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Abstract

A fundamental problem of distributed database design in an existing net-
work where components can fail is finding an optimal location at which to
piace the database in a centralized system or copies of each data item in a
decentralized or replicated system. In this paper it is proved for the first time
exactly how hard this placement problem is under the measure of data availabil-
ity. Specifically, we show that the optimal placement problem for availability is
# P-complete, a measure of intractability at least as severe as NP-completeness.
Given the anticipated computational difficulty of finding an exact solution, we
go on to describe an effective, practical method for approximating the opti-
mal copy placement. To obtain these results, we model the environment in
which a distributed database operates by a probabilistic graph, which is a set
of fally-reliable vertices representing sites, and a set of edges representing com-
munication links, each operational with a rational probability. We prove that
finding the optimal copy placement in a probabilistic graph is #P-complete by
giving a sequence of reductions from #FSatisflability. We generalize this result
to networks in which each site and each link has an independent, rational op-
erational probability and to networks in which all the sites or all the links have
a fixed, untform operational probabilities.

1 Introduction

Determining the optimal placement of a resource, be it a file, database, or data
object, is one of the most well-studied problems in computer science. Research
into the “file assignment problem”, or FAP as it is now known[3, 8], dates back to
Chu in 1969]4] and even earlier when viewed as the single commodity warehouse
problem{16]. This paper differs from all others of which we are aware in that the
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measure that we wish to optimize is availability, which is defined as the probability
that an arbitrary node in the network is connected to the site containing the file
or data object. In addition, we show that this problem is # P-complete, not N P-
complete as is frequently shown for other location problems, and is therefore at least
as “hard” as N P-complete problems.

In [7], Dowdy and Foster present a survey of research dealing with FAP, including
a description of fourteen models and a list of twenty-one others. These and other
more recent models with approximate solutions are discussed in [10]. Although the:
models vary considerably, they all attempt to minimize some cost measure (such as
storage or communication cost) or maximize throughput. Although some of these
models include an availability constraint, they neither maximize availability nor
define it as above.

Our interest in this availability measure is motivated by our work with database
replica control protocols.[12, 15, 13] These protocols attempt to increase the accessi-
bility of a data object by replicating that object throughout the network. Our work
has shown that, given the database consistency comstraints, there is a non-trivial
bound on the benefits of replication over an oplimally located non-replicated data
object.[15] Thus, it is natural to attempt a complexity characterization and an ap-
proximation algorithm for solving this optimal location problem, both of which we
present in this paper.

The most general form of the optimal database placement problem is as follows:
given a set of sites, communication links, rational reliability probabilities on both
the sites and links, and a distribution of access requests, find the optimal site. A site
x is optimal if and only if placing the data object at site z maximizes availability.
Availability is defined as the probability that an access request submitted according
to the access request distribution occurs at a site that can communicate with site
2. A rational reliability 5’5 for a site (and similarly for a link) is the steady-state
probability that the site is operational. Therefore, »g» = m%gm where MTTF
is the mean time to failure for a site, and ATT LR is the mean time to recovery for
a site.

Thus, the optimal location at which to place the sole copy of a data item in
a distributed environment is a function of the network topology, the site and link
reliabilities, and the access request distribution. We show that since the underly-
ing graph reliability problems are g#P-complete, so also is this eptimal placement
problem. #P-complete implies, among other things, that an eflicient (polynomial)
solution to this problem can be found only if P = NP. In this paper we prove that
the simplified problem where the sites are infallible, links operate with probability
one-half, and the access request distribution is uniform (that is, ”71"{ of the accesses
is submitted to each of the n sites) is #P-complete. We call this the simplified
model and call the graph representing such a network a probability graph. Using
the simple technique of restriction{9], we generalize this result to networks in which
each site and each link has an independent, rational operational probability, to net-



works with fixed, uniform, rational site or link probabilities, and to arbitrary access
request distributions.

Because this problem is computationally difficult, we cannot expect to find an
efficient, exact solution. Since the necessity of finding the best possible database
location remains, we also give a practical, efficient method of approximating on-line
the optimal copy placement in general networks, Furthermore, we describe in section
4 situations in which this method may be preferable to an exact off-line calculation.

We begin by listing each of the problems which we use to prove our #F-
completeness result. Each of these problems are interesting probability graph prob-
lems in their own right. In section 3, we prove that each of these problems are
#P-complete. We also generalize the main complexity result to include classes of
networks with a uniform, fixed Link reliability and networks with a uniform, fixed site
reliability. This latter class includes such networks as radio broadcast networks[1]
and single bus networks like Ethernet. The final section gives an efficient on-line
method for approximating the optimal database location based upon the history of
the network.

2 Problem Definitions

In this section we define each of a sequence of combinatorial problems that we use
to prove that finding the optimal location of a single copy is #P-complete. The first
two problems, #SAT and CONNECTEDNESS, were shown to be #P-complete by
Cook[6] and Valiant[18], respectively. The other three problems are shown to be
#P-complete in section 3.

We maximize availability by maximizing £ [v], the expected size of the compo-
nent containing a site v. % is the availability achieved on a network with a single
copy located at site v, since, in this simplified model, access requested are submitted
uniformly at random, and only requests submitted to sites within the component
containing v will be granted. Therefore site v is a optimal location if and only if
Ev] > &[u] for all sites u.

In the questions which follow, by “the expected component size of vertex »”
we mean the expected size of the component containing v. Also, if more than one
vertex has maximal expected component size, OPTLOCmay return any one of these

vertices.
1. #SAT (#SAT)

INSTANCE: A logical formula F in n variables.

QUESTION: How may different truth assignments which satisfy I" are there
to the n variables?

2. CONNECTEDNESS (CON)
INSTANCE: A probability graph G = (V, E), and vertices vy, v € V.



QUESTION: What is the probability that vertices v; and vy are connected?

3. EXPECTED SIZFE (EXPSZ)
INSTANCE: A probability graph G = (V, E), and vertex v € V.
QUESTION: What is the expected component size of vertex v7

4. BOUNDED EXPECTED SIZE (BEXPSZ)

INSTANCE: A probability graph & = (V, E), vertex v € V, and a rational
number B.

QUESTION: Has v expected component size greater than or equal to B?

5. OPTIMAL LOCATION (OPTLOC)
INSTANCE: A probability graph &' = (V, E).
QUESTION: Which v € V has the largest expected component size?

3 Reductions

In this section we either prove or cite proofs {or each of the problems defined in the
previous section. The first three problems are proved elsewhere and citations are
given. The remaining two problems are shown to be #P-complete. We inciude a
subsection with two related Lemmas that are used in section 3.3.

3.1 Preliminary Reductions

Theorem 1: #S5AT is #P-complete.

Proof: In [6] Cook proved that SAT is NP-complete. Valiant defined #P-complete
in such a way that SAT is NP-complete implies that #S5AT is #P-complete[18]. O

Theorem 2: CON is #P-complete.
Proof: A reduction from #SAT to CON is given by Valiant in {18]. o

Theorem 3: EXPS5Z is #P-complete.
Proof:

A reduction by the authors from CON to EXPSZ in a more general context is
given in [15]. We restrict the proof in this paper to probability graphs.

Let G = (V, E) be a probability graph, and let P(c¢(u,w)) represent the proba-
bility that vertices u and w are connected.

Then it is not difficalt to show that the expected size of the component containing
v € V, Ev], is equal to 3,y Ple(v, w))[15]. Thus EAPSZ is in #PF since we can
solve EXPSZ with [V| queries to an CON oracle, and CONis in #P.



We show that EXPSZ is #P-hard using a Turing reduction from FXPSZ to
CON. We solve C'ON by calculating the expected component size of a vertex in
each of two networks.

Let G = (V, E) and w,v € V be an instance of CON.

Let G' = (V', E"), where V/ = VU {o'} and V' = V U {(u, u)}.

Eaxlv] = E’P(c(v,w))

wel’!

= Ple(v,u)) + Z Ple(v, w))

welV

= %P(c('v,'w))-l- > Ple(w,w))

wEl
= gp(c(v,u)) + Eaiv]

Therefore, P(e(v,u)) = %(8@![1}] - Sg[v}), and calculating Eglv] must be #P-
complete since calculating P(e(v,u)) is #P-complete. |

Theorem 4: BEXPSZ is #P-complete.

Proof:

Clearly BEXPSZ is in #P since we can solve BEXPSZ with one query to an
EXFSZ oracle, and FAXPS5Z is in #P.

We show that BEXPSZ is #P-hard using a Turing reduction from EXPSZ to
BEXPSZ.

Let G = (V, I) and vertex v be an instance of the EXPSZ problem. That is, we
wish to determine C, the expected size of the component containing vertex v. Let
n = |V] and m = |E]|. Then there are 2" possible graph states, and the probability
of any one state with k operational inks, 0 < k < m, is (g)k(l - g)m‘k. Therefore
C, 1< C < n,is a multiple of % and is one of ng™ possible values. Suppose, then,
that we have an oracle which can solve BEXPSZ, Then we can use a binary search
procedure to query this oracle until we find the exact value of €. This can be done
in e < flog(ng™)] queries. Since m < ﬂ%ﬁ, a < ﬂog(nqn(nz—n)] = O(n?).

Since EXP57Zis #P-complete, and since we can solve EXPSZ with a polynomial
number of queries to a BEXPSZ oracle, it must be that BEXPSZ is #P-hard. O

3.2 Related Lemmas

We simplify the task of proving that OPTLOC is #P-complete by establishing two
Lemmas. The first Lemma states that the expected component size of vertex v in
graph G, £alv], is at least as large as the expected component size of any other vertex
u, £qlu], times the probability the v and u are connected. We denote the probability



that two vertices u and w are connected by P{c{u, w)) and the probability that two
vertices u and w are connected given that two vertices 2 and y are connected by

Ple(u, w) | {2, 9)).

Lemma 5.1: Let G = (V, E) be a probability graph and w,v € V.. Then Eglv] 2
Pe(w, u)) Ealul.
Proof:

Eglv Lwev Ple(v,w})

Sowey Ple(v,u) and o{u, w))

‘P(C(’U, u)) ZwEV 'P(c(u, w) | C(’U, ’U,))
'P(C(’U, u)) Eme‘V p(c(“a w))

Ple(v, w)) Ealu]

v v

The following Lemma states that we can make any vertex v the optimal vertex
by adding f%(e + 1}] vertices, each adjacent to v.

Lemma 5.2: Let & = (V, E) be a probability graph and v € V. Let G' = (V', E'),
where V! = VU {z; | 1 << [Le+ D]}, and B = EU {(vy2) 1 1 <1< 2e+2}.
Then v is the unique optimal vertex in G’

Proof:
Let w # v be some vertex in V.
Earlv] Eqlv] + E{E{c+ 1] since link veliabilities = Z

Ple(v, w)) Ealw]+ £[1(c+1)] by Lemma 5.1
Eglwi+ Ple(v, w)) E[4(c+ 1)]  since 0 < P(c(v, w)) <1 and
Eglw] < £l3(e+ 1)]
Eqr[w] since all paths from w to any
pass though v

VoIV

H

a

3.3 OPTLOC Reduction

In this section we use the previous reductions and Lemmas to prove that optimally
placing a single copy is #P-complete.
Theorem 5: OPTLOC is #P-complete.
Proof:

Cleazly OPTLOC is in #P since we can solve OPTLOC using one query to an
EXPSZ oracle for each v € V, and FXPS5Z is in #P.



We show that OPTLOC is #P-hard using a polynomial time reduction from
BEXPSZ to OPTLOC. That is, we show that we can solve the BEXPSZ problem
using a machine for solving the OPTLOC problem.

Let Gy = {(V,, Ey), A, v € V, be an instance of the BEXPSZ problem, with
= |V,| and m = |E,|. We will use OPTLOC to determine in polynomial time
whether or not E[v] > A.

We know that Ele] = 7L Odk(ﬂ)k(l By k. where each dj is the sum
of the sizes of the component contammg 31te v in all states with exactly
k operational links. Using the binomial theorem, this can be rewritten as
3 0 2oje e (m* Ydp(—1)y"~ k“v’(ﬁ)m“f If we subtract 1 (since site v is always
operational), and we subtract D( } for as large a integer D' as possible, we are
left with a positive rational nﬁmber D" less than lg Thus we can rewrite E[v] as
1+ D'(E) + ik, di(g)i, where each d; is a non-negative integer less than ¢ (l.e.
Sy di(g)i is the base-(2) expansion of D".

We would like to express A in the same manner, as 1 plus A'(2) plus a base-(£)
expansion of 4 — 1 — 4’ (3‘—’) But this expansion may not Lermmate in basen(g)
Instead we define B, a tezmmatmg approximation of 4, such thafn E[v] = A if and
only if £{v] > B. We form B simply by truncating A afier the m place and adding
(g)m if B # A. Thus for some sequence of positive integers b; each less than ¢,

perem(®) S

We give the reduction below, an explanation following the reduction, and an
example in Figure 1.

Reduction:

Let Gy = (V,, E,) where
Ve={uU{uw; | 1<i< B}
E,={{u,u) | 1 <i< B}

Let G, = (V, El) where
VIieV,U{v e | 1<i<mand by 21 and 1< j<byand 1 <k <i—1}
El, = By, U{(v,v:) 11 < i <mandd; < landl £ 7 < b} U
{(Ué,j,}m’vz‘,j,k-}-l) Jl<i<moand b; 21 and 1 <j<b; and 1 <k <t — l}

Let G, = (V!, El) where
Ve VpUd{uije | 1<i<mand b; > 1 and 1 <5 <b; and 1 <k <}
El = B, U{(w,uia) |1 < i< mandb € landl €7 < b} U
fuijitigret) | 1<i<mand b 21 and 1 <5< by and 1 <k < i}
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Figure 1: This figure represents the graph (' given an initial graph G, with g =1
and B = 3-&. (Therefore, B’ = 4, by = by = by = bs = 0, and by = bg = 1.} The
name of each of the intermediate graphs is given near the portion of G which was
introduced by that intermediate graph. (Note that vertex v is in G, although this

is unclear from the figure.)



Let ¢ = max( | V] |, {Ve])

Let G = (V), El'} where
Vi = V0w | 1< < [2e + 1)
{ ——— [+ - ' .q .
Bl = B, w) | 1< < T3+ 1]}

Let GIf = (V) E)) where
Vi =Voud{e | 1 <9< e+ D1}
El=E,u{(wa) | 1<i< [Fe+ DI}
Let G0 = (V}", El") where
VI = VI 1 1<i<m+1)
EY =B U{(yyir1) | 10 SmPu{(v,m)}
Let G = (V,))', B} where
ViV (| 1< i < m)
EY = E/u{(z,zi) | 1<i<m—110{(u,21)}

Let G = (V, E) where
V= Vm U Vm
E=EUEYU{(u,0)}

E[vl > B iff v is the optimal vertex in G. Since the size of V is less than
2¢(% + D) Epi? + 21 E,] + (3% + 1)|Vo| + 5, the size of (7 is polynomial in the size of
{,. Therefore OPTLOC is #P-hard since BEXPSZ is #P-hard.

Explanation and Correctness:

Cleatly, £{v] > B iff £[v] + d > B + d, for some rational number d which
we describe later. We, therefore, build a graph &/, with optimal vertex u and
Eqiu] = B +d. At the same time we form G, by augmenting G, such that
Eqr{v] = &g,[v] + d. We then augment both G, and G, forming G, and G,
respectively, to ensure that either w or v or both are the optimal vertices in both G/
and G, We then augment both &7 and G, forming G and G, respectively, to

ensure that 4 and v do not have the same expected size. At this point, &g [v] > B
iff » is the optimal vertex in (qu” UV EN U EY U {(u, v)})

o

Since the expected number of operational links from w« to some u; is B’ (g—),

Ea ul =1+ B (%)



Connecting a vertex to a “chain” of k vertices increases the expected size of the
component containing that vertex by 3;<;<x(?). We form &), from Gy by adding
by chains of length & — 1 for every b > 1. Therefore,

Earlv] = Sa,[vi+ 3 zb (f’)

by>1 =1

Likewise, we form G, from G, by adding by, chains of length k for every by > 1.
Adding a chain of length % to G, and of length k — 1 to G, produces a net increase
of bk(g)k in the difference between Egi {u] and g {v]. Therefore,

w3

faful = 1+B'(E)+ Z Zb (p)

_ 1+B’( )+ b%b(p) +b§§b,( )
- B+ZZ‘b(f’)

b2l g=xl

Now &g, (vl 2 Bilf Eg [v] = € [u]. But OPTLOC tells which vertex is optimal
in the entire graph, not which of u and v is better. Therefore we must ensure that
either u or v is the optimal vertex. Clearly, &g [v] > 1 and &gy [t] < ¢ forall ¢ € V.
By adding W(c + 1)] neighbors to v, we increase the expected component size of

v by (E)fg(c + 1)] and ensure, by Lemma 5.2, that v is the optimal vertex in G7.
LIkQWlse f01 u in G, Therefore,

Eaylv] = SG;,WE[E(M)}

= calil+ X S n(2) 4 2L

=1

Ecylu] = SG;HHH( ¢+ 1)]
=1
= B+ZZb( % +—é{é(c+1)]
bi>t j=1 1

Now &g,[v] > B if v is the optimal vertex in (VJ’ UV BNy F”), provided
Equlv] # Eaulu]. I, however, £gplv] = Egulul, or equivalently &g, [v] = B, we
cannot be sure which of v and v will be called optimal, since OPTLOC is indifferent

10



in this case. Therefore we introduce G and G such that,

m+1

Sople] = Eaylel+ 2 (7)
J=1

- et T E0(E) ¢ K] + S+ ()
Je=21

b1 j=1 q

Eaplu] = SG::[TL]**‘i(B)j
=14

- B+ X0 + 2L 1]+ B )

bzl =1 gl

Since B is a multiple of -q%, £g,[v! = B iff v is the optimal vertex in (VJ’ U

VL ESUED).

We form G by connecting G7 and G with an edge from u to v. Cleazly,
“optimality™ is preserved.

Therefore £g,{v] > B iff v is the optimal vertex in 7, and G can be achieved in
time polynomial in the size of &, Since BEXPSZis #P-hard, OPTLOC is also
#P-hard. ]

3.4 Generalizing

Since probability graphs model a subset of the networks with arbitrary, non-uniform
link reliabilities and networks with both fallible sites and fallible links, the #P-
completeness result of the previous section applies to these more complex networks.
Also, AboFElFotoh and Colbourn have shown the #P-completeness of the CON prob-
lem where vertices, rather than edges, are subjeet to failure[1]. Using this result, the
proof given in this paper can casily be modified to include radio broadcast networks
and other networks modeled by graphs with fallible vertices and infallible edges.
This also includes single bus networks like Ethernet, where the link reliability can
be factored out of the availability equation.

4 Approximating Optimal Placement

Although #P-complete in general, the determination of the optimal location for
the data item is solvable for some systems. Since often a network for an existing
database is built incrementally around the database, the current location may be
optimal. In addition, the single copy availability can be efficiently determined for
regular network topologies[2, 11, 14], such as ring, single-bus, fully-connected, and

11



for series-parallel networks(5, 17]. Since, for these topologies, the single copy avail-
ability can be calculated in polynomial time by calculating the expected component
size, £[v] = T.ev Ple(v,w)), for each site in V, the placement problem can be
solved in polynomial time. It may also be possibie to efficiently solve the placement
problem for networks with fixed, deterministic routing algorithms, since the num-
ber of possible paths connecting two sites may not be a function of the size of the
network, or the paths may be mutunally independent.

Although calculating the expected component size is feasible in some special
cases, it is unnecessary and perhaps undesirable to do so in real systems. Instead,
each site can record the actual number of access requests submitted to sites within
its component, and the site with the largest number can be made the Jocation of the
copy. We require that a site record the number of access requests, rather than the
number of sites, to accommodate a nonuniform access request distribution. This
method is guaranteed to maximize availability because the number of access reqests
“seen”, that is, submitted within a site’s component, is the same as the number of
access requests that would be granted if the data object where located at that site,
since communication is symmetric.

I the past network performance and the access request distribution are indica-
tive of future behavior, then this technique leads to optimal copy placement. This
method does not require a priori knowledge of the network topology, hardware re-
liability, or access request distribution, and adjusts automatically to unanticipated
changes in any of the these system parameters. These characteristics are precisely
those necessary for an automated database relocation scheme[15]. Our experience
with simulation indicates that this approach will be successful[12].

5 Conclusion

We have analyzed a fundamental database problem which seeks the optimal loca-
tion for database objects. Here optimality is obtained, not by minimizing a cost
metric, but by maximizing availability, that is, the probability that an arbitrary
access request is submitted to a sife which is connected to the site containing the
data object. We have shown that this optimal placement problem and a number
of related network reliability problems are #P-complete, and therefore likely to be
computationally tractable only in very small networks. Since the necessity of intel-
ligent database placement in a computer network remains, we presented a method
for approximating this location on-line, while the network is performing the useful
work for which it was created.

12
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