Dartmouth College

Dartmouth Digital Commons

Dartmouth College Ph.D Dissertations Theses and Dissertations

5-1993

Accurate Verification of Five-Axis Numerically Controlled
Machining

Jerome L. Quinn
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/dissertations

b Part of the Computer Sciences Commons

Recommended Citation

Quinn, Jerome L., "Accurate Verification of Five-Axis Numerically Controlled Machining" (1993).
Dartmouth College Ph.D Dissertations. 66.
https://digitalcommons.dartmouth.edu/dissertations/66

This Thesis (Ph.D.) is brought to you for free and open access by the Theses and Dissertations at Dartmouth Digital
Commons. It has been accepted for inclusion in Dartmouth College Ph.D Dissertations by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/dissertations
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/dissertations?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/dissertations/66?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

ACCURATE VERIFICATION OF FIVE-AXIS
NUMERICALLY CONTROLLED MACHINING

Jerome L. Quinn
Technical Report PCS-TR983-191

5/83

Accurate Verification of Five-Axis
Numerically Controlled Machining

A Thesis
Submitted to the Faculty
in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

by
Jerome L. Quinn
Dartmouth College

Hanover, New Hampshire

May, 1993

Examining Committee:

(chairman) Robert L. Drysdale

Donald Kreider

Dennis Healy

Robert B. Jerard

Dean of Graduate Studies

Copyright by
Jerome L. Quinn

1993

ABSTRACT OF THE DISSERTATION

Current automated machining systems are composed of a number of compo-
nents to aid in bringing a surface from design to physical completion. Numerically
controlled {NC) milling machines are used to cut parts out of stock. Programming
these machines to cut a desired surface is still largely a matter of experienced human
participation. Therefore, the need exists to verify that tool programs produce the
desired part.

We present recent developments in the verification of NC tool programs. Many
of these methods rely on approximating the stock material as vectors whose lengths
reflect the amount of uncut material at any point. This allows simulation of 3-axis
machining to be carried out efficiently, because the intersection process is simple
to compute. Some machines are capable of 5-axis tool movements which are more
versatile, but verification of these programs is difficult due to the compiexity of the
tool motion.

We show several techniques by which it is possible to determine the intersection
of 5-axis tool movements and guarantee the accuracy of the results. These techniques
can be integrated into current NC machining verification systems to allow checking
of 5-axis programs. We then evaluate the relative performance of implementations

on test data and real world data.

ACKNOWLEDGEMENTS

I would like to thank the people who have contributed and helped me complete this
work, and my degree. First off, my advisor, Scot Drysdale, has been central to the
process. The commitiee members, Don Kreider, Dennis Healy, and Bob Jerard have
also been very helpful. In addition, [would like to extend special thanks to Ernst
Snapper, who has given me much of his time and expertise in helping me think
about and solve the problem presented. Finally, I would like to thank my friends
at Dartmouth and especially my wonderful wife, Lisa Baker, for the support and

encouragement [have received along the way.

il

Table of Contents

Abstract L oL 8
Acknowledgementso Ui
Table of Contents v
List of Tables o o Vi
List of Figures e ix
1. Introduction I
1.1. The goal of an automated machining system 2
1.2. Verification e 4
1.2.1. Methods of Verification 3

1.3. Modeling Five-Axis Tool Movements 12
1.3.1. Sweep Representation 13

1.3.2. Five-Axis Tool Representation 135

2. Preliminary Math and Notation 13
2.1. Cylinder Definitiono 13
2.2. Three-Axis Tool Movements s
2.3. RigidSweeps 19
2.4. Five-Axis Tool Movements 20
2.5. The Meaning of Erroro 22
2.6, Useful Formula L 23
3. Bounding Three-Axis Subdivision of a Five-Axis Sweep. 24

v

3.1, Method 24

3.2. Bounding three-axis Approximation Ervor 26
3.3. Optimization 30
34, Analysis . oo 32
3.5. Practical Considerations 34
. A Numerical Approach 36
4.1. Method oo e 36
4.2, Implementation and Bounds 12
4.2.1. Bounding the Equations 43
4.2.2. Tolerance and the Numerical Approach 47

. Polyhedral Approximation of a 5-Axis Sweep 31
5.1. Imtroduction 51
5.2. Bulding a Polyhedron 32
5.2.1. The Swept Envelope 52
5.2.2. Constructing the Side Meshes 33
5.2.3. Building the Surface Swept by the Bottom Disc 38
5.2.4. Merging the Side and Bottom Meshes 62

5.3. Bounding Polyhedron Tolerance 64
5.3.1. Bounding the Side Surface Meshes (4
5.3.2. Bounding the Disc Edge Surface 3
5.3.3. Bounding the Developable Surface. 75
5.3.4. Using Surface Points as Vertices TG

5.4. Implementation and Aralysis 7T
54.1. Implementation Issues T
5.4.2. Performance Analysis, 21

8. Discrete Stepping Along the Fixed Line a4

6.1. Introductiono 84
6.2. Algorithm Descriptiono 56
6.2.1. Starting Point L NE
6.2.2. Step Increment L o 87
6.2.3. Inclusion Test i

6.3, Optimizations o . L . 4y
6.3.1. Bounding Box Improvements00 99
6.3.2. Step Size Improvements oL 99

6.4. Implementation and Analysiso 000 102
7. Results and Conclusion 104
7.1 Testingo e 104
7.1.10 Programs 104
7.1.2. Testsand Data 000 108

7.2, Evaluation Lo 128
7.2.00 Scalingo 128
7.2.2. Rotation Angleo 0 oo 130
7.2.3. Linear Movement Length o 140
7.24. Tolerance 153
7.3. Conclusions 176
7.4. Open Problems o S 130
References L 182

v

o

-1

=1

-1
o

7.9.

7.10.

7.11.

-3
[
[

7.15.
7.16.
7.17.

7.18.

7.20.

List of Tables

100 Tool Movements L0
1000 Tool Movements L e
Rotation Data 100 Tool Movements. 10 Intersections Per oy
Rotation Data 100 Tool Movements, 100 Intersections Per 12

Linear Data 100 Tool Movements 10 Intersections Per, Max 3 Degrees 113
Linear Data 100 Tool Movements 100 Intersections Per, Max 3 Degrees 114
Linear Data 100 Tool Movements 10 Intersections Per, Max 90 Degrees 115

Linear Data 100 Tool Movements 100 Intersections Per, Max 90 Degrees116

Tolerance Tests, 100 Tool Movements, 10 Intersections Per 117
Tolerance Tests, 100 Tool Movements, 100 Intersections Per 1T
Data for file zip5, default simulation accuracy 120
. Data for file zip5, lmm simulation accuracv 120
. Data for file door. default simulation accuracy 21
. Data for file saddle, |.5mm simulation accuracy 121
Data for file door_small, default simulation accuracy 122
Data for file door.small, 3mm simulation accuracy 123
Data for file 26324y, default simulation accuracy 124
Data for file z6324r. 1.3mm simulation accuracy 125
. Relative intersection speed comparison charts 126
Relative preprocessing speed comparison chart 127

7.21. Comparison of the Methods

viii

List of Figures

A three-axis tool movement 1Y
A five-axis tool movement 22
Consecutive three-axis movements v v v o 23

Paths of points undergoing sweep. Solid lines show actual sweep paths.

dashed lines show linear approximation. 27
Graph of # vs. relative tolerance, 33
Idmethod00 41
rad{t) fromQto L o 48
rad(f) from 0.02 t0 0.021 19
rad(?) from 0.0205217 to 0.0205218 19
Movement of side and developable points on discedge. Gl
cotangent wrapping around cylinder 70
Trajectories of points on the line. N
Side and end cuts by line segment e 89
Hyperbolas when bc < ad, be >ad G2
UR, LL hyperbola portions crossing tangent. respectively 93
LR hyperbola portion crossing tangent twice 94
Cosine hitting line twice, .. 95
Deep cut for larger cvlinder and step size| 100

Rotation plots. 10 intersections per tool movement. zstep and fastep . 131

7.3.

7.4.

_-‘J

Lt

7.6.

.—J
—3

7.8.

7.11.

7.13.

7.14.

Rotation plots, 100 intersections per tool movement, zstep and fastep
Average distance between bounding box and envelope intersection ver-
sus rotation angleo
Rotation plots, 3x preprocessing, 100 tool movements, 10 and 100 in-
tersection tests per tool movement
Rotation plots, 3x intersection times, 100 tool movements, 10 and 100
intersection tests per tool movement
Rotation plots, 3xtree preprocessing, 100 tool movements, 10 and 100
intersection tests per tool movement
Rotation plots, 3xtree intersection times, 100 tool movements. 10 and
100 intersection tests per tool movement
Rotation plots, poly nb preprocessing, 100 tool movements, 10 and 100
intersection tests per tool movement
Rotation plots, poly nb intersection, 100 tool movements, 10 and 100

intersection tests per tool movermnent oo

. Rotation plots, 1d intersection. 100 tool movements, 10 and 100 inter-

section tests per tool movement o
Rotation plots, rad intersection, 100 tool movements, 10 and 100 in-

tersection tests per tool movement

2. Linear distance plots at 3 degrees, zstep intersection, 100 tool move-

ments, 10 and 100 intersection tests per tool movement
Linear distance plots at 3 degrees, fastep-intersection, 100 tool move-
ments, 10 and 100 intersection tests per tool movement-.
Average distance between bounding box and envelope intersection ver-

sus length, 3degrees o oo oo

133

L34

136

137

139

141

14

7.15. Linear distance plots at 90 degrees, zstep intersection, 100 tool move-
ments, 10 and 100 intersection tests per tool movement
7.16. Linear distance plots at 90 degrees. fastep intersection, 100 tool move-
ments. 10 and 100 intersection tests per tool movement
7.17. Average distance between bounding box and envelope intersection ver-
sus length, 90 degreeso
7.18. Linear distance plots at 90 degrees, 3x intersection, 100 tool move-
ments. 10 and 100 intersection tests per ool movement
7.19. Linear distance plots at 30 degrees, 3xtree intersection, 100 tool mox.fe»
ments. 10 and 100 intersection tests per tool movement
7.20. Linear distance plots at 3 and 90 degrees, poly nb preprocessing, 100

tool movements, 10 and 100 intersection tests per tool movement

-3
|]
v

. Linear distance plot 90 degrees, poly nb intersection, 100 tool move-

ments, 100 intersection tests per tool movement

-3
S}
(38

2. Linear distance plots at 3 degrees. 1d intersection. 100 tool movements.
10 and 100 intersection tests per tool movement

7.23. Linear distance plots at 90 degrees, 1d intersection, 100: tool move-
ments, 10 and 100 intersection tests per tool movement

7.24. Linear distance plots at 3 degrees, rad intersection, 100 tool move-

-ments, 10 and 100 intersection tests per tool movement

iear distance plots at 90 degrees, rad intersection, 100 ool move-
=~ ments, 10 and 100 intersection tests per tool movement
- 7.26; Tolerance, step, zstep, zstepnr intersection, 100 tool movements. 10
and 100 intersection tests per tool movement

7.27. Tolerance. fastep, fastepnr intersection. 100 tool movements, 10 and

100 intersection tests per tool movement

X1

LT

oy
1]
=1

159

7.38.

7.39.
7.40.

. Tolerance on door_small, default and 3mm, fastepnr intersection .
. Tolerance on 2z6324r, default and 1.5mm, fastep intersection

. Tolerance, 3xtree intersection, 100 tool movements. 100 intersection

tests per tool movemento

. Tolerance on door_small, default and 3mm, 3xtree intersection
. Tolerance on 26324r. default and 1.5mm, 3xtree intersection
. Tolerance on door_small, default and 3mm, 3xtree preprocessing . . .
. Tolerance on z6324r. default and 1.5mm, 3xtree preprocessing

5. Toterance on door_small. default and 3mm, poly preprocessing
. Tolerance on door.small, default and 3mm. poly intersection

. Tolerance on door.small at defauit and 3mm, z6324r at defauit and

1.5mm, poly nb preprocessing L.
Tolerarnce, poly nb intersection. 100 tool movements, 10 and 100 inter-

sections per tool movement.
Tolerance on door_small, default and 3mm, poly nb intersection

Tolerance on 26324r, default and 1.5mm, poly nb intersection.

K1t

164
1653
166
167
168

169

Chapter 1

Introduction

With the advent of computers. the promise of fast, accurate and automatic machining
of parts was born. Ploneering research into numerically controlled {NC) machining in
the late 1940s and early 1950s. MITs Servomechanism Labs developed a language for
specifying geometry and cutting movements. called APT. This gave NC programmers
a consistent interface to NC' milling machines.

APT’s geometrical formatting has been supplanted as CAD systems have devel-
oped to allow more refined and interactive surface definition and editing. Generating
cutting tool movements has also been simplified, allowing significant increases in NC
programming productivity. However, the basic process of machining is still similar.
A designer creates a part description and then an experienced NC programmer gener-
ates cutting tool paths. They are then checked for accuracy, often by cutting models
out of wood or plastic, a time-consuming and error-prone method [20].

Despite this, automated machining has resulted in improved efficiency and eco-
nomic be.neﬁt. Ultimately, however, the complete automated NC machining process.
from the input of a part specification to the fabrication and checking of correctness
of the final part, would be a completely automatic sequence of operations. requiring
no intervention. This would free up human designers to do the creative work without

worrying about the details necessary to implement it.

1.1 The goal of an automated machining system

A complete automated NC' machining system would be one that takes a part de-
scription and does everything required to manufacture the desired part. The chain
of steps needed to accomplish this is not insignificant and each step is an involved
procedure, calling for compléx. interrelated decisions. The system must be able to
make decisions about such things as methods for clamping a block of material while
machining is going on as well as determining the different positions the block should
be held and in what order. It has to select the cutting tools to use and how to use
them most effectively.

Let us take a closer lock at what is involved in the machining process. [20] offers

an effective breakdown of the sequence of events:

Part Design Design of the part is usually accomplished within a CAD system today.
These systems are widely available and have interactive capabilities that make

them relatively simple to use.

Surface evaluation The part description must be analvzed to locate features that
will significantly affect the machining process. For example, this stage should
detect slots, bosses and large changes in surface orientation so that they can be

compensated for during the generation of the NC program.

Machining Planning To cut the part from a piece of stock requires answers to
several questions. For example, the svstem must decide how to clamp the
part and how many different positions are necessary to allow machining of the
complete product. The types and sizes of cutting tools must be selected, as well
as the overall sequence of events. This requires knowledge and reasoning about

a large number of details concerning the particular milling machine.

o

Tool Movement Generation Once the strategy has been plotted, the actual cuts
to be made must be calculated. This means that an NC program must be
created that will carve the desired surface. In actuality, the goal will be to ma-

chine a part that is within some tolerance of the desired result when evervthing

is finished.

Simulation and Verification The NC program should be checked to guarautee
that it produces the desired surface to within acceptable tolerance limits. Geo-
metric correcsness of the cutting program must be verified. Allowing the body
of the milling machine to hit the stock or itself during the cutting could result
in very expensive damage to both machine and stock. If the final result is out
of tolerance or there is forbidden contact between surfaces, the generator can
then replan the NC program. The loop of generation and simulation may repeat

until everything is satisfactory.

Dynamic Simulation The previous step verifies the geometric accuracy of the pro-
gram. This one analyzes the forces involved. The more material removed in a
given time, the more force hetween the material and the tool. These forces cause
deflections in both surfaces, and the result is further deformed. However. faster
feedrates {speed of material removal} result in less machining time, reducing

the costs. These factors must be balanced and feedrates set accordingly.

Determine Cost Once the feedrates have been determined, calculation of cutting
time is straightforward. Once the costs of machining have been calculated. a go

ahead or stop command can be issued.

Execute Machining Program I[deally, the machining equipment could sense the

actual forces and adjust the feedrates to keep within tolerance.

Evaluate Final Result The part that has just been cut should be checked to make

sure that it meets the requirements set out at the beginning of the manufactur-

Ing process.

As we can see, building a system that can do everything is a fairly formidable
assignment. Each step poses challenges of its own. We will examine geometric verili-

cation in more detail.

1.2 Verification

The goal of verification is straightforward. Given a part description. an NC program
of tool movements, and a workpiece that is to be shaped, determine if the N(' program
shapes the workpiece into a copy of the part description. and where it fails to do so.

This of course is a simplistic statement of the problem. In manufacturing, the
question Is really how close is the final product to the desired part, as opposed to
are they the same. Usually, the manufacturing process introduces small errors into
the desired surface. Therefore, verification must actually determine if the machined
product is within sorne small tolerance of the part, inside or out, for all points on the
surface. In addition, verification must be prepared to identify the locations where
gouging has occurred and where too much excess material has been left behind. if we
wish to correct the tool program.

Another objective of verification is to check that the tool doesn’t gouge the
mounting hardware or other parts of the mull. In addition. detection of anyv ool
movement that causes the non-cutting surfaces to hit workpiece material is desir-
able. Otherwise, an expensive repair may be in order. We may also like to know the
volume of material that a tool movement removes to allow for .later dynamic simula-

tions. These last desired features call for simulation of the cutting process. not just

determining the final product of the milling.

To accomplish these goals, we must represent the components involved in the
actual cutting process. First, the part description is needed. We must have a repre-
sentation for the workpiece to be machined. The swept volume of each tool movement
must be available in some usable representation (some representations are much morve
useful than others for certain purposes}. And if we wish to examine interference of
surfaces that should not come into contact such as the machine body, we must have
representations of those surfaces as well.

Given this information. we must provide a method for removing the swept vol-
ume of each tool movement from the workpiece model. The tool movements have to
be procéssed in order if we wish to do simulation of the workpiece and environment
at any time, as opposed to just the finished product.

Let’s take a closer look at the means developed for performing verification.

1.2.1 Methods of Verification

There are several ways one can go about performing verification. A commonly avail-
able technique is to display the tool paths on top of the part surface. This has the
advantage of being quite simple to implement, as well as heing easy on the computer.
Then verification could be performed by visually comparing tool paths and the part
surface. However, only gross errors are likely to be found in this manner. It is also
time intensive. Since manufacturing often requires tight tolerances, something better
is needed: ‘It also makes sense to -have the computer doing the work, both for the sake
of speed and reliability.

Increasing the computer’s involvement in the verification process, we can check
for interference between the part surface and the swept envelope of each tool move-

ment. This will locate tool movements that gouge the part surface, but has several

disadvantages. Since no model of the workpiece is kept, it 1s inconvenient to compare
the machined result to the desired part surface. Each tool movement can keep track
of its impact on the surface. but the overall effect is not known. [n addition. since
this is not a simulation, material removal cannot be determined.

The two methods mentioned above are not really simulations of the machining
process [20]. To perform all of the tasks of verification. a geometric model of the
machining process must be mainsained. Solid Modeling and Discrete Modeling are

the two major methods of simulating machining.

Solid Modeling

Solid modeling was developed as a way of representing complex surfaces built up as
boolean combinations of simple objects. The machining operation is just this — an
object (the workpiece) from which other objects (the tool movement envelopes) are
subtracted. An accurate model of the current state of the workpiece is maintained
at all times, and material removed by each tool movement can be determined. Solid
modeling systems for NC simulation and verification were investigated by Voelcker
and Hunt in [34] and {17] and by Frishdal in [12].

Using solid modeling to do .simula‘tion and verification has a down side. however.
‘Simulation requires performing intersections between surfaces, a very compurétion-
ally intensive operation. In addition, if the suifaces are too complicated, no known
algorithm for performing the intersection may exist. Later work has addressed this
problem by trying to spatially subdivide the problem to reduce the intersection oper-
ations necessary. On the verification side. comparison between the finished workpiece
and the desired part is nontrivial. Even if they are exactly the same, floating point
errors will most likely prevent that from being realized. Therefore, a method of mea-

suring the nearness of the two surfaces is needed. also requiring potentially expensive

s

surface-based operations.

Discrete Modeling

While solid modeling has the advantage of maintaining an exact representation of
the machining process, it is computationally difficult. By trading total accuracy for
simple computation. we may obtain an alternate approach. The general concept
of discrete modeling is to represent an object by an approximation constructed of
points, triangles or other simple objects that can be dealt with easily. The part
surface and/or the workpiece are often represented by a set of points. each having
an associated vector. The advantage is that intersections and other computations
involving points and vectors are easy and fast.

Several researchers Lave proposed methods of NC simulation and verification
using discrete approximations. These proposals can be divided into two groups. Z-

buffer algorithms and surface normai algorithms.

Z-buffer Algorithms

An early approach to simulation by Anderson [1] was designed to detect if the tool
holder hit the workpiece in three-axis machining. He set up a rectangular array.
each grid cell containing a height value. to represent the workpiece. For each tool
movement, the grid squares that fall under its path are checked against the height
of the tool and reduced if the tool cuts the remaining stock in that square. This is
closely related to the Z-buffer algorithm used for graphics displays.

The amount of material removed can be approximated with this method. as
can the final shape of the workpiece. This means that gouges and excess material
can be found. A regular grid greatly simplifies the calculations, but means that grid

size is directly related to the accuracy of the simulation. Another disadvantage is

b |

that material can only be removed from above. This precludes five-axis cutting and
undercutting with the tool.

Wang [35], Van Hook [33], and Atherton [2] each updated the Z-buffer to perform
simulation and verification. The methods allow a view direction to be chosen. That
is the direction in which the workpiece will store height values. Wang stores multiple
7 values at each pixel, which allows him to simulate five-axis machining. He then
approximates the tool movement envelope by a polyhedral approximation. Scan line
operations then allow quick determination of the cutting depths of the tool movement
at each pixel. The values in the resulting swept envelope Z-buffer are then used to
update the workpiece representation. Since the surface values were originally used
to create starting entries in the workpiece Z-buffer. comparing the finished workpiece
and the desired part is easy.

Van Hook's approach is similar. except that a pixel image of the cutting tool is
precomputed. Then it can be subtracted from the workpiece Z-buffer, finally giving
the finished surface. Because the tool envelope image is precomputed, the tool axis
is not allowed to change during machining, limiting the method to three-axis cutting
operations. Atherton extended this approach to allow five-axis cutting.

All these approaches have advantages in common. Because of the regular na-
ture of the Z-buffer grids, intersections with the tool envelopes are simple and fast.
The Valueus of the surface and workpiece are maintained at each pixel, allowing easy
comparison of the final product to the desired part. In addition, gouges and excess
material left behind can be easily found. Finally, the removal of material is quite easy
to compute,

However, they suffer from common deficits as well. The simmulations are view

dependent, so they must be redone if an error doesn’t show up in a given direction.

o

. The magnitude of a given erro.r at a given pixel is variable, depending on the orien-
tation of the surface at that point. If the surface is nearly parallel to the Z direction
there, the error value will not correctly reflect the size of the gouge or bump. The
accuracy of the simulation is dependent on the size of the grid. To space samples
on the part surface evenly, pixels must be closer together when the surface normal
is nearly perpendicular to the 7 direction. Lastly, preparing the starting Z-buffer
requires finding the intersection of lines in the Z direction at each pixel with the part
surface. This is referred to as the inverse point problem.

In the case of the parametric curved surfaces often used in part descriptions.

_ solving the inverse point problem often requires iterative methods to get an answer.
taking a fair bit of computational effort. For more complex surfaces, errors may be

introduced at this step.

Accuracy is a troubling problem for methods using a regular grid. Grid sizes
must be based on the tightest spacing necessary over the surface. This results in many
unnecessary samples in areas that don’t need it them. Drysdale and Jerard [8] propose
a method similar to those above, but with variable spacing. They choose points on
the part surface combined with vectors at each point to represent the workpiece.
In addition, they show how to determine the space allowable between points on the
surface depending on the desired accuracy of the simulation, the size and shape of the
cutting tool, and the local surface curvature. In addition, they generate the sample
points parametrically. This allows them to avoid the inverse point problem. When
the axis of every tool movement is the same, highly efficient calculations can be had
by picking the Z direction to coincide with the tool axis. This means that suriace
vectors only have to intersect the tool bottom {19].

Although technically no longer a Z-buffer, the point set is used in a similar

manner. As in Z-buffer approaches, each successive tool movement is intersected

with the surface vectors, reducing the height when an intersection occurs. Although
a regular grid is no longer used, efficient computation is achieved by placing points
into a grid of buckets, essentially a 2D hash table. Tool movements then find the
buckets they intersect and perform intersection calculations with the vectors in those
buckets only.

This method sidesteps the inverse point problem by generating accurately placed
sample points on the surface. rather than by projecting points from a fixed grid. The
variable spacing also ensures that the number of points used to represent the surface
and workpiece is sufficient aud not excessive. On the dowuside, the variable spacing
makes material removal calculation more complicated. In addition, since Z aligned
vectors are being used, error estimates are affected by the angle between the surlace

normal and 7 direction.

Surface Normal Algorithms

Early on, Chappel used the point-vector approach to surface representation just de-
scribed {6]. However, in Chappel’s work, each vector uses the surface normal for
orientation. Points are chosen on the part surface. At each point normals are ex-
tended both into the part until another part or face is reached, and out of the part
until another part, face or the end of the stock is reached. The tool movement is
simulated as a series of static tool positions. Cutting is done by finding the intersec-
tion of the vectors and cylinder positions, From this, interference and gouging are
reported. This method allows 3-, 4-, and 5-axis machining to be simulated. Chappel
dqesn‘t discuss how surface points are chosen, nor how tool positions are selected.
Oliver and Goodman [25] take this approach further. They also use the surface
normal at each point on the surface as the vector to be cut. The point selection is

done visually by picking an ovlentation for the surface. The pixels are then projected

10

onto the part surface, whereupon the normal is found and used as the vector. Then
simulation proceeds as previously described. By using surface normals, five-axis ma-
chining is more easily simulated. In addition. the error at a peint is now correct,
However, by picking their points using a view-based method, they experience the
problems due to the grid accuracy, the view direction chosen, and having to solve the
inverse point problem.

Jerard and Drvsdale [22] extended their point set approach to use normal vectors
in order to allow five-axis machining. Points are still on the surface, spaced properly fo
guarantee the accuracy of the simulation. thereby avoiding the inverse point problem
and ensuring that there are just enough points needed to simulate at the desired
accuracy and no more.

In addition, they addressed the issue of localization for five-axis simulations. The
problem here is that with normals pointing all over instead of in a single direction.
two-dimensional bucketing no longer works correctly. A point may reside in one
bucket, but its normal cuts through several. [22] suggests two methods of dealing
with this.

The first method, called the short normal method, is to use a short vector at
each point. Instead of having a long vector that extends to the ends of the stock
material, the vector is limited to a small distance above and below the surface. This
allows the points to be placed into buckets again. Then, when a tool envelope is
compared to the bucket boundaries, the envelope is expanded by the short normal
length to guarantee getting all points that may intersect the tool movement.

The second approach, average normal method, uses a set of preselected directions
to serve as normals. Each direction has associated a bucket set. Each point uses the
normal whose direction is closest to its own, and then is puf into the bucket set for

that direction. Cuiting is then done for each direction. This takes advantage of

11

having parallel vectors while reducing the errors that result because the real normals
are close to the chosen direction. In theory. the direction vector is an average of the
surface normals of the points it represents. Also, even though the cutting process
is repeated several times, the time required doesn’t increase because each point i
only placed into one bucket set. The total number of intersections performed doesn'r
increase.

One final discrete modeling method was proposed by Ozair [9, 27]. He applies
to NC verification the common technique of approximating surfaces by triangles. By
doing this. many fewer primitives can be used in very flat regions. While surface
points must be close enough together to prevent the tool from sticking down into
the surface undetected, only three are needed to define a triangle to represent the
same region. Triangle representation is very useful for flat regions, but suffers if the
surface is highly curved in a lot of places. because the cost of performing intersections
is higher. One deficiency of the method is that excess material can no longer be
effectively tracked. [n addition. a gouge is associated with a triangle, so if the corner

of a large triangle is nicked, the whole region is flagged as gouged.

1.3 Modeling Five-Axis Tool Movements

All the surface and material representation methods mentioned above work well with
three-axis tool movements. This is not surprising. Chapter 2 gives the mathematical
description of a three-axis tool movement, but basically, it consists of two end cylin-
ders, two side parallelograms, and a top and bottom tube swept out by the cylinder
end discs. Finding the intersection of a line and this object, essentially what most of
the reviewed verification methods do, is simple, straightforward and exact to the lim-

its of the machine’s precision. The volume is easy to work with because it is convex.

This means that the intersection step does not have to he taken into account when
determining the accuracy of simulation and verification.

None of this is true anymore when five-axis tool movements are considered. The
addition of rotation to the linear motion of the tool allows nonconvex cutting to
occur. This explains why some researchers avoided five-axis cutting when designing
their verification methods. It requires the ability to store multiple values in Z-buffer
based algorishms to account for the possibility of a single cut leaving a portion of a
line, not to mention multiple cuts leaving several disconnected pieces of the line.

The volume occupied by the tool as it moves is often referred to as a swept
volume. The motion itself can be referred to as a sweep. Sweeps have a number of

different applications to CAD. prompting research into good sweep representations.

1.3.1 Sweep Representation

Looking for a way to detect collisions between moving objects, Ganter and Uicker
[13] computed intersections between the paths swept by the objects involved. The
objects are taken to be polyhedra and then a polyhedral mesh is built to represent the
sweeps. Their method places a solid at prespecified points along its path of mqrion
and creates a “silhouette” at each one. The silhouette is the set of edges that make up
the exterior of the projection of the solid in the direction tangent to the instantaneous
tool path. These silhouettes are then joined to form a mesh representing the envelope.
The resulting polyhedra can then be intersected to locate regions of possible contact.

Polygonization makes things easier to work with, but the actual object and
surface information is lost when making the conversion. Other research has looked at
representing sweeps without resorting to discretization. Weld and Leu [36] present a
result showing that a swept volume is equivalent to the union of the swept volume of

the surface of the solid being swept and an instance of that solid. This is shown for

13

general n dimensions. They use this to generate swept surfaces for poivhedral sweeps.
creating the swept volume by computing the swept volumes of the faces. The total
volume is the union of the voluimes swept by the faces.

Sambandan [31] employs envelope theory to generate sweep representations {or
polygonal objects swept in two dimensions and polyhedral objects in three dimensions.
He takes a similar tack to Weld's work. but goes further. The faces sweep out the
volume of the external portion of the sweep envelope. but they in turn can be broken
down. The sweep of a polygonal face is created by two parts. The edges of the face
sweep out most of the surface. while the interior sweeps out the remainder. creating
what is known as a developable surface.

Instead of taking all of the possible contributions to the final surface, Sambandan
uses the theory of envelopes to determine critical curves for the various components
of the polyhedron, which happen to be line segments due to the linear nature of
everything involved. The component is swept, and when there is a critical section on
the component, it is included in the candidate set. From this set of sweeps. sweeps
that actually iie on the surface are chosen and the remainder are removed. Then
everything can be trimmed to produce the actual surface.

Key to the accuracy of Sambandan’s method is choosing the instances at which to
evaluate the critical curve boundaries used to decide valid sections of the component s
sweep. However, he doesn’t explore how to actually determine them.

Pegna [28] works with the theory of envelopes in a somewhat different manner.
He takes an n-dimensional object and represents the sweep as an n + l-dimensional
object. The envelope is obtained by projection of the sweep back into n dimensions.
Representation in this manner allows compact generation code, but makes working
with the sweep surface, which is needed for intersection calculation. difficuls.

Blackmore and Leu [3] analyze sweeps in the context of differential equations.

,.,_
P

They associate a sweep differential equation with each sweep which represents the
trajectories of the points that make up the object. The association of a differential
equation allows them to analyze further the swept volumes of certain classes of mo-
tions and objects. The type of sweep done in five-axis tool movements doesn 't fall

under their classification of easily analyzable sweeps.

1.3.2 Five-Axis Tool Representation

Directly tackling the problem of five-axis tool movement representation, Wang and
Wang [35] derive a parametric description of the surface swept by the side of a cyviinder
using envelope theory. However, they do not say what method is actually used to
represent the tool movement and how intersections are then found. Sambandan 130]
uses the theory of envelopes to derive equations describing all surfaces generated by
a cutting tool in a five-axis sweep. He also gives equations to describe fillet end and
ball end cutters. The s:weep is polygonalized and then scan line techniques are used
to render the polygonalized sweep into a modified image buffer. Boolean subtraction
is used to perform the simulation in image spa‘ce..

Jerard and Drysdale [22] describe an approximation to five-axis tool movements
consisting of numerous short three-axis tool movements. The interval of the sweep
is chopped up into segments, each represented by a three-axis tool movement using
the orientation of the cylinder axis at the start of the segment. Intersection is ac-
complished by intersecting the line with each three-axis volume in turn. This avoids
numerical computation code-at the expense of numerous simple intersections.

Chang and Goodman {5} offer a method for finding intersections not based on
envelope theory. They derive the equations to determine when a surface point is inside
the cutter volume as a function of t. This is accomplished by looking at the perpen-

dicular from the point to the ruled surface swept out by the tool axis. Not revealed by

the symbolic form of the equations listed. this perpendicular is a nonlinear equation
involving trigonometric functions. The cutting test is done by checking whether a
point satisfles two inequalities that depend on this perpendicular function. Chang
and Goodman don’t expand these inequalities to reveal their nonlinear nature. nor
do they explain how these inequalities are solved. Cutting depth 1s then determined
by localization followed by calculation of distance equations that also depend on the
equation for the perpendicular. Chang and Goodman claim that their method is as
exact as machine tolerance allows but make no explanation of how this is afhievod.

Narvekar [24] also uses the theory of envelopes to generate surface equations for
general APT tools. These are used to create systems of three nonlinear equations
in three unknowns which are then solved with Newton-Raphson iteration to find
solutions. However, Newton-Raphson iteration usually needs to be near a solution to
be able to convérge (see [29, Ch. 9]). Narvekar makes no attempt to try to localize
the vicinity of intersection solutions, nor ito distinguish between possible multiple
solutions.

Narvekar also proposes a simplified method for finding intersections for a re-
stricted class of tool movements. Based on the critical curve, his approach uses a
one-dimensional root finder to locate the intersection point. Once again. nothing is
said about guaranteeing finding an answer.

None of thie research mentioned actually looks at the issues of guaranteeing that
the intersection calculation be accurate to some degree. Some offer ﬁhe equations de-
scribing the surfaces or other formulation of the intersection and then indiscriminately
use a root finder to locate the intersection point. However, this cavalier application
of a useful numerical tool overlooks its limits. Root finders usually need to know that
a root is likely to be in the general area before they can successfully find it. Withous

this knowledge, using one is just a shot in the dark.

16

Another problem is that accurate location of intersections requires finding all
roots in the interval or region of concern. While a root finder may converge ou one
of the roots, others may go undetected. So, the lax use of root finders amounts to
applying local search techniques (finding a root) to a global search problem (finding
all roots in the region).

In this thesis, we will present several different approaches to representing five-
axis tool movements in a manner that allows intersections with lines to be computed.
We contribute two completely new techniques. In addition, for each of the pro-
posed methods, we give techniques by which these intersections may be found with
guarantees on the accuracy of the answer. Finally. we look at the performance of
implementations of each of the methods on test data and real data.

The remainder of this thesis is organized as follows. The mathematical model of
three- and five-axis tool movements is laid out in Chapter 2 along with a definition
of tolerance and other general information. Chapter 3 looks further at the method
originally proposed by Jerard and Drysdale and derives error bounds. Chapter 4
develops a method that invoives solving several one-dimensional equations in order.
not requiring multidimensional techniques. Chapter 5 explores the construction of
a polygonal approximation to the swept envelope with guarantees on the error of
the approximation. Chapter 6 describes a new method in which the intersection is
found by testing points on the line in order until a point is located that lies with the
envelope of the tool movement. Finally, Chapter 7 looks at actual performance data
generated from tests varying parameters and real data. We analyze the data and offer

final conclusions, both theoretical and practical.

1y

Chapter 2
Preliminary Math and Notation

Before describing the different methods for finding intersections between lines and
five-axis tool movement sweeps. we need to describe the actual tool movements. In

addition. we describe the meaning we attribute to error in this thesis.

2.1 Cylinder Definition

A cylinder will be specified in this thesis by a point ¢, a unit vector ¢, a radius R.
and a length L. The point ¢ = (c,,¢,,c.} is the base point of the cvlinder. The unit
vector a = (@, ay,a:} is the axis vector of the cvlinder. describing its orientation.
The cylinder axis extent is from ¢ to La. The body of the cylinder will simplv be a

cylinder of radius K around the axis as defined.

2.2 Three-Axis Tool Movements

A three-axis tool movement in machining allows the cutting tool three degrees of free-
dom. These degrees of freedom correspond to translation along the three. cartesian
axes. One degree allows the tool to slide up and down. The other two provide trans-
iation to the side in two directions. In addition. the motion is defined in particular
by a starting tool position ¢; and a finishing tool position ¢;. The axis vector a stavs
fixed for the duration of the motion. The tool linearly transiates with time from one

position to the other. Thus the equation of motion for the base of the cvlinder is

,....
s

B

Figure 2.1: A three-axis tool movement

o(t) = ¢ + {c; — ¢;)t with f being the time parameter over the interval 0 <t < L,

2.3 Rigid Sweeps

Throughout this paper, we will be concerned with rigid sweeps of objects. Simply
put, a rigid sweep is any transformation over time that does not change the shape
of the object. only its location and orientation. In R*, the only two transformations
that preserve distance between points {thereby guaranteeing shape consistency) are
rotations and translations. Any composition of translations and rotations can be put

mto either homogeneous form,

T iz Tz by

a1 Tz Tz i

H

5 7,

31 Taz Tay I3

19

or nonhomogeneous form,

£ 11 T2 T3
"_. H
P =1 s { T ryy rag raa | P
ta Fai T3z Ta3

2.4 Five-Axis Tool Movements

A five-axis tool moverment in this paper is the same as a three-axis tool movement
except that two extra degrees of freedom are added to the allowed transformations,
These two degrees of freedom correspond to rotation around two different axes in
space, permitting arbitrary rotation. The center of rotation occurs at the base point
of the cylinder.

The five-axis movement is defined by a starting cylinder position {¢;. ;) and an
ending position {cy,ay). The base of the cylinder translates linearly just as in the
case of a three-axis motion. The axis of the cylinder changes orientation from ¢, o
ay along a great circle. This means that the rotation occurs about the cross product
of the twe vectors «; x ay. The angle of the cylinder axis to either a; or ¢y changes
linearlv. Therefore we have the following two equations to describe a five-axis tool

movement over the interval 0 <t < 1

b

ct) = o +lep=et &

bl
[

alt) = Alf)-a,. (

where A{t) is the rotation matrix [11, pg. 73]

e 2 ngny(l — cos #t) nen {1l — cosft)
ny + cos (1~ n.%) +1. sin ft +n, sin §t
nyny(l — cosdt) 5 5 nynia(1 — cos Bt}
4. sin Ot ny* 4 cos (L = n,*) 4+, sin 0
nyn.{l — cosft) nyiis {1 — cos 6t) ; s
+n, s Bt 1, sin Gt et cos i1 —n.7)

about the normalized vector n = {n., n,,n:) = ﬁwﬁ%ﬁ where # = arccos{a;-ay) is the
total angle of rotation of the tool movement.

The equations just outlined are for the general five-axis tool movements we will
consider. For the purpose of computation. we can get much simpler equations by
transforrﬁing the problem.

First, we can assume that ¢; = (0.0.0) by doing a simple translation of the
problem. Since ¢y 1s the only non-zero end of the linear portion of the tool movement.
we will refer to it as ¢ = {¢,.. ¢y, ¢.) from now on. The remainder of this dissertation
will work in a left-handed coordinate system. illustrated in figure 2.2, Next. assume
that a; and ay are constrained to the XV plane. This simply rotates the problem
so that n = (0.0.1). If we choose ¢; = (1.0.0]. we can further simplify the problem
and now only need an angle # to determine the rotational component of the motion.

Having made these choices. which amount to rigidly transforming the problem. we

get the following equations to describe the cvlinder position:

Cy
) = | e |t (2.3)
Cx
cos#t —sinft 0 1 cos 6t
a{t) = sinft cosft 0 0 = | sinft (2.4)
0 0 l 0 0

The points on the cylinder. as well as any other point p, will then undergo the

transformation
Ca cos 8t
pi=oe, |1+ singt | P (2.3)
C: 0

Figure 2.2: A five-axis tool movement

 This produces a helix-like motion we could refer to as a “helicoid.” where the
linear translation is not necessarily perpendicular to the plane of rotation. The path
of any point on the cylinder axis will look like a segment from the coil of a “Slinky”
toy that has been squashed to one side. Note that if ¢, = ¢y, = 0, the motion produced

will indeed follow a helix.

2.5 The Meaning of Error

Throughout this document. we will refer to error when trying to determine how
good an approximation of five-axis tool and line intersection really is. One possible
measurement of error is the distance of the returned intersection point from the rrue
intersection point. This has two obvious problems. One. if the intersection routine
being used fails to find an intersection at all. the error to return is undefined or infinite.
neither of which is a very satisfving answer. Second. when the line and cylinder axis
are nearly parallel. small displacements result in huge shifts in the location of the

intersection. Thus the error depends highly on the relative orientation of the 100l

and line,

We would prefer a measure of error that better reflects the geometric situation.
For instance, if the routine cannot find an intersection, we would hope that the line
does not run right through the middle of the tool. Also, when the lire and tool are
almost parallel, small changes in the relative orfentation and position only cause small
changes in the depth of the line beneath the tool’s surface.

As long as our approximation model is geometrically near the true tool movement
envelope, these concerns will be addressed. Therefore. throughout the rest of this
dissertation. tolerance will be measured in terms of the distance between the true
surface and the approximation surface. As long as we can move the approximation
some distance less than the tolerance and obtain the correct cut depth. we will sav

that the approximation is a good representation.

2.8 Useful Formula

acos Bt + bsinft = ccos(8t +) where ¢ = Va? +0* and § = a,rctan(mf)‘ This 13

obtained by first converting to exponential form

Eiaf. -+ emiﬁt ei@t _ e—i@t 1 .) .)
a > +b Y = 3 ((a ——tb)e’ﬁt-{-{a—{—zb)e"ez)
& al 4

- l (méiamtan—%eiﬂt + meiuctmﬁgewéf)
2
1 SR . . .

_ § (o 2+b ec(ﬁtal‘c‘-al!—g) + f‘ag + bze—’wt"a"‘"al‘ﬁ))

: ; a
= V.a? + b% cos(ft — arctan —)

b

Chapter 3

Bounding Three-Axis Subdivision of a Five-Axis
Sweep.

3.1 Method

One way to approximate a five-axis sweep of a finite cvlinder is by stringing trogether a
series of small three-axis motions that guarantee that the accuracy of the approxima-
tion is within a given tolerance T (See Figure 3.1). This method was first suggested
by Jerard et al. in [22]. We expia.in the method and give an error bound to allow
determining the amount of subdivision needed for a desired level of accuracy.

The technique for approximation is straightforward. Recalling equations 2.3 and
2.4, we have a rotation of § and a linear translation of {¢|. We would like to break

the motion up into a set of n segments. Since the interval for the whole motion is

0 < t < 1, each segment will occupy a period of time At = . For segment 1. the
position of the cylinder is
ct eyt cit
et) = (=, =, —=) (3.1)
n n n
gt . ot
a(t) = {cos —.sin—,0) (3.2)
n n

Note that it doesn’t matter if the interval is 0 < ¢t < 1, angle is §/n, and end point is
(=, 5:—, 1, or the interval s 0 <t < f; and angle and end point are § and {c,.¢,.c.).
Therefore any segment can be looked at as a complete movement by itself. Other

segments can be transformed to the same coordinate system using the appropriate

Figure 3.1: Consecutive three-axis movements

translation and rotation. If we laid each of these segments end to end. we would
rebuild the entire motion (ignoring the overlapping ends).

Creating the approximation is trivial. Each five-axis segment is replaced by the
corresponding three-axis movement in which the axis stays fixed at its starting value.
For segment @, a;(t) = af i-i—‘}. The linear translation remains the same.

Finallv, to approximate the intersection of a line with the five-axis sweep. we
successively find the intersections of the line with each of the three-axis segments
previously created. The closest intersection point found is returned as the answer we
seek. |

This leaves the question of how to guarantee that our approximation is accurate

to within tolerance T.

3.2 Bounding three-axis Approximation Error

We proceed by looking at the vector field of points undergoing the motion in question
starting at ¢ = 0. We only need to consider motions starting at t = 0 since we can
transform any motion to the alignment we desire. Any point {z,y, =) subject to this

rigid motion will be transformed by the following

rs(t) ¢t + vcos(ft) — ysin{ft)
ps(t) = | ys(t) | = cyi-f-\csin{ﬂt}—i-ycos(é’t}
Ss(t) . C:t “+

A three-axis movement with the same translation component motion gives us

the following transformation

r3it) et + oz
palt) =1 ya(t) | =1 ¢t +y
z3(t) et 4z

X

Figure 3.2: Paths of points undergoing sweep. Solid lines show actual sweep paths.
dashed lines show linear approximation.

We can then be sure that the true sweep differs from the approximation by no

more than

d = |ps “P31

= \/(JJ cos At — ysin Bt — 2% + (xsin Bt + y cos §t — y)?

= /222 4+ 2y? — 2z cos Bt — 2y? cos At
) i

= /(222 + 2y%)(1 - cos(8t))

We can consider this distance to be the tolerance of the approximation. [t is
obvious that a bound on this distance will bound the error in the approximation,
because anv point in the approximation has a corresponding point in the real sweep

no further away than this distance and vice versa.

If we choose # < 90°. / = 1 will generate the largest distance over the interval

0 <t <1 and represent the maximum error of the approximation. Setting # == L. we

have

d = \/(‘21‘2 + 2y8)(1 — cos(f)).
We would like to determine step size based on a user specified tolerance T'. If

we solve the above equation for 8. we will get # as a function of d. This will allow us

to determine appropriate values of # for given tolerances. The new function is
fh = cos™ (L — 220t + !}2)) .

If we choose d to be the user specified tolerance T'. this will mean that 6 is controlled
by z and y. Obviously, the worst case occurs when the point {2, y, =) is as far from the
origin as possible. If we substitute in the worst case values (for a cylinder positioned

as stated previousiy. these would be » = L and y = R}, we get for 6
= cos™' (1 — T*/2(L* + R*)).
For example, if L=4. R=.5 and T=.002 then
g = 028°

This means we need about 35 linear steps per degree of rotation to achieve this
accuracy for the given cylinder size.

We can cut this requirement in half by taking advantage of the symmetry of the
tool movement. The tool has the same type of motion in the —t direction that it does
in the ¢ direction. To see that the —t direction is subject to the same hounds. we can
start by looking at ps(t) at —f. We find that

—~cgt + xcos{Bt) + ysin{ft)
psit) = | —c,t — osin(ft) + ycos(01)

A

s
[

A three-axis movement at —f gives

—Cyt
palt) = | ~c,t+y
—c.t+ =z

Repeating the distance caiculation. we get

d = IPS"“"Pa]

= \/(.r cos t + ysin @t —)2 + (~rsinft + ycosbt — yj?

= \/‘2.1:2 4+ 2yt — 2xtcos Bt — 2y? cos bt

= /1227 + 251 — cos(01))

As we can see. the same expression occurs in the negative direction as in the positive.

Therefore. a sweep in the negative £ direction can be approximated by a three-
axis tool movement with the same cylinder orientation and starting point as the
positive t direction. Since the two three-axis tool movements would join seamlessiy.
we can in fact double the size of five-axis tool movement that can be approximated
by a three-axis tool movement by simply choosing the sampled tool position to be i
the middle of the sweep instead of at one end as before.

This method of bounding three-axis approximation can apply to any tool shape
desired. If the tool shape is projected onto the XY plane. the furthest point of the
projection from the origin will be the worst case. This point can then be used in the
above equation to determine the maximum rotation allowable for the given tolerance.

The method has at least 1wo obvious disadvantanges. One, as the above example
shows, a large number of steps will be needed to achieve good accuracy. Two. the
error bound depends on the amount of rotation #. but has no dependence on the
linear portion of the tool movement. In the most extreme case, if ¢, = 0. the sides of

the envelope are flat and no errors are introduced there by the approximation. This

29

sort of motion is sometimes referred to as a four-axis tool movement. The only errors
are created at the two ends of the cylinder. In these cases, the error is probably less
than the bound would indicate. In addition, a better approximation can be had by

using one plane to represent the sides of all the tool movement segments.

3.3 Optimization

This model has the advantage of being uncomplicated. It is quite simpie. botl to
desciibe and to program. However, it is apparent that. as described in [22]. it sn7t
very efficient. Every sub-movement has to be intersected with the line to get thie final
answer.

One solution is to apply a space subdivision scheme to this model. One general
approach is to partition the volume of space containing the set of three-axis submove-
ments into disjoint boxes. Each box contains pointers to the three-axis submovements
that overlap the box’s volume of space. Then. we find the intersection by determining
the first box that the line hits. if any. Each submovement contained in that box is
intersected with the line. If no intersection is found. the next box in the line’s path s
explored, and so on until an intersection is found. or all boxes in tﬁe line’s path have
been processed.

There are several variants of this style of space subdivision available. The more
common ones are octrees, hinary space partition (BSP) trees. and uniform grids (13
In an octree or BSP tree, each volume node of the tree is subdivided until a reasonable
pumber of objects lie in the cube it represents. The uniform grid simply divides space
into a set number of cells in each dimension.

Octree-style subdivision normally works very well when objects are spread out.

but in the case of the model we are dealing with. we have many objects that closely

30

overlap each other. Each three-axis movement is likely to have a short linear move-
ment, meaning that the end cylinder is almost on top of the starting cvlinder, [t
also means that the starting cylinder of two successive movements lie nearly on top
of each other. It is easily possible for hundreds of cylinders to overlap each other.
This means that each cube will contain lots of cylinders because subdivision cannot
separate the overlap. Even in cubes where it can. it will require a lot of subdivision to
cut down the list sizes. leading 1o potential memory problems as well as performance
loss.

It is clear that just chopping up space into partitions won't work very well.
However, the model does stand to benefit from separation into sections. There 15 no
need to have the line intersect every submovement when it only runs near a few of
them.

Another approach to subdividing space is to build a hierarchy of hounding vol-
umes. Each object is surrounded by a bounding volume, then groups of bounding
volumes are surrounded by bigger volumes. repeatediy until all the objects are en-
cased in one large bounding volume. The 1)011nciing volumes are allowed to overlap.
This structure has the advantage of being able to separate overlapping objects. at the
price of possibly having to explore a more complicated path through the _hierarchy.
An intersection in one node is not guaranteed to occur before the start of another
node’s volume.

In our case, this is a verv convenient way to structure things. Each three-axis
movement is already convex. Two consecutive movements can be approximated by a
tool movement that uses the average of the two movements' cylinder axes. Therefore
we can create a tool movement using the average axis and make it just large enough to
contain both tool movements. This gives a fairly tight bounding volume for the two

tool movements. which is desirable to avoid too many unnecessary intersections. The

31

closer the two axes a;re; the better the bounding volume. The hierarchy is built by
placing pairs of successive tool movements into three-axis bounding volumes. creating
a binary tree.

This tree is used to facilitate the search for the intersection point. The algo-
rithm to find the intersection is a modified binary search, as follows: First the line is
intersected with the top volume. If a hit is found, the search continues. Each of the
children are intersected. If either one is hit, the closer clild is searched recursively.
An actual intersection value is returned when the bottom of the tree is reached. if
this value is closer than the second child. the search mayv be cut off and the value

returned to the next upper level. Otherwise the second child is searched similarly.

3.4 Analysis

The performance of intersection-finding using the three-axis approximation depends
on a few variables. First, it depends on the angle of rotation. Next, it depends on
the furthest point of the tool from the origin. L? + R*. And finally, it depends on the
tolerance desired.

It should be obvious that the dependence on the angle of rotation is linear. The
total number of tool movements is simplv the total rotation divided by the maximum
approximated rotation. Then, every tool movement is intersected with the line. So.
a doubling of the angle doubles the number of tool movements used and doubles
the number of intersections performed. This means that both preprocessing and
intersection times should exhibit linear response to rotation angle.

The dependence on the tool size and tolerance is not so obvious. They can really
be treated as one factor due to their simple relationship in the angle equation. Double

the tolerance and double the maximum distance tool point, and the same situation

results. Therefore we can consider the expression T%/(L* + R*) as a single vanable

referred to as relative tolerance. Relative tolerance is just tolerance in terms of the

tool size.

[t turns out that the equation is not quite linear as a function of relative toler-
ance. However, it is close enough to linear to work with. We can see this from the
graph of the angle function over relative tolerances from 0 to the size of the tool {see

figure 3.3).

2
1.8
1.6
1.4

max 1.2
angle

(radians& 3 L s -

0.6 = -
0.4
0.2 -

17 T e

0 0.2 - 0.4 0.6 0.8 !
relative tolerance

Figure 3.3: Graph of # vs. relative tolerance

The case of the hierarchical bounding volume optimization performance is siightly
more complicated. Preprocessing will be O{n] with respect to tool movemeunt rotation
angle and tolerance since a binary tree structure to represent the bounding volume
hierarchy is built from the bottom and will contain twice the number of submove-
ments needed to represent the tool movement. Intersection time isn’t. guaranteed 1o
be Oflogn). Since intersections may require traveling down both branches of any

given node. performance could be anything all the way up to O(n). There are certain

33

cases where this can happen. For instance. if we have a very short tool movement
with very little rotation, a very large tool, and high tolerance. all the submovements
will overlap highly. A line coming straight up from the bottom will hit every sub-
movement, and thus mayv require travel down most of the tree. As we shall see in
Chapter 7 though, this optimization works quite well. Most of the time, intersections

only require traversing a limited path in the hierarchy.

3.5 Practical Considerations

From a practical point of view, the thrée—a}:% approximation method with the hier-
archy is excellent. The method is simple and easy to implement. The performance
as shown in Chapter 7 is outstanding. In addition, the framework of the method is
valid for any tool shape for which a three-axis intersection routine exists.

The one concern is memory usage. In testing, memory usage was not a problem.
but with high enough accuracy demands, it will become one. If need be, any node of
the hierarchy tree can be calculated on the fly. The regularity of the movements in
the tree results in needing only a constant amount of information.

Each bottom leaf submovement is easily calculated in constant time. The only
concern is calculation time of upper nodes, since they are based on the complete
subtree beneath them. However, since the movement is chopped up by powers of two.
everything is regularly spaced. meaning that any node’s bounding box can actually
be determined by looking only at the two extreme leaf submovements, rather than
the complete subtree. Only a constant amount of calculation is required to generate
any node in the tree. Therefore the program can be refitted to run with minimal
memory requirements at the expense of extra calculations while running.

Another approach to dealing with the problem is to divide all movements into

34

smalier movements beforehand. Since the accuracy. is known at the start. the max-
imum rotation is known and the maximum tree size is known. Therefore. any ool
movement that requires toc large a tree may be broken up into smaller pieces and
placed back on the list. Then all movements will be guaranteed to avoid memory
overrumns.

A third way to handle this is to aliow for more than two children in each node.
This will reduce nmemary requirenients and may even speed up the intersection pro-
cess. Some combination of these methods may vield the best way to handle memory

problems.

35

Chapter 4
A Numerical Approach

A simple method of approximating the intersection of a five-axis tool movement and
a fixed line would be to choose a set of limes over the interval [0.1] and find the
intersection of the line with the cvlinder at each of these times. The first intersection
point along the line can then be returned as the envelope intersection. If we keep
increasing the number of times chosen. we will approach a continuous function. This
leads to the possibility of finding the minimum of the intersection of line and cvlinder:
as a function of f and returning that as the intersection point. With enough accuracy

in locating the global minimum. the method could be as exact as the compuier’s
i

floating point limits allow.

4.1 Method

The basic idea behind this numerical approach is to take the equation of the intersec-
tion of the line P = P, + ul" and the cvlinder with base point " and axis direction
vector A, and substitute the equations for the moving base and rotating axis in place
of the stationary ones. Doing this makes the equation a function of ¢, and lets us find
the minimum of this equation over the range 0 < ¢t < 1 to determine the closest point

of intersection.

36

where

a = lpg - CI
b = (P, -Ci A
c = (P,-C)-V
d = V- A
The intersection point is given as a parameter along the line. We now make ¢ and

A functions of ¢. If we assume that the base of the cylinder starts at the ongin

(accomplished by a translation). then we have:
Clty= Cyt (4.2

where ('; is the end point of the motion of the cviinder base point. We can abwo
choose the axis of rotation to be the = axis and to have the cylinder axis lie along the

positive r axis at the start of the motion. Then. the axis position is described by:

cos 8t sinft 0O 1
Alt)y= | —sinft cosft 0 |} 0 (E
0 0 1 0

where 8 is the angle of 4(1} to the v axis.
If we use these equations for A and (. then u(t) gives the point of intersection
along the line as ¢ varies. Now all we need to do is find the point furthest in the =%

direction when 0 < # < 1. For this. we only use the negative radical of u(#).

(hd — ¢} = \/(hd ~)2 = (1 = d%)(a? ~ b — R?)
1 —d?)

amin{f) =

37

since the positive radical will give an intersection point further along the line in the
positive |7 direction.

Ideallv. we need onlv find the minimum of this equation. However. the equation
s real-valued onlv when the fixed line intersects the cylinder. It is complex whenever

the radical

pad(t) = (bd —) — (1 — d*}(a® = 6% = R*)

becomes negative. This makes the job more complicated. We now need to identifv
the boundaries of regions of / where the line P actually contacts the cylinder. To do
this. we find the roots of the radical as a function of ¢. Non-negative regions of the
curve represent valies of / where the line and cyvlinder intersect.

Another wav to And the values of 7 when the line and cylinder intersect 5 10
take the distance between A(#) and the line P. This would give a signed distance as

a function of ¢

d]‘sl(f) = 7 = e ({.)\}
i

VOA) < V) (Al x
with - indicating inner product and x denoting outer. or cross, product. With this

(Po = C(t)) - (Al x 1)

equation, when —R < dist(t) < R. the cvlinder and the line intersect. This will give
us the same regions of ¢ as the other approach.

We now have located regions of ¢ where the line intersects the cylinder. Unfor-
tunately, this only tells us that the line hits the infinite cylinder and we actualiv waut
to know that the line hits the finite length cylinder. To determine when this occurs.

we use the following equation [22]:

(b~ de) = dy/(bd = ¢} = (1 = d?}{a? = b? = R?)
(1 —d*)

{t.43]

minpar{t) =

where a.b.c. and d are the same as for u(t). This gives the position along the Jength
of the cylinder at which the intersection occurred. Within the intervals found m

the first step (guaranteeing the line hits the infinite cylinder). we find the intervals

where 0 < minpar(t) < L. These intervals are regions where the line strikes the finite
cylinder. Outside them (but inside the first set of intervals}. the line misses. Once we
have identified these regions. we find the minimum values of umin{t} over each region
and take the smallest value.

The job isn't completely done yet. It is possible that the closest intersection
may be with an endcap rather than with the cvlinder body. For the line ro hit the
endcap at [= 0. it must strike the infinite cvlinder bevond the extent of the cutting
tool, meaning ! < 0. Then it can hit the endeap. Finally, it must exit the cvlinder
with { > 0. The intervals that contain intersections of the cviinder and line that are
excluded in the second step are the ones in which an endecap strike can occur. To
locate regions where this happen, we look at the exit position of the line. If it exits
the infinite cvlinder on the opposite side of the endcap, the line must hit the endcap.

The equation for the exit point of the line is:

(b= de) + dy/(bd — ¢)? = (1 — d?)(a* = ¥* = B?)
(1 - d?)

maxpar(t) =

where a, b, c. and d are the same as for u(?). To find the regions where the line hits
the endcap. we must locate intervals of f with maxpar(t) > 0 for the endcap at / = 0.
and maxpar(t) < 0 for the cndcap at [= L. Again. these searches only occur within
the regions of ¢t included by the first search. but exciuded by the second one.

If the cylinder axis becomes parallel to the line in the interval. minpar{) will
head to +oo and maxpar(t) will head in the opposite (Foco)-direction. Right aronnd
these inﬁﬁities. an endcap is being intersected.

All the important intervals of ¢ have now been identified. Intervals wheve the
line does not intersect the infinite cylinder have been excluded by the first search.
The second search determines intervals in which the line intersects the side of the

finite cylinder. And the third seavch locates intervals in which the line intersects an

39

endcap of the cylinder. With these intervals in hand. we have excluded all regions
where the line does not intersect the finite cylinder and included the ones where it
does.

The final step of the algorithm is to find the minimum intersection point in
each valid interval and return the global minimum intersection as our answer. We
have already seen the equation to do that when the line intersects the side of the
cvlinder. The endcap is simply a piece of the plane. Since the previous searches have
guaranteed that the intersection is within the actual circle of the endcap. we oniv
need to figure out the intersection of the line with the appropriate plane. For both
endcaps. the plane normal is A{t). The location of a point on the plane is C'{/) for
the { = 0 cap and ('{f} + LA{#} for the other. The parameters of intersection of the

line with these planes are [14]:

(C(t) — Fo) - Al)

uend{t) = AL at [=0
uend(t) = -+t ?{(j()tu)- Fo) - ALY at { = L

Note that if the line is parallel to the cylinder axis. the denominator of umin{?) and
umax(t) is 0. It is then trivial to trap this case and do an endcap intersection.
Figure 4.1 gives an example of the method. Where the topmost curve. rad{f}.
is less than 0. no intersection with the cylinder exists. This region is marked with
the center X. In the remaining intervals. minpar{) is evaluated. This gives 3 regions
where minpar is greater than 0 and less than L. In these segments. umin(f) wiil be
used to locate the intersection. These segments are labeled with 1 at the bottom of
the figure. In the remaining intervals, maxpar{t) is evaluated, The region marked 2
has maxpar(f) on the opposite side of (from minpar{t). This region will be minimized

for intersection using end(f}. The region marked 3 is similar. with the two functions

0

“““““““ km—_:.a—‘”ﬁ T

................

i e

o

41

racl{tt

minpar(!}

maxparit)

umin(t)

end(t}

opposed about L. EndL(#) is the minimizing function here. The remaining segment
has both minpar and maxpar on the same side beiow 0 and does not intersect the
cviinder. Finallv. the minimum of the minimal value of umin(t) in regions L. the
minimal value of end{t) in region 2. and the minimal value of endL{#) in region . s

returned as the intersection point.

4.2 Implementation and Bounds

The method we describe above is quite siniple. conceptually. but carrying it out with
a guarantee of accuracy is something else. To successfully implement the merhocl.
we need to find all the roots of vad(#). minpar(t). and maxpar(t) in the interval 0. 1
or a subinterval. Tlen we must be able to find the global minimum of umint/j and
uend(t) over an interval.

Finding the roots of these equations is nontrivial. They each behave in a com-
plex fashion. making an analytical approach to locating the roots difficult to devise.
However, if we can find an upper and lower bound on the values of these functions
over any given interval. a simple algorithm may be used to locate the roots.

To find the roots. all we need to do is look at the bounds of the function on the
interval we desire. If both bounds are on the same side of zero, no root can exist in
the interval and we're done. Otherwise. subdivide the interval into two halves. and
check each half in the same manner. Once the interval is smaller than the machine
precision limits allow. either return a root if the values have opposite signs. or no
root if they have the same sign. It is possible to have a discontinuity in minpar and
maxpar, but this can be detected by the fact that the values at the two ends of the

interval will have a large magnitude.

The global minimum of a function may be found in a similar manner. The lower

bound is used to determine if the interval can contain the minimum. [f the lower
bound is less than the current minimum. the interval is subdivided and each segment
is searched. Otherwise. the minimum is elsewhere. Once the interval 1s too narrow.
take the lesser of the two end values as the minimum. If that is less than the current
global minimum value. the new value becomes the current global minimum. This

process is continued until the complete interval has been evaluated.

4.2.1 Bounding the Equations

Bounds for rad(!)

The rad function used to determine intervals of intersection with the infinite cylinder
is relatively simple. It consists only of factors and terms involving ¢, cos 8¢, and sin §f.

With a bit of rearranging. it looks like:
rad(t) = A+ Bt + Ct* + (D + Et + Ft*)cos 20t + (G + Ht + Jt¥) sin 28t {L7)

with the constants being

1 : y y - k P)
A = 3(—Pi S h (P2 + P} + Pl + i = RP(vl 4+ v2)) + R? - p*
papitavs + pypetyrs £ P20}
B = CePr + CyPy + QC:P: - C:.-le’i - Cy?’v”i - P t-‘;‘; _ CrPrU: _ Cypyvj 3 C__p:,r‘ﬁ

[A ; ') . v v2
—CoPrUplly = CxPrUptls = CoPylylls = CuP-Uyts — 2¢.p.o:

1 ‘ | _ o

c = 5("“:3: - Ci + (€5 + Ci +cd) (vl + Lj)) ~ ¢ + cpciunv: + Cyeev U + cte?
1, . . | . .

D = (gt -pi+(=pk+ ol phel + Be) = ol) + (=pr + py = D))

— PP ULV PP Uyl
_ 2 12 2 2 2 2
E = —c.pr+ Py + CoPrlis = CuPy¥y — CoP:ly + CaPrl, = CyPyly, + C:Psl

O Pplpls = CpPelplls = ColyUyls = Gy Uyt

13

1 3
e 2 . 2y,.2 2 2 2y,.2 L
= 3tcr~cy«rfm—c)‘ w-c + it r+(~cr+cy—~c:}z'y)——crc:vrz:—g—cuc-:zg,;-_

W

-

2ot 2, . .
G = PPy = PuePuts T pivety = Rovsvy p”':y{y PyP-Usls = PrPatyls
2 2 _ 2 2
H = —cpr = Cepy + Ptz + CePytv) = 200 ety + Cuir) F CaPyty + Coppy 0

FOY Pl CoPply U+ Oty

2
J = cgop —Crey t‘ + c Uply = CpC U~ CyCalip s — CoCalyLs

We can huild np a bound for this function easily. The parabolic terms are ~iniple
to hound over anv interval — if the peak is in the interval. it is the max {or min
and one of the two endpoint values is the min (or max). Otherwise the two endpoint
values are the max and min. The sine functions are similarily easy to bound. [fa neak
or valley occurs in the interval. it forms an extreme. Otherwise the end values form
the extremes. To find the bound on the terms composed of a parabola multiplied by
a sine wave. the bound values for the parabola are multiplied by those of the e
wave, giving four results. The largest and smallest of these represent a hound on the
overall term. Since any value of the two factors lies between their respective bouuds.
any product must similarly lie between the products of the hounds.

The upper bound on the entire function is simply the upper bound of the three

terms added together. while the lower bound is the sum of the three individual lower

bounds.

Bounds for minpar(f), maxpar(t}, and umin(t)

We can applv the same technique to bounding minpar{f), maxpar(t), and umin(/1.

The three functions are similar in form. If umin(t) is rearranged a bit. we have

A= Bt 4+ (C + Dticos20t + {E + Ft)sin26t — \/rad({)
-+ { Y cos {)sin rad(L

uminit) = .
1 | — (v, cos 8t + v, sin6t) :

and minpar(t) and maxpar(t) are slightly more complicated:

minpar{t)

(maxpar{f})

(p, ~ cpt)cosOt +{py — cytysinff +

(4 + Bt)cosft + (C + Dt)sinft +{E + Ft)cos 3t

+{G 4+ Ht)sin 30t — (+){v; cos 0t + v, sin 61} rad(t)

| — (v, cos Bt + v, sin ft)?

Constants for umin(¢) are

[

> T o S

Pt Pyl

- T y et
= E%i EE;—”-FC:U:
Prtis Pyly
= T T Ty
Coly Cyly
- T 3
Pyls Drly
= T T2
- Gt Gy
2 2

while the constants for minpar(t) and maxpar(t) are

A

B

G

nd o T
Pt pyirly Prly o
- n — =] - pevel;
: 2
Cr U‘i Cy Uply Cr U;
3 > - 1 + c.t s
2 . g .2
Pyvr Prlrly 'Pyi'y -
4 - -3 - 4 - p:‘lyl':
2 : 2
CyUI_ Cplipglly | Cy{'y .
- 1 5 n + LUl
2 o 2
BT _ pyl.rl'y _ p_,-t-y
+ 2 4
' ,2 - 2
_&Cl'l‘x Cyt.rty C’--yl'y
4 2 4
2 "o g \2
Py Prrly _ Pg‘-y
+ 2 +
'2 d * * "2
_Cyt'x _ Rl Cyly
+ 2 +

45

To bound these three functions. we can start by breaking the fractional termsinto
the numerator and denominator. The numerators all have linear factors multipiied
by sine waves. These may be hounded as described above. except that the linear
terms always take their bounds from the two end points. The remaining term of the
numerators is +/rad(t). All we need to do is take the square root of the upper and
lower bounds. Since we are searching in an interval that was the result of finding
positive segments of rad({]. the smallest value can be 0. so if the lower bound s
negative, we substitute 0 in its place,

The denominator is a simple function. It is a constant minus the square of a sine
wave. If the sine wave has a root in the interval. the minimum becomes zero white
the maximum is the larger of the two endpoint values. Then we subtract the squared
sine wave bounds from L. giving bounds for the denominator.

Bounds for the complete fraction are now achieved by dividing the numerator's
bounds by the denominator’s bounds. The largest and smallest become the bounds
for the fraction term. Two of the divides can be avoided with appropriate sign and
magnitude testing.’

Finally. in the case of minpar(t) and maxpar(t). there are additional terms in-
volving a linear factor and a sinusoid factor. These can he bounded as we have
already described. and then all the bounds added together to get bounds on the
complete functions.

It should be noted that if a discontinuity exists in the interval, due to the line
becoming parallel to the cylinder axis. the bounds will hiow up the closer to the dix-
continuity the search procedure gets. The upper value will approach > and the lower
bound will approach —oc. However, if a subinterval is created that no longer con
tains the discontinuity, botly upper and lower bounds shouid become targe (or smallj.

eliminating it from the search, Once tound. a discontinuity can be differentiated from

40

a root by checking the value.

Bounds for end(¢}

Bounding end(t) is simpler than the functions using rad(f). Expanded. end(¢} is

(cot — py)cos Bt + (c,t — p,)sin bt

. (1.0
vy cos ft + v, sin gt

end(?) =

The numerator consists of 1wo terms of a line multiplied by a sine wave. The de
nominator is just a sine wave. The bounds can be built up as before. Because of the
nature of the algorithm. a division by 0 won't occur because the line would then be

intersecting the side surface or not intersecting the cylinder at all.

4.2.2 Tolerance and the Numerical Approach

Unless we want to keep subdividing down to 0 interval width. we need to decide
when anlintervai is too narrow. In fact. since this has to run on existing computers
with limited precision, we have no choice but to have a finite limit on the inrerval
width. This immediately hrings up the fact that we can’t a,ctually_ find every root
that the function has. If the function dips below zero and comes hack up between
two successive floating point numbers. there is no way that this can be detected.
So, we see that the machine floating point precision sets a lower bound on the
a.ccura.cy obtmna.ble. Numerical inaccuracies also set a limit on obtainable accuracy.
Due to roundoﬁ' errors. a function often isn't smooth on a small scale. For instauce.
look at an example of rad(f) (figure 4.2). As we narrow the interval down around
the near-zero region. we see that the curve is smooth (figure 4.3). When the interval
gets narrow enough. the curve starts showing an unpredictable behavior as the effects
of the discrete representation of floating point numbers become apparent from 1)():le'

to point{figure +4). This unstable small-scale activity sets a further Hmit on the

17

Figure £.2: rad{{/} from 0 to 1

resolution of our answer. Empirically, the width of the un%ertainty interval for rad(/}
is about le-9. This is for IEEE floating point hardware which gives about le-16
precision in the range from 0 to 1. |

The numerical approach therefore has a tolerance. However, its correlation 1o a
geometrical measure of error is not obvious. A loose sampling in the search of racd(f}
could allow small contact regions to be missed. In addition. the ends of the intervals
may be placed further in than before. As a result. the later function evaluations don't
look at as much as they should. A deep gouge that occurs over a very narrow inrerval
of time could occur in the missed contact region. A similar miss of the extenr of
cutting could occur at the ends of intervals that are found. The geometrical meaning
of tolerance in this algorithm is distance between successive cylinder placements.
since each value of t corresponds to a distinct cylinder placement. However. the error

relationship is not anyvwhere near as simple.

0

-3e-05
-0.0001
-0.00015
-0.0002
-0.00025
-(.0003
-0.00035
-0.0004

-(3.00045 & | l I i ol
0.02 0.0202 0.0204 0.0206 (.0208 0.021

Figure 4.3: rad(/} from 0.02 to 0.021

2e-12 ! I [I 1 i | { ! 1
le-12 - rad(xy —— _

— i o | ‘ d i _LH ‘ ki A i " — . e

0 :;F:'_:__ ;lq ; ‘ 0 : _‘! W A :
-le-12 - il | | !.,1‘-:" . -
2e-12 = | AN | -
-Je-12 i Ll |
-4e-12
5e-12 H b i i i f t i 1 el
0.0205217 (.020521%

Figure 4.4: rad(t) from 0.0205217 to 0.0205218

14

For this reason. the niumerical approach is not amenable to an acdiustable rol-
erance. Another practical issue that gets in the way of adjustable tolerances is the
need for backtracking if they are aElowed.. If the search of rad({#) misses an interval of
negative values. later evaluations of minpar. maxpar and umin may try to take the
square root of these negative numbers. This can’t be allowed. requiring a reevaiiation
of rad(t) in this region so that it can be vemoved {rom consideration.

The graphs also bring up another important concern with safety of evaluations.
In this graph. the function just touches near 0. The static in the values there obscure
the number of actual roots present, whether 0. 1. 2. or even more. Due to the chaotic
bouncing exhibited by the [unction. if this interval were to be classified as positive,
later functions mav trv to take the square root of a negative number. with poot
results. Therefore. instead of actuallv finding zeros. what has to be done is 1o set
the effective zero at the positive epsilon value. This implies the necessity of a “safe”

direction to root finding.

Chapter 5
Polyhedral Approximation of a 5-Axis Sweep

5.1 Introduction

A common way to represent objects for many graphics purposes is to make a poly-
hedron that approximates the surface of the object. Polyvhedra have some dexirable
properties that make them a usetul representation for graphical applications. A polv-
hedron consists of points. straight line segments and flat polygon faces. This means
that intersections and other operations with polvhedra are simple to compute and
therefore, make for fast computations. Poivhedra are easy to display since scan cot-
version of a flat surface essentially involves intersection of scan lines and polygons.
[t is also relativelv easv to find the intersection of poivhedra with other points. lines.
polygons, and polyhedra. since all the equations involved are linear. Polvhedra are
also useful as objects for rav tracing since the algorithm consists of repeatedly findne
intersections of rays and objects.

The biggest advantage of using polyhedra is also its biggest disadvautage: be-
cause lines and surfaces are flat and straight. it usually takes numerous polygons 1o
represent curved surfaces. When a polyhedron is displayed. its contours appear -eg-
mented. In addition. the constant normals of the faces do not model the normals of
curved surfaces very effectively, In ray tracing especially. this fact affects the <had-
ing process significantly and serves to highlight the segmented nature of the abject.

These effects are verv noticeable unless many very small polygons ave used. or in the

case of shading, a smoothing algorithm 1s applied.

Since we are onlv concerned with the accuracy of the point of intersection. these
di_sadvant.ages are of no concern to us. As long as the faces of the polvhedron are
within the specified tolerance of the real swept envelope. we can take advantage of
the simplicity of the intersection of lines and polygons. Finding the intersection of a
ray and a polyhedron efficiently has been solved in rav-tracing research [13].

How. then. do we coustruct a polvhedral representation for five-axis tool move-

ments’

5.2 Buildi.ng a Polyhedron

5.2.1 The Swept Envelope

To build the polvhedron. we first must consider what constitutes the envelope of the
swéep. The evlinder can generate the envelope by cutting with either the side or
the ends. We can ignore the top end as it will in reality be attached to the resr of
the milling machine. and contact should not occur between the cylinder top and the
surface being cut. This is a major error and easily identified.

To attack the problem. we will describe how to build the individual pieces. Firat,
we create the side meshes. then the surface swept by the end disc. The two ends are
represented by the cylinders themselves at + = 0 and ¢ = 1. We often onlv need 10
uée the cylinder at the starting position, because the ending cylinder position of one
tool movement is often the starting cylinder position of the next one. Intersecting a
cylinder will be much faster than intersecting the many polvgous that would result by
polygonalizing the cvlinder's surface. Finaily. the pieces need (o be stitched together
to form a complete polyhedron. Because we won't build a surface for the sweep of the

top end of the cylinder. the vesult will be an open shell. rather than a closed surface.

't
[)

5.2.2 Constructing the Side Meshes
Parameterized Equations for the Side Surfaces

To build the polvgonization for the sides. we turn to differential geometry. which gives
1s a means to find the envelope of a one-parameter family of surfaces [10]. To ubtai
the envelope. we take the implicit equation flr.y.z) = 0 describing an instance of
the surface. and then substitute in the equations describing the motion of the object.
giving us fla.y 2.1} = 0. Then. the intcrsection of f = 0 and the derivative with
respect to the motion parameter /. Fla.y.oz.t) = 0. gives us a represent ation of the
swept envelope created by the surface. By eliminating f from the two equations. we
get an implicit description of the swept envelope as the resuit.

The effect of this computation. esseutially. is to give a general formula lor the
intersection of the surface at time ¢ and the surface at t + ¢ as ¢ goes to 0. We can see
this by looking at a simple example. In two dimensions. a circle slid along a line will
have two lines parallel to the line of motion as an envelope. The intersection points
of two of the overlapping circles lie on a line perpendicular to the envelope lines. The
closer these two circles are. the closer the points move towards the envelope lines. In
the limit, thev lie on the envelope lines. The points of contact of the surface and the

envelope are referred to collectively as the critical curve.

For a cvlinder. fa.y.2) =0 is
O=(z-X) +-Y) +(:- 2P - R ={la=X)A+(y=Y)B+ (- V(v

where {X.Y.Z) is the base point of the cvlinder. and (A. B.C) is the axis vector.
The base point and axis of the cylinder undergo the transformations in equations 2.}

and 2.4:

({1 = {c.t.ct.cct)

Aify = [cosOisin 01,0

Now. the equation for the family of eviinders as a function of t. flao oy .z b =105

0= (.r-»cr!}“;—é—{gmcyt)lz—i—(: — .t~ R* w{(.z'mcrt)cosﬁz‘—%(y-—cyt}s%n 0117, (3.4
The derivative f'{r.y.z.t) =013

0 = ‘Z(C,g(cg-f—r}-vc_.ﬁ,{c\q.fw;/)+r:{(-:f——:}-(¢‘)(y——cyt)cosFJH—

Blept — rysintt — ¢, sinflt — ¢, cos DY (2 — ept) cos At + (i — ¢yt s A0

It is very likely impossible to eliminate f from these two equations and get au implict
function for the surface.

However. we can turn tlese equations into a parametric surface representation
f(t. D). With a parametric function of the surface, we can generate points by giving /
and { values and knit them together into a mesh. To buiid‘ the parametric function.

take 5.1 and 3.2 at t = 0

Since the cvlinder lies on the x axis starting at the origin here. we can replace by a

parameter | corresponding to the position along the length of the cylinder. We now

have
0 = y+it-R | (3.5
0 = ye,+ iyl + zc.. E3.000
Now we can solve the first equation for either y or :. substitute nto the ~econd

equation and arrive at a parameterization of both y and = Solviug for = and pligeine

in ro get y gives

= £ 7 = . i
P N P N

and solving for y and plugging in to get = gives

e = =V RY = e, + 10)
Hed = (RP =) (e, 4+ 10)°

R, + 1)
Cy -+ i
(¢ + (¢, + 10)3)4/%

+
*

=
il

(5.8

: = *R

The signs of y and =z allow for four possibilities. Oniy two of these are actuaily vaid
solutions. Using equations 5.6. 5.7, and 5.8. if y and = have the same sign. we have

C: c, + 10
, - G = ! .
R e T = TR e
Tl

=l

H

which is impossible. When y and = have opposite signs. we get

c, + 18
(@ e, = 02

C-
(c% 4 {cy + 10)2)1/2

=R {c, +16) = =R

+l = =i

which is obviously true. Therefore. we only have a solution when y and = are ol

opposite signs.

From ali this we get a complete set of parametric equations in / for the <ide

surfaces at =

o
(e +(cy T (-
c, + 16
(T (e, w1877

ythy = xR

Sy = FR

5 Hy

RN

This is a snapshot of the critical curve on the body of the evlinder at one rime.

We need to make these equations functions of f to describe the critical curve on the

hody of the cylinder at any given time. ¢z.cy, C-. and 8 change with time. {c..c, ¢

undergoes the reverse transformation. while 4 decreases lineariy. So,

ety = el =t)cos Bt + o {1 —t)sinff

(i) = —c(l=t)smdt+c,{l— t) cos 61
c.(1) = e.fl —1)
Bty = (L -t}

and substituting this into our parametric equations results in

z(t.)
yi{t,)

z(t,0)

il

[
+R— i ¢~ 1 —
(cf(lwf}'—l,—(l/ﬂ(lmt)—é—cy(lmt)cosf)f—»cr(l~—t)81119f)2}“2
~R [H(i-—t)—%—cy(l—t)cos()t-—cr(i-t)sinf)t
™ (cﬁ(l«-f)?+(10{l—-t}—|—cy{l-t)cosb‘f——cz(l —f)sin B2
{
C:(i"‘f)
+R
(l—~z§)(c’j34r—(MJ-%—<:3,,C(3591‘,---c_,asin@if)z)lf2
- (1 — t}{If + c,cosft — ¢, sin 1)
B (1mf)(c'ﬁ—i-(!9+cycosf)twc:‘,.sinf?t}‘z)‘/'z
{ 3.0
C.
+ R - i3.030
(¢? + ({6 + ¢, cos Bt — ¢, sin Bt)21/ ’
+ — ¢y &l
—p- 16 + ¢, cos Bt — csin bt o

(cf =+ {4+ ¢, cosbt — ¢, sin f)2 /T

30

We now have a description of the critical curve on the cvlinder body in rime.
To obtain this curve in the fived line’s frame of reference. we transform the points ot
the critical curve using the transformation 2.5. To do this. the equations theniselves

are transformed. giving

¢, sin 6t
r(t) = cpt +lcosht F R - - : P30
) h {c;+(£9+cycosﬁt—-crsmﬁt)z)i” |

. cos Ot
ylt.) = ¢t +lsinft = R— €= O - i3.L60

(2 + (10 + ¢, cost — csinfF)2)1/2
6 + ¢, cosft — ¢, sin bt - -

c.t+ I ~-. Pyl
F T T + ¢, cos 0 — ¢y sin 0233 s

£

(0

With these equations. we have a parameterization of the side surfaces of the =wept
envelope of a five-axis tool movement.

Another way to look at the functions geometrically is to notice that the firsr two
terms of x(t.]) and y(¢.1} and the first term of z(2. [} give points along the axis of
the cylinder at a.ngi* time *. The remaining term in each function is the component
of the vector that, added to the center axis point. is on the swept surface. Thus
every cylinder contributes to the swept surface. and any point on the surface has a
corresponding point on the other surface directly opposite through the cvlinder axis.
The line connecting them is normal to both surfaces. |

It is interesting to note that the surfaces swept out by the cylinder side are not

ruled. In other words, while it may seem that the cylinder at any time meets the

surface in a line, this is not the case. We will show this in more detail in Section 3.3.1.

Assembling the Side Surface Mesh

Now that we have a set of parametric equations for the side surfaces. we can 2o
about building a mesh for the side surfaces. Selecting either the first or second ~et of
equations (+ or — of a = pair}. we picka arid of pairs {t./) with ¢ ranging between §

and | and [going from 0 to L. The equations ave evaluated for each pair. returning
going { P 2

a point in space on the side surface.
We then pick a triangulation in parameter space of the set of pairs (1. 05, The
corresponding points are then connected into triangles in real space. which gives ns

a triangulation of the side surface with all the points lying on the surface itzelf.

5.2.3 Building the Surface Swept by the Bottom Disc

To build the poivgonal mesh for the hottom cli;s.c. we will use a similar approach
as above, Parametric eqnations will be used to generate envelope points from rwo-
dimensional coordinates that will describe the whole surface. The difference liere 1
that the envelope has to be built in parts,

The disc. unlike the cviinder body. has an edge to worry about. Both the edge
and the interior of the disc may sweep parts of rthe envelope. The interior. being
planar, will sweep a developable surface. as we will show. This simply means that
the surface is ruled (a line sweeps out the surface). and that it may be laid out fat
on a plane. The developable surface may not actually be part of the envelope if irs

critical curve falls outside the circular houndary of the disc throughout the sweep.

The Developable Surface Swept by the Disc

The bottom disc is just a circular piece of the plane that is perpendicular to the
cylinder axis and contains the axis point at ! = 0. The family of surfaces is just
the continuous set of planes generated as the cylinder sweeps along. Recall from
Section 5.2.2 that the critical curve of a member of the family of surfaces is the
intersection of the surface at time ¢ with the surface at time f + ¢. In the case of
planes. the intersection will be a line. In our motion. the plane always contains & {iie

narallel to the = axis. so the intersection necessarily is parallel to the z axis as well,

These two facts tell us that the plane of the bottom disc will sweep out a developable

surface.
The normal to the plane as a function of time is just the cviinder axis vector
(cos ft.sin0t.0). The plane always contains the center point of the base (¢ f ¢ f .1,

We now can get the equation for the plane as a function of time:
reos Ot + ysinft = c tcosft + ¢ tsindt.
If we now take the derivative with respect to t and divide by 4. we have

. c .
—rsinft +ycos it = (—5— + c, thcos bt + (-C{Ty - ¢, f)sin Bt

Each equation describes a plane parallel to the = axis.
Solving the first equation for y and then x gives

tcos 0t -t cos 81

o= Cul— Cyl — b=

Y “Usin 6t Y sin 8¢
sin 6t sin @1

-1 .
cos it y cos 8t

ro= cpt eyt

These are plugged into the second equation to get (!} and y({) respectively:

L
—
.

ri{t) = ¢ —sm ()f(f(_)£ cos 0t + % sin 61} {3,

y(t) = cyt-é-cos()t(%cosf}f+C—;-.~';inﬂt). : 3.1

This line, then, is the critical curve at time t for the plane of the cvlinder base.
However. the bottom of the cylinder is actually a disc and not just an infinite
plane. The line may or may not be within the disc’s boundaries at a given time. i
we find the intersection of this line with the cylinder. we will get the end points of the
line segment in the disc itself. Plugging r{t) and y(?) into equation 3.1 and =olving

for z gives

‘ } | 1 [c2{cost Ot + cos? Ot sin® 01) + c2(sin” 8t + cos? Ot sin’? l’}f}\
+ GRP- =7 ’
\J +2c.c,{cos? Ot sin it + cos 0t sin® 6t J

. I . .
= ¢.0* \/ R? — 7 (cf cos? Ot + ¢} sin® fi 4+ 2c,.c, cosfif sin Hf)

1
= c.tx \/32 -7 (¢, cos bt + ¢, sin 61)°.

From =(t)} we can derive the time intervals over which the critical line lies within
the circle boundary. Since the line segment end points only exist when the expression

under the square root is positive. we need

1 .
R = g(crcosf))‘—&cysmﬁt}
l ¢
-~ s 2 : . ¥ RN
> 9\/cl,+cyco.s(f)f.--»a.lctancr;. (3200

Solving for 7 when 5.20 is exactly equal gives the interval end points

1 RG 1 cy T
- arccos | —mmm——— | + = arctan — + k=
{ o2 f cy #

fom o

where & is an integer chosen so that 0 < ¢ < 1 if possible. If it is not possible. then
there is no developable component to the swept surface for the motion.

With these equations we have everything necessary to generate a developabie
surface mesh. Note that we essentially have a two parameter description of the surface.
but the second parameter is just . To huild the surface. pick sample times over the

“interval in which the critical line lies in the circle boundary. The line segments are
then joined at the ends to make connected quadrilaterals. giving a completed mesh.

Note that. in .general. the points on a cylinder where the developable criticat
curve line meets the disc edge are not the same points that the side crit—icaf curves
meet the disc edge. The developable surface line oscillates in.the plane of the dixr v
time in a direction perpendicular to the line. The points due to the side curves lie v

either side of the developable surface line when it is in the center of the dizc. Thev

oscillate back and forth in an arc with time {see figure 5.11,

G0

Side Surface

Developable"'v X

Surface

Figure 3.1: Movement of side and developable points on disc edge

The Surface Swept by the Disc Edge

The contribution to the swept envelope by the disc’s edge is more complex than that
of the developable surface. It is possible to determine the actual arcs that contact the
envelope at anv given time. but there can be more than one arc. making the mesh
construction more difficult. Instead, we will generate a mesh for the whole disc. Auy
polygons that don't represent the surface will be internal to the sweep and simply
slow down the intersection routines somewhat. If a good space subdivision algorithm
is used to segment the polyhedron, the extra internal polygons should have aimost
no effect because the are unlikely to be in the boxes containing surface polygons.
Therefore, intersections will never be performed with them.

To build the parametric description of the sweep of the disc. we need to ii}t roduce
a parameter a to describe position around the disc’s edge. We'll define a such that
at t = 0, a = 0 corresponds to (0.0. R) and that (0.sina.cosa) defines a point on

the disc edge. Then. plugging this position formula into the motion equation 2.5, we

Gt

get parametric representations for the sweep of the disc

tli.a) = ¢yt — Rsinasinbt (3211
ylt.a) = c,t+ Rsinacosft (5.2
i) = c.i+ Heoseo. ISR

For 0 <t < 1and 0 < a<x. all points of the swept surface will be generated.

5.2.4 Merging the Side and Bottom Meshes

We now have a wayv o build a mesh for each of the component surfaces of the OO

movement envelope we want. All we need to do now is join them together ~moothly
and with no cracks. Cracks potentially would allow a fixed line to go right throngh
the middle of the sweep and not produce an intersection.

The strategy to eliminate cracks in the completed polvhedron is to make sure
that where two surfaces meet. they share the same boundary. This means tha all
the edges of the boundary of one surface should be the same as the edges of the other
surface over the length of the border between them.

The bottom edge of each side surface has [= 0. meaning all points on these
edges are at (t,0). Each point has a corresponding value {i.a}, where o is the angular
location around the body of the cvlinder. This value also matches values of a on the
disc surface. Therefore, each point on the bottom edges of the side surfaces should
lie on the disc surface. However. each surface is created independently. so we have to
force the disc surface to contain the same set of points as the bottom edge of cach
side surface.

To do this, we simp!y add each point on the side surface edge to the disc surface

mesh. When a point is added in a disc surface tziangle. the triangle is subdivided using

the new point. The edge from the side surface point to the previous one becoines part

G2

of the disc mesh. If two successive side surface edge points lie in different triaungles.
the side surface edge must be split. A new point is added at the intersection between
the side surface edge and the disc surface triangle edge. The new point is added 1o
the side surface. splitting the side surface triangle it lies in. Then, the new point cau
be used to continue the process of laying in the side surface edge. This process iz
repeated until the complete set of side surface edges lies in the disc surface.

Once all of the points from the bottom of the sides are included in the disc mesh.
the two surfaces will meet up at a smooth border since they will share connecting
edges and vertices. Note that it may be possible to have more than two triangles
sharing an edge on the border. If an octree txpe of approach to limiting intersections
to exterior triangles isn't satisfactory, a data structure can be huilt to allow trimnung
these internal triangles later.

Joining the developable surface to the disc surface mesh can be done in a similar
manner. If we first include the time ¢ when the developable surface starts and euds.
the two meshes will join up correctly at the ends of the developable surface. The rest
of the developable surface consists of quadrilaterals with two opposing edges in the
interior and the other two along the border of the surface. Triangles can be formed
if desired. The ends of the developable line segments have corresponding o values.
If we include these points in the disc surface mesh as described for the side surface
edges, the developable and disc surfaces will then share vertices and edges. resulting
in a continuous shared border with no gaps.

Edges due to the side meshes and the developable surface may cross in the disc
surface mesh. To solve this problem, links must be maintained from the developabie
surface to the side surface in those triangles that share an edge. Then, if a devel-
opable edge crosses a triangle edge shared by the side surface. hoth meshes can be

appropriately updated.

63

Once all this has been done. we have a closed polyhedron with extra triangles

inside.

5.3 Bounding Polyhedron Tolerance

5.3.1 Bounding the Side Surface Meshes

Now that we liave a wayv to chioose points on the side surfaces. we have to decide how
many are neeced and where. To guarantee our approximation. we need to show tha
all points on the surface are within tolerance T of the approximation. In addition. all
points on the approximation must be within T of the true surface. otherwise swrfaces
not even remotely near the surface could be included and considered valid.

For a given tolerance T and a point on the surface (x{to, lo), ylto.lo}. sfu.fol).
we can find a polygon tangent to the surface at that point which is within T of the
true surface. By using a continuous mesh of these polygons, we guarantee that every
point on the surface will be within T of the approximation. Since these are the onlv
polygons that will be used to approximate the surface. the approximation wiil alwars
be within T of the true surface as well. Starting from the parametric equations for

the sides. we find the standard linear approximation [32. page 925 of each coordinate.

These are:
.T?(t. !) = .I?(fg. 30) - Qi(fe ig)(t - fg) + ?‘E(fo. fo)(! - !g]
ot al
y(t.ly = ylto.lo) + %‘%(to, lo){(t = to) + %T}'-(fou lo)(1 — lo).
(D = (o lo) + Eto o)t~ 10) + Srlta)1 =).

This is just the parametric description of the tangent plane at {tp.lo). For small
changes in [and . this will give an acceptable approximation.

How acceptable is this? Using standard calculus. we see that the error in the

64

standard linear approximation can be bounded in a region around {fo.lo) [32. page
927]. The error is

|EL (8 D))< =M{jt = tol + {1 = lo])*.

Do | 4=

. 5 H2p 2 52
where M is an upper bound on l%}%‘ia {ftg’l! and |%F| over a range of values around

(to, lo}. This tells how much at most the r coordinate is off by in this region, and we

can similarly find it for y and =. Then. the maximum error for (¢, [} is no more than

ﬁg(t, D+ B2t 0+ E(t.1). At this point we have to select a region of ¢t and [that
keep the error less that T.
Using equations 5.13 with a +, 5.16 with a —, and 5.17 with a +, the first partial

derivatives for each component are:

oz . Re.8 sin 8t(c, cos 6t + ¢, sin 01)(16 + ¢, cos ft — cpsin 6t
3 = o lfsinfls (& + (16 + c:cos Bt)£ e sinyﬂt)2)3/2 !
Re.8cos 6t

T @ E (16 = o cos 6t — o sin b)) 12
Qyi = ¢, +16cos ot — Rec.6 cos ft(c, cos 6t + ¢, sin 6t)(16 -{r-tcy ;0?9'& — ¢ 5in 8t)
ot (2 + (16 + ¢y cos Bt — ¢z sin gt)2)3/2

Rec,8 sin 6t

* (2 + (16 + ¢y cos Bt — cosin gt)2)1/?
0z _ . + RO(c, cos Bt + ¢, sin 8t)(16 + ¢, cos bt — ¢z sin 6t)°
ot (2 + {16 + ¢y cos B — ¢z sin §t)%)3/2

R8(c, cos Bt + ¢, sin 6%)

T {2+ (16 + ¢, cos Bt — csin Bt)7)1/?
dz Re.6 sin 8¢(16 + ¢, cos Bt — c. sin 0f)
FIE o= (2 + (16 + ¢, cos Bt — ¢z sin gt)2)3/
8y _ Sinft+ Re,6 cos 8t{16 + ¢, cos 0t i sin 6t)
al (2 + (10 + cycos Bt — cpsin f1)2)3/2
0z RO(18 + ¢, cos bt — ¢, sin ft)?
31 = T{@Z+ (16 + ¢y cos Bt — ¢, sin 01)1)2

R#
+

{c? 4+ (10 + ¢, cos bt — cosin 6t)2)i/?’
Taking partial derivatives again gives us:

3z Re.6? sin 8t(c, cos Bt + ¢, sin 8t)2(16 + ¢, cos 8t — ¢ sin Bt)?

Bz (2 + (If + ¢, cos Bt — ¢ 81D f1)2)5/2

Re,8? cos 8t{c, cos Bt + ¢, sin 8t){(10 + ¢, cos t — ¢, sin f?)
(¢ + (I8 + ¢, cos 0t — ¢ sin 81)%)3/2
Re. 0% sin 0t(c, cos Ot — c; sin 81)(18 + ¢, cos 8t — ¢, sin bt)
(¢ + (16 + ¢, cos 0t — ¢ sin Bt)2)3/2
Rc.8? sin 6t{c, cos 0t + ¢, sin 8¢)?
T (e + (16 + ¢, cos Bt — ¢, sin 1)2)3/2
Re,6?%sin 61

" (2 + (16 + ¢, cos Bt — ¢, sin B8)2)1/? ~ 6% cos 6t
9z 3 Re,0? sin 8t(c, cos 8t + ¢, sin 8t)(10 + ¢, cos 81 — ¢, sin Ht)?
alot (c? + (16 + ¢, cos 8t — c, sin §t)2)%/
Re.9% cos 8t(16 + ¢, cos 8t — ¢, sin 6t)
~(€® + (18 + ¢, cos Bt — ¢, sin 61)%)3/2
Rc.0? sin 6¢(c, cos 6t + cy sin 6t) Osinft
(2 + (16 + ¢, cos Bt — ¢, sin 6t)2)3/2
&z _ ?)Rczﬁ2 sin 8¢(18 + ¢, cos Bt — c, sin 6t)*
ar (c2 + (16 + ¢, cos 8t — ¢, sin Bt)2)5/2
Re,9° sin Gt
(¢ 4 (16 + ¢, cos 8t ~ ¢, sin 62)2)3/2
Py _ _3R6232 cos Ot(c, cos Bt + ¢, sin 8t)2(18 + ¢, cos bt — ¢ sin Bt)*
atr | (c? + (16 + ¢y cos Bt — ¢ sin Bt)?)5/2

Re, 8% sin 0t(c, cos 6t + ¢, sin 0t)(18 + ¢, cos 8t — ¢, sin 8t)
(2 + {16 + ¢, cos 8t — ¢, sin 61)2)3/2
Rec, 6% cos 0t(c, cos Bt — ¢, sin8t)(10 + ¢, cos 8t — c; sin 6t}
B (€2 + (18 -+ ¢, cos Bt — ¢, sin 6)?)3/2
Re.,0? cos 8t(c, cos 8t + ¢y sin Bt)?
(c? + (18 + ¢, cos Bt — c,sin6t)?)3/2
- Re, 8% cos 8t
T @ T8+ c,c080t — comn b))
%y 3Re, 07 cos 81 (c, cos 8t + ¢, sin 6t)(16 + ¢, cos 8t — ¢, sin 6)°
Aot (2 + (18 + ¢, cos Bt — ¢, sin 6t)2)3/2
Rc, 6% 5in 0t(16 + ¢, cos ft — ¢, sin t)
"~ (c® + (16 + ¢, cos Bt — ¢, sin §t)?)%/2
Re.6? cos Bt(c, cos Ot + ¢, sin 82)
" (2 + (16 + ¢, cos Bt — ¢, sin 6t)2)3/2
%y Rc, 6% cos 8t(18 -+ ¢, cos 6t — ¢y sin 61)?
£ " {2 + (16 + ¢, cos Bt — ¢ sin 6t)?)%/2

16% sin 6t

4 8 cos 8t

66

Re, 0% cos 6t

" (Cg + (19 + ¢, cos gt — ¢, singf)2)3/2
Pz RO*(c, cos Bt + ¢, sin 0)2(18 + ¢, cos Ot — ¢ sin Bt)°
ot (c2 + (16 + ¢, cos Bt — ¢, sin 61)?)/2

R6%(c, cos 8t + ¢, sin 61)*(16 + ¢, cos ft — ¢, sin)
(c® + (I8 + ¢, cos Bt — ¢, sin 6t)2)3/2
R6*(c, cos 8t — ¢, sin 0)(16 + ¢, cos 8t — ¢ sin 6t)?
(2 + (18 + ¢y cos Bt — ¢, sin Bt)2)3/
R6*(c, cos Bt — ¢, sin 6t)
(2 + (18 + ¢, cos Bt — ¢y sin Bt)2)1/2
3z RH?(c, cos Bt + ¢, sin 8t)(18 + ¢, cos Bt — ¢, sin f2)°

alot (¢t + (16 + ¢, cos 0t — ¢, sin 8t)2)%/7
. 3R92(19 + ¢, cos 8t — ¢ sin Bt){c, cos Bt + ¢, sin 61)
(c2 + (16 + ¢, cos Bt — ¢ sin Bt)2)3/2
&z _ 3 R6*(18 + c, cos 8t — ¢, sin 6t)°
ol? (€2 + {18 + ¢ cos Bt — ¢, sin §1)7)%/2
_3 RO%(18 + ¢y cos 8t — c. sin bt)

(€2 + (16 + ¢, cos Ot — ¢, sin B)2)3/2

As we can see, these equations are rather complex. But there are some facts that
will help us obtain bounds. First, most of the factors are either ¢, cos 6t — ¢, sin 6t
or cgcosBt + ¢, sinft, which can be rewritten as ,/c2 + cZ cos(ft + arctan) and
m cos(ft — arctan g—) respectively. The only other factors that depend on t
are sinft and cosft. Ignoring exponents for the moment, all factors have a linear
dependence on I, if any. Therefore, by choosing starting intervals of ¢ so that the
trigonometric factors are monotonic over the interval, any factor of a term will be
monotonic over regions smaller than or equal to the starting ones in the t direction.
This means that we will only have to consider the values at the ends of an interval of
! and of ¢ to determine bounds.

Since we need a bound on the absolute value of the second derivatives, we'll
need to keep both the largest and smallest value each term can have over a region.

When factors are multiplied, the largest value of the product will be the product of

67

the largest value of each factor. The one exception is if a factor taken to an even
power equals zero at some point in a region of t and {. In this case, the minimum
value is zero and the maximum value of the factor is the larger of the absotute value
of the two ends. Division is similar; the smallest value of the quotient is produced
by dividing the largest denominator value into the smallest numerator value, and the
largest quotient is the smallest denominator dividing the la,rgest numerator. None
of the denominators can be negative!, so this method holds when the numerator 1s
negative as well. Once all the maximum and minimum values for the terms have been
computed, they can be added and subtracted to get a maximum and minimum for
the entire function. Then the bound is just the larger of the absolute value of the
maximum and minimuin. |

This will get us a bound, but we can take some steps to improve it. § can be
arbitrarily limited by choice, since the motion can be broken up into smaller segments,

as seen in Chapter 3. Therefore we can arbitrarily guarantee that # < 1. This in turn

tells us that

0<cosft <1, and

0 <sinft < 1.

In addition, since the denominator of the complicated terms of the functions is essen-

tially a normalization factor, we have

¢, sin 8t < 1
(2 + (16 + ¢, cos Bt — ¢, sinBE)%)1/2| = 7
‘ ¢, cos 8t < 1
(2 + (16 + ¢, cos 8t — ¢, sinBt)2)1/2| — 7
(16 + ¢, cos Bt — ¢, sin 0t) < 1

(¢2 4 (I8 + ¢y cos Bt — ¢ sinBt)2)1/2| —

1The denominators can become 0, however. This is the source of problems later on.

68

These inequalities can be used to limit the magnitude of these factors. Unfortunately
+his technique cannot be applied to all factors.

In general. the bounds presented wiil work well. However, under the right
conditions. the denominators can get very small. The term in the denominator
(18 + ¢, cos Bt — ¢, sinft) can easily become zero. In this case, ¢, is the only value
underneath. When c. = 0, the whole denominator is zero and the equations blow
up. Fortunately, when this happens. the plane of rotation contains the line of linear
movement, meaning the sides of the swept volume are planes and could be easily
handied.

Otherwise ¢2 > 0. If the linear motion lies near the zy plane, ¢, will be small,
causing the bound to become immense. This occurs because (18 + ¢, cos 8 — ¢z sin)
approaches zero. To see why this happens, we can look at the critical curve in the

cylinder’s frame of reference (egs. 5.12, 5.13, 5.14):

c
f,l = R z
y(t1) = =RTET8 1 ¢y cos Bt — cpsin B2)2)12
(t,l) = FR 16 + c, cos 0t — ¢, sin 1

(& + (16 + ¢, cosBt — c,smBt)) /2

This doesn’t help answer the question very well. It is obvious that y* + 22 = R? and
that the two curves lie on opposite sides of the cylinder at any particular . To get a
better idea of what the curve looks like, we can parameterize it in terms of the angle
around the cylinder. We start by assuming that o = 0 corresponds to (z,0,R) and

positive rotation is toward the y axis, implying that o = 7/2 is (z, R,0). Then,

y(t,a) = Rsina

z(t,a) = Kcosa.

69

Figure 5.2: cotangent wrapping around cylinder

To compute ! in terms of o, we set y(t,{} = y(t, «) and the same for z:

4
Rsi -~ R z
e (2 + (18 + ¢, cos Bt — ¢ sin Bt)2)1/?
1] — &
Rcosa = —R + ¢, cos Bt — cosin 6t

(2 + (16 + c, cos 6t — c; sin 62)2)1/%

Combining the two leads to

c. 16 + c, cos 0t — ¢, sin 61
sina cos o
€, CO8 & .
= = —(I6 + ¢, cos Bt — ¢ sin 6t)
sin &
! c,cosa | cpsinft — ¢, cos Bt
r =1 = .

" fsine]

This form makes clearer what is happening. The shape of the curve at any
time t 1s just —% cot & wrapped around half the cylinder body. A matching curve is
wrapped around the opposite side of the cylinder. As c, decreases, the center of the
cotangent curve flattens out, and the edges rise and fall more sharply over 2 smaller

range of o (see figure 3.2). So, when ¢, 1s near zero, the critical curve descends from

infinity in almost a straight line over a small interval of o, then over a very short span
of | the curve whips around the cylinder body to the other side, and finally heads out
to negative infinity over the small interval of a at the other end. The term depending
on t slides the curve up and down the cvlinder body in a sinusold manner.

The ! parameterization does a good job of describing the curve from the two
infinite ends to the band in which the curve crosses over the cylinder body. The a
parameterization describes the crossover portion of the curve well. By using hoth
forms when c. is small. we will be able to get a‘better description of the surface and
consequently should get better error bounds. Note that when ¢, = 0, the [equations
define two lines down the side of the cylinder body, while the o form describes a circle
around the cylinder body. The curve has degenerated so that the turn from line to
semicircle is a right angle.

The derivative equations for the o form are much simpler than the [counterparts.
When the o equations are transformed into the fixed line frame of reference, we have

c. cos ¢ cos Bt ¢ sin 8t — ¢, cos 6t

cos 0t

o(t,a) = cpt— Tera — — Rsinasinft
¢, cos ax sin 6t , sin #t — ¢, cos Bt)
y(t, o) = ¢yt — Wm—»{—sxn&tca’ : 7 y COF +R’smacos ot
z{t,a) = c;t+ Rcosa,
The first derivatives are
Oz 9) cosa _
92 = 2c, cos? 6t + 2¢, cos Bt sin 6t + ¢, —— sin 6 — fif sin c:cos ot
ot sin o
a) . cos &) ,
9% - 2¢, gin® 0t + 2c, sin Bt cos bt — ¢, — cos 6t — Rf sin o sin 6t
ot sin o
0z
— = O
ot :
oz ¢, cos Bt
= A~ Rcosasin bt
der g sin® o
dy c.sin Bt
L = e 4+ Rcosacos Bt
Oo §sin® o

0z

5 = —Rsino

giving second derivatives of

a° i
5?;; = —~ic.fcos ftsindt + 2¢,6 cos 26t
+¢, 8 Cf}s @ cos 8t + RO? sin cr sin 6t
sin &
a2
mj{ = d¢ fcoshtsin bt + 2¢.6 cos 20t
at? Y
+c:9:52 sin 6t + R6° sin a cos Ot
&=
.
H*r sin At
= —c - R8
5i5a C o cos o cos Gt
* cos Bt
at; =y 52 — Rf cos asin 8t
sin® o
0%z
= 0
Otde
8*r €, CO8 O))
5oz = -292, 5— cos Bt + Rsin «rsin 6t
o sin® o
92) .
b——% = —2-;—5—?-9;3 sin 8t — Rsin o cos 8t
a sin® o
9%z
EY] = —Rceosa

All of the factors in the second derivatives are monotonic over easily determined
intervals. This will allow finding maximum and minimum values over regions in a
similar manner to that used for bounding the other parameterization.

The only remaining point to using this approach is to decide where to cross from
I'to a and back. A reasonable crossover point to choose is the point at which the
slope of {(a) = x1. At this point the slope of a(!) = +1 as well. On either side of
this point, the functions in / or o are not changing too quicklv. which means that

the bounds shouldn’t grow too large. Doing this ensures that no divisions by zero

~
3%}

will occur as those points are in the other parameter’s domain. For example. when
16 = ¢, sinft — ¢y cos t, then o = 7 /2. The crossover point is straightforward to find

as

dl c

z

o fsin’ a
, C,

a = arcsin/—.
‘ é

Despite dual parameterization, if the tool movement becomes flat enough with-
out becoming completely flat. an alternative method for finding the intersection will
become necessary or a different means of bounding triangie accuracy will have to be
found. Otherwise, the number of triangles required will rise uncontrollably due to
the degeneracy at the corners joining the nearly linear portions of the contact curve

to the middle section wrapping around the cylinder body.

5.3.2 Bounding the Disc Edge Surface

Finding the bounds for regions of the disc edge surface is done in the same way as
described above. A standard linear approximation is created and the error bound
depends on the maximum absolute value of the second derivatives over the region of
approximation.

The disc edge function is

z(t,a) = c.t — Rsinasinét
y(t,a) = ¢yt + Rsinacosét

(t,a) = c,t+ Rcose.

The first partial derivatives are

Jr

e

ot

= ¢ — Rfsinacosft

ot
Oz
gt

dx
Oox
dy
Jdex
a=
Jo

giving second derivatives of

&z
Jtoa
5y
0tfa
o
dtia

&
da?
&y
Ba?
3%z

da?

ey — Résin asin Bt

Cr

— R cos a sin Bt
R cos o cos 8t

—Rsino

= R#*sinoasinbt

= —R#*sinacosft

= — Rfcosacosbt

= —Rfcosasinbt

Rsinasinft

= —Rsineacosft

= —FRcosa

All the factors in these equations are monotonic over quarter wave intervals. By

using these intervals as starting subdivisions for regions, the bounds can be found in

the manner described in the previous section.

74

5.3.3 Bounding the Developable Surface

The developable surface looks like

r{t) = cpt - sin(?t(%cos At + %’—sith)

y(t) = oyt +cos Gt(%cosé)t + %sin 6t)

[1
“{t) = ot \/R2 - EE{CI cos Bt + ¢, sin 0t)%.

The first derivatives are

oz .

"5? = ¢, — ¢y C08 260t — cysin 26t

0 .

5% = ¢, + ¢, c0s20t — c sin 261

dz . (¢, cos Bt + ¢, sin 0t)(c, cos Bt — ¢z sin 6t)
a

9\/R2 — Z5(cz cos Bt + ¢y sin 6t)?

giving second derivatives

&z (cz cos 8t + ¢, sin ft)*(c, cos Bt — ¢z sin 61)?
12 82(R? — % (czcos 0t + ¢ysin 0t)2)3/2
_ (e cos bt + ¢y sin §t)? — (c, cos Bt ~ ¢, sin 01)
0\/R2 ~ %{cz cos Bt + ¢y sinBt)?

Since the developable surface is flat in the z direction, we only need to worry
about the accuracy in the z and y directions. We essentially need to know the
maximum length in two dimensions of the curve defined by z(t) and y(t). The second
derivatives are just sine waves, which are trivial to bound over an interval.

The border of the surface may be ignored, because it joins the surface swept
out by the disc edge. Therefore, as long as the disc edge surface meets the tolerance

requirement, so will the border of the developable surface.

-1
[0)

5.3.4 Using Surface Points as Vertices

The previous sections tell u.s how to make an approximating plane for a point on the
surfaces that make up the tool motion swept envelope. However. this is less than
ideal as it stands. To use the method as described. points chosen must be rhe center
of every polvgon that makes up the surface approximation. In addition. vertices and
edges must be determined by finding the intersections of neighboring poivgons. Thix
clearly is not desirable. Not only must the intersections be calculated. the polvgons
obtained will not be triangles. either requiring triangulation or somewhat less efficient
line intersection code. It would be much preferable to choose points that lie oun the
surface and connect them into polvgons. allowing us to know the vertices and edges
from the start.

To allow us to do this. we need to know that the triangle or polygon we wish to
use is within the region of tolerance for the points it represents. One way to do this
is to find the regions of tolerance (box in which tangent plane accurately represents
the surface) around the tangent plane of each vertex as described before. If the
tolerance regions for the vertices connect without gaps. then those tangent planes
will represent the surface within tolerance. However, if the connécting region has
high enough curvature, the polygon won't be guaranteed to lie within the tolerance
regions. We would have to test the polygon for inclusion in every region.

However. if we pick a point in the interior of the vertices and look at its region
of tolerance, we can see if the polygon falls in it. If the whole polygon is within
the region, the tangent plane is within tolerance of the polygon evervwhere and the
surface itself won't be more than twice the tolerance from the polygon. Therefore.
we can adaptively build the meshes.

Using a starting grid broken into triangles based on the conditions outlined ear-

lier, the middie point of the triangle is used to find the tangent plane for the tolerance

test. If the triangle vertices lie in the tolerance region around the tangent plane for
half the desired tolerance, the triangle is acceptable, o..therwise it is subdivided and
the process recursively foilowed.

The actual point used in the triangle doesn’t matter in terms of the accuracy
guarantee, since the whole triangle must lie inside tolerance region of the tangent
plane to be considered small enough. However. if the plane of the triangle is nearly
perpendicular to the chosen tangent plane. the triangle must be quite small to stav
in the tolerance region. If the tangent plane is nearly parallei to the triangle. the
triangle can be larger and still fit in the tolerance region. So. we pick the baryveentric
center of the triangie to obtain the tangent plane in the hopes that the tangent plane
will be nearlv parallel to the triangle plane. The harycentric center of a triangle is
the intersection of the three lines drawn from each vertex to the center of the edge

opposing that vertex.

5.4 Implementation and Analysis

5.4.1 Implementation Issues

Turning this method into a working program requires building the polygonal model
and then finding intersections with it. To build the model. we must generate pach
of the described meshes and then merge them together. For intersection location.
we muét store this model to allow as efficient access as possible to different parts in
space.

As we just suggested at the end of the previous section. each mesh 15 built
adaptively. An arbitrary grid is used to begin the mesh generation. Each cell in the
grid contains two triangles and all triangles are connecte.l across edges to maintain

the mesh. Then the triangles are placed in a queue. They are pulled off the queue

and subdivided based on the test described above. Subdivided pieces are placed at
the back of the queue and triangles that meet the tolerance requirement are placed
on a finished list. This continues until the subdivision queue is empty.

Subdivision of a triangle is done by splitting it in half. The tnangles start as right
isosceles triangles in parameter space. The right angle is split by a line connecting
to a new vertex in the middle of the opposing edge. This creates two new triangles
of the same shape. The new vertex also affects the triangle on the other side of the
edge being hroken. This triangle is also subdivided. If the new vertex doesn't lie on
the long edge of that triangle. it is recursively subdivided. The resuiting triangle has
the edge containing the new vertex as its longest. Then it can be subdivided as well.

This subdivision scheme does not comfortably allow for the multiple parame-
terization to be used. We decided to forgo the multiple parameterization due to the
extra increase in code complexity. In the end. the alpha parameterization was not
used since these equations contain division by the angle of rotation. In the tool move-
ments found in our data. rotation angles are quite small, causing the program to run
out of memory when trying to build the model.

The next step calls for joining the meshes together. One edge of each side mesh
should lie completely on the surface of the disc mesh. To do this, we locate the side
mesh corner on the disc mesh and break the disc triangle to contain the side vertex.
Then, each vertex of the side mesh edge is added to the disc mesh until the end is
reached. This process requires breaking disc triangles and side edge triangles to make
sure that a seamless join is achieved. Using a power of two to select the starting grid
densities helps the meshes line up better. resulting in fewer subdivisions.

In addition, one has to be careful when breaking edges. Because the join curve
is not straight. a new vertex will not lie on a line betv.een the surrounding ones.

This can resuit in a change of the working triangle. One problem encountered was

- ¥
4]

qumerical inaccuracy when joining. A vertex may lie very near a triangle edge but
not on it, causing problems such as being classified in the wrong triangle.

Once the polvgonal mode! has been constructed. we need to store 1t for etficient
{ntersection cajculation. Several ray tracing methods exist for storing a collection uf
polygons and other primitives for efficient intersection calculation. For this program.
a BSP tree was used. As used. this is a variant of octree in which a tree of haif spaces
formed by dividing planes is constructed. All objects are placed on one side of the
plane or the other. or both if the object crosses the dividing plane. Each half space is
recursively subdivided until the list of objects is small enough or the maximumn tree
depth is reached. This structure divides up the triangies so that a line need only resr
those that lie near and may ignore the others.

Memory usage turns out to be a significant problem. Tool movements that have
a lot of rotation require lots of triangles. The system ran out of memory beyond about
320,000 triangles. Even this many left no room to build the BSP tree. Even for small
angle movements, certain tool movements can easily generate enough triangles to use
up all available memory. Tool movements in the tests often used 40.000 to 100.000
triangles, depending on the accuracy level and the tool movements involved. The
starting mesh densities set a bottom limit of around 3000 triangles. This level was
chosen since initial grid generation is more efficient than subsequent subdivisio.

Our triangles required about 100 bytes of storage each. Pointers were used
to link the individual mesh triangles to their neighbors, link to other meshes when
assembling, form linked lists while processing {both in mesh generation and later
in storing in BSP tree). Other fields used were indices allowing fast identification
of matching vertex numbers in adjacent triangles. vertex indexes into vertex array.
surface type identifier. and maximum and minimum coordinates of triangle vertices.

In addition, the BSP tree takes up a significant amount of space. Each node

stores its maximum and minimum coordinates and pointers to children as well as a
list of objects. if the node is a leaf. The list of objects is actually a list of pointers ro
objects to reduce storage costs. An object in multiple cells is only stored once and
represented by the small pointer structures. However, the sheer number of triangles
still adds up in tree storage costs.

We had access to a DEC Alpha workstation on which to perform tests. This
machine had 96 megabytes of real memory. yet we still routinely ran out of memory.

One reason for memory problems stems from the fact that some tool movements
exhibit a large rotation. For a given tolerance level. doubling the rotation will require
roughly double the number of triangles. since the surface curvature should remain
relatively consistent.

The memory concerns are also related to the problems the method has with
nearly flat tool. movements. The critical curve on the side of a cylinder becomes
degenerate, resulting in the need for large numbers of triangles. This increases 1o
infinity when the tool movement is completely flat {four-axis). As a result of this.
the three-axis approximation method was used in .cases where the tool mo§e111e115 was
flatter than a fixed value. To be able to finish most of the test cases. the defaulting
occurred almost half of the time.

This phenomenon is counter-intuitive and deserves some explanation. A four-
axis tool movement {in which the rotation plane contains the linear motion vector) has
flat sides, yet causes the bounds to blow up. As described hefore, the cvlinder body
contacts the tool envelope in a barber-pole shaped curve. This curve degenerates as
the tool movement flattens. until it cansists of a straight line down the side which furus
a sharp corner, travels around the cylinder hodv 180 degrees, and continues down the
other side. The method we present requires very dense sampling as the curvature

increases at these corners. Hence the memory is exhausted on tool movements that

[
s}

are too flat.

Unlike the other programs, the complexity of the implementation is a factor.
Our implementation ran 6600 lines of C code. Both coding and debugging were much
more involved than with the other methods. Optimization would involve even more
effort.

We tested a version of the polygonal method in which the bounds used during
mesh generation were replaced by a simpie and looser test. When a triangle is to
be subdivided. the barvcentric center of the triangle in parameter space is tested
tor distance in real space {rom the triangle plane. If this distance is less than the
tolerance the triangle is accepted.

In this program, adaptive subdivision is still used. This means that the number
of triangles can still balloon if the tool movement is too fiat (the = component of the
linear motion approaches 0). Therefore, the three-axis approximation was still used
to handle these cases.

The unboundéd program provides a more realistic view of the potential perfor-
mance of the polygonal method outlined in this chabter. Model sizes usually ran from
1500 to 4000 triangles, starting from a bottom limit of around 200 triangles. This is
10-20 times fewer triangles than the bounded method generated. Although sammpling
just one point in a triangle is no guarantee of Batness and in certain cases provides
a very bad approximation, it is likely to produce acceptable results. The surface is
not highly curved in practice. On the other hand. the min-max bounds presented are

much worse than they need to be.

5.4.2 Performance Analysis

Preprocessing time depends on two things—how long it takes to build the model. and

the time to put the modei into the tree structure. which depends largely on the model

size. The number of triangles in the model 1s dependent on the curvature of the tool
movement envelope. a verv complex relationship. [t is also related to the curvature in
the two parameter directions. In the direction of cylinder length. this curvature can
become infinite as the tool movement becomes flat. because the crossover regions.
exhibited in figure 3.2, become sharp corners. However. in this case. the en: clope
surface curvature is not high at all. The large triangle demands of neariy flar tool
movements is mamly due to the parameterization.

Finally. the point chosen to determine triangle accuracy affects the size of a
triangle by changing the tangent plane. and the bounding of the equations can depend
on the numbers involved. further complicating analysis.

The time needed to build the eficiency tree depends on several factors. The size
of the model is most important. At each node. all the objects are placed 1n the chiid
whose half-space they lie in. which requires going through ﬁhe complete list of objects
at that node. Objects split by the dividing plane end up in both halves, which causes
the model size to grow. In addition, build time is affected by the recursion limit and
the number of objects allowed in each node.

Intersection time depends on the number of cells the line must traverse and the
number of objects in each cell to be tested for intersection before an intersection 1
found. Therefore. it depends on the size of the model as well. Intersection time also
depends on how well objects are distributed in the tree. If inanyv objects occupy a node
as a resuit of not being split up. any line hitting that cell must test for intersection
with all of them. The better the objects are distributed over the leaf nodes of the
tree, tﬁe better the intersection performance will be.

The result of all this is a complicated relationship between all the components.
Statistical analvsis of what we should expect might be possibie but would be verv

diFicult. As we will see in Chapter 7. while intersection testing times were accentable
o [

(A
b

preprocessing costs were incredibly high by comparison to other methods. due to the
bounds available.

The surface representations we have presented are very natural. arising divectly
from the application of differential geometry to the problem. However. we lave
already seen that these representations clon’t work well in degenerate cases. These
cases are in fact the ones we would expect to have the best results, not the worst.
However, these representations account for the complete surface of a tool movement
in a simple manner. Other surface representations may be much more useful for
building meshes but will most likely be more complex.

Exploring further the theoretical performance of the poivgonal approach as pre-
sented here becomes less interesting in ikight of the implementation complexity and
the poor performance results. Triangle generation is at its worst when it should be at
its best. Finding better ways of generating fewer triangles, while achieving provably

good accuracy, is an important open problem.

e
)

Chapter 6
Discrete Stepping Along the Fixed Line

6.1 Introduction

Qur goal in finding the intersection of the fixed line Ml = P + ul” with the ~wept
surface created by the five-axis tool movement is to locate the point with the smalilest
value of 1 along the length of the line that is within or on the swept envelope boudary
We would like have the answer be accurate to some user specified tolerance.

One obvious approach would be to evaluate each point on the line for inclusion
in the swept solid. L.e. is it inside. on, or outside the swept envelope. The point inside
or on the envelope with the most negative u is returned as the intersection point.

Implementing this algorithm as stated has two problems: testing whether the
point s inside or outside the envelope is difficult. and testing every point on the line i<
impossible. If we had an implicit equation for the swept surface of the finite cvlinder.
the first problem would not exist (except for floating point limits. which we assume
are acceptable). We could just plug the coordinates of the point in question into the
implicit equation and read off the value as a yes or no. Unfortunately, a closed form
implicit equation seems difficult to generate even for an infinite cylinder. much less a
finite one,

Assuming we had an accurate test to tell us when a point is inside or outside
the envelope. we still have to contend with testing the points on the line. Since we

can’t test them all. we wonld need to create an equation in u that is 0 when the

[V
P -

line intersects the envelope in order to get an exact answer. With this equation in
hand, the smallest root would be the u value of the intersection we seek. This leads
to equations like those at the heart of the 1-D approach described earlier. Again. we
will run into equations that are not analytically solvable. Some error will have to be
introduced in the numerical solution process.

We can solve the second problem by taking an inherently discrete approach.
Start by choosing a point on the fixed line that is guaranteed not to be included in
the swept solid. Then, stepping along the line by some Au, check each point for
inclusion. If a point is found to be cbnta,ined by the envelope during the search, that
point and the previous one bound the actual intersection of the line and the envelope.
This answer can then be refined by a bisection routine.

'A discrete approach to finding the intersection introduces a source of error. An
intersection may go undetected between two points that do not intersect the sweep.
The choice of step size will control the amount of error allowed because of this. The
smaller the step size, the less the cylinder can gouge between the sample points.

We still need a way to test whether or not a point falls inside the swept envelope.
Over the time interval of the tool movement, the cylinder cuts a path in space and
may cut the point in the process. We can devise a test by transforming into the
cylinder’s coordinate system so that the cylinder holds still while the point moves (See
Figure 6.1). The point will sweep out a space curve in the transformed problem. If
this space curve intersects the stationary cylinder, the point hits the cylinder during
the sweep and we have found a point that lies within (or on) the cylinder’s swept

envelope. We hope that this method will give us a simple set of equations to solve.

85

Figure 6.1: Trajectories of points on the line

6.2 Algorithm Description

We implement this method in several pieces. First, we find a point on the line
guaranteed to be outside the envelope. This gives us a place to start our search,
preventing wasted point fests that definitely will not hit the cylinder. Then we need
to determine the interval size to step down the line by. Finally, we must have a test
for deciding whether a point hits the cylinder or not.

These functions combi;le to give us the algorithm. Starting at the first point
that may hit the envelope, we walk down the line, picking points & step size apart.
Each point is tested. The first hit found and the previous point bracket the real

intersection, which can be found by applying a bisection routine.

6.2.1 Starting Point

Finding a starting point can be accomplished by putting a bounding box around the
whole tool movement and using the intersection of the line and bounding box as a
starting point. The simplest hounding box would just be a box around the whole
tool movement. This could be computed using techniques from chapter 3. but the

box would usuallv be a loose fit. We suggest using a three-axis tool movement as a

A
o

bounding box. Ignoring the linear portion of the tool movement, a virtual cylinder
s selected that is large enough to contain the complete rotation of the tool. This
virtual cylinder then undergoes the same translation as the tool. Since the virtual
cylinder can contain the tool at all times during the movement, its envelope bounds
the tool movement. Iﬁ addition, we can find the intersection of 2 line and a three-axis
movemenf easily. For efficiency purposes, we could break the tool movement into
several pieces and bound each of them individually, as this reduces the amount of

rotation per segment and therefore decreases the size of the bounding cylinder.

6.2.2 Step Increment

Next we must pick a step size. Call it Au. This directly affects the tolerance of the
algorithm. Here we address the error caused by the cylinder grazing the line segment
between two points undetected. The scan procedure will start at a point up that 15
outside the swept envelope of the tool movement. If the ptoint at ug -+ Au isin oron
the envelope, then we return it and call it the intersection. (We can use these two
points as boundaries for doing a binary search to locate the intersection point more
accurately.) If it misses (i.e., falls outside the envelope), then one of two things has
happened. Either no points on the line segment (P + ugV, P + (uo + Hu)V) hit, in
which case the procedure returns the point located (or refines to obtain the exact
answer), or else some points in that segment hit the swept envelope.

If part of the line segment hits the cylinder, but both ends miss, it either hits the
side of the cylinder or the edge around one of the ends {we’ll assume that the step size
s chosen so that the line segment isn’t long enough to enter and exit through opposite
ends). See Figure 6.2. For a side cut, the deepest penetration occurs if the segment is
perpendicular to the cylinder axis. This can be seen by looking at a projection down

the axis. The segment forms a chord on the circle. If the segment is not perpendicular.

87

the projection will be shorter, meaning a lesser protrusion. The maximum protrusion

depth is d = R—\/R? ~ 2& where R is the cylinder radius. Since we would like d 1o
less than the user-specified tolerance T', we should set Au < WIET — 1°.

An end cut will have the deepest penetration when the line segment isin a plane
with the cylinder axis and the two endpoints are equidistant from the edge of the end
cap. This can be seen by looking at a projection perpendicular to the cylinder axis.
The projection is a rectangle and the segment cuts the corner. forming a triangle.
If the line segment is skew to the axis. the projection will be shorter, reducing the
altitude of the triangle. The distance from the corner to the line segment is the
maximurm distance the segment gets from the surface of the cylinder. This distance
‘s maximized when the triangle is isosceles. This results in a depth d = 1/22u. It
also means that no point on the segment can intersect a cylinder of radius R — Au
and of the same length as the one in which we are interested. Since we want & to be

no greater than the tolerance T, we should set Au < 27T.

We have two calculations to limit the size of Au. They are the same when
T = V2RT -T7
T? = 2RT ~T?
T? = RT.

We can see from this that as long as R is greater than T', a reasonable requirement.

we only need to use the bound Au < 27

6.2.3 Inclusion Test

The remaining part of the algorithm is creating a test that determines if a point ever

hits the cylinder over 0 <t < 1. The cylinder (and any other point) undergoes the

Figure 6.2: Side and end cuts by line segment

transformation

r(t) = xgcosbt — yosin Ot + c .t
y(t) = zosinft + yocos bt + ¢t

Z(t) = Zp + Czt

where (g, yo, Zg)liS the point being transformed, 4 is the angle of completed rotation,
and (¢, ¢y, ¢;) is the end point of the linear translation that starts at the origin (see
section 2.4).

The inclusion test must determine if the point on the line is cut by the moving
cylinder. Deciding if the point is inside the cylinder at time ¢ is straightforward.
We check the distance from the point to the cylinder axis at and then see if the
projection is within the end bounds. However, we want to do this as a function of 1.
If we keep the cylinder stationary and let the point move in the cylinder’s frame of
reference, the test becomes simpler. We need only check that z(t) for the point lies
between 0 and 1, and that y(#)? + z(t)2 < R?, as opposed to the more complicated
form for arbitrary orientation.

Now we must determine the path of the tested point in the cylinder’s frame

of reference. The cvlinder's coordinates have translated by (c:t, ¢ t, c,t) and rotated

89

around the = direction by #t radians. Negating the transiation centers the cvlinder at
the origin, and rotating by —6t will place the cylinder axis back on the r-axis. Lhe
point’s coordinates will be in the cylinder coordinate system if we apply this reverse

transformation to it as well. The transformation applied to a point {zr.y.z)1s

z(ty (g — egt)cos Bt + (y —cyt)sin B
Pty = | gty | = | (y—cyt)cosbt — (z — cot)sin bt (6.1)
(Y z — Cyt |

A point whose trajectory intersects the fixed cylinder lying on the x-axis will

have:

[conee}
In
il
=k
A

b

R > y(t) + (1)

with [being the cylinder length. If we substitute in the reversed transformation, we

get:

0 (2o — cst) cos Bt + (yo — cyt)sinét < L (6.2)

A

R > ((yo— cyt)cos bt — (zo — cot) sin0t)% + (20 — cot)? (6.3)

These two inequalities give us a test to determine if a point is in fact cut by the tool
movement. First we locate subintervals of ¢ in which 6.2 holds. The point cannot
be cut outside these intervals as its z value 1s outside the cvlinder’s boundaries. The
second step is to ascertain if 6.3 holds within the intervals just found. If it is true
anywhere in any of the intervals, the cylinder cuts the point being evaluated. Note
that we only need to know that it holds somewhere, rﬁean'mg that we only need to find

one occurrence of the condition and that we don't need to know where it happens.

a0

Solving Condition 6.2

To find the intervals where equation 6.2 hoids, we can locate the roots of

0 = (zo— cst)cosbt+ (yo—cyt)sin at,
and

0 = (zg-— cot)cosBt+ (yo— cyt)sinbt — L

over 0 < t < 1. The solutions to these two equations will give us the bracket ends for
the intervals we seek. It is a difficult proposition to find these roots directly. However,
we know the maxima and minima of (zq — czt) cos 8t + (yo — ¢t} sin 6t, we can then
casily determine if 0 and/or L lies between any adjacent pair. Then it would be a
simple matter to apply a standard root finder such as found in [29, Ch 9]. Since we
know the root is in there, the routine will find it. We also know that the interval
contains only one root for each of 0 and L, so we are sure of finding them all.
Finding the roots of the derivative 1s the same problem as finding the roots of

(2o — czt) cos Bt + (yo — ¢yt)sin bt = 0, since the derivative is

d
== (cobt — o — c,) sin 0t + (yof — ¢z — ¢, 8t) cos Ot

The equation we want to solve, then, is of the form
0 = (A + Ct)sin 8t + (B + Dt) cos 6t.

Dividing by cos 6t and rearranging, we have

mB-%-Dt
A+ Ct

tan 0t =

The right hand side of this equation is a hyperbola with horizontal asymptote of

y = --%— and vertical asymptote of t = —4. If we take the hyperbola equation and

91

Figure 6.3: Hyperbolas when bc < ad, bc > ad

rearrange it, we can turn it into the form of a hyperbola:

B4+ Dt

Y = TALC
Ay+Cty+Dt = —B
A D B
‘é“y+ty+—é—t = -c

t+hwed) = -G+

The constant —gi + %QQ controls the shape of the hyperbola. The magnitude controls
the sharpness of the curve. Setting equal to 0 and rearranging, we can get the
discriminant BC — AD. If BC > AD, the curve sits in the first and third quadrant
offset by the asymptotes. If BC < AD, the curve sits in the second and fourth
quadrant. If BC = AD, the curve is just the two asymptote lines. |

Although it is possible for both portions of the hyperbola to intersect tan 6t if
the vertical asymptote lies in the interval [0, 1], we can treat each portion individually.
When BC < AD. the curve consists of the upper right portion and the lower left
portion. In each case. the curve< clearly intersects tan fit at most once because the

tangent is increasing monotonically while the hyperbola pieces are both decreasing.

92

G0 02 04 06 08 1 9 02 04 06 0.8 1

Figure 6.4: UR. LL hyperbola portions crossing tangent, respectively

If BC = AD, we just need t = —A/C and t = —arctan D/C’.

When BC > AD, the situation is trickier. The lower right hyperbola can cross
through tan #t twice, because it arcs away from the tangent curve. To find these
intersections, we can look for the minimum of tan #t — %{-’-gf'since we now know it
will be U-shaped (or some piece thereof) over [0,1}. Assuming the minimum is less
than zero, the intersection points will be to either side.

The upper left hyperbola curves in the same direction as tan #t. Therefore it isn’t
immediately obvious how ‘many times the curves may cross. To settle the question
we'll turn to the derivatives. If some curve F(to) > G(to), then to have an intersection

dF

at ¢, we must have %{- < ‘—f;%’l at #;. If they again cross at iz, then 5 > %‘Zt at t.

Thus, to have n intersections between the two curves, the derivatives must cross at
least n — 1 times.

The derivative of the tangent curve is

d _ i,
dt ~ cos? 8t

01 N WU N
0 0.2 04 06 08 1

Figure 6.5: LR hyperbola portion crossing tangent twice

and for the hyperbola. we have

d D(A+CtH-C(B+Dt) BC—-AD

a (4 +Cty (4 + Ct)?’

This doesn’t immediately tell us anything. However, if

._._....ﬁ..— > (Or <) M
cos? Bt (A+Ct)? ’
then,
cos? 6t (A+Ct)?
7 <> 35T4p
| cos 6t A+ Ct)|

7 < (or >) JBe—aD
Since the interval of interest is t € [0,1] and 8 <1, | cos ft| = cos Bt. We are interested
in the upper left hyperbola, so [(4+Ct}] = +{A+ Ct), whichever has negative siope.
As shown in figure 6.6, at most two intersections are possible. As a result, at most
three intersections may occur between the tangent and hyperbola.
To find the intersections, we first find the intersections of the cosine and line. If

7}"5 > im and Ef-f-ﬁ-ﬁ >+ ;gﬁD, there may be two intersections, indicating

94

Figure 6.6: Cosine hitting line twice

the appropriate sign. In this case, we compute ¢, = Larcsin S, This tells
PP 8 /HC=AD

us where the slopes are the same. Assuming f, € [0,1] and 5’5%‘4 > :{:é%%%, the

intersections are on either side and may be located with a root finder. If either end
of the line is below the cosine at ¢t = 0, only one intersection is possible, in which case
the two endpoints bracket it and a root finder may be applied.

With the derivative intersections in hand, we now can locate the intersections of
the tangent and hyperbola. Only one intersection is possible between each adjacent
pair of derivative intersections and interval endpoints. Thus, we can apply a root
finder to each interval in turn to locate them.

Since these points are the maxima and minima of the original equation, they are

used as limits for finding the intervals that satisfy condition 6.2.

95

Solving Condition 6.3

We now have located the ends of the intervals where the point may be cut by the
cvlinder, Next we need to determine if condition 6.3 holds anywhere in those intervals.

To do that we can determine if there are any roots to the equation
0 = {{uo — cyt) cos Bt — (30 — ext}sin)7 + (20 = cst)” = %

If any roots exist. the cylinder will cut the point in question. Remember that we
only need to determine if a root exists to answer the test, not how many nor their
location(s). This means we can stop as soon as we identify a root’s existence or learn
that none exist.

This function behaves in a complicated manner, but we will show how to find

an upper and lower bound for its slope,

= = 2(c;sinft — ¢, cos Bt — (yo — ¢yt)fsin bt — (zo — c5t)8 cos 6t)

dt
((yo = cyt) cos Bt ~ (zq — c2t) sin Bt) — 2¢.(z0 — c2t),

over any given interval. Given those values, we can determine if an interval might
have a root. In the worst case, ignoring higher derivative informa.tion:, the curve could
descend along a line from the smaller end of the interval, turn a sharp corner, and
climb up along a line to the larger end of the interval. The minimum and maximum
slopes limit these two lines, respectively. The deepest point over the interval, the
intersection of these two lines, either falls above 0, on 0, or below 0. In the first case,
no root can exist in this interval and searching can stop here. Otherwise, we can
divide the interval and recursively search the subintervals. This is continued until the
search is stopped in all active intervals, a point less than 0 is found {indicating that

a root does exist — again, we don’t need to know where), or the limits of machine

precision are reached.

96

Obtaining bounds on the slope over an interval is mostly straightforward. We

can simplify the derivative equation as follows:

0 = A+ Bt+(C+Dt+ Et})cos20t + (F + Gt + Ht*)sin 26t
with

= —=ICp — YOy — 2ICy,

= 2+l 42

= zcp — yc, — 20y

= cf, ~ ¢ + Wz, + 20yc.

—20czcy

= Ty + Ylr+ 8(z* — y*)

= 20(yc, — z¢;) ~ 2¢z¢y, and

x I e WL TR T o T & W + v H
1

= f(ci—-c))

If we can bound the individual terms, they can be assembled into bounds for
the whole function. The linear term is easily bounded. Since A 4 Bt is a line, the
minimum and maximum values occur at the interval endpoints.

The other two terms are a parabola multiplied by a sine wave. If we choose
sample points at the minimums of the parabolas, we limit intervals to monotonic
portions of the parabolas. The sine waves can also be limited to monotonic sections.
Choosing sample points at ¢ = 35 with n an integer limits cos 20t to monotonic
intervals, while samples at t = 5 + 3% likewise gives monotonic intervals for sin 26¢.
Therefore, sample points placed at t = %7 will generate both sets of points and
guarantee monotonic intervals for each function. In addition, both cos 26t and sin 26t

will be completely positive or negative over each interval.

Now, since both the parabolic and the trigonometric factors of each term are

monotonic over the interval, we can place bounds on the values they take. If the
absolute value of both functions are moving in the same direction, the values at the
endpoints will suffice. If they are opposed, however, the maximum value may occur
somewhere in between. The simplest approach is to take the four products of the
values at the ends of the linear and sine wave factors and choose the largest and
smallest of these. This will guarantee that the actual slope falls between the chosen
values.

Once we have maximum and minimum values over an interval for the individual
terms, they can be combined to give overall maximum and minimum values for the
interval. Notice that since the trigonometric terms are close to linear over small
intervals, decreasing an interval will produce a reasonably corresponding reduction in
the span of the maximum and minimum values. This gives us an assurance that the

search will make progress as it divides the intervals.

6.3 Optimizations

There are several ways in which we can improve the performance of this algorithm.
It would be useful to take larger steps down the line in regions where the point misses
the cylinder. This especially true in cases where the line is never cut by the cylinder
and we must walk down the entire line segment selected earlier. Another area that
can be improved is the bounding box used to select the line segment to be tested.

The better the box, the smaller the chosen segment, and thus fewer point tests will

have to be performed.

98

6.3.1 Bounding Box Improvements

Right off, one simple culling test can be performed. When R? — (zo ~ c.t)® < 0. no
inﬁersection can occur. Therefore we can make sure that all intervals in question fall
between t = iﬂc—fﬁ, possibly deleting some intervals that would otherwise be searched.

| We could also test y(t) — £ R in the same manner as we did for z(t). This would
result in further interval limits, although it is not clear that the computatidn saved
by doing this would not be counterbalanced by the time it takes to find the limited
intervals.

The above two tests would in effect create a bounding surface that amounts to
sweeping a box containing the cylinder. This is certainly tighter than using a three-
axis tool movement to bound the tool envelope, although the computation is clearly
more complex. The decision to do these tests has to be made by doing real-world
comparisons.

As Chapter 7 shows, the z culling is a clear win. The cost of and complexity of
the test is minimal while the gains can be substantial. Culling y was not explored
since preliminary tests showed no gains at all, while increasing the program complexity

substantially since it requires a nonlinear equation search.

6.3.2 Step Size Improvements

The step size is dictated by the tolerance and the size of the cylinder. If we use a
larger cylinder of radius R’ around the real cylinder, a larger step could be taken
without the real cylinder gouging the line more than 7.

The basic search procedure is modified to take advantage of a larger step size.
Using a large step (but smaller than the cylinder length) and large radius, a step is

taken and the point tested. If it misses, we can be sure that the real cylinder doesn 't

99

Figure 6.7: Deep cut for larger cylinder and step size

gouge by more than the tolerance. If it hits, it may still miss the real cylinder, so we
need to reduce the step size and retest.
| This recursion continues until a miss occurs, indicating that no contact with the

real cylinder is found, or the test is done with the real cylinder. This has the benefit
of speeding up cases where the line misses or doesn't hit until late along the line,
while adding only a few tests when locating an early hit. In the worst case, however,
the line may be very near the cylinder while not hitting, forcing resizes every step of
the way but yielding no results.

Figure 6.7 represents the use of a larger cylinder and step size. We can choose
Au here to be some power of two times the Au we have been using. This makes it
easier to apply a binary search according to the step size. R, = R’ — R, representing
the extra amount we have added to the cylinder. a and b are the two remaining sides
of the big triangle. y is the distance from the corner of the real cylinder to the line
segment.

Our goal is to find a way to select R given T and Au. Two things are immedi-

ately apparent. We have

Aud = a*+ P, and

100

Making a substitution and squaring, we get

2;Zkuzwbz

Au "

(b— R.)%

Rearranging to solve for y gives

AT

N {b—~ R.).

y:

Since y is the deepest cut the line segment makes into the real cylinder, we need
y < T. Therefore, if we set the maximum value of y to be T, we can guarantee that

the larger step and cylinder don’t cause us to miss an error larger than T for any b.

Taking the derivative of y gives

ij_?i _ b(b— R.) + VAu? — b
db AuvAur =52 Au

which can then be set to 0 to find the maximum y value. If we do this and then solve

b R, + \/R§+8&u2‘

- 4

for b, we have

We can assume that Au > R, otherwise the line segment couldn’t hit the real
cylinder at all. The additive solution is guaranteed to be positive, so we will work
with that one. This is the value of b when y is at a maximum. If we limit y to be no

larger than T, our error bound is assured. Therefore, plugging b into the equation for

y, we have

(3R, — /R + éBél\tL"’)\/fﬁlu2 - Bty fi""m“z)z

4Ay

y<T=

We then would like to solve this for R,. We assumed that Au = nT, so given

that, Mathematica {a symbolic math program) gives us six solutions for R, Only

101

one 1s positive for n > 2, which is

7
Rz‘.:m T 3 R
V3 95(2 + 270n? — 729n¢ + 3in(4 + 2Tn?)1)3

This is messy, but easily computable.

T JI + 32 2% — 27 23n? + (2 + 27002 — 720n* + 33n(4d +27nz)%}'§-.

As long as lines don’t come so close to the cylinder that resizing occurs often,
this should perform better than taking small, constant-sized steps. In fact, testing in
Chapter 7 shows that it is a huge success. As long as the distance to the intersection is

long enough to amortize the extra costs. the optimization pays for itself handsomely.

6.4 Implementation and Analysis

The implementation of the step programs is quite straightforward. The algorithm is
simple; the only real complexity lies in the point testing, which has been described
already. Tool movements are chopped into segments of less than 45 degrees. A three-
axis tool envelope surrounds the tool movement to act as a bounding box. The line
intersections with this envelope are used as starting and ending points for the search.
The basic method steps from start to finish, testing each point as described until the
end point is reached or an intersection is found. If an intersection is found, the actual
point of first intersection lies between the located point and the previous one. Binary
search is used to refine the answer to locate the actual envelope boundary.

The z culling optimization is trivial to implement. The large step optimization is
more complicated. Basically, we keep a table of step size information such as current
radius and maintain the alignment data necessary to decide when it is time to try
taking a bigger step again, as well as how big a step to try.

The preprocessing done for this method is nearly nonexistent. Intersection time

for the basic method should be inversely proportional to the step size, of course. This

102

< also true of the = culling optimization, as the same number of point tests Is per-
formed, just at a f{aster rate. The large step algorithm is more complex, complicated
by variable distances of the point trajectory to the cylinder. In the simplest model.
the program would take a constant number of steps, getting very near the intersec-
tion, then drop the step size and take a constant number of steps again, drop the step
size again, and so on until the minimal step size 1s reached and the intersection is
found. In this case. the running time should be inversely proportional to the log of the
step size, resulting in great savings. Real tests aren’t quite as favorable, but unless
the point trajectories spend a lot of time very near the cyiinder but not touching,
substantial savings are still realized.

A source of potential speedup is curve coherence. Since each point tested is very
close to the one that follows, it is reasonable that the resulting curves generated will
be similar. It may be advantageous to maintain the curve infofrna.tion as each point
‘s tested and incrementally modify it to get resulting curves and roots for the next

point test. The large step algorithm might make this sort of speedup more difficult

to apply since it doesn't proceed as regularly down the line.

103

Chapter 7

" Results and Conclusion

We have described several ways to find the intersection of a five-axis tool movement
and a line. Oun that basis alone, there is no way to choose between them. There-
fore, we have implemented each method and performed tests to look at how each
method performs. We examined the effects of problem size in terms of number of
tool movements and number of intersections per tool movements. We also looked at
the effects of varying tool movement rotation angles and linear movement distances.
And we looked at the performance of each method relative to changes in intersection
tolerance. Last,‘ we looked at the performance of the methods on real-world data,
both with respect to tolerance and relative to each other. Finally, we wrap up the

thesis and look at future directions for research.

7.1 Testing

7.1.1 Programs

We have implemented each of the methods described in this thesis in C in a UNIX
environment. The timing runs were executed on a DEC Alpha workstation on loan
from DEC. This machine uses the new Alpha RISC CPU running at 133 Mhz. With
this machine, we were able to finish our tests in a fifth of the time it wouid have taken
on other available machines. The machine had available 96 megabytes of memory.

As we will see, it siill wasn't enough for the polygonal program.

104

Each of the programs we created had several variants. The descriptions of each
follows:

For the numerical approach, the initial implementation, 1d, was done without
the bounds. In this version, roots are located by taking a fixed number of sample
points on each interval and looking for sign changes between two samples, or extrema
in the direction of 0 involving three samples. Sign changes are fed to a hybrid bisection
and secant root finder [29]. The points making up an extremum pointing towards 0
are input to a minimum finder that stops upon finding a root crossing. Then roots are
located on either side of this point. This permits regions to be incorrectly classified,
affecting the final answer. Good results can be obtained with a subdivision of 64 per
interval.

In the other version of the numerical approach that we coded, referred to as rad,
rad(t) was evaluated using the bounding method described in Chapter 4. As we will
see, the running times often escalate dramatically. It is reasonable to assume that
things will only become worse by using the bounds on the other equations, especially
since they involve divisions that can give infinite values.

The numerical approach does all the work in the intersection routine. Almost no
tool movement preprocessing is applicable as all the equations depend on individual
line values.

For the three-axis approximation method, we implemented three versions. The
first, 3x, is the simple, straightforward approach. All submovements are generated
and placed on a list during preprocessing. During intersection location, the line is
intersected with each submovement in turn. The returned result is the minimum
value found.

The second version, 3xtree, implements the object hierarchy detailed earlier.

The set of submovements is generated as above. Then they are paired off and wrapped

105

with an enclosing three-axis movement. Each wrapping movement points to 1ts en-
closed submovements. Then the wrapping movements are paired off and the process
is repeated recursively, building a complete tree. Intersection is performed by walk-
ing down the tree in a pseudo-binary search. At each node, the intersection is found
between the line and the node’s children. The closer child is explored first, pruning
the second branch if the first branch generates an intersection outside the envelope
of the second. Otherwise the second branch is followed as well. This is necessary due
to the overlap of the envelopes.

The third variant, 3xtrl, is the same as the second except that all values needed
for each submovement’s intersection are precomputed, if possible. Constants precom-
puted are ones that don’t depend on the values of the line to be intersected.

The step method resulted in five different implementations. First the basic
method as described was created, called step. The points on the line are tested one
after the next, performing both tests, until an intersection with the cylinder is found,
or the point is beyond the bounding box and no intersection can possibly take place.

The next version, zstep, adds in the z culling test. Each point test checks to see
that the point’s path overlaps the cylinder limits 1n the z direction before continuing
with the rest of the test.

The third .major variant, fastep, implements the large step approach. The
method tries to double the step length, testing against an appropriately enlarged
cylinder to guarantee accuracy, until an intersection is found. Then, using the largest
non-intersecting step size, the algorithm takes a step and then tries to increase the
step size again. This continues until the step size has been reduced to the unit tength
and an intersection is found, or until the end of the bounding box is reached.

All three programs included a refinement step in which the intersection location

is improved by binary search between the found intersection point and the previous

106

test point. This has the effect of greatly increasing the accuracy of intersection points
when a hit is found, but miss results are only guaranteed to the accuracy specified.
The remaining two programs are the z culling program, zstepnr, and the long step
program. fastepnr. with the refinement step removed. These programs allow us
to look at the costs of the method itself, separating out the near-constant cost of
refinement.

The step programs have almost no preprocessing costs. A few values are set up
heforehand but nothing computationally strenuous is done.

The polyvgonal approximatioﬁ approach was implemented in two programs. The
actual method as described made one program, named poly. A variant that serves
as a lower bound was created as a second program called poly nb. Actual model size
based on the surface representation presented must be at least as large as generated
by this program. [t provides no guarantees on accuracy but is probably closer to
the needed level of subdivision for the representation developed here. In this version,
subdivision occurred if the barycentric center of a triangle in parametric space is
farther than the tolerance limit from the plane of the triangle. This is too loose,
as the center point in real space may be far from the triangle boundaries while still
being close to the plane. In addition, other points on the surface might lie too far
away from the triangle plane. However, this program gives us a glimpse at potential
perfofmance for the approach, since the bounds as stated are highly conservative.

The polygonal approach is also heavily dependent on preprocessing. The actual
intersection process is not nearly as intensive.

One other test program, null, is provided. This is simply the common test
program without an intersection routine to allow subtracting testing overhead costs.

1t only depends on the number of tool movements and intersections to be performed.

107

7.1.2 Tests and Data

Testing had several goals, We wished to get comparisons on the relative performance
of each method. We also wanted to verify that scaling of the problem set size is linear.
We wished to look at the effects of changing tool movement shape. And finally, we
desired to find out the effect of changing intersection tolerance on each method.

To accomplish this, we ran a test suite consisting of both randomly generated test
cases and real cutting programs and surfaces supplied by the Ford Motor Company
and automatic five-axis toolpath generation software [23] created by Xiaoxia Li at
University of New Hampshire.

Our first group of tests looks at the performance of each program with changes in
the number of tool movements processed and the number of intersections performed.
For these tests, random tool movements and lines are gener.a;ted by a test routine and
fed to the intersection program. The tool size was set so the radius was less than 1/6th
the length, which was set at 30 units. The rotation angle was randomly chosen but
did not exceed 4 degrees, in order to approximate the type of tool movements found
in the kinds of cutting programs in use today. The linear portion of the movements
was allowed to vary up to 3 times the tool length. Intersection accuracy was set at
.02 units.

Lines were chosen randomly by choosing a random direction vector and choosing
a random base point lying in a bounding box surrounding the tool movement. This
allowed us to get a reasonably large set of intersection hits as opposed to misses. Hits
accounted for about 65% of all intersection tests performed.

With these parameters, we did a test run of the programs with 100 tool move-
ments and 1000 tool movements. For 100 tool movements, we successively performed
10, 100, and 1000 random intersection tests per tool movement. For 1000 too! move-

ments, 1 and 10 intersection tests per tool movement were carried out.

108

For each test run, we give the time spent preprocessing, time to find intersections,

and total time spent in seconds. Total time spent was obtained from the UNIX

time command. Intersection and preprocessing times were obtained from internal

calls to clock{). The total time minus the time spent in the NULL program gives

the time spent in preprocessing and intersection combined, for all data. The sum

of preprocessing, intersection, and NULL program total is approximately the total

t;me. The data for the first tests are in tables 7.1 and 7.2. Times around .5 second

and less are not very reliable.

int tests 10 100 1000

Program pre Int tot pre int tot pre int tot
NULL .0 0.0 0.4 0.0 0.2 0.2 0.0 1.4 1.5
1d 0.0 20 2.3 0.0 253 255 0.0 257.8 2592
rad 0.0 375 379 0.0 533.4 533.6 0.0 4360.7 4362.2
step 0.0 164 168 0.0 181.0 181.2 0.0 1936.1 1936.2
zstep 0.0 14.5 149 0.0 157.7 1579 0.0 1569.6 1569.8
fastep 0.0 134 137 0.0 144.2 144.5 0.0 1552.8 1552.8
zstepnr 0.0 2.3 2.9 0.0 32.0 322 00 3170 3171
fastepnr 0.0 2.2 2.6 0.0 272 275 0.0 2853 2854
3x 0.0 0.1 0.5 0.0 4.1 4,2 0.0 38.1 39.6
3xtree 0.1 02 03 0.1 1.7 1.8 0.1 15.5 17.1
3xtrl 0.3 0.2 0.5 0.3 2.1 2.7 0.2 16.9 18.4
poly 2945 2.4 227.319237.1 23.4 260.7209.9 223.9 4331
poly nb 137 1.4 154 142 151 294 10.2 1429 1545

Table 7.1; 100 Tool Movements

The second group of tests locked at variation in the tool movement parameters.

We first looked at the rotation angle and then the length of linear movement. To

investigate rotation angle effects, we tested the programs on tool movements with

maximum rotations of 3, 6, 9, 15, 30, 60, 90, 120, 150, and 180 degrees. We did this

for 100 tool movements and 10 and 100 intersection tests per tool movement. These

results are in tables 7.3 and 7.4.

109

int tests 1 10

Program pre int tot pre int tot
NULL 0.0 0.1 0.2 0.0 0.3 0.3
- 1d 0.0 2.4 2.7 0.0 244 25.0
rad 0.1 386 58.9 0.0 2164 217.0
step 0.1 174 17.8 0.0 1725 1728
zstep 0.1 156 160 0.2 1424 1429
fastep 0.2 14.1 14.7 0.1 141.0 1414
zstepnr 0.1 3.0 3.3 0.1 30.0 30.2
fastepnr 0.2 2.7 3.0 0.2 271 27.6
3x 0.3 0.5 0.9 0.3 3.8 4.4
3xtree 0.8 0.1 1.0 0.6 1.7 2.5
3xtrl 2.3 0.3 2.8 2.1 2.1 4.5
poly 2185.9 2.5 2188.6 |2190.9 252 2216.1
poly nb 251 2.0 27.6 245 22.0 47.6

Table 7.2: 1000 Tool Movements

To test the reaction to change in the linear portion of tool movements, we ran
tests with the linear distance limited to 3, 2, 1, .5, .25, .125, and .0625 times the
tool length, which was still set to 30. These tests were done with rotation angle
maximums of 3 and 90 degrees for 100 tool movements and 10 and 100 intersection
tests per tool movement. These results are in tables 7.3, 7.6, 7.7, and 7.8. The
program 3xtrl was not tested since it became clear in the first test set that it was
always inferior to 3xtree. The poly program was not tested because of the memory
problems encountered with large angle tool movements. The only step programs
tested were zstepnr and fastepnr since the refinement just adds constant costs and
the step program is always slower than zstep.

Next, we looked at the effects of changes in accuracy on each of the approaches.
We did tests with varying accuracies of .2, .02, and .002. The programs 1d and rad
don’t have adjustable tolerances, so a single running time is given. These tests were

done for 100 tool movements with 10 and 100 intersections per tool movement. These

110

Ixtree Ix fastepnr zstepnr
Angle | pre int tot | pre int tot | pre int tot | pre int totf
3 00 01 02:00 03 0300 23 24,00 21 2.1
6 01 61 03,00 06 06100 28 2900 35 37
9 01 02 03|01 08 09,00 30 32|00 33 354
15 02 03 05300 14 15,00 40 4200 95 97
30 04 04 08[02 26 297100 53 35|00 220 222
60 0.8 05 13]04 53 5700 65 6700 323 325
90 09 07 17!06 77 84,00 73 75|00 359 360
120 15 08 2507 106 114|000 6.9 7.0,01 365 367
150 1.7 09 26|08 132 141,00 74 7500 366 3656
180 21 09 31012 158 17200 7.2 73|00 352 353
poly nb 1d rad

Angle | pre int tot | pre int tot | pre int tot

3 23 153 10000 3.1 32|00 1213.0 12121

6 84 1.6 10000 32 32|00 12612 1260.7

9 86 1.4 108100 3.2 3300 1279.8 12787

13 8.7 1.5 102|0.0 3.3 33|00 14780 1472.0

30 89 1.6 105600 3.4 3400 12655 12634

60 122 1.9 14400 3.5 36 0.0 1365.8 13654

90 176 2.3 198|0.0 35 3600 13894 13894

120 232 26 255 0.0 3.7 3800 13785 1377.1

150 26.9 2.8 29500 3.9 4.0 0.0 13042 1304.6

180 37.0 2.5 39.71 00 4.1 4200 12011 12014

Table 7.3: Rotation Data 100 Tool Movements, 10 Intersections Per

111

' 3xtree 3x fastepnr zstepnr
Angle | pre int tot | pre int tot | pre int tot | pre hatd tot
3 0.0 1.4 L3]00 2.9 3.0/ 00 27.1 273100 243 245
6 0.1 1.8 2000 5.8 59100 335 33.7|00 46.0 46.2
9 0.0 22 23]00 8.4 850 0.0 39.0 39200 719 721
15 0.3 27 35102 138 1460.0 479 48100 1252 1355
30 0.4 4.1 45102 276 280000 544 546 0.0 2145 2148
60 0.9 59 6804 551 55300 626 62900 313.7 3139
90 1.1 7.5 &7/06 8.0 82600 66.1 66300 343.6 343.9
120 1.5 9.2 109 0.8 1088 109.5]0.0 71.8 72100 353.2 3534
150 1.7 9.8 11.6 1.0 1366 137.6]0.1 752 754 |0.0 3581 3383
180 2.5 11.2 137112 1648 166.0]0.0 77.5 77.7| 0.0 367.0 367.2

poly nb 1d rad

Angle | pre int tol |pre. int tot | pre int tot

3 9.0 '14.6 23.8|0.0 323 32.5| 0.0 37801.9 37802.1

6 9.1 14.9 24200 330 33.2| 0.0 25420.6 25420.8

9 92 153 245|0.0 336 33.8)0.0 21668.0 21663.2

15 9.3 15.3 24700 332 33400 178855 17885.6

30 9.9 16.5 26.6 0.0 33.2 334,00 14740.0 14740.2

60 13.3 19.8 33.4 0.0 346 348 0.0 132858 132859

90 20.6 21.6 42.7|0.0 36.2 364100 13633.1 13633.3

120 309 244 55800 38.0 38.2] 0.0 13467.3 13467.6

150 40.4 270 67.70.0 403 40.5 ;0.0 13693.0 13693.2

180 435 30.1 73.8 0.0 43.1 43.3| 0.0 14765.2 14760.3

Table 7.4: Rotation Data 100 Tool Movements, 100 Intersections Per

112

length | 3xtree 3% fastepnr zstepnr

(k*L) | pre int tot |pre int tot | pre int tot | pre int tot
0625 | 0.0 0.2 0200 03 03/00 06 0600 03 06
125 0.1 0.1 02000 03 03|00 07 0700 07 0.7
.25 0.0 0.1 02|00 03 03|00 08 08,00 08 0.3

5 00 02 02000 03 03,00 1.0 L1{00 09 09

1 00 01 02/00 02 03100 15 15,00 L2 1.3

0.1 01 0200 03 0300 21 27,00 18 L8

3 0.0 0.1 02/00 03 03[00 23 2400 21 2.1
Length poly nb id _ rad

(k*L) pre int tot [pre int tot | pre int tot
.0625 109 1.2 12400 1.3 1.4 00 1181 118.2
125 106 1.2 120100 14 15100 1721 1721
.25 102 1.3 116,00 1.5 16|00 3032 3034

5 9.7 1.3 11.1]00 1.9 1900 4585 438.7
1 9.1 1.3 105:00 23 2400 7955 7957
2 85 1.3 10.0;00 28 2900 1039.2 10394
3 9.3 1.5 10900 3.1 3200 12119 1212.1

Table 7.5: Linear Data 100 Tool Movements 10 Intersections Per, Max 3 Degrees

113

Length Jxtree Ix fastepnr Zstepnr

(k*L) i pre int tot|pre int tot|pre int tot | pre int tot
0625 0.1 1.3 153[00 30 387 00 66 67 00 33 35+«
125 0.0 1.3 15700 30 38100 78 79,00 64 65
25 00 14 14]00 30 38,00 103 104(00 92 98
i) 01 1.3 14/00 30 36|00 136 13.8]00 123 125
I 0.0 1.4 1500 29 33|00 181 18300 166 165
0.1 1.3 15,00 29 30|00 231 232|000 212 212
3 00 1.4 1.5:/00 29 3.0/00 272 27300 245 245
Length poly nb 1d rad
(k*L) | pre int tot|pre int tot | pre int tot
0625 | 10.5 14.8 2521 0.0 153 15.4]0.0 1083.0 1083.1
125 103 146 249 0.0 16.2 163 0.0 1816.0 1816.2
.25 104 143 248 0.0 182 182 0.0 3009.3 3009.5
5 1100 143 244100 210 21800 50200 50202
1 9.6 146 24.3|0.0 252 251 | 0.0 90848 9085.0
9.4 151 24.5{0.0 29.9 29.8| 0.0 16706.2 16706.4
3 9.0 14.5 23500 326 32.5| 00 27302.0 27802.1

Table 7.6: Linear Data 100 Tool Movements 100 Intersections Per, Max 3 Degrees

114

Length 3xtree 3x fastepnr zstepnr

(k*L) |pre int tot | pre int tot | pre int tot | pre int tot
0625 10 09 2706 81 87,00 62 63]00 68 69
125 10 10 26 04 81 8700 62 63|00 83 83
.25 10 10 27,06 81 87,00 63 63]00 I1L1 11.2
5 1.0 1.0 26104 81 87 0.0 65 66|00 162 164
1 11 08 19105 80 86,00 65 66100 224 2235
2 1.0 08 1.8/05 80 85|00 67 68|00 303 305
3 0.9 07 1.7/06 7.7 84,00 74 75|00 359 360

Length poly nb 1d rad

(k*L) pre int tot | pre int tot | pre int tot

0625 | 105.1 2.3 96.4 0.0 2.8 28|00 9854 9856
125 62.5 2.1 61.300 28 28| 0.0 1000.0 10002

25 476 2.2 46500 29 29 0.0 10684 10686
5 294 23 31100 29 3.0|00 1093.% 1094.1
1 243 2.3 262,00 3.0 31|00 11155 11157

195 24 216100 3.4 35|00 1303.9 1304.1
3 176 2.3 198|100 35 3.6 00 13832 13894

Table 7.7: Linear Data 100 Tool Movements 10 Intersections Per, Max 90 Degrees

115

Length Ixtree 3x fastepnr zstepnr

(k*L) |pre int tot |pre int tot | pre int tot | pre int tot
0625 10 104 11.5]06 841 848 0.0 63.1 632|000 746 749
125 1.2 10.2 1:.4]06 84.1 848,00 633 634|000 895 8.7
.25 1.2 9.7 11.3106 83.6 843 0.0 643 643| 00 1195 1196
5 12 9.8 11.4/05 834 839,00 647 64800 1636 1638
1 1.2 9.1 10405 83.6 845|0.0 655 65500 221.3 2215
1.1 82 90407 8.2 81800 7Ll 713 0.0 2948 2950
3 1.0 7.6 8706 820 82600 77.8 77.9 0.0 343.6 343.9
Length poly nb id rad -
(k*L) pre int tot | pre int tot | pre int tot

0625 |99.4 19.1 1188 0.0 279 28.0| 0.0 89484 89486
125 69.8 19.2 89.2:00 280 28.200 89185 89187
.25 53.4 19.6 73.310.0 285 28.7)0.0 88681 83683

3 37.1 20.4 57.710.0 292 29.3|0.0 9309.7 9309.9
1 29.7 20.3 50.2/0.0 314 31.6| 0.0 10440.1 10440.3

22.7 21.1 44.1 0.0 343 34.5| 0.0 11777.8 11778.0
3 20.6 21.6 42400 365 36.6| 0.0 13633.1 13633.3

Table 7.8: Linear Data 100 Tool Movements 100 Intersections Per, Max 90 Degrees

116

resuits are given in tables 7.9 and 7.10.

Tolerance 2 02 002

pre int ot | pre int tot pre int tot
NULL 0.0 060 0.4
1d 0.6 1.9 2.3
rad 0.0 375 319
step 0.0 13.0 134 0.0 16.4 168 0.0 53.8 542
zstep 0.0 11.0 1.4 0.0 14.5 149 0.0 354 358
fastep 0.0 127 128 0.0 133 13.7 0.0 158 16.1

zstepnr 0.0 0.1 05 0.0 25 2.9 0.0 26.1 265
fastepnr 00 1.0 1.5 0.0 2.2 2.6 0.0 4.5 5.0

3x 00 03 09 00 0.l 0.5 0.0 4.0 4.3
Jxtree 0.0 01 01 0.1 0.2 0.3 0.5 0.3 0.9
Ixtrl 0.0 01 0.1 0.3 02 0.5 22 04 29
poly 795 2.0 81712249 2.1 227.3| Out of Memory

poly nb 23 1.3 38 13.7 1.4 1541570 1.8 1389

Table 7.9: Tolerance Tests, 100 Tool Movements, 10 Intersections Per

Tolerance 2 .02 .002

pre int tot | pre int tot | pre int tot
nuil 0.0 0.0 0.4
id 0.0 254 255
rad ' 0.0 533.6 533.6
step 0.0 136.0 1362 0.0 181.0 18L.2 0.0 601.0 601.0
zstep 0.0 1184 1188 0.0 157.8 157.9 0.0 399.3 399.8
fastep 0.0 128.7 128.9 0.0 144.2 144.9 0.0 160.0 160.9

zstepnr 0.0 4.6 4.6 0.0 32.0 322 0.0 299.2 209.7
fastepnr 0.0 111 112 0.0 27.2 275 0.0 526 52.6

3x 0.0 0.7 0.7 0.0 4.1 4.2 0.4 423 428
Ixtree 0.0 0.8 0.8 0.1 1.7 1.8 0.5 3.2 3.9
3xtrl 0.1 0.8 0.9 0.3 1.8 2.7 2.5 4.9 7.5
poly 82.3 22.1- 104.5|237.1 23.4 260.7 Qut of Memory

poly nb o4 143 16.8| 144 151 294 171.2 183 1896

Table 7.10: Tolerance Tests, 100 Tool Movements, 100 Intersections Per

117

Finally, tests were run on actual cutting tool data and surface point sets gen-
erated by NC, a software testbed created at UNH and Dartmouth College to permit
testing of new approaches to toolpath generation and verification. The density of the
point sets for each file is controlled by simulation accuracy. We generated some of the
point sets at two different simulation accuracies to get varying surface point densities
for a given cutting program. This has no effect on intersection tolerances.

In the real data tests, a bucketing scheme employing the short-vector localization
method mentioned in [22] was used to limit the number of intersections performed. As
a result, the number of intersection tests performed is not equal to the product of the
number of tool movements and surface points. A 2-D grid is placed over the surface
to be cut, and all points were placed in the corresponding cell. When intersection is
performed, a bounding box for the tool movement is projected onto the grid plane
and all cells overlapping it are selected. Then all points in those cells only are cut.
The bounding box dimensions are expanded in each direction by the short normal
length before cell selection. This is because points in nearby unselected cells may still
be cut by the tool movement if their normals extend into the regions selected.

We had several real surface files and cutting programs on which to test the
programs. Zip5 is a benchmark surface generated for verification testing. Door is
the exterior skin of a car door. Door_small uses the same surface file, but tests only
o small portion of the cutting program, thereby machining a piece of the surface.
Saddle represents a hyperbolic saddle point. And z6324r is an automotive quarter
panel. The surface files were all supplied by the Ford Motor Company along with
the five-axis cutting progra.rn' for door. The remainder of the cutting programs were
generated at UNH.

The following tests were done: zip5 with surface points generated at default

simulation accuracy (4.75mm), zip5 with surface points generated at lmm simulation

118

accuracy, door with surface points generated at default accuracy, saddle with points
generated at 1.5mm simulation accuracy, door_small with surface points generated
at default accuracy, door_small with surface points generated at 3mm simulation
accuracy, z6324r with points generated at default accuracy, and 26324r with surface
generated at 1.5mm accuracy. This provides some comparison data on real world
problems. The intersections were found with a tolerance of .2mm. The data are in
tables 7.11, 7.12, 7.13, 7.14, 7.15, 7.16, 7.17, and 7.18_respectively.

Then we tested some of the files with varying intersection tolerances to look
further at the behavior of the various programs with tolerance changes. These files
are door.small at default and 3mm simulation accuracy, and z6324r at default and
1.5mm simulation accuracy. These programs were run with tolerance values of .2,
.02, and .002. Then, fastepnr, 3xtree, and poly nb were also run at .5, .05, and
005 to get a better view of the curves they.genera.ted.

The numerical methods programs, 1d and rad, have no accuracy input, so were
only run once. The only step programs run were zstepnr and fastepnr for the
reasons outlined in the second test. The poly program was limited by memory so
we ran it at 2.0mm instead of .002mm tolerance. We ran the poly nb program at
2. 0mm as well for comparison purposes. poly was unable to run at all on z6324r.
poly nb ran out of memory as well on 263241 at tolerances of .005 and .002. Finally,
3x was run at 2.0 instead of .002 on z6324r at 1.5mm since it was clear from theory
and the previous tests that linear scaling would occur and the time required would
be enormous. ‘

Relative speed comparisons are shown in tables 7.19 and 7.20 in terms of inter-
sections tests performed per second, and mumber of tool movements preprocessed per
second. The data shown is for real tests only. Preprocessing tables only contain 3x,

3xtree, poly, and poly nb, because the others have only constant preprocessing costs.

119

File

Simulation accuracy

_ Z1p5
4.75mm {default)

Intersection accuracy 2
Surface points 290
Tool movements 2153
Intersections performed 83445
Avg. # hits found 56243
pre int tot
null 0.0 0.8 2.4
1d 0.0 274.9 277.3
rad 0.2 16308.7 16506.0
Zstepnr 0.1 26.3 28.8
fastepnr 0.2 60.0 62.6
3x 0.1 4.3 6.8
3xtree 0.1 4.7 7.2
poly Out of Memory
poly nb 0.2 5.6 7.2

Table 7.11: Data for file zip5, default simulation accuracy

File ziph
Sirmulation accuracy lmm
Intersection Accuracy 2
Surface points 3246
Tool Movements 2133
Intersections performed 8972765
Avg. # hits found 641805
pre int tot
null 0.0 1.9 4.8
1-d ' 0.1 2969.1 2973.0
1-d rad 0.1 1107654 115011.6
step z cull nr 0.3 254.4 259.5
fast step nr 0.2 521.0 326.7
3x 8.2 51.4 56.4
Jxtree 0.3 52.1 57.3
poly Out of Memory
poly nb 0.2 55.1 58.5

Table 7.12: Data for file zip5, lmm simulation accuracy

120

File door

Simulation accuracy 4.75mm (default)
Intersection Accuracy 2
Surface points 3630
Tool Movements 38272
Intersections performed 500433
Avg. # hits found 358144

pre int tot
null 0.3 1.6 25.8
1d 1.2 1672.3 1707.7
rad 1.7 5260.1 5295.3
zstepnr 2.0 857.1 8833
fastepnr 1.8 726.8 758.9
3x 2.4 2074 235.6
Ixtree 3.6 55.5 84.5
poly 8136.8 535.9 87008
poly nb 2014 545.0 868.2

Table 7.13: Data for file door, default simulation accuracy

File saddle
Sirnulation accuracy : 1.5mm
Intersection Accuracy 2
Surface points 2320
Tool Movements 3226
Intersections performed 2843740
Avg. # hits found 1758473
pre nt tot
null ' 0.0 6.1 9.0
1d 0.3 67822 6783.5
rad 0.2 5091.5 5094.9
zstepnr 0.4 1193.2 1202.8
fastepnr 0.4 2313.3 2322.7
3x 0.6 620.1 630.2
3xtree 1.1 666.1 676.4
poly QOut of Memory
poly nb 323.5 3949.1 4281.6

Table 7.14: Data for file saddle, 1.5mm simulation accuracy

File

Simulation accuracy

door.small

4.75mm (default)

Table 7.15: Data for file door.small, default simulation accuracy

122

Surface points 2674
Tool Movements 493
Intersections performed 6004
Avg, # hits found 4758

null id rad

pre int tot | pre int tot pre int tot

0.0 0.0 1.1]00 176 187 0.0 23.6 249

zstepnr 3x poly

pre int tot | pre int tot pre int tot
2 47.9 2.2 517
2 0.0 4.2 5.3 1 0.0 1.8 30| 80.3 4.7 856
.02 00 349 36.2102 183 19.6 6162 353 603.9
002 0.0 344.0 3449 | 14 1857 1879

fastepnr Ixtree _ poly nb

pre int tot | pre int tot pre int tot
5 0.0 3.6 4.7 1 0.0 0.4 1.5 1.3 3.8 6.3
2 0.0 4,7 5901 0.6 1.8 3.0 5.0 9.2
.05 0.0 7.6 8.8 102 1.1 24| 106 148 266
.02 0.0 102 11.5 03 1.5 3.0 258 348 614
005 0.1 138 154 |11 2.3 4.5 11214 1351 236.0
.002 0.0 169 18223 2.8 6.2 | 282.0 336.0 614.3

Table 7.16: Data for file door_small, 3mm simulation accuracy

123

File door_small
Sirnulation accuracy 3mm
Surface points 14754
Tool Movements - 493
Intersections performed 31287
Avg. # hits found 23090
null ld rad
pre int tot [pre int tot | pre int tot
0.0 0.0 49700 878 9271 00 792 842
zstepnr 3x poly

pre int tot | pre int tot pre int tot
2 47.9 12.2 64.6
2 0.0 27.6 324 0.0 89 1361 T1.4 15.5 92.1
02 0.0 246.0 2509) 0.1 91.8 96.7|6155 179.0 751.3
.002 0.0 2437.7 24427 1.5 921.3 926.9

fastepnr 3xtree poly nb

pre int tot | pre int tot pre int tot
3 0.0 22.2 272 0.1 1.8 6.7 1.2 19.7 25.6
2 0.0 30.7 35.6 | 0.0 3.1 7.9 2.7 14.6 22.2
.05 0.0 47.3 52.3 | 0.2 56 1051 10.5 76.0 91.1
.02 0.0 60.2 65.8 | 0.2 7.5 124 258 1758 206.0
0035 0.0 78.6 836 |11 107 16.5)121.5 681.0 805.3
.002 0.0 94.5 99.7 124 134 20.4 2834 1691.7 1973.6

.002

File z6324r
Sirmulation accuracy default
Surface points 2675
Tool Movements 1458
Intersections performed 290564
Avg. # hits found 171853
null id rad
pre int tot | pre int tot pre int L0t
0.1 1.2 231 0.2 7396 7414 0.2 7654 T67.4
zstepnr 3x poly

pre int tot | pre int tot pre int tot
2 0.2 71.0 73.5 | 0.2 32.4 34.9 QOut of Memory
.02 0.1 502.2 504.6 | 0.9 2957 297.9 Out of Memory
002 0.1 4735.3 4757.7| 7.5 3166.8 3176.7 Qut of Memory

fastepnr Ixtree poly nb

pre int tot | pre int tot pre int tot
9 0.2 108.2 1107, 0.2 i7.5 19.0 1 39.9 639.6 681.7
2 0.2 1414 1439 04 26.1 28.9 | 101.1 563.4 666.8
05 0.2 213.1 2154 0.7 50.8 53.8 1 297.4 409.2 7089
.02 0.2 264.8 2673 1.3 75.4 79.2 19226 T774.2 1699.1
005 0.1 3474 3498 56 1263 134.7 Out of Memory

0.2 415.7 4183 1136 173.1 189.0 Out of Memory

Table 7.17: Data for file 26324r, default simulation accuracy

124

Table 7.18: Data for file 26324r, 1.5mm simulation accuracy

125

File z6324r
Simulation accuracy 1.5mm
Surface points 2675
Tool Movements 1438
[ntersections performed 1407907
Avg. # hits found 846840
null 1d rad
pre inf tot | pre nt tot | pre int tot
0.0 2.6 441 0.1 36075 3608.5| 0.2 3606.2 36086
zstephr 3x poly

pre int tot | pre int tot pre int tot
2 0.2 39.1 43.7
2 0.2 373.0 3775 0.2 1617 166.3 Out of Memory
.02 0.2 928248 28204 | 0.6 1587.5 1592.5 Out of Memory
002 0.1 26010.2 26014.8 Qut of Memory

fastepnr dxtree . poly nb

pre ng tot | pre int tot pre = int tot
2 28.8 2983.1 3016.3
5 0.2 533.9 5585 | 0.3 82.9 87.6 | 39.8 3064.5 3108.7
2 0.2 727.7 732.3 | 0.4 133.2 138.6 1004 2713.5 2813.3
.05 0.1 1098.7 1103.2 | 0.7 2656 270.7 | 204.3 1962.6 2257.6
.02 0.2 1376.4 1381.0 | 1.7 394.6 400.7 | 901.9 3787.8 4694.1
003 0.2 1805.6 1810.2 | 58 6725 680.8
002 0.1 2158.8 2163.3 | 13.7 9189 936.9

Intersection Tests Per Second at Varying Accuracy

File Program 1d rad | zstepnr fastepnr | 3x 3xtree | poly poly ub
.2 Accuracy
zip5 default 304 5 3173 1391 | 19406 17754 — 14801
Ilmm 328 9 3824 1867 | 18925 18671 — 17655
door 300 95 583 688 | 2412 9016 | 933 918
saddle 419 558 2383 1229 | 8884 4269 — 720
door.small default 341 254 1429 1668 | 3336 10007 | 1277 1201
3mm 356 395 1134 1409 1 3515 10092 | 2019 2143
z6324r default 393 379 4092 2054 | 8968 11133 — 516
1.5mm 390 390 3774 1935 | 8707 10570 — 519
.02 Accuracy :
door.small default 304 5 172 589 328 4003 | 170 173
3mm 328 9 127 520 341 4172 175 178
26324r default 300 95 498 1023 887 3568 — 372
1.5mm 419 558 579 1097 982 3854 — 375
.002 Accuracy .
doorsmall default 341 254 17 355 32 2144 — e
3mm 356 395 13 331 33 2335 — —
26324r default 393 379 54 652 — 1532 — o
L.5mm 390 390 61 698 91 1679 — —

Table 7.19: Relative intersection speed comparison charts

Preprocessing Tool Movements Per Second

Program 3x 3xtree | poly polynb
.2 Accuracy
door 15947 10631 5 131
saddle 3377 2033 —_ 10
door_small default > 4930 4930 6 164
3mm > 4930 > 4930 7 183
26324r default 7290 3645 —_ 14
1.5mm 7290 3645 —_ 15
02 Accuracy
doorsmall default 2483 1643 1 19
3mm 4930 2465 i 19
z6324r default 1620 972 — 2
1.5mm 2430 858 — 2
.002 Accuracy
door.small default 352 214 — 2
3mm 329 205 —_ 2
z6324r default 194 107 —_ —
1.5mm - 106 _— —

Table 7.20: Relative preprocessing speed comparison chart

127

7.2 Evaluation

7.2.1 Scaling

The results from the first test set in tables 7.1 and 7.2 show basically what we would
expect: the running times increase linearly with the number of intersections per-
formed and the number of tool movements used. In addition, we can see that the
preprocessing times and intersection times separately increase linearly. Although it
may appear that there is a downward trend in the times of 3xtree and 3xtrl. this
comes about from randomness in the data and minor time variations that occur in

different runs of the same program. The following table contains data from runs done

on a DECstation 5000/200.

100 tool rmovements

int tests 10 100
pre int tot | pre int tot

3xtree 0.1 1.1 13102 117 11.8

Jxtrl 0.7 1.2 21708 129 13.7

1000 tool movements

int tests 10 100

pre int tot | pre int tot
dxtree 1.4 1.0 3413 105 13.2
3xtrl - 7.4 1.2 99,73 122 21.2

From this data, it is pretty clear that these programs scale linearly with probiem size.
Another odd feature is that the program 3xtrl, which precomputes some of
the intersection values for each submovement in the tree, is actually slower than the

program without precomputing these values. One side effect of compuiing all these

128

values beforehand is that a much larger data structure s needed to store them all.
This larger structure is in fact 3 times as large. We looked at the effect of memory
trafic by running a version of 3xtree compiled with the large data structure but

otherwise unchanged. On a DECstation 5000/200, we have the following:

100 tool movements

int tests 100 1000
pre int tot | pre int tot
3xtree 0.1 95 97|01 952 953

Ixtree large 0.1 10.3 104 0.1 103.6 103.7

Ixtrl 0.8 10.4 11.3| 0.7 102.8 103.5

Two things are obvious from this. First, the larger structure slows down the intersec-
tion process. Most of this occurs in the tree descent. Second, the savings in actual
intersection computation are not very large, and offset by the costs of implementation.

The next thing we can get from the first set of dat.a is a look at the amount of time
each method spends in preprocessing versus time spent in intersection calculations.
For instance, as we stated above, the 1d programs and the step programs spend
almost no time preprocessing. The polygonal programs spend a majority of their
time and effort in preprocessing. What is very interesting is the lack of time spent in
preprocessing in the 3-axis programs. They have to set things up but the amount of
actual work done is relatively small.

The remaining conclusions to draw from the first test set are relative compar-
isons. We start to get a look at the comparative speeds of the methods, both between
variants and between different approaches.

From this it was obvious that the basic step program is slower than the z culling
variant. This also makes sense since the z culling program perférms the same point

tests, but can often make them quicker. The only way the basic step could be faster

129

s if the z cull test failed so often that the time to perform the test {very minimal)
outweighed the savings gained when it did succeed.

In addition, we get a look at the constant costs of the refinement once an inter-
section is located. Removing the refinement gives us a better look at the performance
of the intersection routine itself while not reducing the guaranteed accuracy of the
approach. Therefore we decided to restrict later testing to the z culling program and

fastep program without refinement.

7.2.2 Rotation Angle

The rotation angle tests take a look the performance of each method with changes
in rotation angle. Although the real data tends to have very limited rotations due to
the difficulty of programming five-axis NC machines, they have the potential for very

wide angular changes. Let us look at the data method by method.

step

We can see several things about the performance of the step programs from this data.

First, for small enough angles (and at this accuracy level), the zstep program is
actually faster than the fastep program. This can be attributed to the fact that, in
this case, the linear movement is still long and that as a result, the tool movement is
pretty flat. That means that the three-axis bounding box is a close approximation to
the actual envelope, and the starting point on the line is quite near the intersection in
general. Therefore, there isn’t enough distance or, subsequently, point tests to amor-
tize the overhead associated with the fastep algorithm. As the angle increases, the
three-axis envelope becomes a less adequate fit, resulting in longer average distances
between the first test point and the intersection. In these cases, the fastep algorithm

has enough time to amortize its startup costs and begin to be effective.

130

40 1o { | i | | -

time

36515 30 60 90 120 150 180

time- .

36915 30 60 90 120 150 180

Figure 7.1: Rotation plots, 10 intersections per tool movement, zstep and fastep

131

time

{ime

op Wi 1 1 f [I .
36915 30 80 a0 120 150 180

Figure 7.2: Rotation plots, 100 intersections per tool movement, zstep and fastep

132

The graphs of the rotation data for zstep and fastep are in figures 7.1, and 7.2.
The trend for both programs is the same: increase times relatively rapidly at first,
then level out some. The fact that both programs behave in the same manner means
that both programs experience the same change. As the rotation angle increases,
the distance from the bounding box to the actual intersection is likely to increase on
average. This is because the three-axis bounding box becomes a less ideal fit as rota-
tion angle goes up. We tested this by finding the average distance to the intersection
point. The results are in figure 7.3. As we can see, this curve is very similar to the

plots for the step programs, suggesting that this is indeed the explanation.

M4m0 [! ! { ! 1

12 -
10 -

8 -
avg distance

1 b —
36015 30 60 90 120 156 180

Figure 7.3: Average distance between bounding box and envelope intersection versus

rotation angle

3x

The basic three-axis approximation does O(n) preprocessing in building the object

list, whose size is linear in the rotation angle. This trend is visible in graph 7.4, which

133

}"4{7!] 1 -

100 int €—
10 int - ;

36015 30 60 90 120 150 180

Figure 7.4: Rotation plots, 3x preprocessing, 100 tool movements, 10 and 100 inter-
section tests per tool movement

plots preprocessing curves for 100 tool movements with 10 and 100 intersections per
tool movement. Intersection should also rise linearly since 1t involves testing every
submovement in the list for each intersection test. We can see this in the graphs in
figure 7.5.

The 3xtree program should also show O(n) response to the increase in angle for
preprocessing times since the hierarchy tree is built from the bottom up. This shows
up in figure 7.6, which plots rotation angle versus preprocessing times for 100 tool
movements with 10 and 100 intersection tests each.

The intersection times for the 3xtree program should be sublinear. Since it is a
tree search with potential multiple branches, it will be Q{logn) in general. However,
it should still be substantially less than O(n) most of the time. As we see from the
graphs in figure 7.7, the intersection running times are clearly less than linear. In

the right-hand graph with 100 intersections per tool movement, we plotted the guide

134

time

36815 30 60 90 120 150 180

-

180 My ! i ! i I
160 -~ 100 int ©—

time

36915 30 60 90 120 150 180

Figure 7.5: Rotation plots, 3x intersection times, 100 tool movements, 10 and 100
intersection tests per tool movement

135

time

36915 30 60 99 120 150 180

Figure 7.6: Rotation plots, 3xtree preprocessing, 100 tool movements, 10 and 100
intersection tests per tool movement

curve %9'6, which appears to fit well. It suggests that intersection times are O(n'~*)

in general with decreasing rotation step.

poly

These are results for the unbounded version poly nb. Although the mesh generation
is done with a different subdivision criteria, results may still be applicable to the
boﬁnded polygonal method. First, we see that preprocessing is super-linear. This is
shown in figure 7.8 for both 10 and 100 intersection tests per tool movement. The
curves differ because different tool movements occur in the test sets used. As the
rotation angle rises, it is obvious that more triangles will be needed to approximate
the surface, since a larger curved surface must be covered with polygons. However,
that is only an approximately linear effect. What happens here is that the rotation

increases while the linear portion of the tool movements stays constant. In effect,

136

Lo i i ¢] ! 1

time

36915 30 60 90 120 150 180

time

Pt I L b e e e e e
36915 30 60 90 120 150 180

Figure 7.7: Rotation plots, 3xtree intersection times, 100 tool movements, 10 and 100
intersection tests per tool movement '

137

36918 30 £0 90 - 120 150 180

Figure 7.8: Rotation plots, poly nb preprocessing, 100 tool movements, 10 and 100
intersection tests per tool movement

this increases the pitch, or rate of rotation per linear distance, which increases the
curvature of the surface. This in turn requires even more triangles to successfuily
approximate the surface. Therefore, overall, as rotation angle increages, both the
surface area to be covered and the necessary density of triangles increase at the same
fime.
The rise in intersection times is to be expected given the rise in preprocessing.

Preprocessing is responsible for generating triangles and inserting them into the tree,
so there is a direct correlation between time spent and model size. What we seeis a

roughly linear growth in intersection time with rotation angle, shown in figure 7.9,

1d

The 1d program has a very complex dependency on the tool movement variables in

verms of how changes affect the equations. In addition, even a predictable change in

138

3 i f i ! -1

36915 30 60 90 120 150 180

32 Myt i i i ! t n
30 - 100 int <—

time

36915 30 60 20 120 150 180

Figure 7.9: Rotation plots, poly nb intersection, 100 tool movements, 10 and 100
intersection tests per tool movement

139

the shape of a curve may lead to unpredictable effects in the root-finding processes.
What we see in the graphs in figure 7.10 is a roughly linear relationship to changes
in rotation angle.

In the rad program, the graph for 10 intersections per tool movement is very
chaotic. This illustrates the highly variable performance of the bounding technique.
One intersection test can be quite fast while the next will take an incredibly long time.
The variability is so large that any possible trend is obscured. In the graph for 100
intersections per tool movements, the variability is averaged out some and we see a
trend. For very small angles, performance is very slow, with times decreasing quickly
unti! around 45 degrees and then flattening out. The incredibly slow performance
clearly justifies not pursuing theoretical reasons for the trends. The plots are 1n

figures 7.10 and 7.11.

7.2.3 Linear Movement Length

Having looked at the effects of rotation angle on program performance, we now look
closer at the linear portion of a tool movement. As linear movement length decreases,
surface curvature increases and vice versa. We varied the lengths of the linear part of
the tool movements from .0625 times tool length to 3 times tool length. The graphs
are all plotted with a log scale on the x (length) axis. This is necessary to keep the
data spread out, otherwise everything will clump up towards 0. As a result, a curve
that appears linear is in fact logarithmic, while a truly linear function will be plotted

as an exponential curve.

step

We can see from the graphs in figures 7.12 and 7.13 that both the zstep and fastep are

affected similarly by change in tool movement length when rotation angle is limited

140

time

36915 30 60 90 120 150 180

time

36915 30 60 80 120 150 186

Figure 7.10: Rotation plots, 1d intersection, 100 tool movements, 10 and 100 inter-
section tests per tool movement

141

1500 My ! [| ! [~
10 int <—

time

40000 My ; !]] I -
100 int &—

35000 -

30000 -

time 25000 -

20000 - -
15000 - U

10000 [W R] i H | I |
36015 30 60 90 120 150 180

¢

Figure 7.11: Rotation plots, rad intersection, 100 tool movements, 10 and 100 inter-
section tests per tool movement

142

to 3 degrees. As the linear motion increases, the tool movement and bounding box
are stretched out in the direction of the motion. For a line that heads straight in
towards the tool movement, no change occurs. However, if the line comes in at an
angle, the distance from the bounding box intersection to the envelope intersection
has been stretched in the linear motion direction. Therefore, as the linear part of the
tool movement increases, the average distance between bounding box and envelope
intersections will increase. This is apparent in the graph of average distance versus
linear tool movement distance in figure 7.14.

When the tool movement is allowed to swing 90 degrees, the zstep program
becomes much slower than the fastep program. The bounding box to envelope in-
tersection distance has increased enough to amortize the fastep algorithm overhead
and take advantage of the savings it provides. The relationship of both methods to
changes in linear movement remains similar to above as w}e see in figures 7.15 and
7.16. Again we see the importance of the increasing average distance traversed to

this effect shown by the similarity in figures 7.14 and 7.17.

3x

For the 3x and 3xtree programs the most obvious effect of increasing linear distance
is to stretch the individual submovements. With 3 degrees of rotation, the tool
movements are fairly close to being flat, requiring few submoverments to approximate.
In the tests we performed, no noticeable effect due to length changes was seen.
With 90 degrees of rotation, we see some variation, shown in figures 7.18 and
7.19. The 3x and 3xtree programs both show slight decreases in intersection times
with longer tool movements. In the case of the 3xtree program, the reason is easy to
see. The 3xtree program does a pseudo-binary search that goes down both branches

sometimes. This occurs because both children of a node tend to overlap highly in

143

time

time

4 | | i ! o
0.0625 0.125 0.25 0.2 1 2 3

Figure 7.12: Linear distance plots at 3 degrees, zst'ep intersection, 100 tool move-
ments, 10 and 100 intersection tests per tool movement

144

time

0.6 i | {
0.0625 §.125 0.25 6.5 i 2 3
length (k*L)

30 !]] 1] =
160 int €~

time

5 L | I l ; i wd

0.0625 $.125 0.25 0.5 1 2 3
length {k*L)

Figure 7.13: Linear distance plots at 3 degrees, fastep intersection, 100 tool move-
ments, 10 and 100 intersection tests per tool movement

145

0.8

0.75

avg
distance”

0.63

1.6

0.55 L i | I i f 4
0.0625 0.125 0.25 0.5 1 2 3
*

Figure 7.14: Average distance between bounding box and envelope intersection versus
length, 3 degrees

space. For a longer tool movement, each submovement is longer as well, resulting
in less overlap, and subsequently fewer trips down both sides of a node. This trend
only shows up in the larger rotation angle tool movements. The larger the tree is,
the more important this effect.

The 3x program exhibits similar behavior, but the reason is less obvious. The
line is intersected with every tool movement, so it doesn’t seem like any change should
occur. However, as the tool movement lengthens the overlap decreases, cutting down
the number of submovements that the line actually hits. The intersection of a line and
a three-axis tool movement involves a number of expensive floating point operations
such as square root calculation. The intersection routine therefore tries fo avoid as
many operations as possible. So, when the line intersects fewer submovements, more
of the floating point operations are avoided, and therefore the program runs faster.

Preprocessing for both programs is unaffected, as expected.

146

time

5 ! I | ! 1 -

0.0625 0.125 0.25 0.5 I 2 3
length (k*L)

350 ! P i) |
100 int

time

0.0625 0.125 (.25 0.§ 1 2 3

Figure 7.15: Linear distance plots at 90 degrees, 2step intersection, 100 tool move-
ments, 10 and 100 intersection tests per tool movement

147

time

time

g9 L | 1 | ; ¢ 2

0.0625 0.125 0.25 0.5 1 2 3
length (k*L)

Figure 7.16: Linear distance plots at 90 degrees, fastep intersection, 100 tool move-
ments, 10 and 100 intersection tests per tool movement '

148

9.4 r :
9.2 -

9 -
8.8 =

8.6 -
avg ~

distance™”
8.2 - -

7.4
0.0625 0.125 0.25 0.5 1 2 3

Figure 7.17: Average distance between bounding box and envelope intersection versus
length, 90 degrees

poly

As was mentioned in the rotation angle discussion about the pely programs, for a
given rotation angle, a shorter linear movement increases the pitch (rotation per
distance traveled), while a longer movement reduces the pitch. Increased pitch is
accompanied by increased surface curvature, therefore increasing the amount of sub-
division necessary to satisfy the flatness criterion. This results in a larger model. We
can see this in the preprocessing curves for both 3 degrees and 90 degrees shown in
figure 7.20. Each graph shows the preprocessing curve for 10 and 100 intersection
tests per tool movement. The 90 degree cases show a clearer trend.

Most of the intersection times don’t show a trend. They bounce around in a
narrow range. However, in the 90 degree case with 100 intersection tests per tool
movement, we have a clear rise in times with lengthening tool movements. This is

shown in figure 7.21. This indicates a poorer distribution in the BSP tree, since the

149

795 - -
time 7.9 - -
7.85 — \ -

78 = \-

7.75 - -
7.7 - ’

785 [| ! I | | i
3

0.0625 (1.125 0.25 0.5 l 2
length {k*L)

84.5 r t I] ; I “
84
83.5
83
time
82.5
82

815 -

81 L | 1
0.0625 0.125 0.25 0.5 1 2 3

Figure 7.18: Linear distance plots at 90 degrees, 3x intersection, 100 tool movements,
10 and 100 intersection tests per tool movement

130

0.95 -
0.9

3.85 =~
time

0.65 L | 1 ! H H I

0.0625 0.125 (.25 0.5 1 2 3
length (k*L)

10.5 f 1 | | ! !

75 ! i | | z

0.0625 0.125 0.25 0.5 1 9 3
length (k*L)

Figure 7.19: Linear distance plots at 90 degrees, 3xtree intersection, 100 tool move-
ments, 10 and 100 intersection tests per tool movement

151

| | H | T
3° 10 int ©—
3% 100 int —+— —

time

85 L. | |
0.0625 (.123 0.25 0.2 i 2 3

1i0 | |
100 90° 10 int ©— —
90 - 90° 100 int =+— ..
80 - -
70 -
time 60 -

40 -
30 -
20

10 F i
0.0625 0.125 0.25 0.5 1 2 3
length (k*L)

i ! ! .|

Figure 7.20: Linear distance plots at 3 and 90 degrees, poly nb preprocessing, 100
tool movements, 10 and 100 intersection tests per tool movement

152

2 r | t [! ; .

215

21

time 20.5
20

195 -

1% | H
§.0625 0.125 3.25 0.5 1 2 3

Figure 7.21: Linear distance plot 90 degrees, poly nb intersection, 100 tool movements,
100 intersection tests per tool movement

model size is decreasing with the lengthing of the tool movements.

1d

The 1d and rad programs show similar increases in running times with lengthening
tool movements. This is true for both 3 degrees and 90 degrees. The plots are in
graphs in figures 7.22, 7.23, 7.24, and 7.25, which contain data for the 1d program at
3 and 90 degrees and the rad program at 3 and 90 degrees, respectively. The cause of

this effect is unknown, but we have not explored further due to the poor performance

of the method.

7.2.4 Tolerance

The final variable in program performance we addressed is intersection accuracy.

This was done using random test data and also some real world examples. As with

133

time

0.0625 0.125 0.25 0.5 1 9 3
length (k*L)

100 int ©—

]
B
1

time

0.0625 0.125 0.25 0.5 1 2 3

Figure 7.22: Linear distance plots at 3 degrees, 1d intersection, 100 tool movements,
10 and 100 intersection tests per tool movement

154

time

0.0625 0.125 0.25 05 1 2 3
length {(k*L)

time

0.0625 0.125 0.25 0.2 1 2 3

Figure 7.23: Linear distance plots at 90 degrees, 1d intersection, 100 tool movements,
10 and 100 intersection tesis per tool movement

155

1400 - ; | |] I -
10 int <—

1200 =

time

OI____i____.IW__L_.._]__....mi__..J

0.0625 (.125 £.25 0.5 1 2 3
length (k*L)

30000 l 1 [i i |
100 int <—

25000 -
20000 -
time 15000 -
10006 —

5000 -

) e e M e e~ — L

0.0625 0.125 0.25 0.5 1 2 3
length (k*L)

Figure 7.24: Linear distance plots at 3 degrees, rad intersection, 100 tool movements,
10 and 100 intersection tests per tool movement

156

1400 -
1350 -
1300
1250
1200
1150
1100
1050 ~

1060
950 - H I { |] |

0.0625 0.125 0.25 0.5 ! 2 3
length {k*L)

time

14000 : | { [! “
13500 - 100 int €—
13000 —
12500 ~
12000 —
. 11500 -
bme 000 —
10500 —
10000 -
9500 -
9000

8500 i | | |
0.0625 0.125 0.25 8.5 | 2 3
length (k*L)

Figure 7.25: Linear distance plots at 90 degrees, rad intersection, 100 tool movements,
10 and 100 intersection tests per tool movement

the linear movement changes, tolerance data is plotted using a log scale on the x

(tolerance) axis. Increasing accuracy is to the left instead of to the right.

step

The basic step method takes constant-sized steps down the line until an intersection
is found. Clearly, there is an inverse linear relationship between the step size and the
number of steps taken to find an intersection. As the step size halves, the number
of steps doubles. As a result, we should see a linear curve of runtimes for the step
method. The zstep program still takes the same set of steps, so it too should see a
linear relationship to tolerance. Since the zstep program’s culling operation clearly
wins over the simple step program, the step program was not evaluated on real data.
The zstep program still serves as a good testbed for evaluating the constant step size
approach.

The graphs in figure 7.26 and the data don’t quite act linearly. A couple of
factors affect the data. First, the refinement of intersection answers adds an almost
constant factor to the times. It is not actually constant since increasing accuracy
reduces step size and hences shaves off a few of the refinement steps. The graphs
show the effect of removing the refinement from zstep quite well. We have added a
guide curve of .6/, which matches the zstepnr plot well. This supports the linear
relationship hypothesis.

Examining the real data for zstepnr, we get similar results. However, it 1s not
exact. The lower tolerance figures are not quite 10 times smaller, as they should
be. What we are seeing is most likely constant costs skewing the curve at the low
end. For instance, on door.small.def (table 7.15), the times become almost perfect
if we subtract a constant of .8 from all the intersection times, giving 3.4, 34.1, and

343.2. Values for doorsmall.3 (table 7.16), reduced by a constant of 3.3, becomes

158

step <

z5tep wfre =
zstepnr -

time

(3.002 0.02 6.2
tolerance

700 - | -
step o

600 zstep ——
zstepnr e
500 - .6/)(........ -

400
time
300

200 -~

100 -

o | -
0.002 0.02 0.2
tolerance :

Figure 7.26: Tolerance, step, zstep, zstepnr intersection, 100 tool movements, 10 and
100 intersection tests per tool movement

159

24.3, 242.7, 2434.3. For z6324r_def (table 7.17), if we reduce by 24, we get 47.0, 478.2,
and 4731.3. And for z6324r.1.5 (table 7.18), reducing by 112.9 gives 260.1, 2711.9,
and 25807.3, which is within reason, aithough not quite as good as the other three.
In most cases, the fastep program times will be sublinear in the step size. As
stated at the end of Chapter 6, in a simplified optimal case, it would be logarithmic
in the step size. If we look at just the fastep and fastepnr plots in figure 7.27, we can
see that they are nearly flat, indicating performance that is probably polynomial with
low fractional exponent or even polylogarithmic. An interesting note is that at the
lowest accuracy level, the zstep gﬁrograms are actually faster than the corresponding
fastep programs. That quickly changes once the accuracy is high enough to require
more than a few steps to locate intersection values. The real data backs up this
conclusion. Graphs in figures 7.28 and 7.29 are curving upward just a little, pointing

to performance that is only somewhat worse than logarithmic in the accuracy.

3x

As we have discussed previously, the 3x program intersection times should respond
nearly linearly to changes in tolerance. In table 7.9, we don’t see this. However, based
on the value of 4 seconds for tolerance of .002, the other two times would have to be
4 and .04 seconds, both of which are small enough to obscured by imprecision in the
timing. Table 7.10 gives a better set of figures although the value of .7 for tolerance
of .2 is too large. However, it is only off by .3 seconds, which can also be explained by
timing inaccuracy, constant costs, and random fluctuations since the programs run
random fests.

The real data clearly shows the linearity of the 3x program. In both door_small
runs and in z6324r.def (tables 7.15, 7.16, and 7.17}, the run times are just about

perfectly linearly increasing with accuracy. In 26324r.1.5, the entry for a tolerance of

160

J

16 | -
14\ fastep S _
fastennr —4— -

i2 -)
0 - -
time 8 = -
B - -
4
2
g — e - = - — U VOO O
0.002 0.02 0.2
tolerance
160 | =
140”
120 - ' -
100 - -
time 80 - -

DL.__.___......._.._______E_._......._—_____.

0.002 0.02 0.2
tolerance

Figure 7.27: Tolerance, fastep, fastepnr intersection, 100 tool movements, 10 and 100
intersection tests per tool movement

161

defaujt <~ _.

time ig —-

9 N I 1 -
0.0G2 0.02 0.2
tolerance

time

20 - |
0.002 0.02 0.2
tolerance

Figure 7.28: Tolerance on door_small, default and 3mm, fastepnr intersection

162

458 - | i -_
default <~ _

time

100 L i |
0.002 0.02 0.2

tolerance

time

400 L £ i -
£.002 o 0.02 0.2

tolerance

Figure 7.29: Tolerance on 26324, default and 1.5mm, fastep intersection

163

time

0.5 b 1 | i -l
0.002 $.065 0.02 0.05 0.2

tolerance

Figure 7.30: Tolerance, 3xtree intersection, 100 tool movements, 100 intersection tests
per tool movement

2 is out of line. The constant overhead is part of the reason. However, if the accuracy
is low enough that the formula for maximum allowable submovement rotation exceeds
the actual tool movement rotation, the program must still use at least one three-axis
movement to approximate the tool movement, in effect causing a flattening out of the
curve at that end of the scale.

Little is revealed about the 3xtree program in the random test data times in
table 7.9. The times are all so small as to be unreliable. However, as figure 7.30
shows the data from table 7.10, the intersection curve appears close to flat, indicating
polylogarithmic or high order root of tolerance.

The real test cases provide similar information. They are plotted in figures 7.31
and 7.32. In each, the curve is curved gently upward indicating polylogarithmic or
high order root behavior. The plot of 26324r_def shows the highest curvature, but

even this is better than square root performance.

164

S r ! t s .
default <—

o — e el e e b
0.002 0.005 .02 0.05 0.2 0.5

tolerance

time

4

9 -

[S |

o — b e e e e

0.002 0.005 0.02 0.05 0.2 0.5
tolerance

Figure 7.31: Tolerance on door_small, default and 3mm, 3xtree intersection

165

200 |

180 =

160

140

120

time 100
80

80

40

20 -
(L PSR A R U PRI
0

0.002 0.005 0.62 (.05 6.2
tolerance

1000 [i ! [1
300 3xtree S— —
800 - -
700 - -
600 ~ -
time 500 -~
400 -
3060 -~
200 -

100 —
flm — 4+ — = e e — - L

0.002 0.005 0.02 (.05 0.2 0.5
tolerance

Figure 7.32: Tolerance on 26324r, default and 1.5mm, 3xtree intersection

166

i H =

defaunit <—
dmm —+— _
005/x
time
; o
T T 2 [
O e Lt e TS
0.002 0.005 0.02 0.05 0.2 0.3

tolerance

Figure 7.33: Tolerance on door_small, defauit and 3mm, 3xtree preprocessing

The preprocessing for 3xtree should increase at a linear rate, as previously dis-
cussed. The random test data times are too small to get much feedback from. The
largest value, in table 7.10, is only 2.5, requiring values of .25 and .025 to show a linear
trend. These values are way too small to expect accurate timing information. In the
door.small test files, the preprocessing figures are once again too small at the lower
end to judge reliably, although they do support the trend. In the higher accuracy
range, the numbers appear to grow linearly. Plotting .005 /z alongside in figure 7.33
shows that overhead factors are important in the region we are examining. In the
graphs of z6324r preprocessing (figure 7.34), we see that the curve .027/z fits very
well, suggesting the linear trend we should see. At the low end, we can once again
see the overhead factors.

One thing we can conclude from this data is that preprocessing is an insignificant
cost for both the 3x and 3xtree programs at these levels of accuracy. At high enough

accuracy levels, the preprocessing will swamp intersection time for any problem, given

167

! 1

default ©— _
1.5mm =
027X e

time

OL_ b e YT T D

0.002 0.005 0.02 (.05 (.2 0.5
tolerance

Figure 7.34: Tolerance on z6324r, default and 1.5mm, 3xiree preprocessing

the much lower growth rate that intersection exhibits. That possibility also raises the

mermory issue, discussed in Chapter 3.

poly

The data we could get on the poly program is extremely limited. It was too easy to
find tool movements in the test cases that caused it to overflow available memory.
The method is very vulnerable to this. A large number of tool movements had to
default to three-axis approach in order to make it run at all. The prograﬁl was totally
unable to run on the file z6324r.

In the random tolerance tests, the increase in preprocessing was nowhere near
linear. However, we have only two data points there, so we can’t really draw any
conclusions. If we look at the poly preprocessing data for door_small, the performance
is still less than linear, although the poly program has a sizable overhead associated

with it. The graphs are in figure 7.33.

168

700 | ; -
default ©— _

3mm ~-—

6800

506 - -

400
time

300

200

100

T

A

pnrd
QL____Mi_____i_.,._._lm____l

2

0.02 0.05 0.2 .5
tolerance

Figure 7.35: Tolerance on door_small, default and 3mm, poly Preprocessing

The intersection times for the poly program’s random tolerance tests showed
minimal increase. Again we only have 2 data points. But, this would indicate that
the data is not being efficiently distributed throughout the BSP tree structure. One
reason for this is the high threshold of objects allowed in each leaf to prevent memory
overflow due to too much subdivision. Memory costs had to be fought at every step.

In the door.small tests, shown in the graphs in figure 7.36, the jump from the
second to the third data point in both graphs is nearly linear. The jump from the
first data point to the second is very small, which points to high program overhead.
The high costs of preprocessing due to the available bounds do not encourage further
exploration at this time.

The poly nb program, while not necessarily giving good indications of how the
poly program should operate, still offers a view of what we might expect with much
better bounds and certainly provides a lower bound for the approach we have taken.

With preprocessing on the random test data, we see the slow growth between

169

40 t] i 3
default ©— _

30 - -
25 - -

time 20 —

0.02 0.05 0.2 8.5 2
tolerance

180
160 - 3mm ©— -
140 — -
120 - -
100 - -
B = -
60 -~ -
40 -~ -
20 - -
0 - — o e ...<J>

2

- time

0.02 0.05 0.2 0.5
tolerance

Figure 7.36: Tolerance on door.small, default and 3mm, poly intersection

170

the first and second points indicative of program overhead. From the second to the
third points, there is more than a linear increase. On door_small, the preprocessing
times progress nearly linearly, while for 26324r, the times progress at a rate slightly
less than linear. The graphs are depicted in figure 7.37.

The random tolerance test data in figure 7.38 shows very flat growth. This
implies that the BSP tree is helping out as the model size grows. In the door_small
runs, plotted in figure 7.39, the higher tolerance data is very close to linear, flattening
out at the lower tolerance levels. The data for 26324r is more interesting. Plotted in
figure 7.40, we actually see a decline in intersection times until tolerance .05, when
times being to climb. This unexpected effect occurs because the node size limits for
the BSP tree are set to allow the large node size required by the poly program. When
the model is too small, it doesn’t force enough subdivision to take advantage of the
BSP tree. As the model increases in size, the tree is used more efficiently, subdividing
the model better and reducing the intersection work done in the average node. Finally,
the model size grows enough that we start seeing the rise in times that we expect.

Further exploration of these effects aren’t warranted without improvements in the

polygonal bounds.

id

As mentioned in Chapter 4, the 1d program doesn’t have adjustable tolerance.

171

300 s I u
- default ©—
250 3mm - —
200 -
time 150 _
108 -
50 -
fle — o L BT & N
0.002 0.005 0.02 0.05 0.2 0.5 2
tolerance
-
default € —
1.5mm -+ _
time -
-
—— —— P, —
0.02 6.05 0.2 0.5 2
tolerance

Figure 7.37: Tolerance on door_small at default and 3mm, 26324r at default and
1.5mm, poly nb preprocessing

172

1.75 - 10int <— =

time

1.25 H ' H i |
0.002 0.005 0.02 0.05 0.2
tolerance

18 ' 100 int ©— =

time

4.5 -

14 &
0.002 0.005 0.02 0.05 0.2
tolerance

t | f o

Figure 7.38: Tolerance, poiy' nb intersection, 100 tool movements, 10 and 100 inter-
sections per tool movement

173

H i =1
default ©- _

time

g L— e il
0.002 0.005 0.02 0.05 0.2 0.5 2

tolerance

1800 | i ! i | |
1600 3mm ©— -~
1400 - -
1200 —
vime 1000 —
800 —
600 ~
400 ~

200 —
OL.__.,.i....,.m_..J_... T

0.002 0.005 0.02 0.05 0.2 0.5 2
tolerance

Figure 7.39: Tolerance on door.small, default and 3mm, poly nb intersection

174

RGO t ! | m
default €— _

time

400 - '
0.02 0.05 0.2 0.5 2
tolerance

time

1800 & ! '
0.02 0.05 0.2 0.5 2
tolerance

Figure 7.40: Tolerance on z6324r, default and 1.5mm, poly nb intersection

175

3-Axis Step Poly 1D

Relative Speed 1 3-10 T0-200 10-7

Code Complexity Low (700} Med (1500) High (6600) Med (2000)
Intersection Tolerance < O(n*?) < O(n) ~ O(n) —
Preprocessing Tolerance Small O(n) = Tiny Huge O(n) Tiny
Memory Usage Ofn) Tiny Huge Tiny
Flexibility High Low Medium Low

Table 7.21: Comparison of the Methods

7.3 Conclusions

We have presented several methods by which five-axis verification may be carried out
with guarantees on the accuracy of the results. This is accomplished in the paradigm
of discrete approximation of a desired part surface by finding the intersection of the
five-axis tool movement envelope with a surface vector. All methods presented except
the numerical approach can be used at varying tolerances to allow fast overviews and
Jater high accuracy verifications.

We have investigated each method’s response in running time to changes in
problem size. Also, we have locked a,t. the effects of rotation angle and tool move-
ment length on the performance of each method. Finally, we evaluated the effects
on changes in tolerance on each method. Table 7.21 gives an overview of how the
methods compare. The speed entries are relative to the performance of the three-axis
approximation with the object hierarchy optimization. Code complexity is 1n lines
of C code. Flexibility refers to the relative ease or difficulty in adapting each of the
methods to new tool shapes or tool movement equations.

From a practical viewpoint, the three-axis approximation method with bound-

ing hierarchy, outlined in Chapter 3, is the clear winner overall. Its advantages are

176

obvious: there is no complex eguation-solving resulting in slow numerical code, im-
plementation is very simple (especially compared to the polygonal approach), and
it takes advantage of preprocessing. Certainly for current applications, this is the
method of choice for accurate intersection calculation, and subsequently, verification
as a whole. In addition, the three-axis approach is very easily extended. Any tool
shape for which a three-axis intersection routine exists can be used with this method.
The envelopes used in the tree need to be changed some to allow for wrapping the
new tool shapes, but the method is very flexible. With a little more work, the method
is extensible to other sweeps as well.

The timing tests make clear that the effort expended on preprocessing is pretty
much inconsequential compared to intersection time at the tolerance levels tested.
This is a very effective use of preprocessing. On the downside, if high enough levels of
accuracy are demanded, it is possible that memory may be overrun {rying to create
the hierarchy tree. In that case, it may be necessary to compromiée.

As we mentioned in Chapter 3, several possibilities exist to handle this situation.
One, we could calculate data on the fly. This turns out to be an effective method. The
memory usage is negligible and the intersection times degrade by about 10movements
into smaller ones beforehand, since the memory size requirements can be determined
based on tolerance and rotation angle. The final method is to use more than two
children per node. This cuts mermory usage somewhat but also results in somewhat
slower intersection.

The closest competitor is the fast step method. It ranges from 3 to 10 times
slower than the three-axis method under varying circumstances. Most importantly,
as accuracy demands climb, the fast step program starts to narrow the gap. Also, as
the rotation angle increase, the fast step program catches up some. If verification 18

to be carried out at extremely high accuracy levels, the fast step program may just

177

be able to come out in front.

We have also seen that the z-culling optimization is an effective improvement to
the step method. The large step optimization is even more effective. It makes the
performance very sublinear in tolerance, outperforming the linear performance of the
simpler impilementations.

The step method is less amenable to changing the tool shape. The point test is
highly dependent on the equations based on a cylinder. A new tool shape requires
restructuring the equations and possibly even completely revamping the point test if
the interval narrowing algorithm is no longer applicable.

The step method heavily relies on the worst case bounds for minimum finding
in the second part of the point tests. These bounds are not very tight in general.
Better bounds would be directly realized in speedups in the step method. It might
even become the front runner if tight enough bounds could be had.

The pelygonal approach has turned out to be the biggest disappointment. On
paper it would seem to be the most potentially efficient approach. However, the
looseness of the bounds on surface approximation render this approach ineffective.

The fact that the unbounded version did not perform well either leads to the
conclusion that the methods used to create the polygonal surface are not very useful
in a computational setting. The representation performs worst in cases that should
.be the easiest, and requires a totally different approach to handle them. A different
- method of generating triangles as .weﬂ as improved bounds would be necessary to the
success of this method.

However, the overhead involved in the programming the polygonal method is
fairly high. The code complexity is unlikely to reduce significantly since any polygonal
program will still have to build a mesh, and probably will do it in an adaptive manner.

The meshes must be sewn together, although, different generation schemes may be

178

able to eliminate this step. Finally, some method of efficiently finding intersections,
such as octrees, is vital and requires both data structure construction routines as well
as intersection routines. While not ideal, the programs used do give some idea of how
complex any polygonal program will have to be.

The numerical approach is a mixed bag. In some examples it is as fast as the
large step method, while in others, especially the real data tests, it is incredibly slow.
This is even more true when bounds on the rad function are used. As a practical
matter, this method is a curiosity without much improved bounds on root finding in
the equations. Adding the bounds as described to the remaining equations will only
make matters worse. Another downside is that both the equations and algorithm
are almost completely dependent on the use of a flat-end cylinder. As with the step
method, changing the tool shape would require changes in the equations used, and
very possibly necessitate a new search algorithm. At the very least, it would be a
significant project.

A simple, if potentially slow, method of finding the intersection between a five-
axis tool movement and a line is to generate a set of still tool placements and find
the intersection of the line with each one in turn. As the density of tool placements
increases, it evolves into the numerical approach that we described. It turned out
that finding a bound for this model was significantly more difficult than for the three-
axis approximation. However, given the similarity of this to the numerical approach,
bounding this model may give insight into improving the bounds for the numerical
approach.

The result of this thesis is to offer a method of finding the intersection of a swept
cylinder with a line that can be guaranteed to a desired leve] of accuracy, is fast, simple
to implement, and flexible. In addition we have explored other avenues of solving the

same problem and shown them to be less desirable at this time. The information

179

we have provided applies not only to the obvious application of NC verification, but

also to any application in which the intersection of a swept object and a line must be

found with accuracy guarantees.

7.4 Open Problems

While any work tries to solve every aspect of a problem, some questions inevitably
remain unanswered. In addition, a solution to a problem may raise new and interest-
ing questions to explore. This dissertation is no different. We have done an extensive,
though not exhaustive, look at methods for finding intersections with guaranteed ac-
curacy between lines and five-axis tool envelopes. In the process, several unsolved
questions arise.

First, the method we employed to guarantee global root-finding and minimum
location is very conservative. In some cases it works rather well. But in others, the
bounds are overly cautious and cause significant slowdowns in the efficiency of all but
the three-axis approach. The step method in particular can benefit from improving
the bounds on searching the second equation of the point test. The polygonal and
numerical approaches would also clearly benefit.

The step method may also benefit from taking advantage of curve coherence.
The parameters change very little from step to step and equation searching might be
facilitated by this fact.

As we have already pointed out, the polygonal method we have presented is not
very effective. The testing results from the unbounded version seem to suggest that
even improving the bounds on the equations involved will not be sufficient to make
our polygonal approach viable. However, the poor results are also tied to the surface

representations used in this dissertation. Finding better parameterizations may prove

180

fruitful despite the likely complexity of the programs.

Related to better bounds for equation searching, the numerical approach may
benefit from a deeper look at the static cylinder idea. If a bound can be derived for
the static cylinder approach, it may lead to a better understanding of the equations
involved in the numerical approach, and subsequently, better search methods.

Finally, even though the three-axis approximation is the best of the methods
as presented; it too can benefit from further research. Although the bound derived
here is good, it is not as tight as possible. The tolerance distance from a point on
the surface of the approximation is measured to the corresponding position in the
true too] movement. However, the real location of this point is not necessarily on the
surface of the true tool envelope and the envelope itself may be closer still. A better

bound would mean even fewer three-axis submovements could model a five-axis tool

movement, resulting in faster intersection times.

181

References

[1] R. 0. Anderson. “Detecting and Eliminating Collisions in NC Machining”. Comn-
puter Aided Design. Vol 10, No 4, 1978. pp 231-237.

9] P.R. Atherton, C. Earl, and C. Fred. “A Graphical Simulation System for Dy-
namic Five-Axis NC Verification”. Proc. Autofact. SME, Dearborn, Mi., Nov

1087. pp 2-1-2-12.

3] Denis Blackmore and Ming C. Leu. “Analysis of Swept Volume via Lie Groups
and Differential Equations”. International Journal of Robotics Research. 1992.

[4] Denis Blackmore, Ming C. Leu, and Wen Wang”, “Classification and Analysis of
Robot Swept Volumes”. Japan-USA Symposium on Flezible Automation. 1992.

5] Ki-Yin Chang and Erik D. Goodman. “A Method for NC ToolPath Interference
Detection for a Multi-Axis Milling System”. Control of Manufacturing Processes.
Proceedings of Winter Annual Meeting of the ASME, 1991.

[6] LT. Chappel. “The Use of Vectors to Simulate Material Removal by Numerically
Controlled Milling”. Computer Aided Design. Vol 15, No 3, May 1983. pp 156~
158. :

[7] B. K. Choi, C. S. Lee, J. S. Hwang, and C. S. Jun. “Compound Surface Modelling
‘and Machining”. Computer-Aided Design. Vol 20, No 3, April 1988.

[8] Robert L. Drysdale, Robert B. Jerard, Barry Schaudt, and Ken Hauck. “Discrete
Simulation of NC Machining”, Algorithmica. No 4, 1989. pp 33-60.

[9] Robert L. Drysdale, Jerome L. Quinn, Kamran Ozair, and Robert B. Jerard.
“Discrete Surface Representations for Simulation, Verification, and Generation
of Numerical Control Pregrams”. Proceedings of NSF Design and Manufacturing
Systems Conference. 1991,

[10} L. P. Eisenhart. Differential Geometry. Ginn and Co., 1909.

f11] L D. Faux and M. J. Pratt. Computational Geometry for Design and Manufac-
ture. Halsted Press, New York, 1979.

182

[12] R. Frishdal, K. P. Cheng, D. Duncan, and W. Zucker. “Numerical Control Part
Program Verification System”. Proceedings of the Conference on CAD/CAM
Technology in Mechanical Engineering. MIT Press, Mar 1982. pp 236-254.

[13] M. A. Ganter and J. J. Uicker, Jr. “Dynamic Collision Detection Using Swept
Solids”. Journal of Mechanisms, Transmissions, and Automation in Design. Vol

108, 1986. pp 549-555.
(14] ed. Andrew S. Glassner. Graphics Gems. Academic Press, New York, 1990.

[15] ed. Andrew S. Glassner. An [ntroduction to Ray Tracing. Academic Press,
Boston, 1989.

[16] Allan Hansen and Farhad Arbab. “Fixed-Axis Tool Positioning with Bult-
in Clobal Interference Checking for NC Path Generation”. IEEE Journal of
Robotics and Automation. Vol 4, No 8, 1988. pp 610-621.

[17] W. A. Hunt, and H. B. Voelcker. An Ezploratory Study of Automatic Verification
of Programs for Numerically Controlled Machine Tools. Production Automation
Project Tech Memo No. 34, University of Rochester, Jan 1982.

(18] Robert B. Jerard, Jennifer Angleton, Robert L. Drysdale, and Peter Su. “The
Use of Surface Point Sets for Generation, Simulation, Verification, and Automatic
Correction of NC Machining Programs”. Proceedings of NSF Design and Man-
ufacturing Systems Conference Society of Manufacturing Engineers, Jan 1990.

pp 143-148.

[19] Robert B. Jerard, Robert L. Drysdale, and Ken Hauck. “Geometric Simulation of
Numerical Control Machining”. ASME [nternational Computers in Engineering
Conference. San Fransisco, 1988.

(20] Robert B. Jerard and Robert L. Drysdale. “Methods for Geometric Modeling,
Simulation and Spatial Verification of NC Machining Programs”. Product Mod-
eling for Computer Aided Design. ed. M.J. Wozny, J.U. Turner, and J. Pegna.

North Holland, 1991.

[21] Robert B. Jerard, Robert L. Drysdale, Ken Hauck, Barry Schaudt, and John
Magewick. “Methods for Detecting Errors in Numerically Controlled Machining
of Sculptured Surfaces”. IEEE Computer Graphics & Applications. Vol 9, No 1,

1989. pp 26-39.

[22] Robert B. Jerard, S.Z. Hussaini, Robert L. Drysdale, and Barry Schaudt. “Ap-
proximate Methods for Simulation and Verification of Numerically Controlled
Machining Programs”. Visual Computer. No 5, 1989. pp 320-348.

183

(23} Xiaoxia Li, Automatic Tool Path Generation for Numerically Controlled Machin-
ing of Sculptured Surfaces. Ph.D. dissertation. Mechanical Engineering Dept.

University of New Hampshire, May 1993.

[24] Ashish P. Narvekar. Representation and Application of Swept Solids for Numer-
ically Controlled Milling. Masters thesis. SUNY Buffalo, 1991.

[25] J. H. Oliver and E. D. Goodman. “Color Graphic Verification of NC Milling Pro-
grams for Sculptured Surface Parts”. First Symposium on Integrated Intelligent
Manufacturing. ASME Winter Annual Meeting, Anaheim, Ca. 1986.

[26] J. H. Oliver and E. D. Goodman. “Direct Dimensional NC Verification”.
Computer-Aided Design. Vol 22, No 1, 1990.

[27] Kamran Ozair. NC' Machining Simulation and Verification Using Triangles
Rather Than Points. Honors Thesis, Dartmouth College, 1990.

[28] Joseph Pegna. Variable Sweep Geometric Modeling. Ph.D. thesis. Stanford Uni-
versity, 1987.

[29] William H. Press, Brian P. Flannery, Saul A. Teulosky, and William T. Vetter-
ling. Numerical Recipes. Cambridge University Press, New York, 1986.

[30] Kumaraguru Sambandan. “Graphics Simulation and Verification of Five-Axis
NC Machining”. Technical Report 60, Cornell University, 1988.

[31] Kumaraguru Sambandan. Geometry Generated by sweeps of Polygons and Poly-
hedra. Ph.D. thesis. Cornell University, 1990.

[32] G. B. Thomas, Jr. and R. L. Finney. Calculus and Analytic Geometry. Addison-
Wesley, Reading, Mass, 1988.

[33] T. Van Hook. “Real-Time Shaded NC Milling Display”. Computer Graphics
(proc. SIGGRAPH). Vol 20, No 4, Aug 1986. pp 15-20.

(34] H. B. Voelcker and W.A. Hunt. “The Role of Solid Modeling in Machining -
Process Modeling and NC Verification”. SAE technical Paper 810195, 1981.

[35] W. P. Wang and K. K. Wang. “Geometric Modeling for Swept Volume of Moving
Solids”. IEEE Computer Graphics & Applications. Vol 6, No 6, 1986. pp 8-17.

(36] John D. Weld and Ming C. Leu. “Geometric Representation of Swept Volumes
with Application to Polyhedral Objects”. International Journal of Robotics Re-

search. 1990,

184

	Accurate Verification of Five-Axis Numerically Controlled Machining
	Recommended Citation

	tmp.1599856687.pdf.LUusV

