Dartmouth College
Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

1-1-1991

Optimal Parallel and Sequential Algorithms for the Vertex
Updating Problem of a Minimum Spanning Tree

Donald B. Johnson
Dartmouth College

Panagiotis Metaxas
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

b Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation

Johnson, Donald B. and Metaxas, Panagiotis, "Optimal Parallel and Sequential Algorithms for the Vertex
Updating Problem of a Minimum Spanning Tree" (1991). Computer Science Technical Report PCS-
TR91-159. https://digitalcommons.dartmouth.edu/cs_tr/59

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/59?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Optimal Parallel and
Sequential Algorithms for
the Vertex Updating Problem

of a Minimum Spanning Tree

PCS-TR91-159

Donald B. Johnson
Panagiotis Metaxas

Optimal Parallel and Sequential Algorithms for
the Vertex Updating Problem of a Minimum
Spanning Tree

Donald B. Johnson* Panagiotis Metaxas'
Dartmouth College?

Technical Report PCS-TR91-159

Abstract

We present a set of rules that can be used to give optimal solutions to the
vertex updating problem for a minimum spanning tree: Update a given MST
when a new vertex z in introduced, along with weighted edges that connect z
with the vertices of the graph. These rules lead to simple parallel algorithms .
that run in O{lgn) parallel time using n/lgn EREW PRAMs. They can also
be used to derive simple linear-time sequential algorithms for the same problem.
Furthermore, we show how our solution can be used to solve the multiple vertex
updating problem.

1 Introduction

COMPLEXITY AND PREVIOUS RESULTS. The vertex updating problem for a min-
imum spanning tree was first addressed by Spira and Pan in [SPT5], where a O(n)
sequential algorithm was presented. Another solution using depth-first-search and
having the same time complexity was later given by Chin and Houck in [CHT78], while
Pawagi and Ramakrishnan [PR86] gave a parallel solution to the problem. Their
algorithm, which runs in O(lgn) time ! using n? CREW PRAMs, precomputes all
maximum weight edges on paths between any two nodes in the tree, and then breaks

*email address: djohnson@cardigan.dartmouth.edu

temail address: takis@dartmouth.edu

IDepartment of Mathematics and Computer Science, Ilanover, NH 03755
'We denote log, n by lgn.

the %) cycles simultaneously in constant time. Varman and Doshi [VD86] presented
an efficient solution that works in the same parallel time, but uses only n CREW
PRAMs. Their solution is a “divide and conquer” algorithm which, using the sep-
arator theorem, breaks the input tree in /n subtrees of roughly the same size by
removing +/n — 1 edges. Then, it solves the problem recursively in all subtrees and
merges the results. Even though their idea is rather simple, the implementation de-
tails make the algorithm rather complex. Lately, Jung and Mehlhorn {JM88] gave an
optimal solution for the more powerful CRCW PRAM model. However, simulating
this algorithm without concurrent writing slows down its performance by a factor
of lgn. Their approach reduces the problem to an expression evaluation problem
by defining a function on the nodes of the MST which when evaluated effectively
computes the new MST.

We present an optimal yet simple solution for the EREW PRAM model which
works in O(lgn) parallel time using n/lgn processors. Qur solution needs a valid
tree-contraction schedule. Several methods that provide such schedules have been
proposed in the past few years, such as the ones reported in [MR85, ADKP89, KD88,
CV88, GR86, GMT88]. All these methods give a schedule for contracting a tree of n
nodes into a single node in O(lgn) parallel time using n/ lg n processors, provided that
the prune (remove leaves) and the shortcut (remove nodes of degree two) operations
have been defined.

In section 2 we discuss the background and we give the definition of the problem.
Section 3 has an outline of the solution and introduces the invariants and the rules
that are used in the problem’s binarized version. In section 4 we discuss some of
the algorithms that can be derived using the rules, while section 5 describes the
binarization technique and gives the main theorem. The related problem of edge-
updating is briefly discussed in section 6 and, finally, section 7 shows how the vertex
updating algorithms can be used to solve the multiple vertex updating problem in
parallel.

2 Definitions

2.1 The parallel Model

The model of parallel computation we will use throughout this paper is the EREW
PRAM (exclusive read-exclusive write parallel random access machine) [KR90] in
which n processors are employed. These processors communicate through a shared
memory. Simultaneous reading from or writing to a memory cell by two or more
processors is not allowed. This is the weakest of the PRAM models. Other models
include the CREW, in which only simultaneous reading is permitted, and the CRCW,

in which some memory cell can be accessed simultaneously for reading or writing by
many processors. These models define a strict hierarchy on the power of the PRAM
machines.

2.2 The Problem

We are given a weighted graph G = (V, Eg), along with a minimum spanning tree
(MST) T = (V, E) and a new vertex z with n weighted edges connecting z to every
vertexin V. (Note: If, in an instance of the problem, z is not connected to some vertex
z, we can assume an edge (z,7) having maximum weight.) We want to compute a
new MST 7" = (V U {z}, EY).

One parallel solution would be to compute the MST from scratch, but this requires
time O(lg?n) with n?/lg?n CREW PRAMs ([CLC82]). Sequential algorithms for
computing the MST from scratch on a sparse graph take O(mlglgn) time, where
m is the number of edges in the graph ([Yao75, CT76]). The fact that the number
of cycles in the input graph is small (there are O(n?) cycles versus O(2") cycles in
general graphs) enables us to compute the new MST faster, by breaking the cycles.

Upon introducing the new vertex z along with n weighted edges, (g) cycles are
created. If we break these cycles by deleting the maximum weight edge (MWE) that
appears in each cycle, the resulting tree will be the new MST. 1t is easy to see that at
most n of these 2n — 1 weighted edges will be included into the new MST. No non-tree
edge of the old graph can be included because all of them are already MWEs on some
existing cycle in the original graph, so we need not consider any such edge. Moreover,
any sequential algorithm that solves the problem must take time Q(n): Consider the
case when an existing MST forms a path and vertex z is connected to the two ends of
the path. Then, any of the n+1 edges could be the MWE and a sequential algorithm
has to examine all of them.

2.3 Representation

In light of this discussion we may take the input to be a tree T' with n — 1 weighted
edges (corresponding to the given MST) and n weighted nodes (corresponding to
weights of the newly introduced edges to z). We will call this object a weighled {ree
(figure 1). Note that @ path between two weighted nodes in T' corresponds to a cycle
in the graph augmented with z. Such a graph is shown in figure 1b and is implied in
figure 1c. Thus we call this object the implicit graph.

In the discussion that follows, reference to the weight of a node will mean reference
to the corresponding edge in the implicit graph, unless noted otherwise,

Figure 1: (a) The initial (given) MST, (b) the implicit graph after introducing the
new vertex z along with its weighted edges and (c) the corresponding weighted tree.

3 Breaking the Cycles

3.1 utline of the Algorithm

As we have said, we are given the input in the form of a weighted rooted tree. We
assume that each vertex has a pointer to a circular linked list of its children, and the
linked lists are stored in an array. This representation of the input is not crucial,
since it can be derived in O(Ign) time using n/lgn processors from any reasonable
representation (see [CV88] for a discussion on the representation).

The algorithm consists of a number of phases. During each phase, nodes of degree 1
(i.e. leaves) and nodes of degree 2 (internal nodes having one child) of the weighted
tree are being processed. Each tree-node is processed once in the entire course of
the algorithm. The order in which the nodes are processed in parallel is dictated by
a tree-contraction schedule. Two such schedulings — the Shunting and the ACD -
are described later. Processing a node means examining the edges composing small
cycles (cycles of length 3 or 4) that the node is part of, and breaking these cycles
by removing the MWE that appears in them, effectively computing the MST of
the subgraph induced by the examined edges. This is done by a set of rules which
also update neighboring nodes, so that the size of the unprocessed part of the tree
decreases without losing any information about the MWHEs of larger cycles.

A sequential algorithm needs only to apply the appropriate rule while visiting
the nodes of the tree. Thus a depth-first-search visit of the nodes suffices. When
working in parallel though, the rules can apply to many nodes at once, provided that

™" Uy V3 V4 U5

Figure 2: Binarization: A node with more than two children is represented by a right
path of unremovable edges. '

no confusion arizes from the updating of neighboring nodes. A valid tree contraction
schedule suffices to assure that neighboring nodes are not processed at the same time.
When all edges have been examined (i.e. after processing all the nodes), the MST of
the implicit graph has been computed.

The rules assume a binary tree as input, so some preprocessing is needed to trans-
form the weighted tree to a binary weighted tree. This can be achieved in the same
time bounds, and is needed only for ordering the processing of a node’s children; only
the parallel algorithms need this transformation. This transformation is performed
by the procedure binarize, which we briefly describe here. For the details we refer to
section 5. Each node v = ug with k& > 2 children is augmented with k — 2 fake nodes
u; (see figure 2) to form a right path. Each of the children v; of node v is attached
as a left child of node u;_q, while uz_, has a right child as well. The weights of the
edges connecting the u;’s have weights —oc which makes them unremovable by the
MST algorithm. The fake nodes do not have weights. They are introduced only to
facilitate the order of processing of v’s children. At the end of the algorithm the right
path is always included in the MST of the binarized problem, giving a unique obvious
solution to the general problem. The binary weighted tree has the same number of
cycles, but may have height much larger than the input tree and may contain twice as
many nodes. This, though, does not affect the running time of the algorithm, which
is logarithmic in the number of tree nodes.

3.2 Invariants and Rules

The rules are divided into two categories: Rules that are applied to nodes of degree 1
(pruning rules), and rules that are applied to nodes of degree 2 (shortcutting rules).
For simplicity we will assume that the former is a leaf and the latter is an internal
node with one child. This will not always be the case but the treatment is essentially
the same.

Each node is examined once for rule application. Then, its incident edges are
identified as being either (unconditionally) included into the new MST, excluded from
it, or conditionally included in it. A conditionally included edge is one which will be
included in the MST unless it is the MWE of another cycle which has not been yet
considered. In the figures that accompany this paper, a conditionally included edge
is marked with a star (*).

It is useful to observe that the edge with minimum weight incident to some node
will always be included into the MST. Actually, many sequential and parallel algo-
rithms are based on this observation (i.e. [Pri57, SP75, CLC82]). Edge inclusion
makes use of this observation.

Another useful observation is that whenever some edge is found to correspond
to the MWE of some cycle it can be removed from the tree without affecting the
computation of the remaining graph. (Kruskal's MST algorithm makes use of this
fact.) Edge exclusion is based on this observation.

Let w: VU E — R be the weights of the nodes and the edges. As we said earlier,
in the beginning of the algorithm the weight of a node v, if it exists, is the weight
of the edge connecting v to z. Some nodes (fake or not) may not have an assigned
weight. For the purposes of the algorithm a weight of 400 is assumed on each of
them. In this presentation we assume that the weights have distinct values. It is
sufficient to consider that the currently processed node has weight larger than its
equally weighted neighbor.

Let us define the provisional graph to be the graph induced by the examined edges.
Note that whenever a leaf v is processed, three edges are examined: (z,v}, (v, p(v))
and (p(v), 2}, where p{v) represents the parent of v. Whenever an internal node is
processed five edges are examined. Each application of a rule on some node preserves
the following three invariants:

Invariant 1 The minimum spanning tree of the provisional graph has been computed.

This will be true, because we will consider and break all cycles of the provisional
graph by removing the MWE appearing in them. Furthermore, the rules will assure
that the non-excluded edges of the provisional graph will constitute a MST. So, it
will be the MST of the provisional graph because (i) connectivity is preserved, (ii) no
cycles remain and (iii) the cycles have been broken by removing their MWE.

Invariant 2 The weight wv], if exists, of some unprocessed node v corresponds to
the mazx weight edge (MWE) on the unique path from z to v either via edge (z,v) or
through edges contained in the provisional graph.

As we said, application of a rule on some node v will examine and break all the
small cycles that v is on, by removing their MWE. Some larger cycle sharing the
MWE with a broken small cycle will also be broken. The next invariant describes
how other larger cycles containing v are affected.

Invariant 3 Let ¢ be a larger cycle containing node v and lel e be its MWE. After
the application of a rule on v, then either e has been deleted or there remains another
eycle in which e is the MWE.

These invariants hold in the beginning of the algorithm since there are no processed
nodes and thus the provisional graph is empty. We now show how these invariants
can be preserved under tree-contraction operations.

3.3 Pruning Rules

Consider a cycle involving leaf v, p(v) and z. Let w[(v,p(v))] = a, w[v] = b and
wlp(v)] = e (see figure 3). The small cycle of length 3 they form can be broken
in such a way that the invariants are preserved by removing one of the three edges

involved. We consider the following cases:

a = max{a, b, c}: Then, edge (v, p(v)) must be excluded from the new MST. When
it is removed, the tree is broken into two subtrees (which are connected in
the implicit graph via z). Moreover, the edge that corresponds to b has to be
included into the MST, since this is the only way that v can be connected with
the graph.

b = max{a,b,c}: Then, node v can be included in the MST only via (v, p(v}). There-
fore, this edge is added into the MST while edge (z,v) is excluded from it.

¢ = max{a, b, c}: In this case the best way to include p(v) is not via (z, p(v)), so this
edge is excluded. It could be best to include p(v) via v, but if so, we do not
know it yet. But in this case the MWE that connects p(v) with the provisional
tree will have weight max{a,b}. The edge corresponding to min{a,b} has to
be included in the MST. In the figure, this is indicated by labeling v with
min{a, b}. The edge corresponding to max{a, b} is conditionally included. We
update wip(v)] := max{a, b} to preserve Invariant 2. The effect of the update is
the following: If w{p(v)] is found to be a MWE of some other cycle later on, the

C

a = max{a, b, c}

b [V

b = max{a, b, ¢}

a .

¢ = max{a, b, ¢}

miga, b}

max{a, b}*

Figure 3: Pruning Rules for a Leaf. In this and in {ollowing pictures, a conditionally
included edge is marked with a star (*), an (unconditionally) included edge is dotted
and we keep its weight letter. We erase an excluded edge along with its weight letter.

¢ = max{a, b, c,d, e} CKC)

min{max{a, b}, max{d, e}}

v
min{a,b} min{d, e}

Figure 4: When v’s sibling is a leaf.

edge corresponding to max{a,b} will not be included in the MST. Otherwise,
if upon termination of the algorithm no rule has excluded wp(v)], it will be
included.

Some special care must be taken in the case that v’s sibling, say u, is also a leaf
(figure 4) and is processed at the same time. This, for example, can happen when the
ACD scheduling method is used, which schedules v and u to be processed at the same
time. Let w[u] = ¢ and w|(u,p(v))] = d. If ¢ = max{a,b,¢,d,e} then (2, p(v)) must
be excluded and some precaution must be taken to avoid simultaneous reading or
writing on p(v) by the two processors. Moreover this cycle of length 4 (2, v, p(v), u, 2}
must be broken, by excluding one of the four edges. Also w{p(v)] must be updated
to either max{a, b} or max{d,e}, depending on which child was connected to the
excluded edge. In particular, if max{a,b} > max{d,e} then max{a,b} is excluded
and w[p(v)] := max{d, e}. Else if max{d, e} > max{a, b} then max{d, e} is excluded
and w(p(v)] := max{a, b}.

3.4 Shortcutting Rules

Let’s consider a situation where v has only one child u. There are two possible small
cycles involving v: A “lower” one (z,v,u,z) and an “upper” one (z,v,p(v),z). We
will describe how to break these cycles in such a way that the invariants are preserved.
Let wlv] = a, w](v,u)] = b, wlu] = ¢, w(v, p(v))] = d and wp(v)] = e (see figure 5).

a = max{a,b,c} or « = max{a,d,e}: Then, the best way to include v in the MST
is either via (v, p(v)) or via {v,u). Thus, the edge with weight min{d, d} must
be included to the MST. The other, equal to max{b,d} will be conditionally
included, i.e. it will be included if and only if it is not the MWE in another cycle

b = max{a, b, ¢}
d = max{a,d, e

P Y S

or ¢ = max{a,d, e}

jl a = max{a, b, c}
T

max{b,d}* d a a

(a) (b)

Figure 5: Shortcutting Rules: The first two cases.

10

involving z,u, p(v), and possibly other nodes. Therefore we can preserve the
MWE-related information about these cycles by introducing a new shortcutting
edge (u,p(v)) corresponding to the edge with weight max{b, d}.

b = max{a,b,c} or d = max{a,d,e}: In the first case edge (v,u) must be excluded
from the new MST and can be deleted. In the second case edge (v, p(v)) must
be excluded. In either case v becomes a “leaf” and it then can be pruned using
the rules for pruning. {Of course in the second case we use the term “leaf”
loosely: Node v is the parent of u but nevertheless it can be pruned as a leaf
because it has degree one.)

¢ = max{a,b,c} and e = max{a,d, e}: Then, (z,u) and (2, p(v)) must be excluded
from the MST and the edge corresponding to min{e, b,d} must be included.
In figure 6 this case is presented, with the further assumption that b > d
for a simplified picture. We have to update p(v) and v so that they reflect
this fact preserving the invariants. We observe that there may exist (i) cy-
cles involving edges (z,v), (v,p(v)) and edges in the upper part of the tree,
(ii) cycles involving (z,v), (v,u) and edges in the lower part of the tree, and
finally (iii) cycles going through u,v,p(v) that do not involve (z,v). The up-
date should preserve information about these cycles as dictated by Invariant 3.
We update wlp(v)] := max{a,d} to account for cycles of the first type, and
wlu] := max{a, b} to account for cycles of the second type, both corresponding
to conditionally included edges. Finally, we introduce a conditionally included
shortcutting edge (p(v),u) with weight max{b,d} to account for cycles of the
third type.

It is worth noting that in the last shortcutting rule not all three weight-updates
are needed for the correctness of the algorithm. One of them can be omitted as
redundant (figure 6): If a = min{e, b, d}, then we don’t need the shortcutting edge
because some MWE occurring in cycles of the third type will also be MWE in some
other cycle of the first or the second type. So, updating wip(v)| := d* and wlu] 1= b*
is enough. Otherwise, if @ # min{a,d,d}, and say b > d, then updating of u is not
needed, because information about cycles of all three types is preserved (see figure 7).
This observation can lead to a simpler implementation of the algorithm. Agam, a
weightless node is treated as if it was holding the maximum value.

3.5 Memory Access Conflicts

The fact that shortcutting may update both parent and child nodes creates a possi-
bility of a write conflict. Consider the following situation: Let (see figure 8a) nodes
z,v,y satisfy p(y) = v and p(v) = @, and assume that nodes x and y are to be

11

¢ = max{a, b, c} and ¢ = max{a, d, e} max{a, d}*

d a ax{b,d}*
-
@
b min{a, b, d} max{a, b}*
lif b>d
‘!/a = min{a, b, d} a # min{a, b, d} L

O
©a,
b*

A

(a)

Figure 6: Shortcutting Rules: The third case. In (a) and (b) we show the simplified
updating assuming b > d. :

12

ax
b

max{a, b}*

Figure 7: Assuming d = min{a, d, b}: By omitting u’s updating we have still preserved
the MWE’s of all three kinds of cycles.

processed simultaneously. Moreover, let’s assume that shortcutting node z calls for
updating child node v with w[v] := @, and shorteutting node y calls for updating
parent node v with wlv] = b.

Recall that, according to Invariant 2, the weight of a node represents the MWE
on the path from this node to z via processed neighbors. The write conflict actually
represents a cycle involving nodes z, z,v,y, and possibly «’s parent and/or y’s child.
Since two processors may try to write on the same memory cell, the conflict can be
avoided and the cycle behind it should be broken by removing the edge max{e, b}
while updating w[v] := min{a, b}.

This is the only kind of access conflict that can be created by the shunting schedule
we describe in the next section. There are other schedules though, which create
a slightly more complicated conflict when updating a node with three values (see
figure 8b), say a,b, and ¢. Again, this can be resolved by breaking the MWEs of the
three cycles behind the conflict. Therefore, in this case the algorithm should update
wlv] = min{a, b,c¢} and should exclude the edges that correspond to the other two
values.?

The above discussion verifies that application of the rules preserve the invariants,
proving the following Lemma:

2The write conflict that occurs when two sibling leaves are pruned simultaneously (figure 4) can
be viewed as a special case of this conflict.

13

AN,
c/b\\.

(b) \O

Figure 8: Memory Access Conflicts and how to resolve them.Two (a) and three (b)
processors attempt to update v.

Lemma 1 Application of a pruning or a shortcutting rule on some node v of the
weighted graph preserves the invariants.

3.6 Correctness Lemma

We have described a set of rules that define a prune operation which removes the
leaves of a tree, and a shortcut operation which removes nodes of degree two from the
tree. Note that individual prunings and shortcuttings take O(1) time to be performed.

A valid tree-contraction schedule is one which schedules the nodes of the binary
tree for pruning and shortcutting in such a way that (i) when a node is operated
upon it has degree one or two, and (ii) neighboring nodes are not operated upon
simultaneously.

Lemma 2 When the rules are applied on the nodes of a binary weighted tree at
times given by any valid tree contraction scheduling, they correctly produce the updated
minimum spanning lree.

Proof. As we said, a valid contraction schedule defines processing times on nodes
having degree 1 or 2. So, only the prune and shortcut operations are needed, and
they are provided by the rules. Moreover neighboring nodes are not scheduled at
the same time, and any node may be accessed for updating its weight simultaneously
by at most three processors. This conflict can be resolved easily as mentioned in
the previous subsection. Therefore the shortcutting and pruning operations can be

14

done without confusion, and their application, according to Lemma 1, preserves the
invariants. Thus, at the end of the schedule the MST of the provisional graph, and
therefore the updated MST of the implicit graph, has been computed. 0

REMARK 1. Several researchers, who have given solutions to other tree contraction
problems, have used a variety of names to denote the “removal of a leaf” and “removal
of a node with degree two” operations. Rake has been used as a synonym for prune,
compress and by-pass as synonyms for shortcut. Finally, shunt and rake have been
used to denote the application of a prune followed by a shortcut.

4 The algorithms

As we said earlier, the vertex updating problem has a lower bound of {2(n) sequential
time. We say that a sequential algorithm for some problem of size n is optimal if it
runs in time that matches a lower bound for the problem to within a constant factor.

Let t(n) denote the parallel running time for some parallel algorithm, and p(n)
denote the number of processors employed by the algorithm. Then, w(n) = t(n)-p(n)
denotes the work performed by the algorithm. A parallel algorithm for some problem
is said to be optimal if it has polylogarithmic parallel running time and the work
w{n) performed by the algorithm is O(T'(n)), where T'(n) is the running time of the
best known sequential algorithm for the same problem. If, instead, w(n} is within a
polylogarithmic factor of the optimal speedup the algorithm is called efficient.

As we will show, the sequential and parallel algorithms we present here are all
optimal. We discuss now the sequential and parallel algorithms that can be derived

using the rules.

Theorem 1 There are optimal sequential and parallel algorithms that solve the MST
vertex updating problem based on the rules presented above. The sequential algorithms
run in O(n) time and the parallel algorithms run on a binary weighted tree in O(n/p)
time using p < nflgn EREW PRAM processors.

Proof. A. THE OPTIMAL PARALLEL ALGORITHMS. We first mention a lower
bound for any valid tree-contraction schedule resulting from the fact that at most
[n/2] + 1 nodes can be removed simultaneously:

Lemma 3 Any valid tree-contraction schedule must have length at least lgn.

There are, actually, several valid tree contraction schedules that can achieve this
lower bound. First, [MR85] proposed such a schedule which was constructed on the
fly by an optimal randomized algorithm® The problem and its applications drew

3A newer version of their paper was published in [MRB89]

15

(a) (b) (¢)

Figure 9: The Shunting Schedule: The first phase. (a) Numbering of the leaves.
(b) Step 2: Shunting of odd numbered left children. (c) Step 3: Shunting of odd

numbered right children.

the attention of researchers, and soon several optimal deterministic algorithms were
presented ([ADKP89, KD88, CV88, GR86, GMT88}). For a discussion on the history
of the parallel tree-contraction algorithms see [KR90].

Shunting. We will briefly describe here the simplest of these schedules which was
proposed independently by [ADKP89] and [KD88]. The algorithm is composed of a
number of phases, each containing the following steps (figure 9):

1. Number the leaves of the tree from left-to-right. Here, the input is supposed
to be a regular binary tree, i.e. a binary tree in which every internal node
has exactly two children. The numbering can be done using the eulerian tour
technique ([TV85]) within the desired bounds. "

2. Prune the odd-numbered leaves that are the left children of their parent. Then,
shortcut their parent. This is called the shunt or reke operation.

3. Shunt the odd-numbered leaves that are the right children of their parent.

4. Shift out the last bit of the remaining leaves and repeat steps 2 to 4 until the
whole tree has been contracted.

Lemma 4 (JADKP89]) The previous algorithm computes a valid contraction schedule
which has length O(lgn).

16

If we had a processor assigned to each node, we could contract the tree using n
processors in the desired time. But the processing time for each leaf can be computed
beforehand and placed in an array of length [n/2]41. The array is filled with pointers
to leaves having numbers 1,3,5,7,..., then to leaves having numbers 2,6,10,14,..., etc.
In general there are O(lgn) phases numbered 0 < ¢ < [lg(n — 2)], and in each of
them, leaves numbered 2¢,3 - 2/,5.21,7.2¢, ... are shunted. Thus, having the array,
it takes time O(n/p) using p < n/lgn processors to do the contraction. Optimality
is achieved for p = n/lgn.

ACD. The accelerated centroid decomposition (ACD) technique was proposed by
[CV88] and also provides an optimal valid scheduling. Using their technique another
optimal algorithm for the vertex updating problem is acquired.

Though the ACD method is rather complex and lengthy to fully describe, we'll
give here a brief outline of the scheduling it produces. We first define the centroid
decomposition of a tree T. Let size of a node v be the number of nodes that are
contained in the subtree rooted at v, and let centroid level of node v be [lg size(v)].
Then, the centroid path of v is the longest directed path which is passing through
v and is composed of tree edges and nodes having the same centroid level with v,
Centroid decomposition of a tree T is the partition of the tree nodes into centroid
paths. Note that there are at most [Ign] centroid levels. A node v is the tail of its
path, if it has no child with the same centroid level as itself.

According to the ACD schedule some node v is removed as follows: If v is the
tail of a centroid path with level 7, it is pruned at time 2: + 1 = 2K, 4+ 1, else it is
shortcuted at time 2K, +2, where K, is the index of the most significant bit in which
the bit representation of A, and Ay, differ. Here, cp(v) is the centroid parent of v
(that is, the parent of v if it belongs to the same centroid path), and A, is the sum
of the sizes of the non-centroid children of all centroid ancestors of v in its centroid
path.

Since in either scheduling at most three processors may attempt to operate on the
same data item at a certain time, we can schedule the operations in such a way that
no read or write conflicts occur. This observation along with Lemma 2 completes the
proof for the parallel case.

B. THE OPTIMAL SEQUENTIAL ALGORITHMS. The rules we presented do not
depend on the particular order in which the nodes of the tree are removed. So,
different removal sequences of the nodes yield different algorithms and, in particular,
we can derive sequential algorithms from the parallel ones. The running time of these
algorithms differ only by a constant. We present here some of these algorithms:

Remove on the fly. Use depth first search to visit the nodes of the tree. Every time
a node of degree 1 or 2 is encountered, process it using pruning or shortcutting rule,
respectively. Fach node will be visited at most twice (on the way down the tree and
on the way up the tree), so its running time is O(n).

17

: 2
4 O"-.l
Q @
2.7 4
1
(a) (b) ()

Figure 10: Run of the Parallel Algorithm using SHUNTING on the tree of Figure 1.
Dotted edges are included into the MST, deleted edges are excluded from it. (a) In
black are the first two processed vertices. (b) Third step. {c) Fourth and final step.

Postorder. Another algorithm simpler to implement but with the same time-bound
is the following: Visit the nodes of the weighted tree in postorder (using, for example,
depth-first-search). A node is processed after all its children have been processed, so
only the pruning rules are needed. Since each node is processed at most once, we
have an O(r) sequential algorithm. *

Shunting. A third algorithm follows from the parallel scheduling of [ADKPS9].
Number the leaves of the tree in a left-to-right manner and place their addresses
in an array of length [n/2] 4+ 1 as dictated by the schedule. Then visit the array
performing shunts on the nodes of the array. _

ACD. Visit the leaves of the tree computing their centroid levels and performing
centroid decomposition [CV88]. Bucket-sort the scheduled numbers, place them in
an array of length n and then process the nodes of the array. O

REMARK 2. This list does not exhaust the possible sequential and parallel al-
gorithms that can be based on the rules presented, but includes only the simpler
ones. We should note that other tree-contraction techniques (like the ones presented
in [GR86] and {GMT88]) lead to different algorithms with the same bounds. (The
shunting scheduling is shown in figure 10).

REMARK 3. The shunting method described in [ADKP89] requires that the root

4As a matter of fact, this algorithm is similar to the one given in {CHT78], but the pruning rules
make it easier to describe and understand.

18

of the tree not be shunted until the end. This is needed mainly for the expression
tree evaluation algorithm. In our case, shunting the root is permitted since there is
no top-to-bottom information to be preserved.

REMARK 4. Tree contraction algorithms usually require a second phase after the
contraction which is called “expansion phase”. The algorithms we present here do
not need a second phase because of Invariant 1: At the end of the tree contraction
phase the new MST has been computed.

5 Binarization

We now discuss how a general tree can be transformed into a binary tree using the
procedure binarize:

Each node v having k children vy, -, vy is represented by a right path (figure 2)
composed of v = ug and k — 2 fake nodes uy,- -+, uz_2, so that node u; is the right
child of u;.; and the parent of u;4;. Node v;, i = 1,---,k—1 becomes the left child of
node u;_q and vy the right child of 1x.o. We assign weights of —oo to the edges of the
right path so they can not be excluded by the rules. The fake nodes have no assigned
weight (which is treated as maximum value weight by the algorithm) because they
are only introduced to facilitate the processing order of v’s children. Of course, the
real nodes v and the v;’s keep their weights.

Recall that the shunting scheduling accepts as input a regular binary tree. When
using this technique the binarization should be extended to handle nodes v with only
one child in the input tree. For each of them a second child v’ is introduced, for which
wfv'] = oo and w[{v,v")] = —co.

Theorem 2 There are logarithmic-time optimal parallel algorithms solving the MST
vertex updating problem on a rooted tree.

Proof: The binarized graph has exactly the same number of cycles as the given
graph, and at the end of the algorithm the edges composing the right path are always
included into the new MST. Therefore, the solution of the binarized problem shows
a corresponding unique and unambiguous solution to the general problem. o

Similar binarization techniques to the one described have been used in [VD86,
CV88, ADKP89]. Another technique ([JM88]) “plants” a balanced binary tree over
the v;’s with v as the root. The internal nodes and the internal edges have weights
as those in the right path in the previously described technique. Both construc-
tions require the list ranking algorithm [CV86] which runs within the desired bounds.
(Actually, in [VD86] the eulerian tour technique is used which has the list ranking
procedure as a subroutine.)

19

6 A Note on Edge Updating Problem

The edge updating problem of a MST can be defined as follows: We are given a
graph G = (V, E) and its MST T = (V, E’) as input along with the weight function
w: E — R. Also we know that one of the edges e changes weight, and we want to
compute the new MST T". A sequential algorithm for this problem is given in [Fre83]
with O(y/m) running time.

It is obvious that if e is a tree edge and decreases its value or if e is not a tree
edge and increases its value, then 7" = T'. In the other two cases we have:

A TREE EDGE INCREASES. A simple solution is to consider the two connected
components that e divides the graph into, and to find the minimum weight edge
connecting them. So, a simple algorithm for it, 1s:

1. Preorder the tree using the eulerian tour technique [TV85].

2. Using the preorder numbering divide V in two subsets Vj and V; created by
removing e from T'.

3. Put all edges connecting some vertex in ¥ to some vertex in V; in an array of
length m = |E| and compute the minimum.

The running time of this algorithm is O(lgn) using m/lgn EREW PRAMs.

A NoNTREE EDGE DECREASES. Consider the cycle it creates in the tree when
is added, and remove the MWE in it using a variation of the list ranking algorithm
in which the rank of a list element [is defined to be the maximum of the values
appearing in the elements following ! in the list. The running time is O(lgn) using
n/lgn EREW PRAMs [CV86].

This problem is a special case of the edge insertion in a MST problem for which
[CH78] have shown a simple reduction to the vertex insertion problem. Our algorithm
can be used to solve this problem in parallel as well.

7 On the Multiple Vertex Updates Problem

7.1 Introduction

We define the problem of multiple vertez updates of a MST as follows: Let G =
(Vi, Eg) be a weighted graph on n vertices and m weighted edges and T = (Vg, E7)
be its MST. Suppose G is augmented with k = |V;| new vertices that are connected to
Vg by kn = |Ei| new weighted edges, but they are not connected among themselves.
We are asked to compute the new MST 7",

We will prove the following Theorem:

20

Theorem 3 The multiple updates MST problem can be solved in parallel in time
O(lgnlgk) using nk/lgnlgk EREW PRAM processors.

The problem of multiple vertex updates was considered in [Paw89] where a parallel
algorithm is presented. It runs in O(ign lg k) time using nk CREW PRAM processors.
We will show how our solution for the (single) vertex update problem can be used to
achieve a better solution for the multiple updates problem.

7.2 Optimality

A sequential algorithm can solve the problem in time O(kn), by solving k single
update problems sequentially. Another approach would be to compute the MST of
the augmented graph G’ = (Vg U Vi, By U Eg) from scratch. Again, the edges that
are not in the given MST do not need to be considered.

The augmented graph G’ can be sparse or dense depending on the value of k.
The best algorithms to compute the MST of a graph G = (V, E) sequentially run in
time O(|£|1glg|V]|) for sparse graphs ([Yao75, CT76]) and in time O(n?) for dense
graphs {using Prim’s well known algorithm {Tar83]). Assuming that the number of
edges connecting the new vertices to the tree is O(kn), the k single updates solution
is preferable since it is simpler and, for sparse graphs, asymptotically faster.

The solution we present solves the problem in O(lgnlgk) time using nk/lgnlgk
EREW PRAM processors. It is therefore optimal for graphs having O(kn) edges and
also uses a weaker model of parallel computation.

7.3 The algorithm

Our solution follows in general the solution presented in [Paw89] but in certain parts
uses different implementation techniques to achieve the tighter time and processor

bounds.
The algorithm consists essentially of three parts.

1. Make k copies of 7' and solve k update MST problems in parallel.

2. Combine the MSTs of the k solutions into a new graph ,. This graph may
contain cycles. Transform it to an equivalent bipartite graph (.

3. Solve the bipartite MST problem on the graph Gb.

We will show that each of these parts can be implemented within the desired
time-processor bounds.

21

7.3.1 Solving k£ Updating Problems

Making k copies of T' can be done efficiently as an application of the scheduling
principle [KR90}, which was pointed out by Brent [Bre74]:

Lemma 5 Suppose that an algorithm is composed of m computalional operations
executed in t parallel steps, and let m;,1 <1 <t be the operations erecuted at step 1.
Then it can be implemented in O(%’;} + t) parallel steps using p processors.

This scheduling principle assumes that processor allocation is not a problem. This
is true when (a) the m;’s can be computed and (b) we can group the m;, 1 <1 <t
operations in groups of cardinality p. Making k copies of T' requires O(kn) operations
and it can be done in constant time if kn processors are available. Therefore, it can
be done in O{lgnlg k) time using kn/(lgnlg k) processors.

According to Theorem 1, a single updating of a MST can be done in O(n/p) time
when p processors are available. Here we have k problems to solve, each of size n.
Allocating n/lgnlgk processors per problem, it takes O(lgnlg k) time to solve each
problem in parallel.

7.3.2 Creating the Bipartite Graph

Next, we have to combine the k solutions found in the first part, into a new graph
G, which in turn is transformed to an equivalent bipartite graph Gy. By equivalent
here, we mean that there is a cycle in Gy tf and only if there is a cycle in G,. Graph
G, will never be explicitly created. It is only defined for the sake of description.

Consider the MST of some solution T; = (VU {z;}, E;). Then, E; consists of edges
(v,w) that belonged to the old MST T, along with new edges of the form (z;,v). An
important observation is that if some edge (v, w) of the old MST does not appear in all
k solutions, it will not be included into the final MST. This is so, because edge (v, w)
was the MWE of some cycle in one of the subproblems and thus must be excluded.
So, G, = (VU {z1,- -, 2}, E,) is composed of original edges (v,w) that appear in
all k solutions, along with edges of the form (z;,v), Vi € {1,---,k}. It is easy to see
that the formation of (7, can be done within the desired bounds, because there are
at most n — 1 such edges per solution to examine.

We can view G, as a collection of subtrees C; of the old MST that are held
together by the z;’s (see figure 11). Every cycle in G, can be viewed as starting at
some z;, then entering subtree C; at a node v, and visiting some of its nodes, then
exiting through a node v/ and visiting z;, etc, until returning back to z; (figure 12).
The nodes v, that are adjacent to some z; are called e-nodes.

The transformed graph Gy = (Vi, {21, -z}, Eb) has a set of vertices Vj, which
contains one vertex v for each e-node v, of G,. Consider a path from z; to some

22

Figure 11: The graph G, results from putting together the & solutions. The figure
points out G,’s bipartite nature.

c, c,

Figure 12: Cycles in G,. They are composed of alternative visits to z;’s and to tree
components. Vertices that are connected to z's are called e-vertices. In this picture
a cycle of length 4 is shown.

23

PruUNING SHORTCUTTING

% @< @Dﬁ___% max{(v,w), (u,v)}
@

max{(v w) mwe(w)}

max{(v,w), mwe(w)}
Figure 13: Prunning and Shortcutting Rules for the CADR problem.

e-node v, and let z be the MWE on this path. Then edge (z;,v) € £} corresponds to
this path and has cost equal to 2’s cost. The algorithm needs therefore to compute
all MWE on all paths from z; to e-nodes v.. This is done as follows:

First, all e-nodes v, are recognized and then we root each of the T}’s at z;. Both
of these operations can be done within the desired bounds. Now we have to compute
the MWEs on the paths between the z;’s and the e-nodes. So, we have to solve k
instances of the following problem:

ALL DisTANCES TO RoOT (ADR). Given a (regular binary rooted) tree with n
nodes having weights associated with its edges, find the MWE for each path from a
node to the root in O(n/p) time using p < n/lgn EREW PRAM processors.

A sequential algorithm for the problem uses depth first search and runs in linear
time. The parallel algorithm reduces the problem to tree-contraction as follows: Asso-
ciate a function mwe(v) for each node v, where mwe(v) = max{(v, p(v)}, mwe(p(v))}
if v is not the root and mwe(root) = §. Use tree contraction to contract the tree and
then tree expansion® to compute mwe(v) for all v. We can come up with simple rules
which are given in figure 13.

THE MULTIPLE ADR PROBLEM. Given k (regular binary rooted) weighted trees
each one with n nodes, compute the ADR problem on each of them in time O(Ig nlg k)
using nk/ lgnlgk processors.

The solution is a simple application of the previous algorithm. We associate
n/lgnlgk processors per tree and compute the problem in time O(lgnlgk).

5The expansion phase is needed because the definition of the function is top-down.

24

7.3.3 The Bipartite MST problem

For the third part of the algorithm we need the following definition of the bipartite-
MST problem: Let G = (V, Vi, E) be a weighted bipartite graph, where |Vi| = k
and |V,| = n, & < n. We want to compute its MST.

Lemma 6 The bipartite-MST problem can be solved in O(lg nlg k) parallel time using
kn/{lgnlg k) processors.

Proof. The algorithm that we use is a well-known algorithm whose main idea is
attributed to Bortivka [Tar83] and was described in its parallel form in [CLC82]. The
analysis though and the time-processors bounds for the bipartite-MST problem are
new.

First, let us give some definitions. A pseudotree is a digraph in which each node
has outdegree one. A pseudotree has at most one (simple) cycle. A pseudoforest is
a graph whose components are pseudotrees. The algorithm consists of a number of
stages. In each stage, each vertex v selects the minimum weight edge (v, w) incident
to it. This creates a pseudoforest of vertices connected via the selected edges. In
this case the cycle of each pseudotree involves only two vertices, so it can be easily
transformed into a tree. Next, each tree is contracted to a star using pointer-doubling,
and vertices in the same component are identified with the root of the star.

A crucial observation here is that after the first stage there will be no more than
k vertices in the resulting graph and the problem can be solved in O(Ig” k) time using
i? [1g° k processors. So, we only have to show that the first stage can be performed
within the desired bounds.

As we said, the first stage consists of finding the minima of O(n) sets of vertices,
each with cardinality O(k) and then to reduce the O(k) resulting pseudotrees of height
O(n) to stars. For the first part Brent’s technique applies. For the second part we
use the optimal list-ranking technique of [CV86].

8 Conclusion and Open Questions

It is interesting to find other tree problems for which the tree contraction technique
applies. Moreover, an interesting question is the following: Can we come up with a
general way of defining pruning and shortcutting rules for tree-contraction in parallel,
for those tree problems that are solved sequentially using depth-first-search? Also,
developing simple and fast SCAN algorithms for tree contraction would lead to im-
plementation of several PRAM algorithms on machines which are described by the
SCAN model.

Acknowledgement. The authors would like to thank Professors Sam Bent and
Jim Driscoll for their helpful comments in the presentation of the paper.

25

~O
B
i
i
(ﬁ,,
(-

Figure 14: Updating of a MST with 3 new vertices. In the lower part of the figure
the graph G, is shown.

26

References

[ADKP89] K. Abrahamson, N. Dadoun, D.G. Kirkpatrick, and T. Przytycka. A

[BreT4]
[CHT8]

(CLC82)

[CT76]

[CVS6]

[CV8s]

[Fre83]

[GMTSS]

[GRS6]

(TM8s]

simple parallel tree contraction algorithm. Journal of Algorithms, 10:287-
302, 1989.

R. Brent. The parallel evaluation of general arithmetic expressions. Jour-
nal Assoc. Comput. Mach., 21(2):201-206, 1974.

F. Chin and D. Houck. Algorithms for updating minimal spanning trees.
Journal of Computer and System Sciences, 16(12):333-344, 1978.

F.Y. Chin, J. Lam, and I-N. Chen. Efficient parallel algorithms for some
graph problems. Communications of ACM, 25(9):659-665, September
1982.

D. Cheriton and R.E. Tarjan. Finding minimum spanning trees. SIAM
Journal Computing, 5:724-742, 1976.

R. Cole and U. Vishkin. Approximate and exact parallel scheduling with
applications to list, tree and graph problems. In Proc. 27th Annual IEEE
Symposium on Foundations of Computer Science, pages 478-491, 1986.

R. Cole and U. Vishkin. The accelerated centroid decomposition technique
for optimal parallel tree evaluation in logarithmic time. Algorithmica,
3:329-346, 1988.

G. Frederickson. Data structures for on-line updating of minimum span-
ning trees. In Proc. of the 15th Annual ACM Symp. on Theory of Comput.,
pages 252-257, 1983.

H. Gazit, G. L. Miller, and S. H. Teng. Optimal tree contraction in the
EREW meodel. In Concurrent Computations: Algorithms, Architecture,
and Technology, New York, 1988. Tewksbury and Dickinson and Schwartz
(editors), Plenum Press.

A. Gibbons and W. Rytter. An optimal parallel algorithm for dynamic ex-
pression evaluation and its applications. In Symposium on Foundations of
Software Technology and Theoretical Computer Science, volume 6, pages
453-469. Springer Verlag, 1986.

H. Jung and K. Mehlhorn. Paralle] algorithms for computing maximal
independent sets in trees and for updating minimum spanning trees. fn-
formation Processing Letters, 27(5):227-236, April, 28 1988.

27

[KD88]

[KR90]

[MR85]

[MRS9]

{Paw89]

[PRS6]

[Pri57]

[SP75)

[Tar83]

[TV85]

[VD86]

[YaoT5]

S. Rao Kosaraju and Arthur L. Delcher. Optimal parallel evaluation of
tree-structured computations by raking. Aegean Workshop on Computing,
pages 101-110, 1988.

R. Karp and V. Ramachandran. Paralle]l algorithms for shared-memory
machines. Handbook for Theoretical Computer Science, 1:869-941, 1990.

G. L. Miller and J. H. Reif. Parallel tree contraction and its application.
In 26th Symposium on Foundations of Computer Science, pages 478-488,
1985.

G. L. Miller and J. H. Reif. Parallel tree contraction. Part 1: Fundamen-
tals. Advances in Computing Research, 5:47-72, 1989. JAI Press.

S. Pawagi. A parallel algorithm for multiple updates of minimum spanning
trees. In International Conference on Parellel Processing, volume III,
pages 9-15, 1989.

S. Pawagi and LV. Ramakrishnan. An O(logn) algorithm for paral-
lel update of minimum spanning trees. Information Processing Letters,
92(5):223-229, April, 28 1986.

R.C. Prim. Shortest connection networks and some generalizations. Tech.
Journal, Bell Labs, 36:1389-1401, 1957.

P.M. Spira and A. Pan. On finding and updating spanning trees and
shortest paths. SIAM Journal on Computing, 4(3):375-380, September
1975.

R.E. Tarjan. Data Structures and Network algorithms. Society for Indus-
trial and Applied Mathematics, Philadelphia, Pennsylvania 19103, 1983.

R.E. Tarjan and U. Vishkin. Finding biconnected components and com-
puting tree functions in logarithmic parallel time. SI4M Journal Comput.,
14:862-874, 1985.

P. Varman and K. Doshi. A parallel vertex insertion algorithm for min-
imum spanning trees. In 13th ICALP, Lecture Notes, volume 226, pages
424433, 1986.

A. Yao. An O(|E|loglog{V|) algorithm for finding minimum spanning
trees. Information Processing Letters, 4:21-23, 1975.

28

	Optimal Parallel and Sequential Algorithms for the Vertex Updating Problem of a Minimum Spanning Tree
	Dartmouth Digital Commons Citation

	tmp.1599599163.pdf.IHZY2

