
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Computer Science Technical Reports Computer Science 

1-1-1994 

Scheduling in a Ring with Unit Capacity Links Scheduling in a Ring with Unit Capacity Links 

Perry Fizzano 
Dartmouth College 

Clifford Stein 
Dartmouth College 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr 

 Part of the Computer Sciences Commons 

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation 
Fizzano, Perry and Stein, Clifford, "Scheduling in a Ring with Unit Capacity Links" (1994). Computer 
Science Technical Report PCS-TR94-216. https://digitalcommons.dartmouth.edu/cs_tr/100 

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital 
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized 
administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601152?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/100?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


Scheduling on a Ring with Unit Capacity Links

Perry Fizzano & Cli�ord Stein

Department of Computer Science

Dartmouth College

Hanover, New Hampshire 03755

Abstract

We consider the problem of scheduling unit-sized jobs

on a ring of processors with the objective of minimizing

the completion time of the last job. Unlike much pre-

vious work we place restrictions on the capacity of the

network links connecting processors. We give a polyno-

mial time centralized algorithm that produces optimal

length schedules. We also give a simple distributed 2-

approximation algorithm.

1 Preliminaries

We consider the problem of scheduling unit sized jobs on

a network of processors arranged in a ring. An instance,

I, of network scheduling can be described by I = (G; J)

where G = (V;E) is an undirected graph representing the

network and J is the set of jobs to be processed. Using

the scheduling nomenclature we say there are m proces-

sors (or machines) labeled p1; p2; : : : pm, and n jobs. Each

vertex in V corresponds to a processor and each edge cor-

responds to a network link (notice this means there are m

nodes in the graph). Each edge has an associated capac-

ity which restricts the amount of data transmitted across

it in a single time step. In this paper we assume that the

graph, G, is a ring. A ring is a network such that proces-

sor pi is connected to pi+1 and pi�1. (We are assuming

throughout the paper that all addition on processor in-

dices is done mod m, i.e. processor pm+i is identical to

pi.) The set of jobs, J , will be indistinguishable and all

of unit size, thus an instance can be described by just the

number of jobs on a processor at a given time. We denote

by ji the number of jobs currently on processor pi.

The network model just described allows a machine

to process a job on the same step that it passes a job.

This model is the same as that in many previous papers

[1, 3, 4, 5, 6] and is supported by current technology [2].

Additional restrictions that we place on the model are

that it takes unit time to traverse a network link and the

capacity of each link is one job per time unit. This implies

that a processor can pass one job to each neighbor in one

time step but it can not pass two jobs to one neighbor.

Furthermore, we consider two network environments;

centralized and distributed. A centralized environment is

one in which there is global information available about

the number of jobs currently residing on each machine.

Conversely, a distributed environment has no source of

global knowledge. Each processor only knows its own

state and any information about other processors must

be gathered explicitly.

The layout of the remainder of the paper is as follows.

In Section 2 we give an algorithm for scheduling in a

centralized setting and in Section 3 we prove it produces

optimal length schedules. In Section 4 we give the timing

analysis of the algorithm and develop a polynomial time

solution to the problem. We present an algorithm for

scheduling in a distributed environment in Section 5 and

we make some concluding remarks in Section 6.

2 The Centralized Algorithm

2.1 Outline

We begin by presenting an algorithm for scheduling in

a centralized environment. The algorithm we present is

actually a decision procedure. Given a deadline, d, the

1



algorithm answers whether or not there is a schedule of

length d or less. We turn this into an optimization proce-

dure by binary searching. The space over which we binary

search is bounded below by d n
m
e and bounded above by

the maximum number of jobs starting on any one ma-

chine.

For the algorithm think of each time step as two halves.

In the �rst half each machine processes a job if it has one

and in the second half each machine may transmit a sin-

gle job to each of its neighbors. Decisions about whether

to pass a job or not are made after comparing the number

of jobs on each machine to the time remaining until the

deadline d. Machines that have too many jobs to �nish

by the deadline are labeled surplus machines; those that

could have more jobs and still �nish by the deadline are

labeled de�cit machines; and those that will �nish ex-

actly at the deadline with their current number of jobs

are labeled on-targetmachines. Once we determine which

machines are surplus, de�cit and on-target then we com-

pute a way to send the maximum number of jobs away

from surplus machines to de�cit machines. This process

is repeated until either all of the jobs are processed or the

deadline d is reached.

2.2 Details of One Step of the Algorithm

The �rst thing we need to do is determine which nodes

are surplus, de�cit and on-target. Given the deadline d

and the current time t, the value that is considered on-

target is d � t. Given the on-target value we can easily

determine the labels of all the machines. The procedure

Establish Routes then computes the maximum num-

ber of routes in a greedy manner between nodes with

surplus and nodes with de�cit. A route is de�ned as a

set of edges that connects a de�cit node with a surplus

node. A route that starts at a surplus node that is created

greedily, stops at the closest de�cit node in the clockwise

direction. Similarly, if a greedily established route starts

at a de�cit node it stops at the closest clockwise sur-

plus node. Then jobs are sent according to the results

of Establish Routes. The only non-trivial part of the

decision procedure described in Figure 1 is the procedure

Establish Routes. We proceed to explain it here.

The �rst step of the procedure Establish Routes

is to form a new graph, G0, which di�ers slightly from

the original graph, G. To form G0 we contract on-target

nodes and duplicate nodes with surplus or de�cit greater

than one. Formally, the contraction of a node v, origi-

nally connected to nodes w and x, amounts to removing

v from the graph and connecting w and x directly. The

duplication of a node v, originally connected to nodes w

and x, means that we replace v by two nodes v1 and v2.

Node v1 is connected to w, node v2 is connected to x and

�nally v1 is connected to v2. Notice that contractions and

duplications preserve the ring structure of the graph.

The next step is to pick a starting point. If there are

two adjacent surplus nodes we pick one of them otherwise

any surplus node can serve as the starting point. Once we

have a starting point we walk around the ring once in a

clockwise direction and make routes in a greedy manner.

Figure 2 details the procedure Establish Routes.

One �nal observation is that the routes we have estab-

lished in the graph G0 correspond directly to routes in

G even though we have contracted out on-target nodes.

Consider a route (or any piece of a route) in G0 that goes

from vertex v to vertex w such that v and w are not

directly connected in G. Instead they are separated by

on-target nodes u1; u2; : : :uk. This route corresponds to

a route in G where v passes a job to u1, u1 passes to u2
and so on until uk passes a job to w. Notice that this

chain of passing e�ectively lets us pass a job further than

just one link in a time step.

3 Correctness of the Algorithm

First we need to prove that the subroutine Establish

Routes is producing the maximumnumber of routes be-

tween surplus and de�cit machines. Let S be the number

of surplus nodes in G0 and let D be the number of de�cit

nodes in the graph G0. We will use the following simple

lemma.

Lemma 1 The maximum number of routes between sur-

plus and de�cit nodes in G0
is no more than the minimum

of S and D.

Proof: Without loss of generality assume that S is

smaller. The best we could do is have every surplus node

on a di�erent route since each route must consist of at

least one surplus node and one de�cit node. Hence the

maximum number of routes we could establish is S. 2

2



Ring Scheduler (d)

d is the length of the schedule to be checked.

for i = 1 to d

-for each processor pk with a job, jk = jk � 1

-label machines as de�cit, surplus or on-target

(the target is d� i on step i)

-call Establish Routes

-send job(s) as speci�ed by Establish Routes

if every machine has zero jobs left then

answer "yes there is a schedule of length d"

else

answer "no schedule of length d"

Figure 1: The decision procedure

Establish Routes

-create the new graph, G0, by contracting on-target nodes and

duplicating nodes two or more in surplus or de�cit

-if there are two adjacent surplus nodes then

start = the clockwise node

-else

start = any surplus node

-while all the nodes have not been considered

-establish a clockwise route from start to the �rst

node which completes a route, call it v0.

-start = the �rst node clockwise of v0

-translate the routes established in G0 to routes in G

Figure 2: The procedure Establish Routes

3



Note that we could get fewer than S routes if we could

not arrange all the surplus nodes to be on di�erent routes

(e.g. if there are three surplus nodes in a row).

Next we justify the starting point that the algorithm

chooses to establish the maximum number of routes.

Lemma 2 The �rst route that Establish Routes

makes is in some optimal solution.

Proof: There are two cases to consider. The �rst case

holds is if there are adjacent surplus nodes and the second

case holds otherwise.

If there are adjacent surplus nodes, s1 and s2, such that

s1 is clockwise of s2 then we claim that you can start at

s1 and walk clockwise around the ring to produce the

maximum number of routes.

Let OPT = (b1; b2; :::bk) be any maximumset of routes

(Notice the ordering of the routes in OPT is not relevant.

We're just trying to achieve a solution with maximum

cardinality.) We show how to convert this solution to a

solution of the same cardinality which contains a route

whose starting point corresponds to the starting point of

the �rst route our algorithm would establish. There are

four cases to consider.

(i) s1 is on a route that does not contain s2 in OPT .

This is what our algorithm does.

(ii) s2 starts a route which goes through s1 in OPT .

We can drop s2 from the route. Now we have a set of

routes so that the �rst node of one route starts at s1 and

proceeds clockwise.

(iii) Neither of s1 and s2 are on a route in OPT .

Look at the �rst route in the optimal set which is cw

from s1. If the node on this route which is closest to s1 is

a surplus node then attach s1 to the front of this route.

If the node closest to s1 is a de�cit node, v, then replace

the original route to v with a route from s1 to v. Now

we have a solution of the same cardinality with the �rst

route being one that our algorithm produces.

(iv) s1 starts a route which goes through s2 in OPT .

First, take s1 o� of this route. Then perform the same

trick as case iii with s1.

The second part of the proof handles the case when

there are not adjacent surplus nodes in G0. If this is the

case then we know that there are at least as many de�cit

nodes as surplus nodes. By Lemma 1 we know that the

maximum number of routes we can get is bounded by S.

Since there are de�cit nodes between every pair of surplus

nodes we can produce S paths by starting at any surplus

node and create a clockwise path to the �rst de�cit nodes.

2

The previous lemma says that the �rst route that our

algorithm forms is compatible with an optimal solution.

This will be used as the basis for an inductive proof that

shows that Establish Routes forms a maximum set of

routes while using this initial route.

Lemma 3 Establish Routes produces the maximum

number of routes between surplus and de�cit nodes in the

graph G0
.

Proof: Let A = (a1; a2; : : : ; aj) be the set of routes, in

cw order, produced by our greedy method. By Lemma 2

we know that the �rst route, a1 is compatible with some

optimal solution. Let OPT = (b1; b2; : : : ; bk) be such a

solution. Now we claim that after selecting a1 as our

initial route we have reduced the problem to a smaller

instance of the same problem.

Say the route a1 consists of vertices v1; v2; : : : vx. The

new problem includes the vertices (vx+1; :::vm) and the

solution OPT � b1 must be an optimal solution to this

smaller problem. For if it wasn't, then we could obtain

a larger set of routes to the original problem by concate-

nating a1 to the beginning of the optimal schedule for

this smaller instance. By induction, we can argue that

the greedy choice for every route will produce an optimal

set of routes. 2

Up to this point we have shown that Establish

Routes produces the maximum number of routes be-

tween surplus and de�cit nodes. This implies that we are

removing as many jobs as possible from surplus machines

on each time step. However, there is one other aspect of

the algorithm for which we have not accounted. On each

step every machine that has a job processes it. Call this

the Greedy Processing Rule. The next lemma shows that

this rule does not inhibit the production of optimal length

schedules.

Lemma 4 There exist optimal length schedules that use

the Greedy Processing Rule.

Proof: Assume we are given an optimal schedule, S,

of length d. Assume that step i is the �rst step where

the schedule S does not use the Greedy Processing Rule.

4



The claim is that we can replace the ith step of S with

a step of our schedule, S�, which does use the Greedy

Processing Rule. The only problem that could develop

is that with a di�erent ith step S� might not be able to

do the exact same routing as in some subsequent step

of S. But notice that this is only a problem when some

processor, p, processes its last job sooner in our schedule

than it did in S. This may a�ect a future routing step

because some other processor, q, may be on the receiving

end of a route which goes through p. Now q will not be

able to receive a job because p will not be able to pass

on any jobs towards q. However, processing this job on p

instead of q does not lengthen the schedule because after

this step every processor has no more jobs than it did in

S. Hence, the length of the schedule from here on can be

no greater in S� than in S. 2

Theorem 1 Ring Scheduler will correctly determine

if a schedule of length d exists.

Proof: If there is no schedule of length d then there will

be no routing and processing scheme which could achieve

it. Ring Scheduler will not erroneously �nd a schedule

of length d because it does not process more than one job

per time unit nor does is send more than one job across

a link in any time step.

If there is a schedule of length d then we claim that

Ring Scheduler will �nd it. By Lemma 4 we know

that the Greedy Processing Rule allows us to produce an

optimal length schedule. By Lemma 3 we are sending

as many jobs as possible away from surplus machines on

each time step. We claim that this greedy approach is

optimal. The reason is that it doesn't matter what order

the surplus machines get rid of work because they all must

get rid of all their surplus by the deadline in order for the

schedule to complete by time d. Imagine some surplus

processor holding onto a job in order to pass more jobs

on a subsequent time step. Since that processor is holding

one extra job the most number of extra routes that could

be established at a later time is one. Thus, more routes

are not created overall by holding onto jobs. 2

3.1 Di�erent Processor Speeds

Until now, all processors could process one job per time

unit. We can modify the problem so that some processors

can process more jobs than one per time unit. Let si
denote the speed of processor pi. The speed of a processor

is de�ned as the number of jobs it can process in one unit

of time. If we know the speed of each processor then

we can determine if a processor is a surplus, de�cit or

on-target node by calculating whether it can process its

remaining jobs by the deadline d.

This modi�cation does not change the basic structure

of the problem. No node will receive a job that it can't

process by the deadline and the most number of jobs are

being sent away from surplus nodes on each time step.

We can also modify the space over which we perform

binary search. Let S denote the sum of the speeds of all

the processors. A lower bound on the schedule length can

be expressed as dm
S
e. An upper bound on the schedule

length is the maximum time any processor would take to

�nish with no jobs getting passed.

4 Time Complexity

4.1 A Simple Analysis

The running time of Establish Routes is linear in the

number of nodes of the graph G0. (recall this is within a

constant factor of the number of machines which is m).

To check a schedule of length d we need to run Establish

Routes at most d times. However our choice as to what

d to check is the result of a binary search. The interval

over which we search is bounded from below by d n
m
e and

from above by n which is an upper bound on the max-

imum number of jobs that starts on any one machine.

Thus there can be O(logn) invocations of Establish

Routes. This gives Ring Scheduler a running time

of O(dm logn). In the worst case d is O(n) which results

in a pseudo-polynomial time algorithm because the input

for this problem can be speci�ed in O(m logm+m logn)

space since the jobs are indistinguishable and only the

number of jobs on each machine is necessary to describe

the instance.

Previous results of Deng et al. [3] give results for gen-

eral network structures and general capacities of the net-

work links. However, their solutions are not polynomial

either but pseudo-polynomial, because one term of the

running time is the number of jobs, n, which as we just

said is not bounded by a polynomial in the input size.

5



Now we analyze a slight modi�cation of our algorithm

and show that it runs in polynomial time.

4.2 A Better Analysis

To obtain a faster running time we can take advantage

of the fact that no machine ever changes from an on-

target machine to a surplus or a de�cit machine. Ma-

chines that are surplus or de�cit will approach a value

that is on-target but once they are on-target they never

change. Our algorithm enforces this by contracting out

on-target nodes from the graph on which we run Estab-

lish Routes.

So we can classify each machine in one of the follow-

ing �ve states: two or more in surplus, one in surplus,

on-target, one in de�cit, two or more in de�cit. How-

ever, since a machine can not go from any surplus state

to any de�cit state and it monotonically approaches the

on-target value it can only take on at most three states;

either the �rst three or the last three. Hence, the network

as a whole will have at most 3m di�erent con�gurations

over the course of the algorithm. We can speed up the

algorithm by not running Establish Routes as often.

If after an iteration of the algorithm no machines have

changed state then the same set of routes will su�ce for

the next iteration. Therefore, we only need to run Es-

tablish Routes O(m) times instead of O(d) times.

To make this procedure realizable we need to be able

to compute the time that the current set of routes must

change so that a machine does not go from a surplus state

to a de�cit state or vice versa. This entails recognizing

one of two situations. The �rst is if a machine is two

or more in surplus (or de�cit) and it is on the end of

two routes then as soon as it becomes only one in surplus

(or de�cit) or on-target we must run Establish Routes

again. The second is if a machine is on the end of only

one route it will change state when it reaches the on-

target value and we must re-run Establish Routes at

this point.

Let t be the value that is considered on-target, let T

be the current time and let ji denote the number of jobs

on processor pi. Let p
�

i
be the processors that are on the

end of exactly one route in the current set of routes and

p
0

i
represents the processors that are on the end of two

routes in the current set of routes. Now we can compute

the next time that the routes will change as:

T +min(minp�
i
(j ji � t j);min

p
0

i

(b
jji�tj

2
c)).

Theorem 2 Ring Scheduler runs in O(m2 logn)

time.

Proof: The above discussion shows that Establish

Routes only needs to be called O(m) times. Given this

bound on the number of calls to Establish Routes we

can bound the total running time of the algorithm by

O(m2 logn), which gives us a polynomial time algorithm.

2

5 A Distributed Scheduler

Thus far all of our results have depended on some sort of

global knowledge. We needed to know exactly how many

jobs each machine had on each time step in order to de-

termine if the machine was a surplus machine or a de�cit

machine. In a distributed setting this information must

be obtained by passing messages around the network. We

are assuming that a message can be sent, as well as a job,

along the network links each time step . The message is

just an integer representing the number of jobs on a given

machine so we are not really abusing the limited capacity

of the network links.

The basic idea of the algorithm is for each processor

to know the state of its neighbors at the previous time

step, and then pass a job to either or both neighbors if

that neighbor is in danger of being idle on the next time

step. The details appear in Figure 3, where we use ji
to denote the number of unprocessed jobs on processor

pi. Note that in this description of the algorithm two

messages can be sent over a link in one step; it is not

hard to reduce this to one.

We wish to prove that this algorithm produces sched-

ules of length close to optimal. We will let I denote

an instance of the scheduling problem, and OPT (I) the

length of the shortest possible schedule for I. If algo-

rithm A always yields a schedule of length no more than

�OPT (I)+O(1) we call A a �-approximation algorithm.

We �rst show a lower bound on any scheduling algorithm,

even one with global knowledge.

Lemma 5 If the optimal schedule is of length d then no

consecutive group of k processors can start with more than

(k+2)d total jobs.

6



receive messages from neighbors pi�1 and pi+1
set left and right equal the values of the messages from pi�1 and pi+1 respectively

if ji 6= 0

process a job, set ji to ji � 1

if ji > 3 and right � 1 then pass a job to neighbor pi+1 and set ji to ji � 1

if ji > 3 and left � 1 then pass a job to neighbor pi�1 and set ji to ji � 1

tell neighbors that pi has i jobs.

Figure 3: One step of the distributed ring scheduling algorithm for processor pi.

Proof: The best that could be done with (k + 2)d jobs

and k consecutive processors is to have the work dis-

tributed evenly among the k processors and send two

jobs out of the region on every time step. This leads to

(k+2)d� 2 jobs being processed in d units of time. This

is a contradiction of the optimal schedule length being d.

2

This lemma exposes a signi�cant restriction on the way

work can be distributed among the processors. For exam-

ple, no pair of adjacent processors, at time 0, can contain

more than 4d jobs. There are also signi�cant restrictions

on the conditions under which jobs can be passed.

Lemma 6 Given a processor pi, let t be the earliest time

that ji � 1. Then

a) pi receives no jobs before time t.

b) After time t, ji � 3.

c) Let t0 > t be the �rst time that pj � 3, where pj is a

neighbor of pi. For any k, 1 � k � t0 � t, pj passes

a job to pi in at least half of the time steps between

time t and t+ k, inclusive.

Proof: Part a) is clear from the description of the algo-

rithm. For part b), we observe that due to the time delay

between the actual state of a processor and the state that

its neighbor is aware of, processor pi can receive jobs for

two consecutive time steps. When it �rst receives jobs it

must have zero jobs, thus after receiving jobs it has at

most two jobs. During the next step, it will process one

job, and receive up to two jobs, thus having at most three

jobs at the end of the step. However, if it had two at the

beginning of the previous step it will receive no more jobs

on the next step, and will receive no more jobs until it has

processed all of its jobs and has zero remaining. Hence

there is no way for the number of jobs to rise above three.

A slightly more careful look at the proof of part b) will

su�ce to establish part c). At time t, if pi has one job,

then at times t + 1 and t + 2 it will receive a job from

each neighbor that has more than three unprocessed jobs.

This is due to the one unit time delay between the actual

state of a processor and the state that the processor's

neighbor is aware of. It then takes pi at most two steps

to process received jobs until it returns to having one job;

the cycle continues until pi's neighbors run out of work

to pass. So in at least two out of every four steps, passing

occurs; furthermore, the passing occurs in the �rst two

steps after pi becomes idle. This establishes the claim. 2

We now show that the algorithm in Figure 3 is a 2-

approximation algorithm.

Lemma 7 Let S0
be the schedule in which no processor

ever passes a job and let S be the schedule produced by

the algorithm in Figure 1. Then S is no longer than S0
.

Proof: Let m(t) be the maximumnumber of jobs on any

processor at time t. In schedule S0 it is always the case

that m(t+ 1) = m(t) � 1. We will show that in schedule

S, m(t + 1) � m(t) � 1, thus proving the lemma.

We observe that in S the only processors that pass jobs

have more than three jobs, and that the processor that

had the maximum number of jobs m(t) at time t has at

most m(t) � 1 jobs at time t + 1. Thus, when m(t) > 3,

the processors with m(t) jobs decrease by at least one,

and by part b) of Lemma 6, no processor's load increases

above 3, so m(t) decreases. When m(t) � 3, no passing

occurs. Therefore at each step of S m(t) decreases by

7



at least 1, which implies that the length of S is at most

m(0), which is the length of S0. 2

Now using the previous three lemmas we show that the

capacitated ring scheduling algorithm gives schedules of

length within a factor of two of optimal.

Theorem 3 Let d be the length of the optimal schedule.

Then the capacitated ring scheduling algorithm produces

a schedule of length no more than 2d+ 2.

Proof: There are two cases to consider.

Case 1: No processor starts with more than 2d work.

By Lemma 7 we know that the schedule length does

not increase by passing jobs, thus the maximum schedule

length for this case is 2d.

Case 2: Some processor starts with more than 2d work.

Let processor pi be a processor that starts with more

than 2d work, i.e. processor pi has 2d + x work (for

0 < x � d). Its neighbors, pi�1 and pi+1, start with at

most 2d � x0 (for x0 > x by Lemma 5). Assume pi+1
starts with 2d � x0 work, and that this is no less than

what pi�1 starts with. At time no later than 2d�x0 pi+1
becomes idle. At this point it may receive work from

both its neighbors. By part c) of Lemma 6 we know that

during at least half the time steps in the interval from

time 2d�x0 through the time when ji �rst goes below 3,

pi will pass jobs to pi+1.

At time 2d � x0 pi has at most x + x0 work. Assume

for simplicity that pi has passed no jobs to its neighbors

at any time up to 2d � x0. It will now begin to pass

jobs to its neighbors until it has only three jobs left. In

dx+x
0
�3

2
e time it can pass dx+x

0
�3

4
e work to each neighbor

and process dx+x
0
�3

2
e jobs. It will then spend three units

of time processing the �nal three jobs. So pi completes

all its jobs in time no more than 2d� x0 + dx+x
0
�3

2
e + 3

which is less than or equal to 2d+ 2 since x0 > x. 2

We note that a more careful analysis (on a slightly

modi�ed algorithm) which goes through a number of

cases for the last three steps can be used to show a bound

of exactly 2d.

6 Conclusions

We have given a simple and e�cient centralized schedul-

ing algorithm to produce optimal length schedules on a

ring of processors when the bandwidth of the network

links is limited to one job per time unit. This is much

faster than the best known algorithm for this instance [3]

and in addition, is the �rst polynomial time solution to

the problem. This approach has led us to designing a sim-

ple distributed algorithm for the same network structure

that produces schedules within a factor of two of optimal.

References

[1] B. Awerbuch, S. Kutten, and D.Peleg. Competetive

distributed job scheduling. In Proceedings of the 24th

Annual ACM Symposium on Theory of Computing,

pages 571{580, 1992.

[2] H. Choi and A. Esfahanian. A message routing strat-

egy for multicomputer systems. Networks, 22:627{

646, 1992.

[3] X. Deng, H. Liu, J. Long, and B. Xiao. Deterministic

load balancing in computer networks. In Proceedings

of 2nd IEEE Symposium on Parallel and Distributed

Processing, 1992.

[4] P. Fizzano, D. Karger, C. Stein, and J. Wein. Job

scheduling in rings. In Proceedings of the 6th ACM

Symposium on Parallel Algorithms and Architectures,

1994.

[5] B. Hoppe and E. Tardos. The quickest tranship-

ment problem. unpublished manuscript submitted to

SODA 95, 1994.

[6] C. A. Phillips, C. Stein, and J. Wein. Task scheduling

in networks. In Proceedings of the 4th Scandinavian

Workshop on Algorithm Theory, July 1994. To ap-

pear.

8


	Scheduling in a Ring with Unit Capacity Links
	Dartmouth Digital Commons Citation

	unit2.dvi

