Dartmouth College

Dartmouth Digital Commons

Open Dartmouth: Peer-reviewed articles by

Dartmouth faculty Faculty Work

6-1986

There is a Planar Graph Almost as Good as the Complete Graph

L Paul Chew
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa

b Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation

Chew, L Paul, "There is a Planar Graph Almost as Good as the Complete Graph" (1986). Open Dartmouth:
Peer-reviewed articles by Dartmouth faculty. 4033.

https://digitalcommons.dartmouth.edu/facoa/4033

This Conference Proceeding is brought to you for free and open access by the Faculty Work at Dartmouth Digital
Commons. It has been accepted for inclusion in Open Dartmouth: Peer-reviewed articles by Dartmouth faculty by
an authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.


https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/facoa
https://digitalcommons.dartmouth.edu/facoa
https://digitalcommons.dartmouth.edu/faculty
https://digitalcommons.dartmouth.edu/facoa?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F4033&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F4033&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa/4033?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F4033&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

THERE IS A PLANAR GRAPH
ALMOST AS GOOD AS THE COMPLETE GRAPH

L. Paul Chew

Technical Report PCS-TR90-148



There is a Planar Graph Almost as Good as the Complete Graph

L. Pau! Chew
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Absiract

Given a set S of points in the plane, there is a triangulation of S such
that a path found within this triangulation has length bounded by a
constant times the straight-line distance between the endpoints of the
path. Specifically, for any two points a and b of S there is a path along
edges of the triangulation with length less than V10 times [ab], where [ab]

is the straight-line Euclidean distance between a and b. The triangulation

that has this property is the L4 metric Delaunay triangulation for the set

S. This result can be applied to motion planning in the plane. Given a
source, a destination, and a set of polygonal obstacles of size n, an O(n)
size data structure can be used to find a reasonable approximation to the

shortest path between the source and the destination in O(n log n) time.

- appeared in Proceedings of the 2nd Symposium on Computational Geometry, Yorktown
Heights, NY (June, 1986)



Introduction

Let S be a set of n points in the plane. One way to design a network on
S in which transmission distances are small is to use the complete graph,
the graph with an edge connecting each pair of points in S. The advantage
of using this complete network is that the transmission distance between
any two points of S is as small as possible. In this paper we show that
there is a planar network on S in which transmission distances are at
most V10 times the optimal distance (the distance in the complete
network). Because this network is planar it has O(n) edges instead of the

O(nz) edges needed for the complete network. The planar network that has

these properties is the Ly metric Delaunay triangulation of the set S.

The Delaunay triangulation for a set S of points is most easily
described by reference to the Voronoi diagram for the set S. The Voronoi
diagram for S divides the plane into regions, one region for each point in S,
such that for each region A and corresponding point p, every point within A
is closer to p than to any other point of S. The boundaries of these regions
form a planar graph. The Delaunay triangulation of S is the straight-line
dual of the Voronoi diagram for S; that is, we connect a pair of points in S
if they share a Voronoi boundary. (A more formai definition appears at the
end of this section.) The Voronoi diagram and its dual, the Delaunay
triangulation, have been found to be among the most useful data structures
in computational geometry. ([LP84] is a survey paper that includes a

number of Voronoi diagram applications.)



A Voronoi diagram and the corresponding Delaunay triangulation.

The results presented in this paper use a Delaunay triangulation based
on the Ly metric instead of the standard Euclidean metric. For the
Euclidean (L,) metric, distances are calculated using the familiar distance

formula (the square root of the x-distance squared plus the y-distance

squared). For the Ly metric, the distance between two points is defined as

the absolute value of the x-distance plus the absolute value of the

y-distance. Just as in the Euclidean metric, a circle is defined as the set

of points equidistant from a chosen center point. Thus, a circle in the Ly

metric is diamond shaped, i.e., a square tipped at 45°,



An L1 circle.

The L4 Voronoi diagram is defined just like the standard (Euciidean)
Voronoi diagram except the L4 metric is used to calculate distances. Like
the standard Voronoi diagram, the boundaries of the Ly Voronoi regions

form a planar graph. Both the Euclidean Voronoi diagram and the L4
Voronoi diagram (and Voronoi diagrams based on many other distance
functions) can be constructed in O(n log n) time where n is the number of
points in the set S (see, for instance, [SH75, Hw79, CD85]). The L+
Delaunay triangulation can be derived from the corresponding Voronoi

diagram in O(n) time, or, alternately, it can be built directly using a

method similar to the Euclidean-case method presented in [LS80].



An Ly Voronoi diagram and the corresponding Ly Delaunay triangulation.

A Delaunay triangulation has the property that, for any empty triangle

of the triangulation, the circumscribed circle contains no points of S in its

interior. Of course, for the L; Delaunay triangulation, the circle in

question is the tipped square described above. We define a Delaunay

triangulation in terms of empty circles.

Definition. A Delaunay triangulation of S is a triangulation T of S such
that for each empty triangle of T
1) there is a circle that can be circumscribed about the triangle, and

2) the interior of this circle contains no points of S.

If a set S contains 4 or more points that lie on a single empty circle then S
has more than one possible Delaunay triangulation. For the resulls
presented in this paper any of these Delaunay triangulations may be used.

Part 1 of the definition is unnecessary for the standard (Euclidean)



Delaunay triangulation since there is a circumscribed circle for any

triangle. For the L4 metric, however, there exist triangles that do not

have circumscribed circles (consider, for example, two points on a
horizontal line with a third point between them and just above the line).
To simplify our presentation we assume S contains the 4 points (+e0,0)
and (0,e=). Thus a triangulation of S is always a triangulation of the
entire plane. This assumption simplifies some of the definitions and
avoids a number of special cases in proofs. Of course these points at
infinity are never used on a shortest path so applications of the results

presented here do not require these extra infinities.

An L4 Delaunay triangulation using points at infinity.

The remainder of this paper includes an outline of the proof that paths

in the L4 Delaunay triangulation are of bounded length, a discussion of how

to apply this result to motion planning in the plane, and some directions

for further research. Of particular interest is the possibility of applying



techniques similar to those presented here to create an O(n2) algorithm

for almost optimal motion planning in 3 dimensions.

The Proof
The proof is in three parts. First, we consider a special case. We
assume that S contains points a and b such that the line between a and b is

horizontal. Using this assumption, we show there is a path from a to b in

the circle graph (defined below) of length < 2\/2*|ab|, where lab| is the
Euclidean distance from a to b. In the second part we remove the
restriction that segment ab is horizontal; we show that for any points a
and b of S there is a path in the circle graph of length < v¥10*|labl. Finally,
we complete the proof by showing there exists a path from a to b using
edges of the Delaunay triangulation with length < the length of the path in

the circle graph. We start with the definition of a circle graph.

Definition. Let T be a Delaunay triangulation of a set S of points in the
plane. The vertices of the circle graph derived from T are the points of
S. The circle graph has three edges for each empty triangle A of T.
These edges correspond to the three arcs of an empty circle
circumscribed about A. Further, the length of an edge is defined to be
the length of the corresponding arc. |If there is more than one empty
circle that can be circumscribed about a triangle then use the smallest
such circle; if there is more than one smallest circle then use the

leftmost such circle.



An L4 circle graph (the infinite circles are not shown).

Note that for each edge e in T there are two edges in the circle graph, one
derived from each of the triangles that include e. Of course, the circle
graph uses circles based on the appropriate distance function. Thus, for

us, the circles in the circle graph are tipped squares.

Lemma 1. Let T be an Ly Delaunay triangulation of a set S of points in the

plane and let G be the circle graph derived from T. Assume S contains

points a and b such that the line between a and b is horizontal. There is

a path from a to b in G such that the length of the path is < 2\/2*[ab|,

where |ab| is the Euclidean distance from a to b. -

We prove the existence of the desired path by giving an algorithm to

compute it.

0. Let L be the horizontal line segment from a to b with a at the left.



Without loss of generality we may assume that no vertices of T
except a and b lie on L (if there were such a vertex, say ¢, we could
recursively find paths from a to ¢ and from ¢ to b and put them
together to make a path from a to b). Let T include just the
vertices and edges of the Delaunay triangles that have a part of L in
their interior. The remainder of the algorithm uses only veriices
and edges of T'. Note that the triangles of T' are ordered from left
to right along L. We use x to represent our current position on the

path as it is constructed. Initially x is the point a.

. Let A be the rightmost of all triangles of T' that have x as a vertex
and let C be the empty circle {square) corresponding to A in the

circle graph. Note that, by choosing the rightmost triangle, one of

the remaining vertices of A (call it x4) is above L and clockwise

along C from x and the other vertex of A (call it x,) is below L and

counterclockwise along C from x. (it's also possible that one of the
vertices is b and is thus on L. We consider the point b to be both

above and below L.)

if x is on the upper left edge of C
then move clockwise around C

else if x is on the lower left edge of C
then move counterclockwise around C

else if x is above L
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then move clockwise around C
else if x is below L

then move counterclockwise around C

3. Continue in the same direction around C until either X4 OfF Xp is

reached. Whichever is reached, call it x. If x is b then quit else go

to step 1.
We prove a series of lemmas describing the shape of the path produced by
the algorithm. These results are then used to complete the proof of
Lemma 1.
Lemma 2. The triangles used (called A in step 1) are ordered along L.
Although not all triangles of T' are used, those used appear in their
order along L.

Proof. Follows from the use of rightmost triangles.

Since there are only finitely many ftriangles it follows from Lemma 2

that the algorithm terminates.

Corollary. The algorithm terminates, producing a path from a to b.

Lemma 3. Let A4y and A, be triangles of T' and let Cy and C, be the
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corresponding circles in the circle graph. Let ey and e, be the
rightmost intesections of C4 and Co (respectively) with L. If A4y <A,
then ey < e5. (Here, £ is used to represent both the ordering of

triangles along L and the ordering of points of L.)

Proof. It is sufficient to prove the lemma for A4 and Ao adjacent along L.

The result follows from the fact that each circle contains no vertices of T

in its interior. O

Lemma 4. Let p be a point travelling from a to b along the path
constructed by the algorithm given above.
1) If p is above L then it does not move in the direction left-up.
2) If p is above L then p moves in the direction right-up iff it is
travelling along the upper left edge of the current circle C.

3) Similar statements hold for p below L.

Proof. These resulis follow from the choices allowed in step 2 of the

algorithm. O

Lemmas 2 through 4 are tools used to determine the possible shapes for

the path created by the algorithm.

Proof of Lemma 1. Woe first divide the path into pieces, then we analyze
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the shapes of the pieces to prove the lemma. As a first step, the path
created by the algorithm is extended so the path hits L more often.
Specifically, whenever the path turns to the left (in the direction left-up
or left-down) the path is extended ito hit L before it is allowed to turn
away from L. For example, let p be a point travelling along the path and
suppose p is above L and has just tumed. in the direction left-down.
Whether this portion of the path needs o be extended depends on what
happens as p continues to move along the path. We extend this portion of
the path if and only if p moves away from L before it hits L. At the point
where p turns away from L we extend the path, forcing p to move in the
direction left-down until L is reached. To continue the path, p moves back
from L in the direction right-up until the original path is rejoined. For p
below L and moving in the direction left-up, the path is extended in a
similar manner. Lemma 4 shows p above L moving left-down and p below L

moving left-up are the only cases in which p moves left.

Extending the path when it heads left.

This extended path is chopped into pieces, breaking the path wherever
it hits L. Due to constraints on the direction of the path (Lemma 4) and
restrictions on how circles are ordered (Lemma 3) we can determine the

basic shape of each piece of the extended path. Intuitively, each piece can
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be "unfolded” without changing the path length to produce a shape similar

to the following picture.

m

n

A portion of the path and its equivalent "unfoided” path.

Using Lemma 3, it can be shown that n must be to the right of m (see
diagram). It follows that for each piece of the path the ratic of the length

of the path to the length of its portion of L is bounded by 2v2. O

What happens if the line between a and b is not horizontai? Or,
equivalently, what happens if the circles we use are squares tipped at an
angle other than 45°? Llet 0 be the angle at which the the squares are
tipped. The ratio of path length to distance covered along L can be shown
to be sind+3cosd for sections of path above L and cosd+3sino for sections
of path below L. Some simple calculus shows that this ratio can be at

most ¥10, giving the following lemma.

Lemma 5. Let T be an Ly Delaunay triangulation of a set S of points in the

plane and let G be the circle graph derived from T. For any two points a

and b in S there is a path from a to b in G such that the length of the

path is S\HO*Iab[, where [ab| is the Euclidean distance from a to b.
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We improve this result by observing that the path created by the
algorithm travels along the boundary of a circumscribed circle to get from
vertex to vertex of a triangle. Note that the edge of the triangle is a
shortcut between these vertices. In other words, instead of travelling
along the edges of the circle graph we can visit the same vertices by
travelling along the edges of the Delaunay triangulation; in addition, this

path is shorter than the path in the circle graph.

The triangle edges are shortcuts between vertices.

Theorem 1. Let T be an L4 Delaunay triangulation of a set S. For any two

points a and b in S there is a path from a to b in T such that the length
of the path is < V?O*lab[, where |ab| is the Euclidean distance from a to

b.

Application to Motion Planning
With some modification, this result can be applied to motion planning

in the plane. Let s be a source point and let d be a destination point. Let R
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be a set of polygonal obstacles in the the plane where n is the number of
vertices in R. For simplicity of presentation we assume s and d are
included in R as degenerate polygonal obstacles. The motion planning
problem is to find the minimum length s-to-d path that does not collide
with any of the obstacles in R.

The optimal path can be found by using the visibility graph, a graph in
which points are connected iff they can “"see" each other. Dijkstra's
algorithm can be used to determine the shortest path in the n vertex
visibility graph in O(nz) time. The visibility graph itseif can be
constructed in O(n?) time [We85, AAGHIS5].

A Delaunay-like graph G (here, called an obstacle triangulation ) can be
buill on the vertices of R. G has the following properties:

1) G is planar;

2) the minimum length G-restricted path (i.e., a path restricted to
edges of G) from s to d has length at most V10 times the length of
the optimal path.

Intuitively, the obstacle triangulation is a Delaunay triangulation with the
obstacle edges forced in as part of the triangulation. Compare the
following definition of an obstacle triangulation with the definition of a

Delaunay triangulation given in the introduction.

Definition. An obstacle triangulation of R is a triangulation T of R such
that all edges of R are included in T, and such that for each edge e of T
either e is an edge of R or there exists a circle C with the following

properties
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1) the endpoints of edge e are on C, and
2) if any vertex of R is in the interior of C then it cannot be "seen"
from either endpoint of e (i.e., a line segment drawn from such an

interior vertex to an endpoint of e must cross an edge of R).

Obstacles and the corresponding obstacle {riangulation.

The obstacle triangulation c¢an be built using a straightforward
algorithm in O(n2) worst-case time. Conjecture: the obstacle
triangulation can be constructed in O{n log n) worst-case time.

Because the obstacle triangulation is a planar graph, Dijkstra's
algorithm can be used to find the shortest path within the obstacle
triangulation in O(nltog n) time. The following result shows that this path

is a good approximation to the shortest possible path.

Theorem 2. Let R be a set of polygonal obstacles in the plane and let G be
the obstacle triangulation of R. [f s and d are vertices of R then the
shortest G-restricted (using only edges of G) path from s to d is of

length < V10 times the length of the shortest possible path from s to d.
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Proof. Let P be the optimal path from s to d. Consider a straight line
nortion of P say from a to b, where a and b are vertices of R, such that no
other vertices of R appear on this portion of the path. With minor
modifications, Theorem 1 can be extended o show there is a path from a
to b in G with length < vV10*|abl. (it is necessary to show that Lemma 3
holds for G.) Since such a path in G exists for each straight-line portion of
P, it follows that there is a path in G from s to d with length < V10 times

the length of the optimal path. O

Further Research

There are several interesting possibilities for extending the results
presented here. The constant (V10) that bounds the ratio of path lengths
is unlikely to be optimal. In other words, the length of a shortest path in
the Delaunay triangulation (or the obstacle triangulation) is probably
closer to the length of the optimal path than has been shown here. It can
be shown that V2 is a lower bound for this constant, but this is not a tight
bound. The original motivation for this research was to prove results
similar to those presented here, but for the standard (Euclidean) Delaunay
triangulation.  Conjecture: the ratio of path lengths for the Euclidean
Delaunay triangulation is bounded by a constant. It can be shown that n/2
is a lower bound for this constant.

Of particular interest is the possibility of extending these results to
maotion planning in 3 (or more) dimensions. Currently, the best methods

known for finding an optimal path among polyhedral obstacles in 3
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dimensions are not even polynomial [S584, Sh85]. Papadimitriou [Pa85]
has developed a fully polynomial approximation algorithm. His method is
polynomial in n, the number of elements (vertices, edges, and faces) in the
obstacle set, and 1/¢ where (1+d) is the desired bound on the ratio of
approximate path over shortest path. [t may be possible to create a graph
similar to the obstacle ftriangulation, with edges connecting vertices of
the polyhedrons. The ratio of a shortest path within this graph to the
actual shortest path should be bounded by a constant. The result would be

an O(nz) algorithm for finding a close-to-optimal path among polyhedrons.
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