
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

6-7-1993

Off-line Cursive Handwriting Recognition Using Style Parameters Off-line Cursive Handwriting Recognition Using Style Parameters

Berrin A. Yanikoglu
Dartmouth College

Peter A. Sandon
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

 Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation
Yanikoglu, Berrin A. and Sandon, Peter A., "Off-line Cursive Handwriting Recognition Using Style
Parameters" (1993). Computer Science Technical Report PCS-TR93-192.
https://digitalcommons.dartmouth.edu/cs_tr/82

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601135?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/82?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

OFF-LINE CURSIVE HANDWRITING RECOGNITION

USING STYLE PARAMETERS

Berrin A. Yanikoglu

Peter A. Sandon

Technical Report PCS-TR93-192

O�-line Cursive Handwriting Recognition Using

Style Parameters

Berrin A. Yanikoglu

Peter A. Sandon

Department of Mathematics and Computer Science

Dartmouth College

Hanover, NH, 03755

June 7, 1993

Abstract

We present a system for recognizing o�-line cursive English text, guided in part by global

characteristics of the handwriting. A new method for �nding the letter boundaries, based on

minimizing a heuristic cost function, is introduced. The function is evaluated at each point

along the baseline of the word to �nd the best possible segmentation points. The algorithm

tries to �nd all the actual letter boundaries and as few additional ones as possible. After

size and slant normalizations, the segments are classi�ed by a one hidden layer feedforward

neural network. The word recognition algorithm �nds the segmentation points that are likely

to be extraneous and generates all possible �nal segmentations of the word, by either keeping

or removing them. Interpreting the output of the neural network as posterior probabilities of

letters, it then �nds the word that maximizes the probability of having produced the image,

over a set of 30,000 words and over all the possible �nal segmentations. We compared two

hypotheses for �nding the likelihood of words that are in the lexicon and found that using a

Hidden Markov Model of English is signi�cantly less successful than assuming independence

among the letters of a word. In our initial test with multiple writers, 61% of the words were

recognized correctly.

1

1 Introduction

Handwriting recognition is the task of interpreting an image of handwritten text. We use

the terms handwriting and cursive handwriting interchangeably, in their most general sense,

i.e. successive letters of a word may or may not be joined. Strictly connected cursive

handwriting and discretely written handwriting are referred to as pure cursive handwriting

and handprinting, respectively.

The image of the handwriting can be obtained by at-bed scanning after the text has been

written (o�-line), or by means of digitizing tablets or stylus pens as the text is being written

(on-line). On-line devices can capture dynamic characteristics of the handwriting, such as

the number and order of strokes, and velocity and pressure changes, but the information must

be processed in real time. O�-line approaches have less information available for recognition,

but have no real-time constraints [TSW90].

The system we are developing is for o�-line recognition of cursive, handwritten text. The

input to the system is the scanned image of a page of cursive handwriting, written roughly

along the rulings. Currently, the system is trained to recognize lowercase letters only, but

the writing style is not constrained in any other way.

Section 2 of this paper describes the process of �nding the text line boundaries. For each

text line, we extract parameters that characterize the style of the writing (style parameters),

as explained in Sections 3 and 4. Sections 5 and 6 describe the algorithms that isolate

words on a line and letters in a word. This latter step, called word segmentation, or simply

segmentation, involves the use of style parameters to accurately locate letter boundaries and

is key to the success of the overall system. Section 7 describes the process of recognizing

segmented letters. Two di�erent methods for word recognition are described in Section 8.

Experimental results are described in Section 9.

2 Finding text line boundaries

To recognize the page, we �rst �nd the text line boundaries and then recognize each text line

in turn. These boundaries are not always straight lines, due to overlap as shown in Figure

1.

To �nd the exact boundary between two text lines, we compute the histogram of pixel

densities along the horizontal scan lines. Using the smoothed histogram, we roughly locate

the baseline (the line where the letters sit) of each text line and apply a contour following

2

algorithm to �nd the exact boundaries. The exact boundary between two text lines can be

thought of as the path of a bug trying to reach the right hand side of the page, starting from

the left hand side of the top baseline, while staying below the text of the top line. It is based

on the algorithm that �nds the outline of an object, in [DH73]. Since the algorithm employs

8-connectedness, the image is �rst smoothed using a 3x3 Gaussian mask to avoid problems

caused by thin, slanted strokes.

Figure 1: Segmentation of the page into text lines.

3 Finding the reference lines

The reference lines of a text line [SR87] are the four horizontal lines that mark the top of

the ascenders, the top of the main bodies of letters, the baseline and the bottom of the

descenders. They will be referred to as l1, l2, l3 and l4, from top to bottom. Figure 2 and

Figure 3 show the reference lines of two text lines as found by the system. Note that l1 and

l4 are the points where the ascenders and descenders would approximately reach, if there

were any. The algorithm that �nds the reference lines is as follows:

1. Compute the horizontal pixel density histogram, h0, of the text line.

2. Compute the smoothed histogram, s0, as

s0(x) =

i=2X
i=�2

h0(x+ i)

3

3. Compute the \derivative" of the smoothed histogram, d0, as

d0(x) = s0(x)� s0(x� 5)

This represents the pixel density di�erence of successive blocks of 5 scan lines.

4. Starting from the top of the line, let l1 be the �rst point where s0 is non-zero.

5. Starting from the bottom of the line, let l4 be the �rst point where s0 is non-zero.

6. From the midpoint of l1 and l4 up to l1, rede�ne l1 to be the �rst point where s0

becomes zero.

7. From the midpoint of l1 and l4 down to l4, rede�ne l4 to be the �rst point where s0

becomes zero.

8. Let the peak p be the point where s0 has its maximum.

9. Let l3 be the point of local minimum of d0 between p and l4.

10. Let l2 be the point of local maximum of d0 between l1 and p.

11. If l1 and l2 are very close, set l1 to (l2�max((l4� l3); (l3� l2))).

12. If l3 and l4 are very close, set l4 to (l3 +max((l2� l1); (l3� l2))).

Figure 2: Reference lines l1, l2, l3 and l4, from top to bottom.

Figure 3: l4 is adjusted since there were no descenders.

If the page was not properly positioned on the scanner, or if the writing does not follow

the rulings, the horizontal pixel density histogram does not show a signi�cant peak. In that

case, we compute histograms angled at -10 and 10 degrees from the horizontal and interpret

the angle corresponding to the histogram that shows the most signi�cant peak as the line

skew. We then correct the skew by shearing, before applying the above algorithm.

4

4 Extracting style parameters

We extract parameters that characterize the style of the writing and use them in decisions

throughout the system. Parameterized decisions are essential for writer independent recog-

nition. Some of these parameters are the dominant slant of the writing, the thickness of the

pen and, the average values of inter-word spaces and letter widths.

Most of the style information, such as the average heights of ascenders, descenders and

letter bodies, is obtained from the reference lines. These are used, in particular, in the size

normalization step to decide whether a letter has an ascender, a descender or neither, and

to scale it accordingly.

We estimate the thickness of the pen and the average inter-word space by analyzing

the run-length histogram of the text. Then, using the vertical pixel density histogram, the

average body height as an initial estimate, and the estimated pen thickness, we estimate the

average letter width. Finally, we �nd the dominant slant of the writing by computing the

slant histogram using edge operators and �nding the most common slant within -30 and +30

degrees from the vertical. The dominant slant and the average letter width are particularly

useful in �nding the letter boundaries.

For most of these parameters, it would also be useful to know not only the average

values, but also the variances in order to assess the reliability of our decisions. For example,

in handwriting such as that in Figure 4, it is important to know that there is a large variance

in letter slants so as not to rely on the dominant slant which is not well de�ned.

Figure 4: Writing without a consistent slant.

5 Finding word boundaries

Before applying the segmentation algorithm, we �nd the connected components of the text

line, using a region growing algorithm. A distance greater than the average letter width

5

between two components is considered to be a word boundary. Finding word boundaries in

this way is not completely reliable but works quite well.

In general, any algorithm that uses a threshold distance is prone to failure since two words

may be arbitrarily close to each other, while the letters of a single word may be signi�cantly

apart. This problem implies that the task of �nding the word boundaries should be extended

to the word recognition stage where, for example, matching the image to pre�xes and su�xes

in the dictionary would solve the second part of the problem.

Connected component analysis also segments consecutive, disconnected letters, as a �rst

step in the letter segmentation process.

6 Finding letter boundaries

We use separator lines in one of six �xed angles (-20, -10, 0, 10, 20 and 30 degrees clockwise

from the vertical1) as letter boundaries, as shown in Figure 5. The gaps and ligatures between

letters are detected using pixel density histograms of the text line along these six angles.

Figure 5: Segmentation of the word television using separator lines.

Note that although this sample word is oversegmented, the segmentation is potentially

correct in the sense that all the actual letter boundaries are found. The oversegmentation

is partly due to the ambiguity of cursive script segmentation: some letter pairs (digraphs)

or triples (trigraphs) are indistinguishable from a single letter at the image level, as with

the letter w and the digraphs ui and iu. Since we are using a strictly bottom-up approach,

our algorithm tries to �nd all possible letter boundaries and thus oversegments these letters.

Section 6.2 describes how we handle oversegmentation.

1All angles are clockwise from the vertical, unless otherwise speci�ed.

6

Depending on the dominant slant of the writing, we choose a subset of four of the sep-

arator line angles to use in segmenting the word. For example, if the writing has a 20

degree slant, we use 0, 10, 20 and 30 degree angles. Using each of the corresponding angled

histograms, we segment the word using separator lines at the angle of that histogram, as ex-

plained below. Three segmentations of the above sample, as computed by the segmentation

algorithm, are shown in Figure 6.

Figure 6: Three segmentations of the word television using separator lines with 0, 10 and 20

degree angles.

The beginning of the �rst word in the text line constitutes the �rst segmentation point

for all four angles. Given one segmentation point, we �nd the next one by evaluating a cost

function, described in Section 6.1, at each point along the baseline to the right of that point

and choosing the point with the minimum cost. The cost at a point depends on the distance

of that point to the previous segmentation point, the average letter width, the number of

text pixels cut by the separator line and the height of the cut. This last feature helps to

7

locate the ligatures between letters since they are usually connected at their bases. We make

use of the style parameters in this process. For example, we normalize the amount of text

cut by dividing it by the average pen thickness.

For determining the �nal letter boundaries, we �rst take the union of these four sets

of segmentation points. This is necessary since a letter boundary may be detected in only

one of the segmentations. On the other hand, the union of the segmentation points usually

contains more than one segmentation point, corresponding to the same letter boundary. We

use a threshold of half the average letter width to identify segmentation points that are too

close and might correspond to the same letter boundary. From among these, we identify the

ones that do correspond to the same boundary and choose the one with the lowest cost as

the �nal segmentation point. The details of the algorithm is described below.

1. Find the next segmentation point p.

2. Let threshold � be half the average character width.

3. Find the set of points P1 that are within � of p.

4. If there are two points in P1 with the same segmentation angle, exclude all the points

after the second one.

5. From the remaining points in P1, �nd the set of points P2 that do not span much text.

(The number of text pixels should be less than the size of a small i.)

6. From among the points in P2, choose the one with the lowest cost as the �nal segmentation

point.

The output of the algorithm for a sample word is shown in Figure 7. Note that al-

though some of the letter boundaries are not found in some of the segmentations, the �nal

segmentation is potentially correct and that there are only 3 extraneous segmentation points.

Using this algorithm, we were able to segment all but one of the words in our test set of

111 words, as explained in the results section.

6.1 Derivation of the cost function

We use a cost function to �nd the segmentation points in the text. Given a segmentation

point we �nd the next one by assigning a cost to all the points to the right of it and choosing

the point that has the minimum cost. The �rst segmentation point is the left end of the text

that can easily be found.

8

Figure 7: Segments found using 0, 10 and 20 degree angles are shown on the second, third

and fourth lines, respectively. The output of the segmentation algorithm is shown at the

top.

The cost function is de�ned for the pair (A;P) where A is the angle of the separator line

(segmentation angle) passing through the point P on the baseline. For a �xed angle A, it is

computed as follows:

cost = w1

�
P � PP

EW

�2
� w2

�
P � PP

EW

�
+ w3(TC) + w4(HC);

where PP is the previous segmentation point, EW is the average letter width, TC is the

number of text pixels cut by the separator line normalized by the average pen thickness and

HC is the height of the highest point cut normalized by the total height of the line. The wis

are the relative weights of the cost terms.

We used linear programming to �nd a set of weights that would correctly segment a set of

digraphs, representing all types of connections between letters. Since digraphs are the image

primitives with respect to segmentation, an algorithm that correctly segments all digraphs

would also correctly segment all words. For each digraph, we chose a correct segmentation

point and a wrong one that is likely to be chosen, and constrained that the cost of the

correct segmentation point be smaller than that of the wrong one. For example, we used

9

the digraph bi where the correct segmentation point was chosen between the letters b and

i and the incorrect one was after the letter i. Note that once these two points are chosen,

the only unknowns are the weights. Satisfying all the constraints simultaneously is achieved

using linear programming, while minimizing the sum of the weights.

6.2 Handling oversegmentation

At this stage, some words are oversegmented as shown in Figure 8. To �nd the correct

segmentation of the word, the extraneous segmentation points, the second and third ones

in Figure 8, need to be identi�ed and removed. Since we have no way of knowing which

of those points are extraneous with certainty, we evaluate all possible �nal segmentations,

generated by either keeping or removing the points that are likely to be extraneous. Figure

9 and 10 shows two possible �nal segmentations for Figure 8. In the word recognition stage,

we arbitrate the segmentation by rating each word in the lexicon for its �t to each �nal

segmentation and choosing the word that has the best �t.

There are 2n�1 possible segmentations of a word that is segmented into n segments if

every segmentation point is considered as extraneous. We try to identify the ones that are

likely to be extraneous by analyzing the size and shape of the segments and the segmentation

cost. For example, the two segmentation points around a narrow segment or a segmentation

point with a high segmentation cost are likely to be extraneous. Also, our segmentation

algorithm segments a letter into at most three segments, which also reduces the number of

possible �nal segmentations, since we do not combine more than three segments into one.

Since only k of the n�1 segmentation points are identi�ed as likely to be extraneous, we must

consider 2k segmentations in the word recognition stage. For a six letter word, we identify 3

such segmentation points on the average, requiring 8 segmentations to be considered.

7 Letter recognition

7.1 Slant correction

We correct the slant of a letter by shearing the letter along the x-axis by the amount of its

estimated slant. We estimate the slant of a letter using two di�erent methods. The �rst

estimate is the dominant orientation of all edges in the interval [�30o; 30o], found using edge

detection techniques, followed by a histogram calculation. The second is the angle of the

10

Figure 8: The output of the segmentation algorithm for the word wood.

Figure 9: One possible �nal segmentation.

Figure 10: The correct segmentation.

vector joining the center of gravities of the top and bottom halves of the letter, assuming

uniform weight distribution [Bur80].

We combine the two methods since there are problems associated with each of them. For

example, the edge detection method may estimate the slant of a non-slanted x as 30 degrees

due to its diagonal stroke. On the other hand, the center of gravity method estimates a

positive slant for a non-slanted d. When the two estimates are within 20 degrees of each

other, we use the �rst estimate as the overall estimate. Otherwise, we assume a slant of 0

degrees.

We are using shearing, as opposed to rotating, since usually only the near-vertical strokes

of a letter are slanted.

11

7.2 Size normalization

To normalize the size of a segment and to make it �t in the 20 by 50 pixel input layer of the

letter recognition network, multiple linear mappings are used. Figures 11 show two training

alphabets and their letters after slant and size normalization.

Thu Mar 11 17:44:33 1993

Thu Mar 11 17:41:34 1993

Figure 11: Two of the alphabets used for training the letter recognition network and their

letters after size and slant normalizations.

We �rst decide, using the position of the letter in the text line and its horizontal pixel

density histogram, whether a letter is an ascender, a descender or is short, and where its

body starts and ends. If a letter is classi�ed in one of these 3 categories with con�dence,

its body is mapped to the middle zone of the input layer and its ascender or descender is

scaled to map to the top or bottom zone of the input layer. Otherwise, the part of the letter

that overlaps with the middle zone of the text line is mapped to the middle zone and the

remaining portions of the letter are mapped to the top and bottom parts of the input layer,

respectively. This method prevents problems that occur when the ascender or descender of

a letter is too long compared to the body, as for the example in Figure 12. Since the body

is scaled independently, it does not get negligibly small during the scaling.

By applying the same idea in the other direction as well, thus mapping the width of the

body to extend to the width of the center zone2, we also prevent problems that occur when

the ascender or descender are too wide compared to the body. More speci�cally, we linearly

2With the exception of narrow letters, for which the width to height ratio is preserved.

12

Figure 12: A sample letter before and after size normalization.

map the 9 regions on the left of Figure 12 to the corresponding 9 regions in the input layer.

Much of the ascender and descender variation is removed with this method.

7.3 Network architecture

After normalization, we use the one hidden layer feedforward neural network, shown in Figure

13, to classify the extracted letters.

connection of all
25 pixels in the
receptive field

P(z|)

Hidden
Nodes ...

...

...

...

...

...

...

...

...

...

Nodes

Connected
Fully

Output

P(a|)

a b z

Input Layer

P(b|) ...

Figure 13: The architecture of the neural network used for letter recognition.

The network has 26 output nodes corresponding to the 26 lower case letters, and 70 hidden

13

nodes. The hidden nodes have 10x10 receptive �elds which are more densely distributed

towards the center of the input layer. Each hidden node is fully connected to each output

node.

The input to the network is a 20 by 50 pixel gray scale image of the letter, after slant

and size normalization has been applied. The network is trained, using the backpropagation

learning algorithm, with 28 handprinted alphabets written by 28 di�erent writers. It learns

to correctly classify the training set after 18 epochs. We experimented with di�erent network

topologies and connection complexities, including fully connected networks, and found this

architecture to yield the best generalization. The activation level of a letter node in the

output layer is interpreted by the word recognition stage as the conditional probability of

the letter given the input image. Hampshire and Pearlmutter, and others have shown that

a network with enough connections approximates the Bayesian discriminant function such

that the output values approximate the a posteriori probabilities, if trained with su�cient

training data and using mean squared error estimation [HP90], [RRK+90].

8 Word recognition

To recognize the image of a word, we �rst assume that it is in the lexicon3 and rate each

word to �nd the one that best matches the image. Two hypotheses for �nding the likelihood

of words are compared for performance. The �rst assumes the words exhibit the digraph

statistics of English, for which a Hidden Markov Model is used. The second assumes the

small sampling of words in the training and test sets are equally probable, and do not reect

those digraph statistics. We found that the second method works signi�cantly better, as we

describe below.

8.1 Using Hidden Markov Models

Hidden Markov Models(HMMs) have proved to be useful in speech recognition, cryptanalysis

and handwriting recognition, because of their ability to deal with statistical and sequential

aspects of these problems. A Markov process is a stochastic process such that the probability

of going into a state depends only on the current state [RJ86] [KS60] [Kon82]. In other words,

knowledge of all the previous states does not give any more information than that of the

previous state. A HM process is a doubly stochastic process with an unobservable underlying

3The letter strings that are not in the lexicon are referred to as non-words.

14

Markov process that generates a sequence of observations as it moves from state to state,

where an observation is a stochastic function of the current state.

The states of the HMM correspond to the 26 letters of English, the observations to the

letter images, and words to sequences of states. The probability of observing oi in a state

lk corresponds to the probability of generating the image oi when writing the letter lk. In

other words, the output oi corresponds to what we see, the image of the letter, and the

state corresponds to the letter lk that has produced it. We use the 26 outputs of the neural

network when the input is oi as the posterior probabilities p(ljjoi); j = 1::26. The transition

probabilities between states correspond to the transition probabilities (digraph statistics) of

English which we estimate by counting number of occurrences of every letter pair in a large

combined text of around 3 million words4.

Finding the word that is most likely to have produced the image is equivalent to �nding

the most likely sequence of states, given the sequence of letter images and the �xed pa-

rameters of the HMM. Assuming the word is in our lexicon of 30,000 words, we �nd that

probability for each possible segmentation of the image and choose the word that maximizes

this probability over all possible segmentations.

For a word w = l1l2:::ln, and the sequence of letter images,s = o1o2:::on,

p(wjs) =
t l1p(o1jl1)tl1l2p(o2jl2):::p(onjln)tln

p(o1)p(o2):::p(on)
(1)

=
t l1tln

Qi=n
i=1 tlili+1Qi=n

i=1 p(oi)

i=nY
i=1

p(oijli) (2)

where an underscore represents a blank, and tlilk is the transition probability between

letter li and letter lk.

Therefore, we �nd the word w that maximizes

p(wjs) =
t l1tln

Qi=n
i=1 tlili+1Qi=n

i=1 p(li)

i=nY
i=1

p(lijoi)

since

p(okjli) =
p(lijok):p(ok)

p(li)

4The text of 3 books from Lewis Carroll and the World FactBook.

15

Note that p(wjs) can be written as a product of two terms, emphasizing the bias (input

independent factor) in the model:

p(wjs) =
t l1tln

Qi=n
i=1 tlili+1Qi=n

i=1 p(li)

i=nY
i=1

p(lijoi)

8.2 Assuming independence among letters

In our second approach, the posterior probability of a word, for a given segmentation of the

image is found as

p(wjs) = Pr(w)p(l1jo1)p(l2jo2):::p(lnjon) (3)

= Pr(w)
i=nY
i=1

p(lijoi) (4)

where w = l1l2:::ln, s = o1o2:::on is the sequence of letter images and Pr(w) is the

probability of occurrence of the word w in the English language.

Note that this scheme favors more likely words over less likely ones and thus maximizes

the performance over a large set of test words. For the experiments in the next section, we

used uniform distribution for the probability of occurrence of the words, since the test data

we used was not large enough. The reason this scheme works better than the previous one

for words in the lexicon is because the system's performance is good enough that the bias

introduced by the HMM is often disadvantageous. For example if the image is dip , which

does not have a high bias term, the HMM may choose the word die which does have a high

bias term, even if the letter p gets a signi�cantly higher probability than the letter e.

8.3 Recognizing non-words

If none of the words gets a probability over some threshold, the system will decide that

the image corresponds to a non-word. We use the Viterbi algorithm to �nd the most likely

non-word, which corresponds to �nding the most likely state sequence for the HMM, without

constraining it to be a word in the lexicon.

We have not analyzed the scores of the words that are correctly recognized by the system

to �nd the lower bound to use as that threshold. However, in our preliminary tests, the

16

output of the Viterbi algorithm has been the correct word only for the most common words,

which suggests that we use a low threshold.

9 Experimental results and discussion

We have experimented with several di�erent network architectures to �nd the best letter

recognition network in terms of generalization performance. The one hidden-layer network

with local connections described in Section 7.3 is used in the experiments here, due to its

superior performance. The letter recognition network is trained using 28 alphabets written

by 28 di�erent writers. The test set consists of 7 other such alphabets written by 7 other

writers. Both the training and test alphabets consist of the 26 lower case letters, where only

one form of each of the letters a,s and z is represented, in order to reduce the training e�ort.

The recognition rate for the letters of the test set is 75%, when the network is trained to

recognize all of the training alphabets. This low performance is due mainly to the very small

size of the training data.

In the remainder of this section we report the performance results of the whole system,

using word scores computed as described in Section 8.2. We asked several writers to write

the same test page the way they usually write, but more or less following the rulings of the

page. The page contains 8 text lines and 37 words, where the average number of letters per

word is 5.955.

In the �rst experiment, we tested the performance of the system on recognizing hand-

printing. The sample page was written discretely by a writer (W1) who also wrote a training

set. The recognition rates were 81% for letters and 93% for words. These results are similar

to the best handprinted word recognition rates [KHB89] [Bur87].

In the second experiment, we replicated the �rst experiment, except that the page was

written cursively this time. 70% of the words were recognized correctly and 76% were in the

top three word choices. All of the words were correctly segmented. In order to understand

the performance degradation compared to the �rst test, we analyzed the letter recognition

performance, for the correct segmentations of the test words. Only 50% of the letters of the

words in the sample page were recognized correctly, compared to 81% in the �rst test. This

is mainly due to not having cursive letters in the training alphabets. Recognizing cursively

written letters is also harder than recognizing handprinted letters, since the ligatures increase

5The average number of letters per word is 6.22 in the long combined text that we used to compute the

transition probabilities for the HMM.

17

the variance in letter shapes.

In the third and fourth experiments, we replicated the second experiment, but with two

other writers (W2 and W3). Writer W2 did not write a training alphabet. 28% of the words

written by writer W2 were recognized correctly and 47% of them were in the top three word

choices. One word was missegmented, but correctly recognized. The poor performance in

this case is partly due to bad writing style (letters are extended at the end of words as in

the second eliminate in Figure 14 and are inconsistent in size) and to the dissimilarities of

the letter shapes compared to the samples in the training set. 83% of the words written by

writer W3 were recognized correctly and 92% of them were in the top three word choices.

All the words were correctly segmented.

Overall, in the experiments 2 through 4, 61% of the words were correctly recognized

and 71 % of them were in the top three choices. Some of the correctly recognized words,

from each of the three writers, are shown in Figure 14. The �rst 6 words are from writer

W1, the next 5 words are from writer W2 and the next 3 words are from writer W3. Note

that W1 writes almost pure cursive whereas W2 and W3 write cursive, but with occasional

touching letters. Over the whole test set of 111 words, only one word was missegmented.

The segmentation results and the recognition performance on the second test set which was

almost pure cursive handwriting shows the success of our segmentation algorithm. Our word

recognition results compare favorably to those of Srihari and Bo�zinovi�c [SR87] and to the

lexical word recognition performance of the system by Edelman et al [EFU90], although an

exact comparison is not possible (see [YS93] for a summary of related work).

We are currently training the letter recognition network with an expanded training set

that includes some cursive letters and collecting more test data to test the system thoroughly.

References

[Bur80] D.J. Burr. Designing a handwriting reader. pages 715{722, 1980.

[Bur87] D.J. Burr. Experiments with a connectionist text reader. In IEEE First Inter-

national Conference on Neural Networks, volume 4, pages 717{724, 1987.

[DH73] R.O. Duda and P.E. Hart. Pattern Classi�cation and Scene Analysis. Wiley,

New York, 1973.

18

Wed Mar 10 23:23:36 1993

Figure 14: Some of the words that are correctly recognized.

[EFU90] S. Edelman, T. Flash, and S. Ullman. Reading cursive handwriting by alignment

of letter prototypes. International Journal of Computer Vision, 5(3):303{331,

1990.

[HP90] J. Hampshire II and B. PearlMutter. Equivalence proofs for multi-layer percep-

tron classi�ers and the bayesian discriminant function. In D. Touretzky, J. Elman,

T. Sejnowski, and G. Hinton, editors, Connectionist Models, pages 159{172. Mor-

gan Kaufmann, San Mateo, 1990.

[KHB89] A. Kundu, Y. He, and P. Bahl. Recognition of handwritten word: First and

second order hidden markov model based approach. Pattern Recognition, 22:283{

297, 1989.

[Kon82] A.G. Konheim. Cryptography: A Primer. John Wiley and Sons, NewYork, 1982.

[KS60] J. Kemeny and L. Snell. Finite Markov Chains. Cambridge University Press,

1960.

[RJ86] L.R. Rabiner and B.H. Juang. An introduction to hidden markov models. AASP

magazine, 3(1):4{16, 1986.

19

[RRK+90] D. W. Ruck, S. K. Rogers, M. Kabrisky, M. E. Oxley, and B. W. Suter. The mul-

tilayer perceptron as an approximation to a Bayes optimal discriminant function.

IEEE Transactions on Neural Networks, 1(4):296{298, 1990.

[SR87] S. Srihari and R. Bo�zinovi�c. A multi-level perception approach to reading cursive

script. Arti�cial Intelligence, 33:217{255, 1987.

[TSW90] C.C. Tappert, C.Y. Suen, and T. Wakahara. The state of the art in on-line

handwriting recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 12:787{808, 1990.

[YS93] Berrin A. Yanikoglu and Peter A. Sandon. O�-line cursive handwriting recog-

nition using neural networks. In SPIE Conference on Applications of Arti�cial

Neural Networks, 1993.

20

	Off-line Cursive Handwriting Recognition Using Style Parameters
	Dartmouth Digital Commons Citation

	ws.dvi

