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Abstract

We give distributed approximation algorithms for
job scheduling in a ring architecture. In contrast
to almost all other parallel scheduling models,
the model we consider captures the in
uence of
the underlying communications network by spec-
ifying that task migration from one processor to
another takes time proportional to the distance
between those two processors in the network. As
a result, our algorithms must balance both com-
putational load and communication time.

The algorithms are simple, require no global con-
trol, and work in a variety of settings. All come
with small constant-factor approximation guar-
antees; the basic algorithm yields schedules of
length at most 4:22 times optimal. We also give
a lower bound on the performance of any dis-
tributed algorithm and the results of simulation
experiments, which give better results than our
worst-case analysis.
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1 Introduction

With the promise of parallel and distributed computing comes
the challenge of designing algorithms which e�ectively uti-
lize the resources of a parallel or distributed system. In
many parallel systems there is competition among a num-
ber of processes for the resources of the system, such as
processing power or communications bandwidth. In order
to achieve maximum performance, we must develop algo-
rithms which e�ectively allocate the resources of the system
to these competing processes in an e�cient fashion. These
algorithms must be simple, so that control overhead does
not nullify the performance gains due to the algorithm. The
algorithms must also cope with the distributed nature of
the problems: typically the algorithm has only local infor-
mation.

In this paper we consider a basic resource allocation
problem, job scheduling, in the setting in which the process-
ing units are con�gured in a ring. Simply put, the problem
is to assign each of a set of independent tasks to proces-
sors in the system so as to �nish the processing of the set
of tasks as quickly as possible. Job scheduling arises fre-
quently in parallel computing, for example in algorithms for
automatic loop parallelization [2, 10, 11, 18] or in the use of
a parallel system to process batches of transactions or inde-
pendent sequential programs. We restrict our attention to
the ring, which is an important network in both theory and
practice. From a theoretical perspective, the ring is a basic
network structure, and much work has been done on devel-
oping and analyzing algorithms for it [3, 5, 9, 15, 16, 20, 21].
In practice the ring is either the basis of or an essential
component of many parallel and distributed architectures
[12, 13, 22, 23, 19].

The element of our model which most di�erentiates it
from previous scheduling algorithms is that task migration
from one processor to another takes time proportional to
the distance between those two processors in the communi-
cations network. Our contribution is to give simple, robust
algorithms that produce schedules of length within a small
constant factor of the best possible schedule, without using
any centralized knowledge or control. Our algorithms work
in a variety of settings, including unit-sized jobs, jobs of
di�erent sizes, and any ratio of job size to communication



time. For unit-sized jobs, our algorithm produces schedules
of length no more than a factor of 4:22 times optimal, and for
all the other settings it produces schedules no longer than
5:22 times optimal. We also report on simulations of our
algorithm, which yield signi�cantly better results than the
worst-case analysis.

There is a wealth of literature on parallel machine schedul-
ing (see [14] for some examples) but almost all of it fails to
capture the full complexity of many real scheduling prob-
lems. Many of the proposed algorithms have signi�cant
control overhead. Almost all of the literature ignores the
communication constraints imposed by an underlying net-
work architecture. In practice, however, the decision of how
much work to send where can be greatly a�ected by the path
lengths between nodes in the network. In addition, much of
the scheduling literature assumes global control of task al-
location. Our algorithm has low control overhead, accounts
for communication constraints and does not require global
control.

We know of only one paper which fully addresses the
latter two issues: that of Awerbuch, Kutten and Peleg [4],
who study the problem of distributed dynamic job schedul-
ing in general distributed networks. Due to the generality
of the setting they give algorithms with performance guar-
antees that are polylogarithmic in the problem size. Despite
the importance of this work the bounds are quite loose when
applied to speci�c networks that arise in practice. Therefore
it is an important question to develop and precisely analyze
scheduling algorithms that exploit the structure of speci�c
real networks.

We know of no previous papers which give algorithms for
this distributed ring scheduling problem. The general tech-
niques of [4] can be applied to the ring to yield a constant-
approximation algorithm. However, even when a number of
re�nements to their approach and analysis are incorporated
in this algorithm, the performance guarantees of our algo-
rithm are much better. In addition, the control structures
of our algorithm are much simpler than the application of
their general approach to the ring.

Other papers have included communication cost in basic
scheduling models, and, while not applicable to our problem,
are related to our work in spirit. Deng et. al. [7] seem to
be the �rst to have studied the parallel machine scheduling
problem in a network. They give a number of centralized
o�-line algorithms, in addition to several distributed algo-
rithms for special cases and models. Phillips, Stein and
Wein [17] improved on their results by giving a centralized
o�-line 2-approximation algorithm for a very general form of
the problem, as well as hardness-to-approximate results and
approximation algorithms for di�erent optimality criteria.

The rest of this paper is organized as follows. In Section
2 we precisely de�ne the problem. In Section 3 we present
an algorithm for the most basic version of the problem and
prove that it is a 4.22-approximation algorithm. In Section
4 we give extensions of the algorithm to more general set-
tings, such as variable job size and non-unit communication
time or processor speed. We present a lower bound on the
performance of any distributed algorithm in Section 5, and
in Section 6 we report on computational experiments with
the algorithm. All of these results apply to a model in which
the capacity of the communication links in the ring is un-
bounded; in Section 7 we give an approximation algorithm
for the model in which the capacity of each network link is
restricted to one job per unit time. We conclude with some
open problems in Section 8.

2 Model and Problem Statement

We begin by giving a precise de�nition of a simple version of
the problem, and defer discussion of more general and real-
istic versions to later sections. We are given an m-processor
ring, with identical processors numbered 1; : : : ;m. We will
often discuss addition on the processor indices, and it is as-
sumed throughout the paper that this addition will be done
mod m, i.e processor m+ i is the same as processor i. Each
processor i starts, at time 0, with xi unit-sized jobs; we de-

�ne n =
Pi=m

i=1
xi. We require each job to be processed on

exactly one processor without preemption. In one unit of
time we assume that each processor can receive some jobs
from each neighbor, send some jobs to each neighbor, and
process one unit of work; this is the model of [4], and their
assumptions are supported by current technology [6]. If a
processor sends a job to a neighbor at time t, the neighbor
receives the job at time t+1. We assume that the job gran-
ularity is large enough so that the time for simple control
operations, such as simple arithmetic, is negligible. For most
of the paper we assume no bounds on the capacity of each
network link in the ring, as in [4]; in Section 7 we consider
a model in which each link has unit capacity.

We will let I denote an instance of the scheduling prob-
lem, and L(I) the length of the shortest possible schedule for
I. If algorithm A always yields a schedule of length no more
than �L(I) +O(1) we call A a �-approximation algorithm.

Note that this problem is related to, but di�erent from,
load balancing, which is another common problem in par-
allel and distributed systems (see [1, 8]). In the load bal-
ancing problem one is given a set of tasks or tokens and
must distribute the tasks so that each processor in the sys-
tem has approximately the same number. The scheduling
problem is more complicated: just balancing the load may
lead to an excessively long schedule, and a shorter one might
be achieved by doing more of the work locally rather than
spending the time to send it far away in order to achieve
\balance". The scheduling problem, in some sense, requires
both the identi�cation of neighborhoods of appropriate size
in which to do work and the balancing of the work over those
neighborhoods.

3 The Basic Algorithm

We begin by describing our algorithm in a simple to analyze
but unrealistic scenario. We assume that each job may be
broken up into an arbitrary number of pieces, which can
then be run on di�erent processors. We will later remove
this assumption and modify the algorithm to work in the
more realistic setting.

The intuition for our algorithm comes from the following
lower bound on the performance of any scheduling algorithm
for the ring, even one with centralized control.

Lemma 1 Let I be an instance of the ring scheduling prob-
lem, with xi jobs starting at processor i at time 0. Then for
any k � m,

L(I) �
r

(k� 1)2

4
+ xi + : : :+ xi+k�1 � (k� 1)

2
:

Proof: Assume for convenience that i = 1. We focus on
the work in processors 1; : : : ; k by assuming that there is no
other work in the system. Let L(I) be the minimum amount



of time necessary to process these jobs. In the best possible
circumstances, processors 1 through k will each process L(I)
jobs in L(I) time; in addition, processors k+j and m�j+1,
1 � j � L(I), will each process L(I)� j jobs in L(I) time,
which is the maximum amount of work which can reach
them from processors 1 through k in L(I) time. As a result,
L(I) must satisfy

kL(I) + L(I)(L(I) � 1) � x1 + : : :+ xk (1)

which implies L(I) �
q

(k�1)2

4
+ x1 + : : :+ xk � (k�1)

2
. 2

Note that the lower bound holds even if we are not al-
lowed to split jobs into pieces or if the jobs are of di�erent
sizes.

Our algorithm is quite simple, although its analysis is
somewhat involved. Each processor sends out a \bucket" of
jobs around the ring, in the direction of increasing processor
number. Assume a bucket starts from processor 1; it drops
o� at processor i a number of jobs that brings the number of
jobs at processor i up to a constant times the square root of
the work that originated on processors 1 to i, as this quantity
is closely related to the lower bound in Lemma 1. At any
time step in which a processor has at least one job, it will
process exactly one job. We will speak of buckets \dropping
o� jobs", but in reality there are no buckets; rather the
processors keep some jobs and send the others along.

We now describe the communication algorithm in detail
and justify its performance. For simplicity we describe it in
terms of the bucket leaving processor 1. The algorithm from
other processors is symmetric.

Basic Communication Algorithm: A bucket
B1, containing the x1 jobs which initiate at pro-
cessor 1, leaves processor 1 at time 0, in the direc-
tion of higher-numbered processors. Let b be the
number of jobs currently in the bucket B1, and aj
the number of jobs that have been dropped o� at
processor j up to the current point in time. This
bucket drops o� at processor j, minfdj; bg jobs,
where dj = c

p
x1 + � � �+ xj � aj and c is a con-

stant we will choose later. The bucket continues
to travel in this direction and drop o� jobs until
it is empty.

In addition, on every time step, every processor that has
at least one job processes a job. We also assume at this
point that no bucket travels further than m steps, and will
later modify the algorithm to handle this case. We call the
combination of the basic communication algorithm with this
processing rule the Basic Algorithm.

We now show that this algorithm is a �{approximation
algorithm, where � = 4:22. To do so, we will use an adversar-
ial model. For an instance I recall that L(I) is the length of
the shortest schedule for I, where the schedule is computed
optimally with complete global knowledge. This is clearly
a lower bound on the performance of any distributed algo-
rithm on I. We will consider all instances I with L(I) = L

and show that our algorithm terminates in at most �L time.
More precisely, we will actually consider a broader class of
instances which contains all instances I with L(I) = L, and
show our algorithm terminates in time at most �L on any
instance in the class.

Let us consider I with L(I) = L, and determine how
long bucket B1 starting with x1 units of work at processor 1
can travel before emptying. For convenience, we will restate

Lemma 1 in terms of Mk, which we de�ne to be the maxi-
mum amount of work a group of k adjacent processors can
contain at time 0 if the instance has an optimum schedule
of length L.

Lemma 2 Let Mk be the maximum amount of work in k

adjacent processors in an instance whose optimum schedule
is of length L. Then Mk � L

2 + (k � 1)L.

Proof: Direct from Equation 1. 2
Now consider a bucket B1 that starts o� with x1 units

of work, and let us determine what the worst case time to
empty that bucket could be. Assume for now that the bucket
empties in some time less than m, i.e. the bucket does not
travel all the way around the ring. Let Wk = x2 + � � �+ xk

be the work originating on the k� 1 processors to the right
of x1. An upper bound on the time for B1 to empty is the
minimum r such that

rX
k=2

c(
p
x1 +Wk �

p
Wk) � x1 (2)

(For convenience, we assume that B1 does not leave any
work on processor 1; the analysis can easily be modi�ed to
handle this case.) This is an upper bound rather than an
exact bound on the time for B1 to empty. Since buckets
may run out of jobs before dropping o� at a particular pro-
cessor, B1 may �nd that less than c

p
Wk jobs have been

dropped o� at processor k; in this case B1 will drop o� its
work more quickly than suggested by equation (2). We now
allow an adversary to choose an instance, via the values of
Wk, which maximizes r. We allow the adversary to choose
from all instances which place no more than Mk work in k

adjacent processors. Note that this class of instances cer-
tainly contains all I with L(I) = L; however, it will contain
instances with larger optimal schedule lengths as well. A
bound on the performance of our algorithm on any instance
in this class immediately yields a bound on instances with
optimal length L.

Now, for any x1, in order to maximize the time to empty
B1, the adversary must attempt to minimize each of the
terms in the sum (2). Given values for W2; : : : ;Wk�1, we

claim that c(
p
x1 +Wk�

p
Wk) is minimized by maximizing

Wk. This claim follows from the following easily proved fact:

Fact 1 For any non-negative real numbers a; b; and c,p
a + c�p

a � p
a+ b+ c � p

a+ b.

While it is true that each Wi depends on W2 through
Wi�1, making any of W2 through Wi�1 smaller does not
allow us to make Wi larger, so the best choice for the adver-
sary is to maximize eachWi in turn. The adversary will thus
make each Wi as large as possible. However, since Wk is just
the work on k � 1 consecutive processors, he is constrained
by the following two rules that follow from Lemma 2:

Wk � Mk�1 � Mk = L(k + L) � L

x1 +Wk � Mk � Mk+1 = L(k + L)

Clearly, the �rst bound dominates if x1 < L, and the sec-
ond otherwise. If x1 < L, the adversary sets Wk = Mk�1,
otherwise he sets Wk = Mk � x1.

The following lemma indicates that the adversary's best
choice for x1, in order to maximize the time to empty bucket
B1, is to set x1 = L.



Lemma 3 The adversary maximizes the distance travelled
by B1 by setting x1 = L.

Proof: First we consider the case when x1 � L. Since the
amount dropped o� at processor k is c(

p
x1 +Wk �

p
Wk),

the fraction of the work in bucket B1 that is dropped o� at
processor k is easily seen to be

c(
p
x1 +Mk�1 �

p
Mk�1)

x1

:

If we di�erentiate this quantity with respect to x1, we see
that it is decreasing as x1 increases. Thus as we increase
the number of jobs in bucket B1 from 0 to L, bucket B1

will drop o� a smaller fraction of its work at each step, and
hence will travel farther.

For the case when x1 � L, the fraction of work dropped
is

c(
p
Mk �

p
Mk � x1)

x1

which increases with increasing x1. Thus as we decrease the
number of jobs in bucket B1 down to L, bucket B1 will drop
o� a smaller fraction of its work at each step and hence will
travel farther.

Thus x1 = L is the value that maximizes the distance
that bucket B1 travels. 2

So the adversary chooses x1 = L and accordingly sets
Wk = Mk in order to give the maximum possible time to
empty B1. We call this instance J and proceed to analyze
the time required for the basic algorithm to schedule it.

Lemma 4 Assume that no bucket travels for more than m

steps. Then the basic algorithm run on instance J yields a
schedule of length at most 4:22L(J ):

Proof: Plugging the values we just obtained into the for-
mula c(

p
x1 +Wk �

p
Wk), we see that the time to empty

bucket B1 is now the minimum value of r such that

rX
k=1

c(
p
L(L+ k)�

p
L(L+ k � 1)) � L

The left hand sum telescopes and gives

c(
p
(L(L + r)�

p
L
2) = L

which solving for r, yields

r = (2=c+ 1=c2)L:

Let
� = (2=c+ 1=c2): (3)

The value �L is then an upper bound on the time it takes
to empty a bucket. Given this value, we can determine the
maximum amount of work a processor can receive. Suppose
a processor received work from j buckets to the left. Since no
bucket travels farther than �L, we know j � �L. Then the
amount of work seen by processor j is at most Mj , which
means that the amount of work the processor keeps is at

most c
p
Mj . This is clearly maximized by maximizing j, i.e.

taking j = �L. The amount of work is then c
p
L(L+ �L) =

cL

p
1 + �.
We now have the information needed to determine the

schedule length. We know that at time �L, all the buckets

are empty. At this time, each processor will have all of the at
most cL

p
1 + � work it is going to receive, and will process

it in that amount of time. Therefore, the total time to �nish
processing all the jobs is at most (�+ c

p
1 + �)L. In other

words, the algorithm is an (�+ c

p
1 + �)-approximation al-

gorithm.
Equation (3) gives c as a function of �, thus we can

choose c to yield a bound on the algorithm of

�+ c

p
1 + � = (2=c+ 1=c2) + c

p
1 + (2=c+ 1=c2)

= 1 + c+ 2=c+ 1=c2

Choosing c = 1:77 sets � = 1:45 and yields a schedule of
length 4:22L. 2

We need now consider the case when some bucket travels
all the way around the ring in m time steps. To handle
this case we must modify the basic algorithm slightly. This
modi�cation will be described in the proof of Lemma 5; from
now on it is this modi�ed algorithm which we mean when
we refer to the basic algorithm.

Lemma 5 Assume that some bucket travels for more than
m steps. Then the (modi�ed) basic algorithm run on in-
stance J yields a schedule of length at most 4:22L(J ).

Proof: Observe that once a bucket goes all the way around
the ring it knows all the work in the system. Thus it knows
what the average load should be and can send its excess
around the ring so as to bring processor's loads to the aver-
age load. Thus after m time to go around the ring once and
m time to balance the load, each processor has at most L
work and thus we can bound the schedule length by 2m+L.

Now recall that the distance any bucket travels is at most
�L. Thus, if a bucket travels around the ring we know that
m � �L, i.e. L � m=�. The ratio of processing time to
o�ine running time is then (2m+L)=L = 1+2m=L � 1+2�.
Given our choice of � = 1:45 this gives a bound of 3:89 which
is less than 4:22. 2

Combining Lemma 4 and 5 we get our main result:

Theorem 1 If I is an instance of the basic problem and
c = 1:77, the Basic Algorithm returns a schedule that is of
length at most 4:22L(I).

Our experimental results, to be discussed in Section 6,
indicate that this analysis is potentially not tight; the worst
performance we were able to generate for the basic algorithm
was 2:57 times optimal.

4 Extensions of the Basic Algorithm

4.1 Dropping o� Jobs of Integral Size

We now dispense with the unrealistic assumption that a job
can be split into many pieces and instead require that each

job be processed entirely by one processor. Let d
0

i;j be the
amount of work dropped o� in the basic algorithm by bucket
Bi on processor j. During the execution of the basic algo-
rithm, the following two conditions are always true. First,
Di(t), the total amount of work dropped by bucket Bi from

time 0 through t, satis�es Di(t) =
Pt

p=1
d

0

i;i+p. Second,

Rj(t), the total amount of work received by processor j

from time 0 through t, satis�es Rj(t) =
Pt

p=1
d

0

j�t+p;j . We

wish to have the integral algorithm, the algorithm which only



drops o� whole jobs, do roughly the same thing as the basic
algorithm. Since Di(t) and Rj(t) are non-integral we will
not be able to satisfy these constraints by dropping integral
numbers of jobs; however, we will be able to satisfy slightly
relaxed versions of these constraints. The following descrip-
tion of the integral algorithm and Lemma 6 are, without loss
of generality, phrased in terms of the activity of B1.

I1) At time t, B1 now tries to drop o� as much as it
can drop o� at processor t, subject to the constraint
that the total it has dropped o�, including the amount
dropped at t, is no more than dD1(t)e.

I2) At time t, processor j accepts as much work as pos-
sible, subject to the constraint that the total amount
accepted through that time is at most 1 + dRj(t)e.

In other words, a bucket drops o� at each processor the
maximum it can drop o� subject to constraints I1 and I2.
We de�ne the Integral Algorithm to run like the basic algo-
rithm, modi�ed to satisfy constraints I1 and I2.

Lemma 6 Given an instance I, let the basic algorithm re-
turn a schedule of length �L(I). Then the integral algorithm
returns a schedule of length no more than �L(I) + 2.

Proof: First, we show that B1 will still empty in time k,
as in the basic algorithm. For any k

0 � k, let V (k0) =Pk0+1

j=1
Rj(j). In the integral algorithm buckets B2; : : : ;Bk0+1

dropped o� at most k0 more work on processors 2 through
k
0+1 than would have been dropped by the basic algorithm,

since each bucket, by condition I1, drops o� at most one ex-
tra job. Despite this \extra" work that is dropped o� by the
integral algorithm B1 will still be able to drop o� all of its
jobs in time, since by I2 the total \demand" of processors
1 through k+ 1, those through which B1 travels, is at leastPk0+1

j=1
(1 + dRj(j)e) � V (k0) + k

0 + 1 jobs. As a result, we

can conclude that B1 will empty in time k. By condition
I2, each processor will receive at most two units more work
than it would in the basic algorithm's execution, so the inte-
gral algorithm will �nish at most two time units later than
the basic algorithm. 2

Corollary 1 The integral algorithm is a 4.22-approximation
algorithm.

4.2 Arbitrary Job Sizes

We now generalize our algorithm to handle arbitrary sized
jobs, each of which must be run on exactly one proces-
sor. Each processor i begins with n(i) jobs Ji;1; : : : Ji;n(i).
Job Ji;j has processing time pi;j . We de�ne xi to be the
sum of the sizes of the jobs of processor i, that is, xi =Pn(i)

j=1
pi;j . We let pmax be the maximum job size, that is,

pmax = maxi;j fpi;jg. Let L be the lower bound obtained
by Lemma 1, with the new de�nition of xi. A lower bound
for the arbitrary sized job problem is max fL; pmaxg. We
will give a natural generalization of our integral algorithm
that achieves an approximation factor one greater than it.
The strategy will be to simulate the integral algorithm, but
instead of allowing \slack" of 1, allow slack of pmax. Note
that the processors do not know pmax, however if they as-
sume that pmax is the size of the largest job they have seen
so far, the algorithm runs without modi�cation.

We de�ne the Arbitrary Algorithm to run as the integral
algorithm, with constraints A1 and A2 replacing I1 and I2.
Again, we refer without loss of generality to the activity of
bucket 1.

A1) At time t, B1 now tries to drop o� as much as it
can drop o� at processor t, subject to the constraint
that the total it has dropped o�, including the amount
dropped at t, is no more than dD1(t)e+ pmax.

A2) At time t, processor j accepts as much work as possi-
ble, subject to the constraint that the total amount ac-
cepted through that time is at most 1+dRj (t)e+pmax.

Note that this algorithm is not di�cult to implement{
each processor goes through the bucket and greedily chooses
jobs until no more can be chosen without violating one of
the constraints above.

Lemma 7 Given an instance I, let the integral algorithm
return a schedule of length �L(I). Then the arbitrary algo-
rithm returns a schedule of length no more than (�+1)L(I)+
1.

Proof: First, we show that B1 will still empty in time k,
as in the integral algorithm. For any k

0 � k, let V (k0) =Pk0+1

j=1
Rj(j). In the arbitrary algorithm buckets B2; : : : ;Bk0+1

dropped o� at most k more jobs on processors 2 through
k
0 than would have been dropped in the original algorithm,
since by condition A1 each bucket drops o� at most one extra
job. This means that at most k0pmax more work is dropped
o�. Due to A2, however, the total demand of processors 1
through k

0 + 1, those through which bucket B1 travels in

the �rst k0 time steps, is at least
Pk0+1

j=1
(pmax + dRj(j)e) �

V (k0) + (k0 + 1)pmax, and therefore we can conclude that
B1 will empty in time k. By condition A2, a processor may
receive at most pmax+1 extra work, which can increase the
running time by pmax+1 over that of the integral algorithm.
Since pmax is a lower bound on the running time, this can
increase the factor of the approximation by at most one. 2

Corollary 2 The arbitrary algorithm is a 5.22-approximation
algorithm.

4.3 Other Variations

Our algorithm can be modi�ed to handle the case when allm
processors have a speed s and/or all the links have a transit
time � 6= 1. If all m processors have a speed s, we can simply
form an equivalent instance I 0 in which all processors have
speed 1 and job Ji;j has processing time p

0

i;j = pi;j=s. We
can then apply Corollary 2 and obtain a 5.22-approximation
algorithm. If all links have a transit time � 6= 1, we can just
scale time, so that � becomes 1. To do so, we set the transit
time to one, and the machine speeds to 1=� . We then apply
the algorithm described above for speed s = 1=� , obtain a
schedule and adjust the schedule length by a factor of � .

5 A Lower Bound

In this section we prove that there is no distributed approx-
imation algorithm for the basic problem (as de�ned in Sec-
tion 2) with performance guarantee better than 1:06. This
is admittedly a weak constant; the major signi�cance of this



result is to show that no distributed algorithm for this prob-
lem can be asymptotically optimal. We will assume we have
a distributed 1:06-approximation algorithm A and show that
it must do worse than 1:06 times optimal for one of two dif-
ferent classes of problem instances. The intuition behind
this argument is that a distributed algorithm can not di�er-
entiate between the two classes and therefore must do the
same thing for both until it is too late.

Let � = :06 and assume A is a (1 + �)-approximation
algorithm. The two problem instances we consider are:

� I: W unit-size jobs are placed on each of two proces-
sors at distance 2z + 1 apart in the ring. We will call
the two processors p1 and p2, and let their numbers
be i and i + 2z + 1 respectively. We will refer collec-
tively to processors number i+ z and i+ z + 1 as the
\midpoint."

� J : Only p1 receives W unit-size jobs at time 0, and
all other processors receive no jobs.

For both instances the ring size m is the same and is
chosen large enough so that m� (2z + 1) >> L(I).

Lemma 8 The shortest schedule for I is of length t, where
t satis�es 2W = 2t2 � (t� z)2 + t� z:

Proof: At time 0, only processors p1 and p2 process any
work. For each of the next z time steps, an additional four
processors can receive work, thus the total number of jobs
processed in time 0 through z is

Pz

i=0
2+4i. At this point,

4z + 2 have work. After time z work has reached the mid-
point from both sides, hence for each subsequent step only
two additional processors can receive work. Thus the total
amount of work processed in t steps, where t > z and no
work goes around the ring, is

zX
i=0

2 + 4i+

t�1X
i=z+1

4z + 2 + 2(i� z):

As stated above we choose m large enough so that no work
goes around the ring, so setting this equal to 2W yields the
lemma. 2

Note that if z = (1 � �)t, 0 < � < 1, and we choose
W large enough, then W can be made arbitrarily close to
(1� �

2
=2)t2. Since our theorem is actually true for a value

somewhat larger than � = :06, assuming W = (1 � �
2
=2)t2

will not a�ect our (1 + �) lower bound.
Now consider the performance of A on J . The optimal

schedule for J is of length
p
W = t

p
1� �

2
=2. Since we

have assumed that A is a (1 + �)-approximation algorithm,
it must �nish W work in time

u = (1 + �)t
p
1� �

2
=2:

In other words, by this time no processor has any remaining
jobs.

Lemma 9 Consider the performance of algorithm A on in-
stance I. At any time u > z there are at least V = 2W �
2u2 + (u � z)2 units of unprocessed work remaining in the
system, all of whom are within distance u�z of the midpoint,
i.e. within a region of width 2(u� z).

Proof: What is the state of the system at time u? It takes
at least z time for any information from p1 to meet any
information from p2 at the midpoint of p1 and p2. From
time z on, processors farther and farther from the midpoint
can learn about the work from pi on the other side of the
midpoint. However, at time u, any processor p at distance
greater than u� z from the midpoint must be in the same
con�guration that it would be in if the instance was J , since
it can not yet have learned of the work from the other side
of the midpoint.

Applying Lemma 8 gives that the amount of work which
could have been processed up to time u is 2u2 � (u� z)2 +
u � z. By similar arguments as above we can take this to
be 2u2 � (u � z)2. Therefore, at time u there are at least
V = 2W �2u2+(u�z)2 remaining unprocessed jobs. Since
processors that are not within u�z of the midpoint must be
in the same con�guration at time u for both I and J , and
these processors must have completed processing by time u
in J , all of the unprocessed work must be within distance
u� z of the midpoint, i.e. within a region of width 2(u� z).
2

Using Lemma 1 to calculate a lower bound q for pro-
cessing V units of work which start in a region of width
2(u � z), we see that A must take at least u + q time to
complete instance I. By choosing � to be :71 we obtain
u+ q > (1 + �)t, which contradicts our assumption that A
is a 1:06-approximation algorithm. Thus we have shown the
following:

Theorem 2 There does not exist a distributed �-approximation
algorithm for ring scheduling for any � < 1:06.

6 Experimental Work

6.1 Approach

We performed simulations of three similar algorithms (A,B
and C) for scheduling unit sized jobs; each algorithm drops
o� only integral amounts of work. Algorithm C is the inte-
gral algorithm which we have shown above to be a 4:22-
approximation algorithm. Recall that in algorithm C a
bucket drops o� work so as to bring a processor up to the
square root of the work it knows about in the system. How-
ever, the square root of the work is not actually a lower
bound; the actual lower bound is given by Lemma 1. Al-
gorithm B is a variant of our algorithm in which buckets
drop o� jobs so as to bring the work at a processor up to
the best lower bound the bucket knows based on Lemma 1.
C proved easier to analyze and is slightly simpler than B,
but one might expect B to be a better algorithm. Algorithm
A represents our initial idea for solving this problem and is
included for comparison purposes. In algorithm A, a proces-
sor removes jobs from buckets so as to have the square root
of the work that has passed by (in contrast to C in which a
processor brings itself up to the square root of the work it
knows about).

Each algorithm was simulated with passing in one direc-
tion (A1,B1,C1), as in our analysis, as well as passing jobs
in two directions (A2, B2, C2). For passing jobs in both
directions we just split the work that would go in a bucket
evenly and send a bucket in each direction.

We tested the algorithms on a variety of examples. Most
of our tests were generated according to three parameters:
ring size, the number of jobs on the heavily loaded proces-
sors and distribution. The ring sizes ranged from ten to a



I) Structured Test Cases
Ring Sizes Distributions The number of jobs on each heavily loaded processor

10 1) Concentrated on one node, zero elsewhere Huge = 100,000
100 2) Concentrated in a region, zero elsewhere Large = 10,000
1000 3) Concentrated on a node, rand(100) elsewhere Big = 1,000

4) Concentrated in a region, rand(100) elsewhere

II) Random Test Cases
Ring Sizes Distributions

10 Random 0 - 100 per processor
100 Random 0 - 500 per processor
1000 Random 0 - 1000 per processor

III) Evil Adversary Test Cases
Ring Size Adversary's choice of Adversary's choice of

the lower bound, L the region size, k

1000 100 20
500 40

80

Table 1: The three di�erent input distributions

thousand nodes; the number of jobs on the heavily loaded
processors ranged from a thousand to a hundred thousand;
and the distributions ranged from heavily concentrated to
widely dispersed. In the heavily concentrated cases we had
variants where the remainder of the ring was empty as well
as randomly loaded according to a uniform distribution. A
precise listing of these test cases appears in part I of Ta-
ble 1. We tested each algorithm on all 36 combinations of
these parameters. We also tested all the algorithms on nine
uniform random load distributions. For these cases we used
random loads drawn uniformly from 0 to 100, 500, and 1000
per processor and varied the size of the ring as in the previ-
ous examples. The uniform random load cases are detailed
in part II of Table 1. Finally, we used six more test cases
which correspond to a distribution that the \evil adversary"
from Section 3 might construct. Notice that the evil adver-
sary could construct any one of a variety of instances and
still follow the strategy that we laid out. For example, the
adversary can pick any lower bound, L, and also can pick
any size region, k, for the instance. Our six evil adversary
test cases varied these two parameters and the details are in
part III of Table 1. This amounts to 51 test cases in all.

6.2 Analysis

In order to obtain empirical factors of approximation we
needed to compute the optimum length schedules for each
instance, or at least lower bounds on the optimum sched-
ule length for each instance. For many of the test cases we
actually computed the optimum schedule length. It was pre-
viously known how to compute the optimum length schedule
for an instance [7] with unit-size jobs. This approach, how-
ever, requires roughly n

2
m space, which for some of our

test cases is 1015. We developed another more space e�-
cient approach which uses m2 space which for the largest
of our test cases is only 106. Needless to say, this approach
made the problem more computationally feasible. However,
even with this modi�ed approach some instance's optimum
schedule lengths still eluded us. For this handful of cases we
used one of two lower bounds. The �rst is the lower bound
explained in Lemma 1 and the second is just d n

m
e. So the

empirical approximation factors obtained for these instances

are somewhat pessimistic.
The simulation results show that the algorithms perform

better than our analysis suggests. Figures 2 through 7 give
histograms of the approximation factors found in our test
cases. Each bar of the histogram corresponds the frequency
which we obtained the approximation factor in the range
speci�ed by the x axis.

Algorithm C1, for which we showed a worst case bound
of 4.22 in Section 3, performed no worse than 3:09 times
optimal in the simulations. This was on an instance whose
optimum we could not calculate exactly; the worst perfor-
mance of C1 on an instance whose optimum we knew was
2:57 times optimal. Also note that Figure 4 shows that many
of the experiments for C1 had an approximation factor of
1.2 or less. In fact all six algorithms show good performance
most of the time. The best algorithm empirically was algo-
rithm A2 which performed no worse than 1:65 times optimal
in any of the 51 test cases. We speculate that the A algo-
rithm does the best because it performs slightly better local
load balancing, as it works only with the work it sees going
by. In general the bidirectional versions of the algorithms
were somewhat better, but this feature did not o�er im-
provements anywhere close to a factor of 2. Note also that
Algorithm B performed the worst despite working with a
more accurate estimation of the lower bound.

It is interesting to note that for algorithm C1 the exam-
ples constructed according to the adversary's strategy did
not produce the worst approximation factors. In addition,
for all the algorithms, the worst approximation factors were
reported on instances for which we do not have the exact
value of the optimal solution.

One possible reason that the experimental work would
indicate approximations of a higher quality than Theorem
1 is, in addition to the inherent nature of worst-case analy-
sis, that our theoretical analysis does not take into account
the potential overlap of the distribution of work and the pro-
cessing of work. In the simulations we overlapped processing
and communication at every opportunity.



7 Capacitated Rings

In some environments the assumption of unlimited available
bandwidth on the network links is the appropriate model,
while in others it is more realistic to model the bandwidth
as limited. In this section we explore the di�erence be-
tween these models and give a distributed algorithm for job
scheduling in a ring in which each link has capacity one.
In this model only one job and one message can be passed
over a link in a single time step; each message sent will sim-
ply be a number describing how many unprocessed jobs the
sending processor has resident.

The basic idea of the algorithm is for each processor to
know the state of its neighbors at the previous time step, and
then pass a job to either or both neighbors if that neighbor
is in danger of being idle on the next time step. The details
appear in Figure 1, where we use ji to denote the number of
unprocessed jobs on processor i. Note that in this descrip-
tion of the algorithm two messages can be sent over a link
in one step; it is not hard to reduce this to one.

We wish to prove that this algorithm produces schedules
of length close to optimal. We �rst show a lower bound
similar to that in Lemma 1.

Lemma 10 If the optimal schedule is of length L then no
consecutive group of k processors can start with more than
(k+2)L total jobs.

Proof: Omitted. Similar to the proof of Lemma 1. 2
This lemma exposes a signi�cant restriction on the way

work can be distributed among the processors. For example,
no pair of adjacent processors, at time 0, can contain more
than 4L jobs. There are also signi�cant restrictions on the
conditions under which jobs can be passed.

Lemma 11 Given a processor i, let t be the earliest time
that ji � 1. Then

a) pi receives no jobs before time t.

b) After time t, ji � 3.

c) Let t0 > t be the �rst time that pj � 3, where j is a
neighbor of i. For any k, 1 � k � t

0 � t, pj passes a
job to pi in at least half of the time steps between time
t and t+ k, inclusive.

Proof: Part a) is clear from the description of the algo-
rithm. For part b), we observe that due to the time delay
between the actual state of a processor and the state that
its neighbor is aware of, processor i can receive jobs for two
consecutive time steps. When it �rst receives jobs it must
have zero jobs, thus after receiving jobs it has at most two
jobs. During the next step, it will process one job, and re-
ceive up to two jobs, thus having at most three jobs at the
end of the step. However, if it had two at the beginning of
the previous step it will receive no more jobs on the next
step, and will receive no more jobs until it has processed all
of its jobs and has zero remaining. Hence there is no way
for the number of jobs to rise above three.

A slightly more careful look at the proof of part b) will
su�ce to establish part c). At time t, if pi has one job, then
at times t+1 and t+2 it will receive a job from each neigh-
bor that has more than three unprocessed jobs. This is due
to the one unit time delay between the actual state of a pro-
cessor and the state that the processor's neighbor is aware

of. It then takes pi at most two steps to process received
jobs until it returns to having one job; the cycle continues
until pi's neighbors run out of work to pass. So in at least
two out of every four steps, passing occurs; furthermore, the
passing occurs in the �rst two steps after pi becomes idle.
This establishes the claim. 2

We now show that the algorithm in Figure 1 is a 2-
approximation algorithm.

Lemma 12 Let S0 be the schedule in which no processor
ever passes a job and let S be the schedule produced by the
algorithm in Figure 1. Then S is no longer than S

0.

Proof: Let m(t) be the maximum number of jobs on any
processor at time t. In schedule S

0 it is always the case
that m(t+1) = m(t)� 1. We will show that in schedule S,
m(t+ 1) � m(t)� 1, thus proving the lemma.

We observe that in S the only processors that pass jobs
have more than three jobs, and that the processor that had
the maximum number of jobs m(t) at time t has at most
m(t) � 1 jobs at time t + 1. Thus, when m(t) > 3, the
processors with m(t) jobs decrease by at least one, and by
part b) of Lemma 11, no processor's load increases above
3, so m(t) decreases. When m(t) � 3, no passing occurs.
Therefore at each step of S m(t) decreases by at least 1,
which implies that the length of S is at most m(0), which is
the length of S0. 2

Now using the previous three lemmas we show that the
capacitated ring scheduling algorithm gives schedules of length
within a factor of two of optimal.

Theorem 3 Let L be the length of the optimal schedule.
Then the capacitated ring scheduling algorithm produces a
schedule of length no more than 2L+ 2.

Proof: There are two cases to consider.
Case 1: No processor starts with more than 2L work.

By Lemma 12 we know that the schedule length does not
increase by passing jobs, thus the maximum schedule length
for this case is 2L.
Case 2: Some processor starts with more than 2L work.

Let processor pi be a processor that starts with more
than 2L work, i.e. processor pi has 2L + x work (for 0 <

x � L). Its neighbors, pi�1 and pi+1, start with at most
2L�x

0 (for x0 > x by Lemma 10). Assume pi+1 starts with
2L� x

0 work, and that this is no less than what pi�1 starts
with. At time no later than 2L � x

0
pi+1 becomes idle. At

this point it may receive work from both its neighbors. By
part c) of Lemma 11 we know that during at least half the
time steps in the interval from time 2L�x0 through the time
when ji �rst goes below 3, pi will pass jobs to pi+1.

At time 2L � x
0
pi has at most x + x

0 work. Assume
for simplicity that pi has passed no jobs to its neighbors at
any time up to 2L � x

0. It will now begin to pass jobs to

its neighbors until it has only three jobs left. In dx+x0�3
2

e
time it can pass dx+x0�3

4
e work to each neighbor and pro-

cess dx+x0�3
2

e jobs. It will then spend three units of time
processing the �nal three jobs. So pi completes all its jobs

in time no more than 2L� x
0 + dx+x0�3

2
e + 3 which is less

than or equal to 2L+ 2 since x0 > x. 2
We note that a more careful analysis (on a slightly mod-

i�ed algorithm) which goes through a number of cases for
the last three steps can be used to show a bound of exactly
2L. We omit the details due to space limitations.



receive messages from neighbors i� 1 and i+ 1
set left and right equal the values of the messages from i� 1 and i+ 1 respectively
if ji 6= 0

process a job, set ji to ji � 1
if ji > 3 and right � 1 then pass a job to neighbor pi+1 and set ji to ji � 1
if ji > 3 and left � 1 then pass a job to neighbor pi�1 and set ji to ji � 1

tell neighbors that pi has i jobs.

Figure 1: One step of the capacitated ring scheduling algorithm for processor i.

8 Conclusions and Open Problems

In this paper we have given a constant-approximation algo-
rithm for scheduling jobs in a ring of processors. The al-
gorithm and its variations are extremely simple and do not
rely on global knowledge or centralized control. Simulations
of this algorithm and related algorithms suggest that the
performance guarantee may be better than what is shown
in Section 3.

An interesting open problem is whether simple, small-
constant approximation algorithms which require no cen-
tralized control exist for the other networks, such as the
mesh. As stated earlier, Awerbuch et al. [4] give a dis-
tributed algorithm for job scheduling in general networks.
When applied to the mesh their algorithm is a constant-
approximation algorithm. It is an interesting open prob-
lem to design a distributed approximation algorithm using
simple control structures that does signi�cantly better than
this, possibly by adapting the approach presented in this
paper.
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Figure 2: Approximation factors for 51 runs of A1
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Figure 3: Approximation factors for 51 runs of B1
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Figure 4: Approximation factors for 51 runs of C1
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Figure 5: Approximation factors for 51 runs of A2
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Figure 6: Approximation factors for 51 runs of B2
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Figure 7: Approximation factors for 51 runs of C2
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