that
field). Pre- and postmultiplication by any g; and gz only effects a linear combination of these. Further
postmultiplication by X3 5 gives linear combinations of now at most nynanens = nyning polynomials.
Continuing in this fashion we see that the entries of any element in V can be linear combinations of
at most nynd - ning polynomials. As there are nyngyq entries in any element of V', we see that

. : 2 2 2.2 2.2
dzmpq(_V) < MGy ARG NN = MNG - NING L.
|

Using the claim we may now prove the bound for r > 1. Note that we may assume that G is
generated by § = {4y, Ay, ..., A} such that each A; = (Xe{f)) € Un,Fy(t)) and so is of a a fixed

upper-triangular block-form. (As usunal, we assume that X Z-(;“) refers to the ¢, 7 block of size n; x n; in
Ax.)

For any product A, --- A, we have that

23 Jo o Ak
(Aal‘”Aak)i,j = ( Z Xa(lg} Xz{lzz) Xz(k ;z;)g 5 Xz(kjlj)- (1)

?S’J’lsslk—QSJ
Since X z'(fj ) < GL(n;, Fy) for cach 7 and j, the above sum is a sum of matrices of the form
Cigio * Yigis '6‘51?:1 Yiyip Ciziz o 'Yimj 'ij= (2)

where i = ip < 1) < i3 < . < i < J, O € GL(ny, Fy), and Y p € {Xt(!t’?l =1,2,3,..,r}
Let E = envy, (G). In order to bound dim,, E we use the simplification,
4

Fy
dim, E<Zn —E—Zd?m V”, (3)
z<g
where
Vij = spang {Xy;: X € B} (4)

That is, V;; is the subspace of M™*"(F,[t]) spanned by the #,j blocks of all elements of £. The

claim shows that
diquM,j < Z 7722 cn? oop? pdlpmtl (5)
1<iy <o im <J

where the factor of r™*1 comes from the r possible choices for each of the Y, as defined in {2).
Thus, using (3) and (5} over all sequences 1 < < iy < ... <4, < J < d and reindexing we get

dimp (E) < Zn + 3 >, (rmd)e(end,

1€i<id T = L= (6}

RN

= Sounlend 1) (rad 4+ 1) = (1 + raf 4 red + 4 rad).

This shows that .
diquX < -—(rn% + 1) (rnﬁ + 1)
r

Finally, notice that if » > 2, then for any m > 0,

(ng + 1) g (’.f‘ + l)m



and thus, (as 3, n; = n)

1
dimp (X} < ;('r + 13"

=
Corollary 3.5 Let (§) = G < GL(n,F,(1)) have finite order. Then
q" ifr= 1 and
[GI < { q%(r+1)r; ir> 1.
In particular, every element of finite order in GL(n,F (1)) has order at most ¢™.
Proof: The size of the group can be no larger than the size of the enveloping algebra over F.
[ ]

Another easy corollary also follows.

Corollary 3.6 An element A € GL(n,F (1)) has finite order if and only if the characteristic polyno-
mial of A is defined over Fg.

Theorem 3.3 shows that any finite subgroup is conjugate to a subgroup of some U{n, F (t)). With
a slight modification of the above proof of Theorem 3.4, we see that in fact, any finitely generated
subgroup of U(n, F,(t)) is finite. We record this fact as the next theorem.

Theorem 3.7 Any finitely generated subgroup of U(n, F (1)) is finite.

Remark: It is of inferest to investigate the strength of the bounds of Theorem 3.4 and its corollary.
For example, in the Section 3.2.3 we will get some tight bounds for the case of n. = (1,1,...,1). We
will then see that the bound that Corollary 3.5 yields for » = 2 and n = (1, 1) is tight.

3.2.2 Ubpper bounds and diameters for algebras

Here we introduce the notion of diameter for a finitely generated algebra. In so doing we are able to
obtain a different upper bound on the size of finite subgroups of GL(n, F4(t)) generated by » elements
in terms of “natural” combinatorial data derived from the geprerators.

Let 4 be an algebra over a field F and § = {Xy,..., X} C A. As usual, let envyp(5) denote
the subalgebra of 4 generated by 5. Furthermore, for any integer j > 0, let 5% denote the subset of
elements of 4 which can be written as products of § elements of 5.

Definition 3.8 The subalgebra envp{A) is said to have diameter §, wrilten é = diam{envp(S)), if

all elements of envp(8) can be written as F-linear combinations of §°U- - -USY and § is the least integer

such that this is true. If X € envp(S), define the length of X (with respect to 5, denoted lenS(X)

to be the smallest integer j (necessarily less than diem{envp(S))) such that X € spang(9°,...,57).

Lemma 3.9 Let all notation be as above and let S C A and § = diam{envp(5)), then
dimp(envp($)) <1 +r+ - 478

Proof: There are at most r/ F~linearly independent elements in SV,

10



Remark. Notice that diameter of an algebra is related to, albeit in a seemingly loose fashion, to the
concept of diameter of a finitely generated group. For example, let X € GL(n,F,). Since X satisfies
its characteristic polynomial, diam(envp (X)) < n- 1. However, the order of X can be at most ¢" -1,

w1

in which case the diameter of the cyclic group generated by X is L
At the very least, it is clear that for § C G'L{n, F),

diam(envg(5)) < diam({S})
where the righthand side denotes the diameter of the subgroup of GL(n,F) generated by 5.

Using the concept of diameter another bound for the size of finite subgroups of G'L(n,F,(t)) can be
obtained. To simplify the statement of the result, for any X € U(n, F,(t}} (for n = (nq,...,n,) = n)
let

XU = the 4,i — block of X. (7)

Thus, X € GL(n;, Fy).
Theorem 3.10 Letnf=n and § = {Xy,..., X, } CU(n,F,{t}). Let
S = {Xl{d}, .. ,X?gi)} C GL(TL;,',FQ)

and
§; = diam{envp, (5:)).

Then
diam(envp,(8)) < 61+ 4 8, +p—1.

Proof: 1t is enough to show that if W =YY, -..Y,, is a product of m = é; + -+ &, + p elements in
S, then another expression for ¥ can be found which is & linear combination of products of less than

m elements in S.
Since m > §; + -+ -+ &, + p, W can be written as

W= Wy W, (8)

where
Consider now the 1,1 block of Wy or in the notation of (7), ifVi(l). Notice that

Wl(}> = Yl(” e 'Yﬁ{fi'i‘ (9)

Since diam(envp (81)) = &1, then it must be the case that Wfl) can be written as the 1,1 block of
a F,-linear combination of products of elements in 5 of length at most é;. Thus, let Z; be such an
element, so that leng{Z1) < 61 and

wit =z,

Similarly, define Z; to be such that
® (1) Iens(Zj) g (53' and

e 2) WP = 2V,
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By condition (2)

(W, — 2,34 = 0. (10)
Thus, using (10) it is easy to see
(Wi — Z1)(Wy = Z3)--- (W), = Z,) = 0. {11}

But (11) readily implies that
W=W,--W,=2

where 7 is a linear combination of products of the form Ay --- A, where each for each ¢, 4; is either
equal to W, (and hence in §% for some & > 6;) or is a linear combination of elements which are in 5%
for k < &; and furthermore at least one such ¢ satisfies the latter condition. But this implies that Z
is a linear combination of elements of length less than m and the theorem is proved.

Remark. The above definitions and results suggest several natural questions. It would be of interest
to better understand the diameters of various generating sets for subalgebras of M(n,F,) and perhaps
investigate their relationship to diameters of corresponding subgroups of GL{n, F;}. Furthermore, it
would be of interest to see under what conditions, if any, the bound of Theorem 3.10 is tight. To this
end, in the following section we show that in the case of n = (1,...,1) = 1", a modification of the
proof of Theorem 3.10 yields a bound which is in fact tight.

3.2.3 Bounds for U/ ((1) 1,..., l),Fq(t))

A small modification of the proof of Theorem 3.14 gives an improved bound for the size of finitely
generated subalgebras of U((l, 1,...,1), Fq(t)> . We are then able to show in this case that the bound
obtained is tight.

Theorem 3.11 Let all notation be as in Theorem 3.10. Let § = {X1,...,X,} C U((i, ..., 1),Fq(1)).

Then
diam{ 5} < n - 1.

Proof: Let W =WY,---Y, with Y; € § and m > n. Let

a1(1) * e %
0 0!-2(1) k
Wy = Y= . :
0 0 el
ay(n—1) #* _y *
0 aa(n— 1) - * (12}
VVH-—I = y’n—-l = - . :
0 0 a%n_i)
a(n) * *
0
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Consequently mimicking (10) consider the relation
(= a1 (Ve — a7 1) - (Yo Yo a0 L) = 0 (13)
where [, is the n % n identity matrix. Thus
W=Y,-Y, Y, =2 (14)

where Z is a linear combination of products of at most n—1 of Wy, ... W,,, and hence itself has length
less than m.

Corollary 3.12 [Let all notation be as in Theorem 3.10. Let 5§ = {X1,..., X, } C U ((1, 1yeee, 1),Fq(t)>.

Then
dimp, (envp (§)) <1+ 747" 70

Corollary 3.13 Let all notation be as in Theorem 3.10. Let § = {X1,..., X} C U((l, 1,..., ﬁl),Fq(t))
Let G = {8). Then
615 g 1,

We now take up the problem of investigating if this bound is tight. Notice that if r = 1, the
bound given by Corollary 3.13 is tight. Recall that G'L{(n,F;) contains elements of order ¢" - 1, so
called Singer cycles. They are realized as follows: Consider Fyr as an n-dimensional vector space
over F,. This gives a representation of F;n. as a subgroup of GL(n,¥,), by considering the action of
multiplication of F;fn on Fyn. Any generator of F;,(n. will then have order ¢ — 1.

When r > 1, the situation is slightly more complicated. For example, we note that when n = 2
the bound is tight. In this case Theorem 3.4 yields déqu(enqu(G)) <EHr+1P2=r+2+ % Sofor

any r > 1, consider the generators,
o 1 1t ( IO Gt
6 1/°\0 /777770 1
where a generates F,*.

It is rot hard to check that these elements generate the subgroup ¢,

G = {(g hfﬁ) Laoy € F,%, h(t) € B[], deg(h) < ?«}.

Notice that dimp (envy (G))=r+ 1.
q
In fact, this sort of construction can be generalized fo any n = 17 and r > .

Theorem 3.14 There exist subseis § = {X1,..., X} C U((l, 1,..., ].),Fq(t)) such that

dimy, (envg, (§)) = 1+ 7+ -7,

The proof of Theorem 3.14 is quite technical and we postpone it to an appendix.
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3.3 Algorithm 1

Theorem 3.4 yields immediately a simple exporential (in #) algorithm for deciding finiteness for
GL{n,F,(t}).

That is, given the generators {54,..., 5.}, attempt to construct a basis for ENV (G). In a given
round, we test if the products of the current independent set by the generators gonta,in any new
independent elements. Thus any given round takes at most O(rm - (n?)?) operations where m is the
current number of independent elements. By Theorem 3.4 in at most (7 + 1} + 1 rounds we will
either have found a complete basis for enUFq(G) or generated too many independent elements. We

record this simple algorithm as

Theorem 3.15 In at most O{r-(Hr+1)"*n*) = O(n*:(r +1)*") operations we can decide finiteness
for a subgroup of GL{(n,Fy(t)} generated by r elements.

3.4 Algorithm 2

As a next step towards giving an efficient algorithm (deterministic or randomized) we outline another
exponential algorithm. Although still exponential we believe that this different framework may be
more amenable to improvement.

Theorem 3.7 indicates a possibly fruitful approach towards deciding finiteness. Letting V4 denote
the vector space F,(t)*, Theorem 3.7 indicates that we should be searching for a flag of V4,

‘V{] > Vl > Vvd >Vd+1 = {O},

with subspaces ¥; such that the successive quotients V;/Visy are (1) G-invariant and (2} such that the
induced action of G on V;/V;;y gives a representation of G in GL{n;, ¥,} where n; = dim(V;/Viy1).
By Theorem 3.7 it is enough to check (1) and (2) on the generators.

Direct implementation of this idea still scems fo give an exponential wpper bound.

Theorem 3.16 LetS = {S1,...,5,} C GL{n,Fy(1)). Then in at most O(n*-{{:(r+1)")®]) operations
we can decide finiteness for G = (5.

Proof: The idea of the algorithm is as follows: Suppose (5) = G ~ G' < U(n, Fy(t)). Then we would
have a homomorphism

G — GL{n,q) % xGL{ng, q) = D(n),
A~ A

given by projection onto the block-diagonal subgroup.

Suppose A = {A,..., A} C G were such that it could be guaranteed that A = {A;,..., A}
span envp (G/). Then, for every A € G, either (1) A € spanFq(A), or (2) A — B is nilpotent for
some B & spang, (A). Farthermore, if (2) holds, then the kernel of 4 — B will contain some nonzero

invariant subspace W, and V/W will also be G-invariant.

Thus, our method of attack is to attempt to successively apply the above idea until we arrive at
a subspace W which is invariant and supports a representation over F,. If + is finite this will be
possible. This subspace W will then serve as V. Having done this, we then apply the algorithm to the
quotient V/Vy and so on, ultimately arriving at a change of basis for G to a subgroup of U{n, F,(2)).
If GG is infinite, at some point this algorithm will fail,

14



As usual, we make the inductive definition of §' = § and for k > 1,
sk= ) s
Aes

2

Since D{n} can have at most dimension n* over F, we have the following lemma.

Lemma 3.17 Let (7 be finile, with all notation as above. Then

qu(IsT?) = envg, (G).

Now, suppose that A = {As,..., 4, } is an orthogonal basis for X = spang (87*) over F,. Notice
that by Theorem 3.4 it will take at most n* - 2(r + 1)" operations to compute .A. We can and do
assumne that A; € G for all i. If each of the products A;5; is in the span of A, then enﬂFq(G) is finite
dimensional and G is finite. Otherwise, some product of this form is not in .spanFq(A). Let A be such
an element.

Claim Suppose (7 is finite. Let A and A be as above. If G is finite then we can compute elements
a; € Fy such that

m
Al=A- ZCEZAZ
=1

is nilpotent and nonzero.

Proof: Consider the d % d matrix T with ¢, j entry given by trace(4;A4;). Note that if G is finite
2
then T is defined over F,. At most nm? < n(%(r + 1)”‘) operations are needed to form T. Also,

trace(A;A;) = trace(A;A;) and as a bilinear map from X x X ~— F, it is nondegnerate.
Consequently, we can assume that after reordering, the first k& < m rows of T are a basis for the
span over I, of all the rows of 7. At most m® operations are required here.
Consider the new row vector v4 with i entry given by trace( A4;). Since 4 € spang (A), it must
g

be that v4 is in the span of the first k rows of 7' so that there exist «; € F, such that

k
trace{ AA;) = > oy trace( A; A;).
=1

But this then implies that trace((A — 3., a;A;)A;) = 0 for all 4;. Since ¢race is nondegenerate, this
can only mean that 4 — 3, o;4; = 0. But since the A; span the subalgebra of the block-diagonal
entries, this must mean that A’ = A — 3, a;4; is equivalent to some matrix contained in the span of
the strictly upper triangular block of U(n, F,(t)), and thus, if nonzero, must be nilpotent.

Let W' = kernel(A’) < Fy(1)®. Then W = W' n S5 W' n...n 5 W' will be G-invariant and
nonzero, assuming (& is finite. We can then iterate the above on W.

If G is infinite, it will be detected ut one of several places:

(1) More than L(r -+ 1) independent elements will be generated to span S "’ contradicting Theo-
rem 3.4,

(2) For some 4, §, trace( A;A;) € Fy.

3y W = 0.
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If (G is finite then the above procedure will need to be executed at most n? times. This yields an
upper bound of on the total number of operations required of

O (- I3+ 1) I+ 1)) (G + 1)) € 00t [+ 179,

r

3.5 Remarks on Algorithms 1 and 2

Remark 1: Perhaps simplifications could be found if one makes the assumption that & has some
extra structure (eg. solvable or nilpotent).

Remark 2: The main goal of Algorithm 2 is the detection of a nontrivial invariant subspace. If this
could be detected with high prebability in some randomized fashion the efficiency of the algorithm
could be increased tremendously. Perhaps a nontrivial nilpotent element could be detected easily in
some randomized way.

3.6 A Randomized Algorithm

In this section we present a simple randomized algorithm whose motivation owes much to the approach
taken by Parker’s “Meat-Axe”, an algorithm which decomposes modular representations of finite
gronps. We are at present unable to give a proof of reliability here, appealing only to the success of
the Meat-Axe as an indication that this idea may prove useful for implementation.

The main tool we use is a result of S. P. Norton, which is also a theoretical lynchpin in the
Meat-Axe.
Theorem (Due to S. P. Norton, c.f. [9], Section 5) Let F' denote any field and S = {51,...,5,} C
M. (F). Then for any B € envF(S), at least one of the following must hold:

(1} B is non-singular;

(2) At least one non-zero null vector of B lies in a proper subspace invariant under §;

(8) Every non-zero null vector of BT lies in a proper subspace invariant under S* = {57, .. 8Ty,

(4) There is no proper subspace invariant under .

Thus, let & = {51,...,5,} C GL{(n,Fy{t)). Norton’s Theorem indicates the following algorithm
for deciding finiteness for §.

Randomized Algorithm

Step 1: Asin the description of Algorithm 1 (c.f. Section 3.3), attempt to gererate n”+1 independent
elements over F,. If this is not possible (this can be determined in polynomial time}, then (8} is finite.
Otherwise, proceed to Step 2.

Step 2: Generate a singular element B & en’qu(t}(S }. Check if the translates of one of its null-vectors
generate an invariant subspace. If one does, then perform a change of basis, thereby simultaneously
rewriting the generators in some block upper triangular form,

7 .
g~ 11 *
] O ) 13
2.2

and Af;-.j is d; x d;. Now return to Step 1, successively using as input the sets {A},j, .. .,A;’-’j}.
If no null-vector generates a nontrivial invariant space, then proceed to Step 3.

Step 3: Take any non-zero null vector of BY. If this does not generate a nontrivial invariant
subspace for ST, then G is infinite. Otherwise, we may now find a change of basis given a block upper
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triangularization of the a group isomorphic to the group generated by §7. Note that the “transpose
group” is finite if and only if the original group is finite. Return now to Step 1 with the blocks for the
transposed group and continne.

The difficulty with this algorithm lies in Step 2. If we could guarantee that B has rank n — 1, then
up to scalar multiples there would be a unique null vector to test. Otherwise there are an infinite
number. Thus, it is here that we would have to apply randomization. We would construct B in some
randomized fashion. Parker points out that almost immediately elements of rank n — 1 are found. If
in fact elements of rank n — 1 are not constructed, further randomization could then be applied and
a null vector could be chosen randomly. The hope again is that {assuming invariant subspaces exist)
with high probability a vector is found generating an invariant subspace.
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