View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Dartmouth Digital Commons (Dartmouth College)

Dartmouth College

Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

4-1993

Efficient Parallel Algorithms for some Tree Layout Problems

J Diaz
Universitat Politecnica Catalunya

A Gibbons
University of Warwick

Grammati E. Pantziou
Dartmouth College

M Serna
Universitat Politecnica Catalunya

Paul G. Spirakis
University of Patras

See next page for additional authors

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

b Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation

Diaz, J; Gibbons, A; Pantziou, Grammati E.; Serna, M; Spirakis, Paul G.; and Toran, J, "Efficient Parallel
Algorithms for some Tree Layout Problems" (1993). Computer Science Technical Report PCS-TR93-189.
https://digitalcommons.dartmouth.edu/cs_tr/70

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://core.ac.uk/display/337601124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/70?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Authors
J Diaz, A Gibbons, Grammati E. Pantziou, M Serna, Paul G. Spirakis, and J Toran

This technical report is available at Dartmouth Digital Commons: https://digitalcommons.dartmouth.edu/cs_tr/70

https://digitalcommons.dartmouth.edu/cs_tr/70

EFFICIENT PARALLEL ALGORITHMS FOR SOME
TREE LAYOUT PROBLEMS

J. Diaz, A. Gibbons, G. Pantziou,
M. Serna, P. Spirakis, J. Toran

Technical Report PCS-TR93-189

4/93

Efficient Parallel Algorithms for some Tree Layout
Problems *

J.Diazt A. Gibbons! G. Pantziou! M. Sernal P.Spirakis?
J. Toran!

Abstract

The minimum cut and minimum sum linear arrangement problems usually occur
in solving wiring problems and have a lot in common with job sequencing questions.
Both problems are NP-complete for general graphs and in P for trees. We present
here two algorithms in NC. The first solves the minimum sum linear arrangement
problem for unrooted trees in O(log? n) time and O(n23'°6™) CREW PRAM proces-
sors. The second algorithm solves the minimum cut arrangement for unrooted trees
of maximum degree d in O(dlog® ») time and O(n?/logn) CREW PRAM processors.

1 Introduction

Given a graph G = (V, E) with [V]| = n, a layout of G is a one-to-one mapping ¢ from V
to the first n integers {1,2, --,n}. The term layout is also known as linear arrangement
[Yan83], [Shi79]. Notice that a layout ¢ on V' determines a linear ordering of the vertices.
Given a natural ¢, the cut of the layout at ¢ is the number of edges that cross over i; 1.e.
the number of edges {u,v} € E with ¢(u) < i < ¢{v). The cutwidth of ¢, denoted v(¢), -
is the maximum cut of ¢ over all integes from 1 to n.

Graph layout problems are motivated as simplified mathematical models of VLSI layout.
Given a set of modules, the VLSI layout problem consists in placing the modules on a
board in a non-overlaping manner, and then wiring together the terminals on the differents
modules according to a given wiring specification and in such a way that the wires do not
interfere among them.

We can model a VLSI circuit by means of a graph, where the edges of the graph
represent the wires, and the nodes represent the modules. Of course, this graph is an
over-simplified model of the circuit, but understanding and solving problems in this simple
model can help us to obtain better solutions for the real-world model. Deterministic exact

*This research was supported by the ESPRIT BRA Program of the EC under contract no. 7141, project
ALCOM 11. The work of the third author is also supported by the NSF grant No. CDA-5211155

tDepartament de Llenguatges i Sistemes, Universitat Politécnica Catalunya, Pau Gargallo 5, 08028-
Barcelona

{Department of computer Science, University of Warwick

'Dartmouth College and Computer Technology Institute

Y University of Patras and Computer Technology Institute

0

algorithms are not known for placement and routing problems in the real world, and the
technigues used are based on a more or less efficient heuristic algorithms (see the survey
by Shing and Hu [Shi79}).

In this paper we shall consider two layout problems. The first problem is called the
minimum sum linear arrangement, MINLA. Given a graph G = (V, E}, find the layout
¢ which minimizes 3¢, 1ep lw(u) — {v)]. The MINLA is a simplified version of the
problem of how to place n modules in such a way to minimize the total length of the wire
interconnecting them.

The MINLA problem is NP-complete for general graphs [GJ76]. Moreover, due to the
importance of the problem, there has been some work trying to obtain polynomial time
algorithms for particular types of graphs. For instance, Harper solved it for the case where
the graph is a de Brujin graph of order four [Har70]. Adolph and Hu gave a O(nlogn)
algorithin for the case the graph is a rooted tree [AHT3]. Even and Shiloach proved the
problem is also NP-complete for bipartite graphs [ES78]. Finally, Shiloach proved that the
MINLA can be solved for the case of an unrooted tree with n nodes by a deterministic
algorithm running in time O(n*?) [Shi79].

The second problem that we shall consider is the minimum cut problem, MINCUT.
Given a graph G = (V, E), find the layout ¢ that minimizes the cutwidth v(). A particular
and important case of this problem is the graph bisection problem; find the partition of
9n vertices into two subsets of size n is such a way that it minimizes the cut befween
subsets. Assuming that a board has a number of vertical and horizontal tracks for wiring
the modules, the general MINCUT gives us the minimal number of tracks necessary to
connect the modules.

The MINCUT problem is NP-complete for general graphs [Gav77]. Asin the case on the
MINLA, the MINCUT has a history of results for particular types of graphs. Harper gave
a polynomial time algorithm for the n-dimensional hypercube ‘Har66]. Chung, Makedon,
Sudborough and Turner presented a O(n(logn)?~?) time algorithm to solve the MINCUT
problem on trees, where d is the maximum degree of any node in the tree [CMSTS82). The
MINCUT can be solved for the case of an unrooted tree with n nodes in time O(nlogn)
[Yan83]. The particular case of the graph bisection problem is also NP-complete [GIT9] .

We present here two algorithms in NC'. The first one solves the MINLA for unrooted
trees in O(log? n) time and O(n?3°8"} processors on a CREW PRAM. The second algo-
rithm solves the MINCUT for unrooted trees of maximum degree d in time O(dlog® n) and
O(n?/log n) processors in the CREW PRAM model.

2 A parallel algorithm for the MINLA problem on
trees '

2.1 Basic definitions and theorems

Let ¢ be a layout of a tree T. The cost of ¢ is defined by Cle,T] = T, vyer | wlvi) =
o(v;) |. ¢ is a minimum sum layout of 1" if there is no other arrangement with smaller

cost. Let @ denote the layout obtained by reversing the order of the vertices. Note that
Cle,T] = C7,T]. In general, C[T] will denote the mimimum cost of a layout for T'.

Definition 1 Let v be a vertex of T. Deleting v and its incident edges from T, yiclds
several subtrees of T. Each of them is called a subtree of T mod v. For each edge (v, v)
there is a unique subtree of T mod v, say T', such that v' € T'. The verter v’ is the root of
T" modv.

Givenv € V, let Ty, ..., T} be subtrees of T mod v, T'— (1, ..., i) denotes the tree ob-
tained by removing the vertices of T, ..., T} and their incident edges. When To, Ty, .., Tk
are all the subtrees of T mod v we will assume that they are numbered in such a way that
ne > ny > ... > n; where n; denotes the size of Ty, ¢ = 0,1,.. ., k.

A central verter is a vertex v, such that if Ty, T, ..., T; are all the subtrees of 7" mod
v, then n; < |n/2] for s =0,1,...,k. A way to compute such a vertex is given in [Shi79].

Definition 2 Let T be an n-vertez tree, let v € T, and let » be a layout of T'. 1" is called
a right anchored tree at v and denoted by ?(v) when its cost is defined by

Clo, T(v)] = Cle, T]+ n — »lv)
It is called a left anchored tree at v and denoted by ‘_f(v) when its cost ts defined by
—
Clp, T (v)] = Clo, T+ ¢(v) — 1

Remark. Finding a minimum sum layout for right and left anchored trees is equivalent,
since by reversing the order of the vertices a right anchored tree becomes a left anchored
tree, while the cost is unchanged.
~ In the following we will use T{«) to denote a tree, whith o = 0 for free trees and a = 1
for anchored trees. When we refer to the root of a tree this root will be either the vertex
at which the anchor is connected or the central vertex for {ree trees.
Let first give two technical lemmas related to sizes of subtirees.

Lemma 1 Let T{a) be a tree. Let p, be the value of the greatest integer p, satisfying

; 2 N+ 2 ,
n; > VLO; J%—[n; jforz:I,Q,...,Epa—a

where n, = n — 32703 % ny and T = T(a) — (T1,..., Topa—a), then | T. < n/2, where n is
the size of T{a). .

Lemma 2 Let T' be « free tree with central vertex v., and let Ty, Ty be the two heaviest
subtrees mod v,. If | T — (Ty, Th) |> n/2 then v is a central vertez of T — (1o, 71).

In order to compute the minimum sum layout we consider some special layouts. We
will say that a tree T'(a) has an layout of type

(Tl(al), . .,Tk(ak), ce, TT(QT))

2

when the lavout is computed from the corresponding subtree layouts adding the number
of nodes of the subtrees on the left, and the union of all the subtrees is T(«a).

Let T be a free tree, and v, be a central vertex of T'. Let Ty, ..., Tk be all the subtrees
of T'mod v,. Let A be the first index for which | 7" — (Ty,..., 15} |< n/2 and let po, be the
value obtained applying lemma 1 to T — (Tu,...,7;) (anchored at v. if ¢ is even) and let
Tibe T — (To,. ... Th . - Tgpa‘,_m), for each i =1,..., 3. We consider the following iayout

i = i P
A, = (ri+3(“aﬁ+1)>~->ﬁa---a T iy2(viga))

Lemma 3 A minimum sum layout for a free tree T can be computed as the minimum of
the following layouts:

g

Ay = (To(wo), Ta(va), Talva)y- s AL, Ta(vs), Ts(vs), T a(va)y T1(v1))

fori=0,...,3, and

vy —

P — —
Agrr = (T olvo), T a{va), T4(U4)1---:T““(Toa---1Tﬁ)>---uﬁrf}s(ve), T s(vs), T ofv2), ?1(01))

if 3 is even or

iy

Ag+1 = (wf}o(?}o), T;},(’Ug), T 4(’04), . ,T - (Tg, ... ,Tg), ey ?5(?)6), ?5(?)5), —T—?g(l}g), ?1(01))
if 8 is odd.

In order to get an expression to compute de cost of the previous layoutes we consider

the following. Let (}; be
(nigs + miga) + 2(nixs + riss) + 0+ (ph = Di{ngpg_1 + ngy) + por
when © is even and
(nit2 + 'fh'+3) + 2(nips + nigs) o+ (B = D(napyon F gy) + prni+1)

when ¢ is odd.

Let R; be 2 n — i(no + nl) (—' —1)(ng +n3) —- -+ — (ni—z + ni-1) when 1 is even and
R, 4 when ¢t 1s Odd

Then the cost of these layouts can be computed as

i—1 2p, - 2or
ZC (el + X CIT ()] + CIT + Qi+ R,
1=i4+1
C({Aps) = ZC Avl+ CIT = {To, ..., Ta)(va)} + Rs + 1 if ¢ is even
F=0
.8 —
C(Aﬁ_H) - ZCET:,'(’U]‘)] -+ C[T - (Tg, . .,T’Q)(U;)] + Rﬁ +n-—ng—- - — ng if 7 1s odd
3=0

For an anchored tree we get the following decomposition

3

Lemma 4 Let —f(v*) be an anchored tree and let v be the first index for which

“a minimumn layout for T can be computed as the minimum of the following layouts:

— — 0 . .
B; = (Tolvo), ..., Tyvg), T —{(Ty,...,T5}) fori=0,...,v

The cost of layout B; can be computed as:
L T : ‘
C(B) =3 ClIiwd) + CIT —(Ty,... To) +n—np, for 1=0,....7
Jj=0

Note that from lemmas } and 2 all the trees for which we have to compute an layout
in the decomposition given for free or anchored trees have size less than | T'| /2. Also in
both cases we obtain less than 2n trees of size less than n/2, furthermore the sum of the
tree sizes 1s at most 3n.

2.2 The parallel algorithm

Our algorithm will be divided into two stages. In the first one we decompose the tree
according to lemmas 3 and 4 until all the trees have size 1. At the same time we record
the expressions that will allow us to compute the layout from the smallest trees. In the
second stage we reconstruct the layout, until we get a minimum layout for the whole tree.
The complexity bounds for the algorithm are the following

Theorem 1 There is an NC algorithm to compute a minimum sum layout for an undi-
rected tree. The algorithm uses O{n*®) processors and O(log® n) time, where n is the
number of vertices in the tree.

We comment the main points on the paraliel algorithm to compute the cost of a mini-
mum sum layout for an undirected tree, it is easy to add the modifications fo get also the
layout.

Tree representation

We represent each tree using a mask where the nodes that form part of the corresponding
tree are recorded. Every time that we obtain a new tree we add a new node to the original
graph, connected only to the corresponding nodes, the mask will be the same putting 1 in
the position corresponding to the new node and 0 in the position corresponding to the old
one. To compute the corresponding tree we run a connected components algorithm, those
nodes that are in the connected component of the added node will be the ones that will
remain in the mask.

To distinguish between free and anchored trees we keep the parameter « and the cor-
responding root. This root will be either the vertex at which the anchor is connected or
the central vertex.

Free tree decomposition

In order to compuie a central vertex we compute for each edge in the tree the sizes of the
two corresponding subtrees. Then we compute the minimum of the difference of sizes over
all edges. We take as central vertex the root of the heaviest subtree corresponding to an
edge of minimum difference.

Once we have the central vertex, we have to compute subtree sizes (now the tree is
rooted), and order subtrees by size. From the tree sizes using suffix sums we compute
3,03, pt,...,pi. Consider the decomposition given in lemma 3. The cost of each layout
can be computed as the sum of the costs of the corresponding subtrees, adding an expression
that depends only on the sizes. The last amount can be computed now and recorded in a
matrix together with pointers to the corresponding subtree masks.

Anchored tree decomposition

Now we have a rooted tree, we first compute subtree sizes using the standard Euler’s Tour
technique [KR90] and then again with the same technique, we find a path of roots of trees
of maximum cardinality. Finally, using suffix sums we compute the index 4. Consider the
decomposition given in lemma 4. The cost of each layout can be computed the sum of the
costs of the corresponding subtrees, adding an expression that depends only on the sizes.
Complexity

Note that the number of decomposition phases in the first stage is O(logn). Thus the
maximum number of trees in a decomposition phase is O(3'"n) = O{n*°) taking into
account that the sum of the sizes of the trees obtained in the decomposition of a tree
T is at most 3 | T |. Furthermore the time used in each phase in the first and second
stage is O(logn). Thus the total requirements of the algorithm are O(n*®) processors and
O(log® n) time.

3 A parallel algorithm for the MINCUT problem on
trees

‘3.1 Preliminaries

Let T, be a tree which we convert into a binary one T'. Let v be a vertex of T, with degree
d and let wy, ..., wy be the children of v in T,. Then, the vertex set of T includes vertices
vl, ..., v¥*l For 1 < ¢ < d, v't! is the right child of v* in T (see figure 1). We will say that
the vertices v*,1 < ¢ < d, are of the same label since they are coming from the same vertex
of T, (e.g., in figure 1 vertices v? and v*** are of the same label while w} and v? are not}.

With each node u € T, we associate two pieces of information: i) a layout-sequence,
e{u), realizing the layout of the subtree rooted at u and u’s position in this layout and ii} a
cost-sequence, cost{u), of the layout c{u) defined as follows: cost(u) = (le ftcost{u}, *, rightcost{u)).
(The “+” denotes the position of u.)

(le ftcost(u)) is a sequence {1, N1, ¥z, M2, -..) where 7, is the largest cut (in c{u)) occuring
on the left side of u. Let w, be the point where the cut of 1 occurs. If wy is immediately
to the left of u then (leftcost(u)) = {71). Otherwise, let 71 be the smallest cut between
wy and u and let w, be the point closest to u where 7y occurs. Suppose that v, is the
maximum cut between w, and u and wa is the point closest to u where -, occurs. if

vg = 7y or ws is immediately to the left of u then {leftcost{u)} = (y1,m,72). Otherwise,

we continue similarly by taking the smallest cut between wa and u. (rightcost(u)) is a
sequence {7}, 11,75, ...) where +{ is the largest cut in ¢(u) occuring on the right side of w.
The rest of the sequence is defined in a way similar to that of {leftcost(u)) but we now
work on the right side of u. Clearly, 1 2 2 .o m < m S o, 27200 Sy <o
Also, v = m, Y2 = 19, ete., and ¥y = 73, 74 2 05, ete. (Our cost-sequences definitions are
motivated by the fundamental work of Yannakakis in [Yan83].)

¥ v, = +} then we say that the layout is balanced; otherwise, it is unbulanced. We define
the cost of the layout-sequence c{u) as the quantity v, = maz {7}

Let @ and b be the two subsequences of a cost-sequence cost { e.g., cost = {a,b)). If
a # b, and neither is a prefix of the other, then a > b iff a is lexicographically larger than b.
If a is a prefix of b and a ends with a ; entry, then a > b, whileif e ends with a n; entry, then
a < b. If leftcost(u) > rightecost{u) then we call the left side of ¢(u) (with respect to the
position of u) heavy side and the right one light. Let cost; = (heavysidey, *, lightsidey),
cost, = (heavysides, *,lightside,) be two cost-sequences corresponding to two layout-
sequences. Let heavyside; = ~1i, 01, Yais N2ir -+ and lightside; = Y1, My, Yois g+ 0> fOT
i € {1,2}. To compare the cost sequences cost; and cost;, we construct the sequence
compare; = (¥, 050 Voo Nsa)y for i € {1,2}, as follows: If vy; # v, then 7§, = y1; and
compare; = {(v5;). H v, = 4, and there are no next entries ny;, n{; in heavyside;, lightside;
respect., then let ¢, = ~y; and compare; = {+{;,~{;). If only one of the heavyside; or
lightside; has an entry following vi; or +{; then call that entry 7{; and let compare; =
(v, 05,). If i # 0l then let nf; = n{; and compare; = (v§;,ni;). H 9 = my; then in the
case that vs = mi or 721 # 74, let nf; = 7, ¥5; = 2 and compare; = {vi;, 715, 74;). In the
case that v = 75, we continue in the same way as in the case (above) where v1; = 71,

We say that cost; = costy iff compare; = compare,. If the sequences compare; #
compare, and neither is a prefix of the other, then cost; < costy iff compare, is lexico-
graphically smaller than compare,. If compare; is a prefix of compare; and compare; is
of odd length then costy < cost; while if compare; 1s of even length then cost; > cost,.
(Note that the way we compare the two sides of a cost-sequence is different from the way
we compare two “compare” sequences.)

Let T, be a tree rooted at a node u and ¢(u) a layout-sequence realizing a layout ¢ of
T.. Let cost(u) be the cost-sequence of c(u). We say that c(u) is optimel iff there is no
other layout ' of 7, with layout and cost-sequence ¢'(u} and cost’(u) respectively, such
that cost'{u) < cost(u).

3.2 The Algorithm

We give an O(n?/log n)-processor, O{dlog® n)-time parallel algorithm which finds a min-
imum cutwidth linear arrangement of a tree T, {d is the maximum degree of 1,}. The .
algorithm is based on the use of the parallel tree contraction technique ([ADKP89]}. The
shunt operation uses two merge-operations on the layout sequences:

Merge-operation A: Let T, be a tree rooted at a node w. T, consists of two trees T\,
T, (rooted at u, v respectively) and the edge {u,v}. Suppose that c{u), c(v) are optimal
layout sequences of T, 7., respectively. The merge-operation A computes an optimal
layout sequence c{uv) realizing the layout of T,, and the cost sequence of c(uv).
Merge-operation B: Let T, be a tree rooted at w with children wy, ..., us and T, a tree

6

rooted at v with children vs,...,ve. Suppose that we are given the optimal layout and
cost-sequences of T, T,. The merge-operation B computes an optimal layout-sequence
c(uv) realizing a layout of the tree T, which is rooted at u and has as children the children
of both 7, and 7.

We define now the shunt operation of the tree contraction technique:

Suppose that I; is the leaf which is ready to perform the shunt operation and that f;
is the father of I, p(f;) is the father of f; and f; is the other child of f;. Suppose also
that we are given the layout-sequences c{l;), c(f;}, ¢(f;), c(p(f:)) and the cost-sequences
cost(l;), cost(fi),cost(f;), cost(p(fi)) of L fi, f5,p(fi) respectively. Initially, all the se-
quences are equal to {0,,0). In the sequel, f; will be the node which is the result of
the shunt operation. We distinguish among two cases:

Case 1. [; is the left leaf of f;.
Fact 1. The nodes [, f; are not of the same label

We distinguish the following subcases:

Case 1l.a. fi, f; are of the same label. In this case, first we merge the sequences c{l;)
and ¢ f;) using the merge-operation A into the sequence c(f;l;). Afterwards, we join the
sequence cf f;;) and ¢(f;) into the sequence c(fi;) using the merge-operation B. Note that
the new vertex fi; is supposed to be of the same label with vertices fi, f;.

Case 1.b. fi, f; are not of the same label. We apply the merge-operation A first to merge
o{l;) and ¢(fi) and then to merge c(fil;) and ¢(f;). (Notice that f;; and f; are of the same
label). :

Case 2. I, is the right leaf of f;. (From fact 1, f;, f; cannot be of the same label.}

Case 2.a. I;, f; are of the same label.

Subcase 2.a.a. fi, p(fi) are also of the same label. We apply the merge-operation B to
merge ¢(l;) and ¢(f;) and after that to merge c(f:l;) and c(p(f:)). The resulting sequence
constitutes the new sequence of p(f;) while ¢(fi;) = ¢(f;} (fi; coincides with f;).

Subcase 2.a.b. f;, p(f;) are not of the same label. We use the merge-operation B to merge
e(l;) and ¢(f;), and the merge operation A to merge ¢(fil;} and ¢(f;). Suppose that the
resulting sequence c(f;;) is as in the figure 2, ie., ¢(fi;) = (A, *, B). From c(f;;} we easily
take the layout sequence ¢'{ fi;) = {C,*, D), where the “+” denotes the position of f; (see
figure 2). Let T};; be the subtree - of the current Tyo - rooted at f;;. In the sequel, every
merge operation of f;; with a vertex w of T;; is done using the layout-sequence ¢'(fi;} while
every merge operation of fi; with a vertex of T,,p — T;; is done using the layout-sequence
e fii).

Case 2.b. I, f; are not of the same label This case is similar to the above ones.

The efficient parallel implementation of the merge-operations A and B is a nontrivial
task and is done by distinguishing a number of cases. Suppose that:
clu) = (21, T, ooy Tiy #, Ty s Th, 21), (0) = (15020, U5 % Yi1s - Y2a Y1)
CO‘St(u) = (71u: Mus ooy Thur ¥y ’Y;u? k) Wim Ai’iu)v COSt(U) = (’7101 Mus ooy Tmay *5 7;11;? e Tn’im ‘Y;‘u)
and v, = mar{vi,, Y} Yo = MAT{ V10, V14) -
Merge-operation A: _
Case 1: 7, = 7, and c{u), ¢{v) balanced. In this case it is clear that the cost of an optimal
layout-sequence c(uv)} cannot be less than v, + 1.

Case 1.1. Suppose that leftcost(u) < rightcost(u} and rightcost(v) < leficost(v)

and ny, # 1, 1), # 1. Then we construct c(uv) from ¢(u), ¢{v) as follows (see figure 3):
cluv) = (Y1, ¥ vy + Loy + Lz + 1,0+ 1 *y Thyy ooy T3)

and the cost-sequence of c{uv) is: cost(uv) = (Yru+ 1 71a + Ly ooy You + 1y % Vi oo Mo T

The other subcases are similar.

Case 2: v, > 7, and c(u), ¢(v) balanced.

Case 2.1. Suppose that v, + 71, = 7, and Ny = Mu. I we insert T, between the
vertices where the cut i, (or 7)) is realized then the cost of ¢(uv) cannot be less than
~a + 1. For this reason, we try to spead the vertices of T, between the vertices of T, in
such a way that v, = 7,. To see this, suppose that 72, + 710 < Yu and 5, +n, < Va
Also suppose that mm{‘!zu + T??uaﬁféu + 7?211} < Yu 1 and ma${72u + n2u>7f’2u -+ WZu} S o
Let c{vy1) (c{v4n)) be the part of the left (resp., right) sequence of ¢{v) - with respect to
the position of v - from the beginning until the point realizing the cut v, (resp., o). We
insert c{v,1) {¢{vy1)) in the position of ¢(u) realizing the cut of i, (resp., ny,) and the
rest of ¢(v) in the position of c(u) realizing the cut of 1, (see figure 4). (Notice that the
resulting layout is of cost 7, but it is not necessarily optimal.)

A parallel procedure implementing the merge-operation A4 in this case follows.

Let k be the largest index such that: (i) v, = 7, and (ii) Vi < k, 4, = ¥/, (notice that
we can find this index easily in parallel in O{log k) time using m processors, where m Is
the length of the cost-sequence cost(u)).

For each viy, 1 <14 < k, we examine if the following holds:

Yoo+ N S Va1 0 Y+, S -1 (A)
For each viv, 1 <1 < k, that does not satisfy condition (A) we examine if:
Vi T Niw = Yu and e = Tl':u and TTICL.T{")/(?;_{_UU + Tivs ’Yzi-#l)u + n:v} _<- T (B)
Also, for (s41)» We examine if:
min{"/(kﬂ)u“i"’?(.kﬂ)u: 7;k+1)q;+n(.‘c+1}u} < vu—1 and max{"r{kﬂ)u'i”'fl(kﬂ)m ’Yfk+1)v+77(k+1)u} < Yu
or
. / !] < _1 d { ! ! i/ <
mm{'f(/a+1)u+n(k+1)u>’Y(k+1)v+7?(k+1}u} = T andg mazx 7{k+1)v+?7(k+1)ua’Y(k+1)u+77(k+1)u} = Yu

We call the above condition (C).

In the sequel, for each v, 1 <t < k, we create a node with label 1 if =;, satisfies
condition (A}, label 0 if v;, does not satisfy (A) but satisfies (B) and null if v, does not
satisfy neither (A) nor {B). Also, we create a node for y(x+1), with label 1 if it satisfies
(€ and label 0 if it does not. From each -, with label 0 or I we draw an arc to gy, if
Yii+1ye has label 0 or 1. In this way, we create one or more lists. Using the pointer doubling
technique we find in the list with head ~;, the first 7, with label 1. If such a v, does not
exist, there is no optimal layout-sequence of T, with cost v,. Otherwise, there is one (or

more) layout-sequence of T, with cost .. Ins order to find an optimal one do the following:
find the largest n;,, j > ¢ satisfying

maAn{Viv + Tju, Yoo +Mu} < Tiu+ 010 — 2 and maz{ Vi, + Nju, Vo + Nint < Yo H0-1)0 — 1
and the largest 7, 7 > @ satisfying
i Vi F s Voo T} S V01— 2 and maz{yi 40w, Yo T}t S Viw H e 1

If such a j does not exist, then let 7 = 1.

Let ¢ (uv) (cy{uv)) be the layout-sequence which we take if we insert the part of ¢(v)
realizing the cut 4, into 74, the cut 4, into nl,, 1 <k < (i — 1}, and the rest of c(v) into
Mju (resp., 0%,). Then, c(uv) is this one from ¢;{uv), cz(uv), with the smallest cost-sequence.

Once we have the layout-sequence c{uv) we can construct its cost-sequence. The con-
struction will not be described here. {For a similar construction see case 3 in the appendix.)

The other subcases of case 2 as well as the remaining cases are similar to the above
ones and will not be considered in this extended abstract. In the appendix we present only
one other case in order to show how to compute efficiently in parallel the cost-sequence
cost(uv), given that we have already computed the layout-sequence c(uv).

Lemma 5 Let T, be a tree rooted at a node u that consists of the trees T, T, rooted
at u, v respectively, and the edge {w,v}. Let also c(u), c(v) be optimal layout-sequences
of T and T, respectively. Then, the merge-operation A correctly computes an optimal
layout-sequence c{uv) of Tu, in O(logn) time using O{n) CREW PRAM processors (n is
the mazimum of the lengths of c(u), clv)).

Proof (sketch): The correctness is providing by considering the cost-sequences of T, and
T, and proving that in each one of the cases, there is no layout of T, with cost-sequence
smaller than the cost sequence of the layout produced by the procedure implementing the
merge-operation A. It is easy to see that in case 1.1 any other layout-sequence with cost
+u 4 1 {which is the best possible) has cost-sequence larger than or equal to the one given
above. For the other cases the correctness comes also easily from their description. il

Before we describe the merge-operation B we prove the following lemma concerning
the merge-operation A: ‘

Lemma 6 Let vy, --,vp be the children of a node w and let Ty,--- T, be the subtrees
rooted at vy, - -, v respectively. Let also c(v1), -, c(vi) be the optimal layout sequences
of the above subtrees. Suppose that c(u) is the layout-sequence resulting from merging
(sequentially) the layout sequences c(v1), -, c{vi} with the layout sequence of u, using the
merge-operation A. The cost-sequence of c(u) is optimal whichever is the order with which
we merge the trees Ty, 1 = 1, - k, with the layout sequence of u {using the merge-operation
AJ.

Proof (idea): By induction on the number k of trees and the fact that the merge-operation
A computes an optimal layout-sequence provided that the input sequences are optimal (see
lemma 5). N

Merge-operation B:
The parallel implementation of merge-operation B is based on merge-operation A. Let

9

T, be a tree rooted at v with children vq,-+-,v4 and T, a tree rooted at u with children
up,- -+ ug. Let also d be greater than or equal to d. Suppose that c(u), c(v) are optimal
layout sequences of T,,, 7T, respectively. Then, the merge-operation B computes an optimal
layout sequence c(uv) that realizes a layout of the tree Ty, rooted at u and having as children

the children of both T, and T, as follows:

Consider the subsequence ¢(v;), for each 7 € {1,---,d}, of the layout sequence ¢(v),
~induced by the vertices of the subtree T} rooted at v;, for each i € {1,--,d}. Note that
each c(v;), i = 1,---,d, is an optimal layout sequence of T3, 1 = 1, - - - ,d (if not then there

is another layout sequence ¢/(v;} with smallest cost-sequence resulting to another layout-
sequence ¢'(v) for T, which has smaller cost-sequence than ¢(v}); but ¢(v) is optimal). Then,
sequentially use merge-operation A to merge each one of (v}, i = 1, -, d, with e(u).

Lemma 7 Let T, be a tree rooted at u, T, a tree rooted at v and c(u), c(v) be optimal
layout-sequences of T, T\, respectively. Then, the merge-operation B correctly computes
an optimal layout-sequence c(uv) realizing o layout of the tree T, which is rooted at u
and has as children the children of both T, and T,, in O(dlogn) time using O(n) CREW
PRAM processors, where d is the minimum of the degrees of u, v and n is the mazimum
of the lengths of c(u}, c(v).

Proof: From the description of the merge-operation B, and lemmas 6 and 5. K
We give now the parallel algorithm for the mincut linear arrangement problem on trees.

ALGORITHM MINCUT(T)

for all v € T parde
Convert the tree rooted at v into a binary one T.g
Apply the parallel tree contraction technique to T\, to compute an
optimal layout-sequence ¢(v) of T, and its cost-sequence cost(v).

odpar '

cost(T) = min{cost(v) |v € T}

MINCUT(T) = ¢(T) {* ¢{T) is a layout-sequence with cost-sequence cost(T') *}

Theorem 2 Given a tree T with n vertices, the algorithm MINCUT constructs an optimal
layout of T in time O(dlog®n) using O(n?/logn) CREW PRAM processors, where d is
the maxzimum degree of T

Proof: The correctness of the algorithm comes from the correctness of the shunt operation,
which in turns comes from lemmas 5,6,7 and the fact that the two merge-operations are
combined correctly (see the description of the shunt operation). The time/processor bounds
come from the bounds of the parallel tree contraction technique and lemmas 5 and 7. B

References

[ADKP89] K. Abrahamson, N. Dadoun, D. Kirkpatrick and T. Przytycka. A simple parallel
tree contraction algorithm. Journal of Algorithms 10:287-302, 1989.

[AH73] D. Adolphson and T.C. Hu. Optimal linear ordering. SIAM J. on Applied
Mathematics, 25(3):403-423, Nov 1973.

10

[CMST82] M. Chung, F. Makedon, [.H. Sudborough, and J. Turner. Polynomial time algo-
rithms for the min cut problem on degree restricted trees. In FOCS, volume 23,
pages 262-271, Chicago, Nov 1982.

[ES78] S. Even and Y. Shiloach. NP-completeness of several arrangements problems.
Technical report, TR-43 The Technion, Haifa, 1978.

[Gav77] F. Gavril. Some NP-complete problems on graphs. In Proc. 11th. Conf. on In-
formation Sciences and Systems, pages 91-95, John Hopkins Univ., Baltimore,
1977.

[GIT6] M.R. Garey and D.S. Johnson. Some simplified NP-complete graph problems.
Theoretical Computer Science, 1:237-267, 1976.

{GIT9] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, 1979,

[Har66] I..H. Harper. Optimal numberings and isoperimetric problems on graphs. Jour-
nal of Combinatorial Theory, 1{3):385-393, 1966.

[Har70] L.H. Harper. Chassis layout and isoperimetric problems. Technical Report SP3
37-66, vol 11, Jet Propulsion Laboratory, Sept. 1970.

[KR90] R. Karp and V. Ramachandran. Parallel algorithms for shared memory ma-
chines. In Jan van Leewen, editor, Handbook of Theoretical Computer Science,
Vol. A, pages 869-942. Elsevier Science Publishers, 1990.

[Shi79! Yossi Shiloach. A minimum linear arrangement algorithm for undirected trees.
SIAM J. on Computing, 8(1):15-31, I'ebruary 1979,

[Yan83] Mihalis Yannakakis. A polynomial algorithm for the min cut linear arrangerment
of trees. In IEEE Symp. on Found. of Comp. Sci., volume 24, pages 274-281,
Providence RI, Nov. 1983.

APPENDIX Al

Case 3: 7. > 7. and ¢{u) balanced and c{v) unbalanced. Let H, be the heavy side of u
and L, the light one. W.Lo.g. let H, = leftcost{u) and L, = rightcost{u}. The procedure
which gives the cost 7., of an optimal layout-sequence c{uv) is as follows: ‘

if §1o + Y0 € v O 7], + Y £ Y then vy, =7, else v =7, + 1

In order to find the position between the vertices of u where we will insert T, we proceed
as follows: Let ¢ be the index of the largest n;, in H, for which n;, +7, < viu— 1. Let j be
the index of the largest %}, in L, for which Mo+ Y < v, Suppose now that c{hy,) (c(ly.))
is the layout-sequence we take if we insert c(v) between the vertices - in c{u) - where the
cut of ;. (resp., »},) occurs. Then, c{uv) is this one from c{hy,), c(lyy), with the smallest
cost-sequernce,

11

Suppose that we know the position where we will insert ¢(v) and want to compute the
cost-sequence of the layout-sequence c{uv). We consider only the case where 1, + ¥, > Yu
and 0}, + % < Y. (see figure 5) (the other cases are similar). Let z/, be the point in the
layout of T, where the cut #{, occurs. Then,

! ' i s : ’
C(UU) = ($1,"',£L';‘,*;331'1 +1,"';$ik+15y1 + 15"'7yj1+11yja'”>ylﬂmik7”'1"rl)

In order to compute the cost-sequence we distinguish subcases:
I zi < min{m.. 04, } and zi + 1 < min{n., 0y, }. In this case we have:
if v, < 75, + 1 then cost(uv) = {(Viu, 1w, 5%, 090 + 1Yoy + 1010, Tia)
else cost(uv) = (Yius Miw 0%, 5 Moy + LY + 1000 + 1% 010 Y1u)
IL z. > maz{n., 91, Let nmy <), and Ymee = maz{vay, v, + L 75, + 1}
If Fmoaw = ’Yéu +1 then COSt(u’U) = (F}Ilua My sty ¥y 0y Uéu + 1:7;—“ + 1, nlv”}}lu)-
It Fmazr = Ffiy‘l"l then COSt(UU) - ("/imnlm T,k ,Uéu‘i‘l, ’}/;'u-i-l, 771u+1)7£y+1’ T, '-Ylu)-
Let Ymar = 720. We consider the case that v, +1 > v5,+1 and 7,+1 < 73,+1 (the other
cases are similar). We use binary search to find in the sequence (7y, Nm-1)v, """, T2ws Yov)
the ~,, with the smallest possible | such that: v, < ~i, + 1 or m > 97, + L.Suppose
that for { = |4 we have v, > v, + 1 and n,, > 73, + 1 (again the other cases are
s%milar). Then’ CO'St(uv} = (Vluanl‘m" CyEy “ﬂ?ﬁu + 117&% + 1:7?1‘“ + 1?741) + 1777;1, +
1) Mhyes =Dy "7 s V20 Mo, ’7111)'
IIL. The other subcases are not more complicated and will not be described.

APPENDIX A2

, v
v
1 V2
w
1
1
WZ . vd
Ao
1 v
W
d
Figure 1:

12

f i 1
H J § }
A B
Figure 2:
{ }
Iv) E 1(u) [

Figure 3

T My " 2 LT

: i
| v
| ; A
l _]
o T ‘
A V(v | el /1 (v 1)
Figure 4:

Figure 5:

13

	Efficient Parallel Algorithms for some Tree Layout Problems
	Dartmouth Digital Commons Citation
	Authors

	tmp.1599855973.pdf.u_MBF

