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Asymptotically Tight Bounds for Performing

BMMC Permutations on Parallel Disk Systems

(Extended Abstract)

Thomas H. Cormen

Leonard F. Wisniewski

Department of Mathematics and Computer Science

Dartmouth College

Abstract

We give asymptotically equal lower and upper bounds for
the number of parallel I/O operations required to perform
BMMC permutations (de�ned by a characteristic matrix
that is nonsingular over GF (2)) on parallel disk systems.
Under the Vitter-Shriver parallel-disk model withN records,
D disks, block size B, and M records of RAM, we show

a universal lower bound of 

�

N
BD

�
1 + rank()

lg(M=B)

��
parallel

I/Os for performing a BMMC permutation, where  is the
lower left lg(N=B) � lgB submatrix of the characteristic
matrix. We adapt this lower bound to show that the al-
gorithm for BPC permutations in [Cor93] is asymptotically
optimal. We also present an algorithm that uses at most
2N
BD

�
6
�

rank()

lg(M=B)

�
+ 5
�
parallel I/Os, which asymptotically

matches the lower bound and improves upon the BMMC
algorithm in [Cor93]. When rank() is low, this method
is an improvement over the general-permutation bound of

�
�

N
BD

lg(N=B)

lg(M=B)

�
.

Although many BMMC permutations of practical in-
terest fall into subclasses that might be explicitly invoked
within the source code, we show how to detect in at most

N=BD+
�
lg(N=B)+1

D

�
parallel I/Os whether a given vector of

target addresses speci�es a BMMC permutation. Thus, one
can determine e�ciently at run time whether a permuta-
tion to be performed is BMMC and then avoid the general-
permutation algorithm and save parallel I/Os by using our
algorithm.

1 Introduction

The I/O complexity of operations with data on disk is based
on data movement. As one of the most basic data-movement
operations, permuting forms an important part of the theory
of I/O complexity for data on disk.

Portions of this research were performed while Tom Cormen was
at the MIT Laboratory for Computer Science and appear in [Cor92].
He was supported in part by the Defense Advanced Research Projects
Agency under Grant N00014-91-J-1698. Other portions of this re-
search were performed while at Dartmouth College and were sup-
ported in part by funds from Dartmouth College. Len Wisniewski is
supported in part by INFOSEC Grant 3-56666.

Moreover, performing permutations e�ciently when the
data reside on disk is of great practical interest. The prob-
lems that we attack with supercomputers are ever-increasing
in size, and we �nd more and more that matrices and vectors
exceed the memory provided by even the largest supercom-
puters. One solution is to store large matrices and vectors
on parallel disk systems. The high latency of disk accesses
makes it essential to minimize the number of disk I/O op-
erations. Permuting the elements of a matrix or vector is a
common operation, particularly in the data-parallel style of
computing, and good permutation algorithms can provide
signi�cant savings over poor ones when the data reside on
parallel disk systems.

This paper examines the class of bit-matrix-multiply/
complement (BMMC) permutations for parallel disk sys-
tems and derives three important results:

1. universal lower bounds for BMMC and BPC permuta-
tions,

2. an algorithm for performing BMMC permutations
whose I/O complexity asymptotically matches the
lower bound, thus making it asymptotically optimal,
and

3. an e�cient method for determining at run time
whether a given permutation is BMMC, thus allow-
ing us to use the BMMC algorithm if it is.

Depending on the exact BMMC permutation, this asymp-
totically optimal bound may be signi�cantly less than the
asymptotically optimal bound proven for general permuta-
tions.

Model and previous results

We use the parallel-disk model �rst proposed by Vitter and
Shriver [VS90, VS92], who also gave asymptotically optimal
algorithms for several problems including sorting and gen-
eral permutations. In the Vitter-Shriver model, N records
are stored on D disks D0;D1; : : : ;DD�1, with N=D records
stored on each disk. The records on each disk are orga-
nized in blocks of B records each. When a disk is read from
or written to, an entire block of records is transferred. Disk
I/O transfers records between the disks and a random-access
memory, or RAM, capable of holdingM records. Each paral-
lel I/O operation transfers up to D blocks between the disks
and RAM, with at most one block transferred per disk, for
a total of up to BD records transferred. The blocks ac-
cessed in a single parallel I/O may be at any locations on



D0 D1 D2 D3 D4 D5 D6 D7

track 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

track 1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

track 2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

track 3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Figure 1: The layout of N = 64 records in a parallel disk system with B = 2 and D = 8. Each box represents one block. The number

of tracks needed is N=BD = 4. Numbers indicate record indices.

their respective disks; we enforce no requirement on lock-
step head movement. We measure an algorithm's e�ciency
by the number of parallel I/O operations it requires. Al-
though this cost model does not account for the variation in
disk access times caused by head movement and rotational
latency, programmers often have no control over these fac-
tors. The number of disk accesses, however, can be mini-
mized by carefully designed algorithms such as those in this
paper.

For convenience, we use the following notation exten-
sively:

b = lgB ; d = lgD ; m = lgM ; n = lgN :

We shall assume that b, d,m, and n are nonnegative integers,
which implies that B, D,M , and N are exact powers of 2. In
order for the memory to accomodate the records transferred
in a parallel I/O operation to all D disks, we require that
BD � M . Also, we assume that M < N , since otherwise
we can just perform all operations in memory. These two
requirements imply that b+ d �m < n.

The Vitter-Shriver model lays out data on a parallel
disk system as shown in Figure 1. A track consists of the
D blocks at the same location on all D disks. Record in-
dices vary most rapidly within a block, then among disks,
and �nally among tracks. We indicate the address of a
record as an n-bit vector x with the least signi�cant bit
�rst: x = (x0; x1; : : : ; xn�1). The o�set within the block
is given by the least signi�cant b bits x0; x1; : : : ; xb�1, the
disk number by the next d bits xb; xb+1; : : : ; xb+d�1, and the
track number by the remaining n� (b+ d) most signi�cant
bits xb+d; xb+d+1; : : : ; xn�1.

Since each parallel I/O operation accesses at most BD
records, any algorithm that must access all N records re-
quires 
(N=BD) parallel I/Os, and so O(N=BD) paral-
lel I/Os is the analogue of linear time in sequential com-
puting. Vitter and Shriver showed an upper bound of

�
�
min

�
N
D
; N
BD

lg(N=B)

lg(M=B)

��
parallel I/Os for general permu-

tations. The �rst term comes into play when the block
size B is small, and the second term is the sorting bound

�
�

N
BD

lg(N=B)

lg(M=B)

�
, which was shown by Vitter and Shriver

[VS90, VS92] for randomized sorting and by Nodine and
Vitter [NV90, NV91, NV92] for deterministic sorting. These
bounds are asymptotically tight, for they match the lower
bounds proven by Aggarwal and Vitter [AV88] using a model
with one disk and D independent read/write heads, which
is at least as powerful as the Vitter-Shriver model.

Speci�c classes of permutations sometimes require fewer
parallel I/Os than general permutations. Vitter and Shriver
showed how to transpose an R � S matrix (N = RS) with

only �
�

N
BD

�
1 + lg min(B;R;S;N=B)

lg(M=B)

��
parallel I/Os. Sub-

sequently, Cormen [Cor93] studied several classes of bit-
de�ned permutations that include matrix transposition as
a special case. Table 1 shows the classes of permutations

examined and the corresponding upper bounds derived in
[Cor93].

BMMC permutations

The most general class considered in [Cor93] is bit-matrix-
multiply/complement, or BMMC, permutations.1 In a
BMMC permutation, we have an n�n characteristic matrix
A = (aij) whose entries are drawn from f0; 1g and is non-
singular (i.e., invertible) over GF (2),2 and we have a com-
plement vector c = (c0; c1; : : : ; cn�1) of length n. Treating
a source address x as an n-bit vector, we perform matrix-
vector multiplication of GF (2) and then form the corre-
sponding n-bit target address y by complementing some sub-
set of the resulting bits: y = Ax� c.

The BMMC algorithm in [Cor93] uses

2N

BD

�
2
l
lgM � r

lg(M=B)

m
+H(N;M;B)

�
parallel I/Os, where r is the rank of the leading lgM� lgM
submatrix of the characteristic matrix and

H(N;M;B) =

8>>><>>>:
4
l

lgB

lg(M=B)

m
+ 9 if M �

p
N ;

4
l
lg(N=B)

lg(M=B)

m
+ 1 if

p
N <M <

p
NB ;

5 if
p
NB �M :

(1)
One can adapt the lower bound proven in this paper to show

that 

�

N
BD

lgM�r

lg(M=B)

�
parallel I/Os are necessary (see Sec-

tion 2.8 of [Cor92] for example), but it has been unknown
whether the �(N=BD +H(N;M;B)) term is necessary in
all cases. This paper shows that it is not.

BPC permutations

By restricting the characteristic matrix A of a BMMC per-
mutation to be a permutation matrix|having exactly one 1
in each row and each column|we obtain the class of bit-per-
mute/complement, or BPC, permutations.3 One can think
of a BPC permutation as forming each target address by
applying a �xed permutation to the source-address bits and
then complementing a subset of the resulting bits. The

1Edelman, Heller, and Johnsson [EHJ92] call BMMC permuta-
tions a�ne transformations or, if there is no complementing, linear
transformations.

2Matrix multiplication over GF (2) is like standard matrix multi-
plication over the reals but with all arithmetic performed modulo 2.
Equivalently, multiplication is replaced by logical-and, and addition
is replaced by XOR.

3Johnsson and Ho [JH91] call BPC permutations dimension per-

mutations, and Aggarwal, Chandra, and Snir [ACS87] call BPC per-
mutations without complementing rational permutations.



Permutation Characteristic matrix Number of passes

BMMC

(bit-matrix-multiply/

complement)
nonsingular matrix A 2

l
lgM � r

lg(M=B)

m
+H(N;M;B)

BPC

(bit-permute/

complement)

permutation matrix A 2

l
�(A)

lg(M=B)

m
+ 1

Block BMMC

b n� bh
nonsingular 0

0 nonsingular

i
b

n� b

1

MRC

(memory-

rearrangement/

complement)

m n�mh
nonsingular arbitrary

0 nonsingular

i
m

n�m

1

Table 1: Classes of permutations, their characteristic matrices, and upper bounds shown in [Cor93] on the number of passes needed to

perform them. A pass consists of reading and writing each record exactly once and therefore uses exactly 2N=BD parallel I/Os. For

block BMMC and MRC permutations, submatrix dimensions are shown on matrix borders. For BMMC permutations, r is the rank of

the leading lgM � lgM submatrix of A, and the function H(N;M;B) is given by equation (1). For BPC permutations, the function

�(A) is de�ned in equation (3).

class of BPC permutations includes many common permu-
tations such as matrix transposition, bit-reversal permuta-
tions (used in performing FFTs), vector-reversal permuta-
tions, hypercube permutations, and matrix reblocking.

We express the I/O complexity of BPC permutations in
terms of cross-ranks. For any n � n permutation matrix A
and for any k = 0; 1; : : : ; n � 1, we de�ne the k-cross-rank
of A as

�k(A) = rank(Ak::n�1;0::k�1) = rank(A0::k�1;k::n�1) ; (2)

where, for example, Ak::n�1;0::k�1 denotes the submatrix
of A consisting of the intersection of rows k; k+1; : : : ; n� 1
and columns 0; 1; : : : ; k�1. The cross-rank of A is the max-
imum of the b- and m-cross-ranks:

�(A) = max(�b(A); �m(A)) : (3)

The BPC algorithm in [Cor93] uses at most

2N

BD

�
2
l

�(A)

lg(M=B)

m
+ 1
�

parallel I/Os. As we shall see in Section 2, this algorithm is
asymptotically optimal.

One-pass permutations

We shall use the remaining two classes in Table 1 as subrou-
tines in performing BMMC permutations. Each class is a
restricted BMMC permutation, described by a characteris-
tic matrix and a complement vector, and is shown in [Cor93]
to require only one pass of N=BD parallel reads and N=BD
parallel writes.

Block BMMC permutations have the restrictions that
both the leading b � b submatrix and the trailing (n� b)�
(n� b) submatrix are nonsingular and the rest of the char-
acteristic matrix is 0.

Memory-rearrangement/complement, orMRC, permuta-
tions have the restrictions that both the leading m�m and
trailing (n�m)� (n�m) submatrices are nonsingular, the
upper right m� (n�m) submatrix can contain any 0-1 val-
ues at all, and the lower left (n�m)�m submatrix is all 0.
Any MRC permutation can be performed by reading in a
memoryload (i.e., M records) of M=BD tracks, permuting
the records read within memory, and writing them out to
M=BD tracks. The class of MRC permutations includes
those characterized by unit upper triangular matrices. As
[Cor93] shows, both the standard binary-reected Gray code
and its inverse have characteristic matrices of this form, and
so they are MRC permutations.

Outline

The remainder of this paper is organized as follows. Sec-
tion 2 states and proves the lower bounds for BMMC and
BPC permutations. In Section 3, we describe an algorithm
for BMMC permutations whose I/O complexity asymptot-
ically matches the lower bound. Section 4 shows how to
detect at run time whether a vector of target addresses de-
scribes a BMMC permutation, thus enabling us to deter-
mine whether the BMMC algorithm is applicable. Finally,
Section 5 contains some concluding remarks.

We shall use several notational conventions in this paper.
Matrix row and column numbers are indexed from 0 starting
from the upper left. As in equation (2), we index rows and
columns by sets to indicate submatrices, using \: :" notation
to indicate sets of contiguous numbers. When a submatrix
index is a singleton set, we shall often omit the enclosing
braces. We denote an identity matrix by I and a matrix
whose entries are all 0s by 0; the dimensions of such matrices
will be clear from their contexts. All matrix and vector
elements are drawn from f0; 1g, and all matrix and vector
arithmetic is over GF(2). When convenient, we interpret
bit vectors as the integers they represent in binary. Vectors
are treated as 1-column matrices in context.



2 Lower bounds for BMMC and BPC permutations

In this section, we state and prove the lower bounds for
BMMC and BPC permutations. After stating the lower
bounds, we briey discuss their signi�cance before present-
ing the full proofs. The lower bounds are given by the fol-
lowing theorems.

Theorem 1 Any algorithm that performs a BMMC permu-
tation with characteristic matrix A requires




�
N

BD

�
1 +

rank()

lg(M=B)

��
parallel I/Os, where  is the submatrix Ab::n�1;0::b�1 of size
(n� b)� b.

Theorem 2 Any algorithm that performs a BPC permuta-
tion with characteristic matrix A requires



�
N

BD

�
1 +

�(A)

lg(M=B)

��
parallel I/Os.

These lower bounds are universal in the sense that they
apply to all inputs. In contrast, lower bounds such as the
standard 
(N lgN) lower bound for sorting N items on a
sequential machine are existential: they apply to worst-case
inputs, but for some inputs we may be able to do better.

There are in fact algorithms that achieve the bounds
given by Theorems 1 and 2, and so these algorithms are
asymptotically optimal. Section 3 presents an algorithm for
BMMC permutations, and the BPC algorithm of [Cor93]
achieves the bound of Theorem 2. The matrix-transposition

bound of �
�
N
BD

�
1 + lg min(B;R;S;N=B)

lg(M=B)

��
parallel I/Os is

consistent with the BPC formulation; see [Cor92] for details.

Proofs of the lower bounds

To prove Theorems 1 and 2, we rely heavily on the technique
used by Aggarwal and Vitter [AV88] for a lower bound on
I/Os in matrix transposition; their proof is based in turn
on a method by Floyd [Flo72]. We prove the lower bound
for the case in which D = 1, the general case following by
dividing by D. We consider only I/Os that are simple. An
input is simple if each record read is removed from the disk
and moved into an empty location in RAM. An output is
simple if the records are removed from the RAM and written
to empty locations on the disk. When all I/Os are simple,
exactly one copy of each record exists at any time during the
execution of an algorithm. The following lemma, proven by
Aggarwal and Vitter, allows us to consider only simple I/Os
when proving lower bounds.

Lemma 3 For each computation that implements a permu-
tation of records, there is a corresponding computation strat-
egy involving only simple I/Os such that the total number of
I/Os is no greater.

Potential function

The basic scheme of the proof of Theorem 1 uses a potential
function argument. We call the time interval starting when
the qth I/O completes and ending just before the (q + 1)st
I/O starts time q. We de�ne a potential function � so that
�(q) is the potential at time q. We compute the initial and
�nal potentials and bound the amount that the potential
can increase in each I/O operation. The lower bound then
follows.

To be more precise, we start with some de�nitions. For
i = 0; 1; : : : ;N=B � 1, we de�ne the ith target group to be
the set of records that belong in block i according to the
given BMMC permutation. (Remember that D = 1.) We
denote by gblock(i; k; q) the number of records in the ith
target group that are in block k at time q, and gmem(i; q)
denotes the number of records in the ith target group that
are in RAM at time q. We de�ne the continuous function

f(x) =

n
x lg x if x > 0 ;
0 if x = 0 ;

and we de�ne togetherness functions

Gblock(k; q) =

N=B�1X
i=0

f(gblock(i; k; q))

for each block k at time q and

Gmem(q) =

N=B�1X
i=0

f(gmem(i; q))

for RAM at time q. Finally, we de�ne the potential at time q,
denoted �(q), as the sum of the togetherness functions:

�(q) = Gmem(q) +

N=B�1X
k=0

Gblock(k; q) :

Aggarwal and Vitter embed the following lemmas in their
lower-bound argument. The �rst one is based on the obser-
vation that the number of parallel I/Os is at least the total
change in potential over all parallel I/Os divided by the
maximum change in potential in any single parallel I/O.

Lemma 4 Let D = 1, and consider any algorithm that per-
forms a permutation. The increase in potential due to any
parallel I/O operation is O(B lg(M=B)). Therefore, any al-
gorithm that uses t parallel I/Os to perform a permutation

must have t = 

�
N
B
+ �(t)��(0)

B lg(M=B)

�
.

Lemma 5 Let D = 1, and consider any permutation that
can be performed with t parallel I/Os. Then �(t) = N lgB.
Therefore, any algorithm that uses t parallel I/Os to perform

a permutation uses 

�
N
B
+

N lgB��(0)

B lg(M=B)

�
parallel I/Os.

Observe that these lemmas imply lower bounds that are
universal. No matter what the input, the initial potential
is �(0), the �nal potential is �(t), the increase in poten-
tial per parallel I/O is bounded by O(B lg(M=B)), and so



�
�(t)��(0)

B lg(M=B)

�
parallel I/Os are required. The 
(N=B) term

is the trivial lower bound due to reading the entire input.



Ranges and domains

To prove the lower bounds, we shall examine ranges of ma-
trices and domains of vectors under matrix multiplication.
We omit the proofs of two simple lemmas.

For a p�q matrix A with 0-1 entries, we de�ne the range
of A by

R(A) = fy : y = Ax for some x 2 f0; 1; : : : ; 2q � 1gg ;

that is, R(A) is the set of values that can be produced by
multiplying all q-vectors with 0-1 entries (interpreted as in-
tegers in f0; 1; : : : ; 2q�1g) by A over GF (2). We also adopt
the notation

R(A) � x = fz : z = y� x for some y 2 R(A)g ;

that is, R(A)�x is the exclusive-or of the range of A and a
�xed vector x.

Lemma 6 Let A be a p� q matrix whose entries are drawn
from f0; 1g, let x be any p-vector whose entries are drawn
from f0; 1g, and let r = rank(A). Then jR(A)� xj = 2r .

For a p� q matrix A and a p-vector y 2 R(A), we de�ne
the domain of y under A by

Dom(A; y) = fx : Ax = yg :

That is, Dom(A; y) is the set of q-vectors x that map to y
when multiplied by A.

Lemma 7 Let A be a p� q matrix whose entries are drawn
from f0; 1g, let y be any p-vector in R(A), and let r =
rank(A). Then jDom(A; y)j = 2q�r .

Proof of Theorem 1

To prove Theorem 1, we prove the lower bound for the case
in which D = 1, the general case following by dividing by D.
We assume that all I/Os are simple and transfer exactly B
records, some possibly empty. Since all records start on disk
and I/Os are simple, RAM is initially empty.

We need to compute the initial potential in order to apply
Lemma 5. The initial potential depends on the number of
records that start in the same source block and are in the
same target group. A record with source address x = (x0;
x1; : : : ; xn�1) is in source block k if and only if

k = xb::n�1 ; (4)

interpreting k as an (n� b)-bit binary number. This record
maps to target block i if and only if

i = Ab::n�1;0::n�1 x0::n�1

= Ab::n�1;0::b�1 x0::b�1 � Ab::n�1;b::n�1 xb::n�1 ; (5)

also interpreting i as an (n � b)-bit binary number. The
following lemma gives the exact number of records that start
in each source block and are in the same target group.

Lemma 8 Let r = rank(Ab::n�1;0::b�1), and consider any
source block k. There are exactly 2r distinct target blocks
that some record in source block k maps to, and for each
such target block, exactly B=2r records in source block k map
to it.

Proof: For a given source block k, all source addresses ful�ll
condition (4), and so they map to target block numbers
given by condition (5) but with xb::n�1 �xed at k. The
range of target block numbers is thus R(Ab::n�1;0::b�1) �
Ab::n�1;b::n�1 k which, by Lemma 6, has cardinality 2r.

Now we determine the set of source addresses in
source block k that map to a particular target block i
in R(Ab::n�1;0::b�1) � Ab::n�1;b::n�1 k. Again �xing
xb::n�1 = k in condition (5) and exclusive-oring both
sides by Ab::n�1;b::n�1 k, we see that this set is precisely
Dom(Ab::n�1;0::b�1; i� Ab::n�1;b::n�1 k). By Lemma 7, this

set has cardinality exactly 2b�r, which equals B=2r.

We can interpret Lemma 8 as follows. Let r =
rank(Ab::n�1;0::b�1), and consider a particular source
block k. Then there are exactly 2r target blocks i for which
gblock(i; k; 0) is nonzero, and for each such nonzero target
block, we have gblock(i; k; 0) = B=2r.

Now we can compute �(0). Since RAM is initially empty,
gmem(i; 0) = 0 for all blocks i, which implies that Gmem(0) =
0. We have

�(0) = Gmem(0) +

N=B�1X
k=0

Gblock(k; 0)

= 0 +

N=B�1X
k=0

N=B�1X
i=0

f(gblock(i; k; 0))

=

N=B�1X
k=0

2r
B

2r
lg
B

2r
(by Lemma 8)

=
N

B
B lg

B

2r

= N(lgB � r) : (6)

Combining Lemma 5 and equation (6), we get a lower
bound of



�
N

B
+
N lgB �N(lgB � r)

B lg(M=B)

�
=




�
N

B

�
1 +

rank(Ab::n�1;0::b�1)

lg(M=B)

��
parallel I/Os. Dividing through by D yields a bound of



�
N

BD

�
1 +

rank(Ab::n�1;0::b�1)

lg(M=B)

��
;

which completes the proof of Theorem 1.

Proof of Theorem 2

We use Theorem 1 and the following lemma to prove Theo-
rem 2.

Lemma 9 For any permutation matrix A, we have

�b(A)� lg(M=B) � �m(A) � �b(A) + lg(M=B) :

Proof: Since the rank of any submatrix of a permutation
matrix is equal to the number of 1s in the submatrix, we



have that

�m(A) = rank(Am::n�1;0::m�1)

= rank(Ab::n�1;0::b�1)� rank(Ab::m�1;0::b�1)

+ rank(Am::n�1;b::m�1)

= �b(A)� rank(Ab::m�1;0::b�1)

+ rank(Am::n�1;b::m�1) : (7)

The rank of a submatrix is nonnegative and is at most the
smaller of the number of rows and the number of columns,
which implies that

0 � rank(Ab::m�1;0::b�1) � m� b = lg(M=B) ;

0 � rank(Am::n�1;b::m�1) � m� b = lg(M=B) :

Combining the above inequalities with equation (7) yields

�b(A)� lg(M=B) � �b(A)� rank(Ab::m�1;0::b�1)

� �m(A)

� �b(A) + rank(Am::n�1;b::m�1)

� �b(A) + lg(M=B) ;

which completes the proof.

To prove Theorem 2, we note that Lemma 9 implies that

rank(Ab::n�1;0::b�1)

lg(M=B)
=

�b(A)

lg(M=B)
= �

�
�(A)

lg(M=B)

�
:

Combined with Theorem 1, we get a lower bound of




�
N

BD

�
1 +

�(A)

lg(M=B)

��
parallel I/Os for BPC permutations.

3 An asymptotically optimal BMMC algorithm

In this section, we present an algorithm to perform BMMC
permutations by factoring them into simpler permutations.
As usual, we assume that the BMMC permutation is given
by an n� n characteristic matrix A and a complement vec-
tor c of length n. The number of parallel I/Os is at most
2N
BD

�
6
�

rank()

lg(M=B)

�
+ 5
�
parallel I/Os, where  is the subma-

trix Ab::n�1;0::b�1.
Our strategy is to factor the matrix A into a product of

matrices, each of which is the characteristic matrix of one
of four types of permutations: MRC, block BMMC, BPC,
and a fourth type described in Appendix A. For now, we
ignore the complement vector c. We read the factors right
to left to determine the order in which to perform these
permutations. For example, if we factor A = V W , then
we perform A by �rst permuting according to characteristic
matrix W and then permuting according to characteristic
matrix V . The reason for this right-to-left order is that if
y = Ax, then we �rst multiply Wx, giving y0, and then
multiply V y0, giving y. Factoring the matrix A in this way
will make it easy to count how many passes the BMMC
permutation takes.

Permuting columns to create a nonsingular trailing subma-
trix

We start by permuting the columns of A so that the trailing
(n�b)�(n�b) submatrix is nonsingular. That is, we divide
A between the lower b rows and columns and the upper n�b
rows and columns and factor it as A = bA �, where

A =

b n� b�
� �

 �

�
b

n� b

;

bA =

b n� b� b� b�b b�
�

b

n� b

;

� is a permutation matrix, and b� = bAb::n�1;b::n�1 is a non-
singular submatrix. We would like to permute the columns
of A so that the number of I/Os required to perform � is
minimum. We call such a permutation a minimum-impact
permutation. The size of the largest set S of columns of �
that are linearly independent is equal to rank(�). We can
come up with a minimum-impact permutation by choos-
ing a set T of n � b � rank(�) columns from the leftmost
b columns of A that, along with S, provide the needed set
of n � b linearly independent columns. To �nd these sets
S and T , we can use Gaussian elimination, as described
in [Cor92]. Because the permutation characterized by � ex-
changes n� b� rank(�) columns between the leftmost b and
the rightmost n� b columns, one can easily show that

�(�) = n� b� rank(�) : (8)

Moreover, because there are at least n� b� rank(�) linearly

independent columns in  that are also in b�, we have
rank() � n� b� rank(�) : (9)

Combining properties (8) and (9) yields �(�) � rank(),
and so we can perform the BPC permutation characterized

by � with at most 2
�

rank()

lg(M=B)

�
+ 1 passes. Note also that

because the linearly independent columns in b come from
either  or from the columns of � that are permuted to b,
we have that

rank(b) � rank() + n� b� rank(�)

� 2 rank() (10)

Observe that whenever a nonsingular matrix is expressed
as a product of matrix factors, each of the factors must
itself be nonsingular. This fact follows because the rank of
a matrix product is at most the rank of any factor, so if the
product of square matrices has full rank, each factor must
have full rank as well.

Factoring the remaining matrix

Our next task is to factor the matrix bA, which is nonsingular
by the above argument. We factor bA as

bA = U V W ;



where

U =

b n� b� b�� b� b��1 b b� b��1
0 I

�
b

n� b

;

V =

b n� b�
I 0b I

�
b

n � b

;

W =

b n� b�
I 0

0 b�
�

b

n � b

;

and so the factors U , V , and W are nonsingular. Since b� is
nonsingular, W characterizes a block BMMC permutation,
and so it requires only one pass. The upper b � b subma-

trix b�� b� b��1 b of U is nonsingular because if it contained
linearly dependent columns, then so would U , contradict-
ing the nonsingularity of U . Thus, U characterizes an MRC
permutation, which only requires one pass.

We further divide the matrix V and factor it as

V = P Q ;

where

b m � b n�m

P =

24 I 0 0

� I 0

0 0 I

35 b

m � b

n�m

and
b m � b n�m

Q =

24 I 0 0

0 I 0

� 0 I

35 b

m � b

n�m

:

Here, we have divided the submatrix b as

bb =

�
�

�

�
m � b

n�m

: (11)

The upper m �m submatrix of P is unit lower triangular
and, therefore, nonsingular. Thus, P characterizes an MRC
permutation, requiring only one pass.

It remains to perform the permutation characterized
by the matrix Q, whose lower left (n � m) � b subma-
trix � may be nonzero. Our strategy is to factor Q

into g = drank(� )=(m� b)e matrices Q(1);Q(2); : : : ;Q(g),
each of which characterizes a permutation that requires
only two passes. Note that equation (11) implies that
rank(�) � rank(b) and, using inequality (10), we have
g � d2 rank()=(m� b)e.

To factor Q, we need a column basis C (a maximal lin-
early independent set of columns) for � , which again we
can �nd by Gaussian elimination. Having found C, let �C
denote the submatrix of � containing the columns indexed
by C. Let C 0 = f0; 1; : : : ; b � 1g � C index the columns
of � not in the column basis. We partition C into g sets

C(1); C(2); : : : ; C(g), where
��C(i)

�� � m� b for i = 1; 2; : : : ; g.

For each index j 2 C 0, the column �j is a linear combination

of columns in �C ; we de�ne C
(i)

j to be the set of column in-

dices in C (i) that contribute to this sum of columns. That
is, for each j 2 C 0, we have

�j =

gM
i=1

 M
k2C

(i)
j

�k

!
:

Each factor Q(i) is the matrix

b m � b n�m

Q(i) =

24 I 0 0

0 I 0

� (i) 0 I

35 b

m � b

n�m

; (12)

where the (n �m) � b submatrix � (i) has columns de�ned
as follows:

� For j 2 C(i), we set �
(i)

j = �j.

� For j 2 C �C(i), we set �
(i)

j = 0.

� For j 2 C 0, we set �
(i)

j =
M
k2C

(i)
j

�k.

The matrices � (i) are constructed so that rank(� (i)) =��C(i)
�� �m� b and that � = � (1)�� (2)�� � �� � (g). One can

verify that Q = Q(1)Q(2) � � � Q(g), as required.
To recap, we have factored our original BMMC charac-

teristic matrix A into A = U P Q(1)Q(2) � � � Q(g)W �. Both
U and P characterize MRC permutations, and so does their
product Z = U P . We can therefore express A with one

fewer factor: A = Z Q(1) Q(2) � � � Q(g)W �. Appendix A
sketches how to perform each permutation characterized by

a factor Q(i) in only two passes. (The procedure is con-
ceptually complex but computationally easy.) The factors
Z and W require one pass each, and the BPC permutation

given by � requires at most 2
�

rank()

lg(M=B)

�
+ 1 passes. The

BMMC permutation given by A, therefore, requires at most

2g + 2 + 2
l
rank()

lg(M=B)

m
+ 1

� 2
�l

2 rank()

lg(M=B)

m
+
l
rank()

lg(M=B)

m�
+ 3

� 6

l
rank()

lg(M=B)

m
+ 5

passes.
Earlier, we deferred discussion of the complement vec-

tor c. To include it in the BMMC permutation, we perform
it as part of the last MRC permutation, which is character-
ized by Z. No additional pass is needed to incorporate the
complement vector into the BMMC permutation.

4 Detecting BMMC permutations at run time

In practice, we wish to run the BMMC algorithm of Section 3
whenever possible to reap the savings over having run the
more costly algorithm for general permutations. For that
matter, we wish to run the BPC, MRC, and block BMMC
algorithms of [Cor93] whenever possible as well. We must



know the characteristic matrix A and complement vector c,
however, to run any of these algorithms. If A and c are
speci�ed in the source code, before running the algorithm
we only need to check that A is of the correct form, e.g.,
that it is nonsingular for a BMMC permutation, a permu-
tation matrix for a BPC permutation, etc. If instead the
permutation is given by N target addresses, we can detect
at run time whether it is a BMMC permutation by the fol-
lowing procedure:

1. Check that N is a power of 2.

2. Form a candidate characteristic matrix A and comple-
ment vector c such that if the permutation is BMMC,
then A and c must be the correct characterizations.
This section shows how to do so with only

�
lg(N=B)+1

D

�
parallel reads.

3. Check that the characteristic matrix is of the correct
form.

4. Verify that all N target addresses are described by the
candidate characteristic matrix and complement vec-
tor. If for any source address x and its corresponding
target address y we have y 6= Ax � c, the permuta-
tion is not BMMC and we can terminate veri�cation.
If y = Ax � c for all N source-target pairs, the per-
mutation is BMMC. Veri�cation uses at most N=BD
parallel reads.

The total number of parallel I/Os is at most

N

BD
+
l
lg(N=B) + 1

D

m
;

all of which are reads, and it is usually far fewer when the
permutation turns out not to be BMMC.

One bene�t of run-time BMMC detection is that the pro-
grammer might not realize that the permutation to perform
is BMMC. For example, as noted in Section 1, the stan-
dard binary reected Gray code and its inverse are both
MRC permutations. Yet the programmer might not know
to call a special MRC or BMMC routine. Even if the system
provides an entry point to perform the standard Gray code
permutation and this routine invokes the MRC algorithm,
variations on the standard Gray code may foil this approach.
For example, a standard Gray code with all bits permuted
the same (i.e., a characteristic matrix of �G, where � is a
permutation matrix and G is the MRC matrix that charac-
terizes the standard Gray code) is BMMC but not necessar-
ily MRC. It might not be obvious enough that the permu-
tation characterized by �G is BMMC for the programmer
to invoke the BMMC algorithm explicitly.

Forming the candidate characteristic matrix and comple-
ment vector

The method for forming the candidate characteristic ma-
trix A and candidate complement vector c is based on two
observations. First, if the permutation is BMMC, then the
complement vector c must be the target address correspond-
ing to source address 0. This relationship holds because
x = 0 and y = Ax� c imply that y = c.

The second observation is as follows. Consider a source
address x = (x0; x1; : : : ; xn�1), and suppose that bit posi-
tion k holds a 1, i.e., xk = 1. Let us denote the jth column

for matrix A by Aj. Also, let Sk denote the set of bit po-
sitions in x other than k that hold a 1: Sk = fj : j 6=
k and xj = 1g. If y = Ax� c, then we have

y =

 M
j2Sk

Aj

!
� Ak � c ; (13)

since only the bit positions j for which xj = 1 contribute a
column of A to the sum of columns that forms the matrix-
vector product. If we know the target address y, the com-
plement vector c and the columns Aj for all j 6= k, we can
rewrite equation (13) to yield the kth column of A:

Ak = y�

 M
j2Sk

Aj

!
� c : (14)

We shall compute the complement vector c �rst and then
the columns of the characteristic matrix A one at a time,
from A0 up to An�1. When computing Ak, we will have al-
ready computed A0;A1; : : : ;Ak�1, and these will be the only
columns we need in order to apply equation (14). In other
words, Sk � f0; 1; : : : ; k � 1g. Recall that in an address,
the lower b bits give the record's o�set within its block, the
middle d bits give the disk number, and the upper n�(b+d)
bits give the track number.

From equation (14), it would be easy to compute Ak if
Sk were empty. The set Sk is empty if the source address
is a unit vector, with its only 1 in position k. If we look at
these addresses, however, we �nd that the target addresses
for a disproportionate number|all but d of them|reside on
disk D0. The block whose disk and track �elds are all zero
contains b such addresses, so they can be fetched in one disk
read. A problem arises for the n� (b+ d) source addresses
with one 1 in the track �eld: their target addresses all reside
on di�erent blocks of disk D0. Each must be fetched in a
separate read. The total number of parallel reads to fetch all
the target addresses corresponding to all unit-vector source
addresses is n� (b+ d) + 1 = lg(N=BD) + 1.

To achieve only
�
lg(N=B)+1

D

�
parallel reads, each read

fetches one block from each of the D disks. The �rst par-
allel read determines the complement vector, the �rst b+ d
columns, and the next D� d� 1 columns. Each subsequent
read determines anotherD columns, until all n columns have
been determined.

In the �rst parallel read, we do the same as above for
the �rst b + d bits. That is, we fetch blocks containing
target addresses whose corresponding source addresses are
unit vectors with one 1 in the �rst b + d positions. As be-
fore, b of them are in the same block on disk D0. This
block also contains address 0, which we need to compute
the complement vector. The remaining d are in track num-
ber 0 of disks D1;D2;D4;D8; : : : ;DD=2. Having fetched the
corresponding target addresses, we have all the information
we need to compute the complement vector c and columns
A0;A1; : : : ;Ab+d�1.

The columns we have yet to compute correspond to bit
positions in the track �eld. If we were to compute these
columns in the same fashion as the �rst b + d, we would
again encounter the problem that all the blocks we need
to read are on disk D0. In the �rst parallel read, the only
unused disks remaining are those whose numbers are not a
power of 2 (D3;D5;D6;D7;D9; : : :). The key observation is
that we have already computed all d columns corresponding



to the disk �eld, and we can thus apply equation (14). For
example, let us compute column Ab+d, which corresponds
to the �rst bit of the track number. We read track 1 on
disk D3 and �nd the �rst target address y in this block. Disk
number 3 corresponds to the �rst two disk-number columns,
Ab and Ab+1. Applying equation (14) with Sb+d = fb; b+1g,
we compute Ab+d = y�Ab�Ab+1�c. The next column we
compute is Ab+d+1. Reading the block at track 2 on disk D5,
we fetch a target address y and then compute Ab+d+1 =
y�Ab�Ab+2�c. Continuing on in this fashion, we compute
a total of D�d� 1 track-bit columns from the �rst parallel
read.

The remaining parallel reads compute the remaining
track-bit columns. We follow the track-bit pattern of the
�rst read, but we use all disks, not just those whose disk
numbers are not powers of 2. Each block read fetches a tar-
get address y, which we exclusive-or with a set of columns
from the disk �eld and with the complement vector to com-
pute a new column from the track �eld. The �rst parallel
read computes b+D� 1 columns and all subsequent paral-
lel reads compute D columns. The total number of parallel
reads is thus

1 +

l
n � (b +D � 1)

D

m
= 1+

l
lg(N=B)�D + 1

D

m
=

l
lg(N=B) + 1

D

m
:

5 Conclusions

This paper has shown an asymptotically tight bound on the
number of parallel I/Os required to perform BMMC permu-
tations on parallel disk systems. It is particularly satisfying
that the tight bound was achieved not by raising the lower
bound proven here and in [Cor92], but by decreasing the
upper bound in [Cor93]. The constant factors in the I/O
complexity of our algorithm are small, which is especially
fortunate in light of the expense of disk accesses.

We have also shown how to detect BMMC permutations
at run time, given a vector of target addresses. Detection
is inexpensive and, when successful, permits the execution
of our BMMC algorithm or possibly a faster algorithm for
a more restricted permutation class.

An important open problem is determining exact, rather
than asymptotic, lower bounds. It may yet be possible to
\hack the constants" in the upper bound. Without exact
lower bounds, however, we do not know when to stop hack-
ing.

Finally, we ask what other permutations can be per-
formed quickly? [Cor92] presents several O(1)-pass permu-
tation classes, and this paper has added one more (MLD
permutations in Appendix A). What other useful permuta-
tion classes can we show to be BMMC? Can we generalize
BMMC permutations further to useful classes that can also
be performed faster than the general permutation bound?
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A Performing permutations characterized by Q
(i)
in

two passes

This appendix sketches how to perform each permutation

characterized by a matrix Q(i), as de�ned in equation (12),
in only two passes. A complete description will appear in
the full paper.

Our method is to factor each matrix Q(i) into two ma-
trices, each of which characterizes a one-pass permutation.
One of these matrices in fact characterizes an MRC permu-
tation. The other characterizes a new type of one-pass per-
mutation, which we call a memoryload-dispersal, or MLD,
permutation.

For notational convenience, we assume from here on that

we are working with a matrix Q(i) for a given value of i, and
we drop the superscripts. Thus, we shall speak of Q, C,
and � with the implicit understanding that we really mean

a given Q(i), C(i), and � (i).
Before presenting our factoring of a matrix Q, we need

to de�ne some further index sets for submatrix rows and
columns and some special matrices. Each matrix Q has an
associated index setC , where jCj � m�b, indexing a column
basis for the lower left (n�m)� b submatrix � . We further
de�ne the following:

� r = jCj, so that rank(�) = r � m� b.

� C = f0; 1; : : : ; b� 1g � C.

� R is a set of row indices in � such that the r�r subma-
trix �R;C is nonsingular. (In other words, we choose a
row basis �R;C for the column basis �C .)

� IC is an r � b matrix formed by expanding an r � r
identity matrix out to b columns with the columns in
C being 0 and the columns in C being columns of the
identity matrix. For example, if C = f0; 2; 3g (so that
r = 3) and b = 5, then

IC =

"
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0

#
:

Similary, I
C
is a (b�r)�b matrix formed by expanding

a (b�r)�(b�r) identity matrix out to b columns with
the columns in C being 0 and the columns in C being
columns of the identity matrix.

We factor the nonsingular matrix as Q = X Y , where

X =

b� r m � b r n�m24 � 0 0 (IC)
T 0

0 I 0 0

0 0 0 I

35 b

m � b

n�m

;

Y =

b m � b n�m2664
I
C

0 0

0 I 0

(�R;C)
�1�R;0::b�1 0 0

� 0 I

3775
b� r

m � b

r

n�m

;

and the submatrix � 0 of X is given by

�
0 = (IC)

T(�R;C)
�1
�
R;C

� (I
C
)T :

(We omit the proof that this factorization is correct.) Be-
cause Q is nonsingular, so are X and Y . Observe that
the leading m � m submatrix of X must be nonsingular,
for otherwise there are linearly dependent columns among
the leftmost m columns of X, and X would then be singu-
lar. Therefore, X characterizes an MRC permutation, as we
claimed above would be the case.

The matrix Y , however, characterizes a new type of per-
mutation that we call memoryload-dispersal or MLD. We
shall not delve into the details of performing MLD permu-
tations here, but we sketch how to perform one. Using
Lemma 6, one can show that because rank(�) = r � m� b,
each source memoryload maps to exactly 2r �M=B target
memoryloads. In addition, one can use Lemma 7 to show
that given a target memoryload, if a particular source mem-
oryload maps any records to this target, then it maps exactly
2m�r � B such records. We can partition the source and
target memoryload numbers into sets of 2r source memory-
loads and 2r target memoryloads such that each source set
has a unique target set that all of its records map to. We
can perform the MLD permutation by reading in a source
memoryload at a time, permuting it in memory according to
the characteristic matrix Y , and writing it out so that the
records mapping to each block image in RAM are destined
for the same target memoryload. Moreover, the structure
of Y ensures that the blocks are spread out evenly across the
disks in the target memoryloads. We read the source records
a memoryload at a time, we write the target memoryloads a
block at a time, and every block of every target memoryload
is written exactly once by the time we are �nished process-
ing all the source memoryloads. This procedure takes one
pass. After performing the MLD permutation characterized
by Y , every target memoryload has the records destined for
it according to the matrix Q; the MRC permutation charac-
terized by X then puts each record into its correct location
within its memoryload.
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