Dartmouth College

Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

1-1-1990

Administrator's Guide to the Digital Signature Facility "Rover”

Matt Bishop
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

O‘ Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation
Bishop, Matt, "Administrator's Guide to the Digital Signature Facility "Rover™ (1990). Computer Science
Technical Report PCS-TR90-153. https://digitalcommons.dartmouth.edu/cs_tr/51

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/51?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

ADMINISTRATOR’'S GUIDE TOTHE DIGITAL
SIGNATURE FACILITY “ROVER”

Matt Bishop

Technical Report PCS-TR90-153

August 1990

Administrator’s Guide to the Digital Signature Facility
“Rover” .

Matt Bishopl

Department of Mathematics and Computer Science
Dartmouth Coliege
Hanover, NH 03755

ABSTRACT

This document describes the installation and maintenance of the rover utility, which
provides a digital signature capability for internet messages.

1. Introduction

This document contains installation instructiona and examples of use of the rover facility.
This facility is not a general key management facility, nor is it intended to provide authentication
of users; assuming the system is installed and maintained corectly, as described below, it simply
guarantees that a message purporting to originate from a specific user did in fact come from that
user (or someone whe possesses that user’s cryptographic key). The mechanism used is described
in [11; for a more detailed description of how this program works, see the associated document {2].

In what follows, file names in boldface are real file names; file names in italics should be
replaced by the relevant file names on your system. Smetimes shell variables are relevant; these are
also indicated by boldface. Variables defined in the relevant makefile use the syntax of a makefile
variable reference; for example, $ (makefile_variable}. Finally, specific host names are in boldface
and a name that is to be replaced by a host name will be in italics.

2. Configuring and Compiling the rover Libraries and Server

This package can be compiled on either Berkeley UNIX? or System V UNIX computers
with no changes. Other versions of UNIX may require some changes.
1. Determine whether your system is closer to System V or Betkeley UNIX. Type
sh Install’sh
and answer “bsd4” or “sysv” when prompted. This will set up the appropriate Makefiles.
2. Edit Makefile and the Makefiles in the subdirectories rover, net, and seal. The parameters
which may have to be reset are described in section 4.

3. Switch to the superuser and compile and install the software:
make install

4. Register your users; see section 6,
5. Go home! You're all done.

1. Work done at the Research Institute for Advanced Computer Science, NASA Ames Research Center, Moffeit
Field, CA 94035 and supported by award NCC 2-397 from the National Aeronautics and Space Administra-
tion to the Universities Space Research Association.

2. UNIX is a Registered trademark of AT&T Bell Laboratories.

Page 1 of ©

3. Source Organization

The source to rover is organized in several different directories:

include/ contains include files peculiar to rover; this does not contain those
include files for the libraries net or seal

net/ contains source for the network library used by rover; this library
provides a simple interface to the Berkeley UNIX TCP/IP interface

rover/ contains the source for the rover server and the database manager

seal/ contains the cryptographic signature and validation routines

These each have a makefile, and net, and seal will compile into separate libraries which
may be used by programs other than rover. Those three directories also contain test programs.

Note that the makefiles in the subdirectories are tailored for use on the developmental sys-
tem: this means that they may, or may not, work on your system. This is usually irrelevant, because
the master makefile, Makefile, in the top-level directory passes the appropriate parameters o the
lower-level make in such a way as to override the settings in the makefiles in the subdirectories. If
those makefiles are to be modified so they can be used in the subdirectories, the parameters should
be changed as in the following section.

4. Makefile

There are two types of Makefiles: the one in the source root directory, which just calls the
others, and the one in each of the rover, net, and seal subdirectories. This section describes vari-
ables found in all of them; edit the top-level one first, then each of the ones in the subdirectories as
necessary. The Makefiles contain several variables that can be changed to compile and instail the
software properly on your system. This section summarizes those variables.

4.1. Makefile Programs and Environment

The make executes a number of programs; in the course of setting up the relevant depen-
dencies. The following makefile variables should be set appropriately for your system:

variable sample value what it means

BASENAME basename the command basename(1)

MAKE make the command make(1)

RM rm -f the command rm(1), here with
an option to force removal

SHELL fbin/sh the Boume shell sa(1)

Note that the setting of the value of ${SHELL) is critical on System V-based computers,
which use the value of that variable as the shell to execute the commands under the dependencies.
In particular, the commands are designed to be run under the Bourne shell, not csh(1), so if the
${SHELL) variable is set incorrectly, the libraries and executables will not build properly.

4.2, Installation Parameters

These parameters control the installation of the libraries and programs. The following
makefile variables should be set appropriately for your system:

Page 2 of 9

variable sample value what it means

USER bin the owner of the libraries and
executables

GROUP staff the group of the libraries and
executables

LIBDIR fust/local/lib the directory into which the lLi-
braries are to be copied

ROVERDIR fusrflocal/etc the directory into which the
rover server is to be placed

INSTOPT -¢ -g $(GROUP) -u ${USER) the options to install(l)

4.3. Library Construction Parameters

The make executes a number of programs in the course of compiling and building libraries.
The following makefile variables should be set appropriately for your system:

variable sample value
AR ar rcv

LINT lint
LORDER lorder
RANLIB ranlib
TSORT tsort

what it means

the command ar(1), with op-
tions to create a new library
the command /int(1)

the command lorder(1)

the command ranlib(1)

the command tsort(l)

The makefiles contain these as commands with file names as arguments, so if any of these
are not present on your system (for example, System V-based UNIXes often do not have raniib),
set them to rrue(1). This program simply exits, returning success,

4.4. Compilation and Syntax Checking Parameters

The make compiles a number of programs and libraries. The following makefile variables

should be set appropriately for your system:

variable sample value
COPTS -g

DEFS -DBSD4 -DDES
INCS -I..finclude
LOPTS -uphbac

LouT ~C$(LLIB)

what it means

the flags passed to cc(1), ex-
cept for-D... and -L...
predefined macros (see be-
low)

directories with header files
the flags passed to cc(l), ex-
cept for -D... and -I...

the flag passed to lint(1) for
generating the lint library

The makefiles pass these as arguments to the compiler and syntax checker. Note that de-
fined macros should be set in DEFS, and include paths in INCS, not in COPTS. In addition to the
usual ones (see cc(1)), the following predefined macros are useful;

Page 3 of 9

-DBSD4 Set this if your version of UNIX is (or is derived from) the Fourth
Berkeley Software Distribution.

-DSYSV Set this if your version of UNIX is (or is derived from) System V.
-DCRAY Set this if you are using a Cray running UNICOS 5.0 or later.
-DINETD Set this if you are running the network daemon initializer inetd(8);

if this is not set, rover’s start up routine will simulate the inerd envi-
ronment and then invoke rover.

.DDEFLOGFILE Set this to the name of the file into which rover is to log information.
The default value is in rover/rover.h.

DROVERHOST Set this to the name of the host on which the rover server sits. It can
be in any form that can be mapped to an internet address (so if it’s
local, you probably don’t need the fully qualified domain name).

.DROVERPORT Set this to the port number on which the rover server is to listen.

-DCAESAR Set this to have the encryption and integrity protection done using a
Casar cipher. This is not recommended in practise.

-DDES Set this to have the encryption and integrity protection done using
the Data Encryption Standard cipher in cipher block chaining mode
[31[41.

5. Testing the Libraries and rover

This section describes how to test each of the libraries separately, to be sure they function,
and then how to test rover. The order of testing is important, as if something is not working, nothing
following its section will work either. So we suggest you follow the order of these sections.

5.1, libseal.a

This library does the cryptographic signing, and encryption (when requested). All crypto-
graphic routines are isolated in the file ¢_funcs.c; if you want to add a new cryptosystem, do so
there. (The file header contains the interface specifications.)

The library test involves two programs, tests.c and festu.c. The first of these simply seals
its input and writes it to the output; the second unseals whatever it gets from the input and writes
it to the output. Manual pages are included for both.

The following steps show how the library can be tested.
1. Make the library and the executables by modifying the local Makefile appropriately and typing
make all

2. Issue the command
tests tests.c sealedfile

This command will cryptographically seal the contents of the file tests.c and write it to sealed-
file. If you wish, you may have the contents encrypted as well by giving the “-¢” option to tests.
(You can also use an origin and a destination other than you; see the manual page tests(1) for
appropriate options.)

Page 4 of 9

3. Issue the command
testu sealedfile unsealedfile

This command will unseal the contents of the file sealedfile and write it to unsealedfile. 1If you
want to verify the correct origin and destination, give the “-v” option; this will print the origin,
destination, and size of each sealed packet.

4. Compare the contents of tests.c and unsealedfile:
diff tests.c unsealedfile
They should be identical,

5.2, liblnet.a

This library provides a (much) simplified interface to the Berkeley TCP/IP interface.

The library test involves two programs, fests.c and festc.c. The first of these is a server
which reads lines of text from clients, prepends a “>", and writes the result back to the client; the
second is a client which connects to the server, transmits a file, and prints whatever the server sends
back. Manual pages are included for both.

The following steps show how the library can be tested.
1. Make the library and the executables by modifying the local Makefile appropriately and typing
make all

2. Issue the command
tests -1 ‘pwd*/loglile &
This command will start the server in the background. By default, the server will log connec-
tions to logfile in the root directory, and wiil listen for connections on port number 6789. (You
can also use a different log file and port number; see the manual page tests(1) for appropriate
options.) Do not be alarmed if the process appears to exit immediately; the server spawns a
child which does the actual work. (On some systems, a grandchild may do the actual work to
avoid a controlling terminal ever being assigned; see the routine inetsetup() in inetinit.¢ if
you're really curicus.)

3. Issue the command
teste file arrowfile

This command will read file, prepend an “>” to each line, and write it to arrowfile. (You can
also use a different port number and host; see the manual page fests(1) for appropriate options.)

4. Compare the contents of arrowfile and the file obtained by prepending “>" directly:
sed ‘s/N>/ file | diff - arrowfile
They should be identical.

3.3. Testing rover

Testing rover is rather straightforward once the libraries are tested. Essentially, you build
and install the server, and then use the dommy database to seal and unseal a message.

The cryptographic keys are kept in a database which can be edited by the program dbm.

Page 5 of 9

Currently, two keys are defined: the first, for seal@local, is “testin”, and the second, for unseal@-
remote, is “testout”. The program fseal will act as though “seal@local” were sending something to
“unseal@remote” during this test.

The following steps show how this can be tested.

1. Make rover, the database editor dbm, and the test programs by modifying the local Makefile
appropriately and typing
make all

2. Next, build the cryptographic database to be used for testing:
dbm -s test.input -g

This will set up the database so that rover can be tested. Important: if test.dbm exists, delete
it first as it is a binary database, and may not be correctly interpreted by your computer.

3. Issue the command
rover -1 ‘pwd‘/test.log -r ‘pwd‘/test.dbm &

This command will start the rover server in the background. By default, the server will log con-
nections to rover.log in the root directory, and will obtain cryptographic keys from rover.dbm
in the root directory. The two options reset the log and key file names to be test.log and
test.dbm in the current directory.

3. Issue the command
tseal -Iseal -Llocal -runseal -Rremote file savefile
This command will read file, split it up into messages, cryptographically seal each, and put
the result in savefile. When prompted for the rover key, type:
' testin

4. Issue the command
tunseal savefile newsavefile

This command will read savefile, cryptographically unseal each of its messages, and put
their concatenation in newsavefile. When prompted for the rover key, type:

testout

4. Compare the contents of file and newsavefile:
diff file newsavefile
They should be identical.

6. Administering the rover Database

The heart of rover is a database associating users with cryptographic keys. This file is very
sensitive and should always be kept on a protected machine; if it is compromised, the whole rover
mechanism is undependable. It is recommended that the rover server, and this database, be
kept on a physically protected computer on which the only allowed network activity are con-
nections to the rover server. To log in as a user must require physical presence in the control
room, where the user can be observed. Without this protection, rover will not provide the nec-
essary assurance of authenticity.

Page 6 of 9

The program to manage the database is dbm; it is described in the manual page. To enter
users into this database, run dbm and add users with the a command. For example, to enter the users
“seal” and “unseal” used in the previous section, issue the following commands (the computer’s
responses are in boldface, and comments are in italics):

dbm -r test.dbm invoke dbm on the database “test.dbm”
> a seal local testin
add the user “seal” on host “local” with key “testin”
> a unseal remote testout
add the user “unseal” on host “remote” with key “testout”

>p print the database contents
racord # status wvho value
0 active <seal@local> <tastin>
1 active <unseal@remota> <tastout>
> q quit, saving the contents of the database

The commands in the previous section did the same thing, but using a file that was read
from the command line. However, note that when this is done, when dbm has finished reading the
file, it returns to command level; the extra - causes it to exit.

7. Adding a New Cryptosystem to rover

To add a new cryptosystem, you have to modify four functions in the file seal/c_funcs.c:

c_pwsize()
returns the length of the longest acceptable cryptographic key;

¢_mic(keylen, key, begin, end)
computes a message integrity check using the cryptographic key key of length keylen; the
buffer to be checked begins at begin, with end pointing to the address just beyond the end
of the buffer. It is expected to retum a pointer to a set of ASCII characters representing the
integrity check. These characters may be in a static array that is overwritten with each call.

¢_encrypt{keylen, key, begin, end)
uses the cryptographic key key of length keylen to encrypt the buffer beginning at begin,
with end pointing to the address just beyond the end of the buffer. The encryption is to be
done in place. It is guaranteed that the buffer’s length is a multiple of 8 bytes.
¢_decrypt(keylen, key, begin, end)
uses the cryptographic key key of length keylen to decrypt the buffer beginning at begin,
with end pointing to the address just beyond the end of the buffer. The decryption is to be
done in place. It is guaranteed that the buffer’s length is a multiple of 8 bytes.

You must write these routines for your cryptosystem. Note that if you have cryptographic
apparatus (hardware) to hold the keys, you should alter the functions in seal/crypto.c to take ad-
vantage of it; that way, the keys need never appear in memory.

Page 7 of 9

8. References

[1]

(2]

3]

(41

R. Merkle, “Protocols for Public-Key Cryptosystems,” Proceedings of the 1980 Sympo-
sium on Privacy and Securiry (Apt. 1980) pp. 122-133.

M. Bishop, “A Digital Signature Mechanism,” Technical Report PCS-TR90-154, Dart-
mouth College, Hanover, NH (in preparation).

Data Encryption Standard, FIPS PUB 46, Department of Commerce, Washington, DC
(1976).

DES Modes of Operation, FIPS PUB 81, Department of Commerce, Washington, DC
(1978).

Page 8 of 9

MANUAL PAGES

DBM(1)

NAME

DESCRIPTION

UNIX System V {December 31, 1989) DBM(1)

dbm — rover database management and editing program

SYNOPSIS
dbm | commands |

Dbm manipulates 2 database of user information and cryptographic keys used by the digital sig-
nature system rover. The database contains sets of triplets consisting of user name, host name,
and key {see dbm(5) for the exact format). Available commands are:

a name host key

Add the triplet (name,host,key) to the database; this command creates an entry saying
that name@host’s key is key.

d name host

Delete the etry for name@host,

fhame host

Fetch the key associated with neme@host.

h,? Print a help message.

i Print information about the database (name of the database file and the number of
active and deleted records).

) Print the contents of the database.

q Quit, saving all modifications to the datahase.

r file Read the contents of file using them as the database. This closes any current database,
and makes file the new one. s file Read commands to dbm from file. Note that giving a
q in the file returns you to interactive mode rather than terminate the editing session.

t file This saves the contents of the database in a portable format, essentially creating a set of
command lines that when given to dbm using the 8 commmand will reconstruct the data-
base. As database files are not in general portable {they contain some binary data), this
mechanism can be used to transfer databases between systems with different architec-
tures.

Comment; ignore this line.

! command
execute command by passing it to a subshell.

OPTIONS

Page 1

Any command can be given as an option; command-line arguments are executed first, then if
neceaasry the user will be prompted for input.

SEE ALSO
rover{1), dbm(5)

August 23, 1990

ROVER{1} UNIX System V (Pecember 31, 1989) ROVER{1}

NAME
rover — digital signature server

SYNOPSIS
rover | —logfile | | —rdatabase |

DESCRIPTION
Rover is a digital signature server. It accepts connections, reads messages from one user to
another cryptographically sealed using the originator’s key. It then validates the message and the
originator, and reseals the message using the destination’s key; the destination process can then
unseal the message and read it. The server vouches for the authenticity of the claimed origin and
for the integrity of the message,

OPTIONS
—Hog/ile
Log to the file instead of the default ““/etc/rover.log”.

—rdatabase
Cryptographic keys are stored in the database database instead of the default

‘“/ete/rover.dbm”.

FILES /ete/roverdog default log file
/ete/rover.dbm default database file

SEE ALSCO
dbm(1)

Page 1 August 23, 1990

TESTS(1) UNIX System V (December 31, 1989) TESTS(1})

NAME

teste, tests — test the simple network library
SYNOPSIS

tests | —logfile | [—pporino |

teste | —pporino | [—sserverhost | | infile | | outfile |
DESCRIPTION

Tests is a server which accepts connections from clients, reads lines from them, prepends a ">"
characxter to each, and writes them back. It provides a demonstration of the use of the routines
in the library Inei(3).

The server logs all connections into a the log file ““test.log” wunless the —| option is given, in
which case logging is done o the file logfile. The server accepts connections on port 8789 unless
the —p option is given, in which case port number portno is used.

Teste is a client which talks to tfests. It assumes the server is listening on port number 6789
unless the —p option is given (in which case it uses port number porino) and is running on the
local host unless the —8 option is given (in which case it uses the host named serverhost). If the
input file is not specified or is given as ““—"*, lines are read from the standard input; if the output

file is not specified or is given as “~7,

SEE ALSO

Page 1

inet(3}

August 23, 1990

TESTS(1) UNIX System V (December 31, 1989) TESTS{1)

NAME
tests, testu — test the sealer and unsealer

SYNOPSIS
tests | —e | | —locuser | [—Llochost | [—p | [—rremuser | | —Rrembhost | | infile out-
file

testu | —v | | infile outfile

DESCRIPTION

Tests eryptographically seals a file using the seal(3} and unseal{3) routines. The file is broken up

into a set of messages, and each message is sealed.

Testu takes the output of tests and unseals it, generating the input to tesis.

OPTIONS

—e Encrypt the messages as well as sealing them. The encryption is done and the message is
then sealed.

—Yocuser This option makes the originating user locuser instead of the default from.
—Llochost This option makes the originating host lockost instead of the default from_host.

—p This sets the F_PER_MESSAGE flag in the message headers. It is essentially 2 no-op and
is useful only for debugging. The encryption is done and the message is then sealed.

—rremuser This option makes the destination user remuser instead of the defanit fo,
—Rremhost This option makea the destination host remhost instead of the default to_host.

The cryptographic key is obtained by checking for a series of files, and if none are present,
prompting at the controlling terminal. Let $HOME be the user’s home directory and *‘<sp>"
the space character f{octal 040, hex O0x20). Then tests checks for the files
“$ HOME/ ..word.tests.host<SP>", “SHOME/..word.tests <SP>", and “$HOME/..word < 5P>"
in that order. If any exists, is owned by the real UID of the process, and is readable by the owner
only, its contents are used as the password. If none of those files meet the criteria, a prompt for
the password is sent to the controlling terminal. Similarly, testu checks for the f[iles
“$ HOME/ ..word.testu.host<<8p >, “$HOME/..word.testu <8P >, and “$HOME/..word <(sp>>"
in that order. If any exists, is owned by the real UID of the process, and is readable by the owner
only, its contents are used as the password. If none of those files meet the criteria, a prompt for
the password is sent to the controlling terminal.

SEE ALSO

Page 1

seal(3)

August 23, 1990

TSEAL(1) UNIX System V (December 31, 1988) TSEAL{1)

NAME
tseal, tunseal — test rover

SYNGPSIS
tseal | —e | [—Hocuser | [—Llochost | { —p | | —rremuser | [~Rremhost | | —Sservhost

| [infile | [outfile |
tunseal | —v | [infile | | outfile |

DESCRIPTION
Tseal cryptographically seals a file using rover(l). The file is broken up into a set of messages,

and each message is sealed.

Tunseal takes the output of fseal and unseals it, generating the input to tzeal.

OPTIONS
— Enecrypt the messages as well as sealing them. The encryption is done and the message Is
then sealed.
—Hocuser
This option makes the originating user locuser instead of the default from.
—~Lloehost

This option malkes the originating host lochost instead of the default frem_host.

—p This sets the F_PER_MESSAGE flag in the message headers. A new connection is
made to the rover server for each packet. The encryption is done and the message is then
sealed.

—premuser
This option makes the destination user remuser instead of the defaunlt to.

—Rremhost
This option makes the destination host remhost instead of the default to_host.

— B servhost
Connect to the rover server on host servhost.

The cryptographic key is obtained by checking for a series of files, and if none are present,
prompting at the controlling terminal. Let $HOME be the user’s home directory and *“<sp>?
the space character {octal 040, hex 0x20). Then tseel checks for the files
$HOME/..word.tseal.host<{ 5P >
$HOME/. . word.tseal <SP >
$HOME/..word < sp >
in that order. If any exists, is owned by the real UID of the process, and is readable by the owner
only, its contents are used as the password. If none of those {iles meet the criteria, a prompt for the
password is sent to the controlling terminal. Similarly, tunseal
“SHOME/..word.tunseal.hosf <SP >,
$HOME/..word.tunseal.host< 8P >
$HOME/..word.tunseal < spP>
$HOME/. . word <SP >
in that order. If any exists, is owned by the real UID of the process, and is readable by the owner
only, its contents are used as the password. If none of those files meet the criteria, a prompt for the
password is sent to the controlling terminal.

SEE ALSO
rover{l), seal(3)

Page 1 August 23, 1990

CMPHOST(3) UNIX System V {December 31, 1980} CMPHOST(3)

NAME
cmphost — see if two host names belong to the same host

SYNOPSIS
#inelude net.h

int emphost(hostl, host2)
char *hostl, *host2;

PESCRIPTION
The function emphost takes two host names as arguments; these may be official names, aliases, or
the Internet numbers of the hosts. This function then determines if they represent the same host.

RETURN VALUE
If the two host names represent the same host, 1 is returned; if not, 0 is returned. On error, —1

is returned and ne_errno and ne_call are set appropriately.

WARNINGS
H the host information is not up to date, the answers returned could be wrong.

Because the system library host information calls return a pointer to a static area, some memory
allocation is necessary, The allocation is done using malloc{3) and the space is deallocated before

return using free(3).

SEE ALSO
netperror(3)

Page 1 August 23, 1990

GETFPHOST(3) UNIX System V {December 31, 1989} GETFDHOST(3)

NAME
getfdhost — return host at other end of socket
SYNOPSIS e
#include net.h

int getfdhost(fd)
int fd;

DESCRIPTION
The function getfdhost takes a file descriptor returned from netaep(3) or netconn (8) as an argu-
ment, and returns the official name of the host at the other end.

RETURN VALUE
On success, a pointer to the official name of the host at the other end of the connection is
returned. On failure or error, NULL is returned and ne_errno and ne_call are set appropriately.

WARNINGS
This routine assumes the connection is done within tlie Internet domain. If this is not correct, the
function will return incorrect information.

If the host information is not up to date, the answer returned could be wrong.

SEE ALSO
netperror{3}

Page 1 August 23, 1990

INETSETUP(3) UNIX System V (December 31, 1989) INETSETUP(2)

NAME

SYNOGIPSIs

PESCRIPTION

Page 1

inetsetup — create a server interface like inted

#include net.h

void Inetsetup{portno, func)
int portnos
void (*func)()s

The function inetsetup listens for connections on the named porino and, whenever one is made,
spawns a subprocess to service the connection; the subprocess invokes the function fune. The
function func is called as follows:

1.

@ oo oo

Standard input, output, and error are all rerouted to the connection, so if the function
reads standard input, it reads what the process at the other end has sent, and if it writes
to standard output or error, it writes to the process at the other end.

All other file descriptors are closed.

There is no associated controlling terminal
The current working directory is **/".

The file ereation mask umask is set to 0.

Any signal may be sent to anything desired; initially, the signal for dead child processes
is set to a reaping function (which just does a west{2) that returns immediately, thereby
ensuring that the dead process is removed from the process table), and the hangup and
signals for stopping the process from the keyboard and on Input or cutput are ignored.

When fune returns, the process spawned to run it exits.

RETURN VALUE
This function does not return.

If the fork to spawn the subprocess that services the connection fails, the connection is closed but
no error message is given.

August 23, 1990

NE_BUILDSERVER(3) UNIX System V {December 31, 1989) NE_BUILDSERVER(3)

NAME

ne_buildserver — make the internet address of a service at a host

SYNOPSIS

#include net.h

struct sockaddr_in *ne_buildserver(host, service, protocol, portno)
char *hosty

char *service;

char *protocol;

int portno;

DESCRIPTION

The function ne_buildserver returns a pointer to the internet address composed of the host host
and port number porino offering the service service using the protocol protecol. If porine is
present, the returned address uses that port number and ignores the service and protocol argu-
ments.

If host is NULL, the local host is used. If protocol is NULL , the address returned will provide
the requested service; if the service has only one supporting protocol (like SMTP), this will work;
if there is more than one such protocol, the protocol being used will be undefined.

RETURN VALUE

On success, a pointer to the requisite internet address is returned. On failure, NULL is returned
and ne_errno and ne_call are set appropriately.

WARNINGS

The return value points to a static area which is overwritten at each call.

SEE ALSO

Page 1

netperror(3)

August 23, 1990

NE_GHOST({3) UNIX System V {December 31, 1988) NE_GHOST{3)

NAME
ne_ghost — malke the internet address of a service at 2 host

SYNOPSIS
#inelude net.h

struet hostent *ne_ghost(host, sddress)
char *host;
struct sockaddr_in *address;

DESCRIPTION
The function ne_ghost returns a pointer to information in the host table or directory about the

host named host or with internet address address.

If both a host name and an internet address are given, the data pointed to on return is associated
with the named host; the internet address will be ignored unless there is no information associ-
ated with the named host. If neither a host name nor an internet address is given {that is, both
arguments are NULL) the data pointed to on return is associated with the local host,

RETURN VALUE
On success, a pointer to the requisite host table entry is returned. On failure, NULL is returned
and ne_errno and ne_call are set appropriately,

WARNINGS
The return value points to a static area which is overwritten at each call.

SEE ALSO
netperror(3)

Page 1 August 23, 1990

NETACP(3) UNIX System V (December 31, 1088} NETACP (3}

NAME
netacp — accept a remote connection

SYNOPSIS
#include net.h

int netaep(fd)
int fdj

DESCRIPTION
The function nefecp takes a socket file descriptor obtained from netserv(3) and blocks, waiting

for a connection. It returns when a client has connected to it.

YVARIABLES
Several library variables may be used to configure the system. The acceptance of a connection is

made using the function pointed to by ne_gccept (default accept(2)). You can change this, but
unless you know exactly what you are doing it is strongly discouraged.

RETURN VALUE
On success, the file descriptor of the connection is returned. On failure, —1 is returned and

ne_errno and ne_call are set appropriately.

SEE ALSO
netperror(3)

Page 1 August 23, 1890

NETCLOSE(3) UNIX System V {December 31, 1989) NETCLOSE(2)

NAME
netelose — close a remote connection

SYNOPSIS
#include net.h

int netelose(fd)
int fd;

DESCRIPTION
The function neiclose takes a file descriptor obtained from netserv(3), netacp(3), or netconn(3)
and closes it.

RETURN VALUE
On success, 0 is returned. On failure, —1 is returned and ne_errno and ne_call are set appropri-
ately.

SEE ALSO
netperror(3)

Page 1 August 23, 1890

NETCONN(3) UNIX System V {December 31, 1988) NETCONN(3)

NAME

netconn — make a remote connection

SYNOPSIS

#inciude net.h

int netconn(service, host, protocol, portno}
char *service;

char *host;

char *protocol;

int portnoj

DESCRIPTION

The function neleonn establishes a connection to host host requesting the service service using the
protocol protocol. If portno is present, it connects to that port number and ignores the service
and profocol arguments,

If host is NULL, the local host is used. If portno is present, it connects to that port number and
ignores the service and profocol arguments. If profocol is NULL , a connection to the named
host will be made and the desired service requested. If the serwvice has only one supporting proto-
col {like SMTP), this will work; if there is more than one such protocel, the protocol being used
will be undefined.

VARIABLES

Several library variables may be used to configure the system. The connection is made using the
function pointed to by ne_connect (default connect{2)); the socket is created in the domain
nao_domain (default AF_INET, the Internet domain); is of the type defined by nso_type (defauit
SOCK_STREAM, the stream socket type); and is created with the underlying protocol
nao_proto (default 0, the default Internet domain protocols). The connection by default is set to
be reused, and not to linger, this is done at the level nao_level (default SOL_SOCKET, the
socket level), You can change these, but unless you know exactly what you are doing it is
strongly discouraged.

RETURN VALUE

On success, the file descriptor of the connection is returned. On failure, —1 is returned and
ne_errno and ne_call are set appropriately.

SEE ALSO

Page 1

netperror(3)

August 23, 1990

NETPERROR(3) UNIX System V {December 31, 1989} NETPERROR({3)}

NAME
netperror — print a network library error message

$YNOPSIS
#include net.h

void netperror{s)
char *s;

int ne_esnll;
int ne_errnos

DESCRIPTION
The function nefperror takes a string ¢, prepends a message describing the last error in the net-
work library to occur and the routine which caused it, and prints the concatenation.

The routine which caused the error is stored in ne_call; possible values are:
N_SOCKETerror in sockei(2)
N_SSR1 error in setsockopt(2), setting reuse
N_SSLO error in setsockopt{2), disabling lingering
N_CONNECTerror in connect(2)
N_BIND error in bind(2)
N_LISTENerror in listen{2)
N_ACCEPTerror in accept{2)
N_READ error in read(2)
N_WRITEerror in write(2)
N_GSBN error in getservbyname(3)
N_GHBNAerror in gethosthyname(3), gethostbyaddr(3)
N_CLOSEerror in close(2)
N_THNAMTIerror in gethostid(3} and gethostbyname(3)
N_GPN error in getpeername(3)
N_MALLOCerror in malloc(3)

The number in ne_errno is the error number. In all cases except where the call code is N_GSBN
and N_GHBNA, the number in ne_errno is the same as the system error number errng; if the
call code is N_GHBNA, the value in ne_errno is that of h_errno (see gethostbyname(3)), and if
the call code is N_GS8BN, the value in ne_errno is one of:

N_NOSERVno such service listed

N_NOSP no such service/protocol pair listed

VARIABLES
All printing is done by calling the function pointed to by ne_print (the default is to print to the

standard error).

RETURN VALUE
None.

SEE ALSC
intro(2), perror(3)

Page 1 August 23, 1990

NETREAD(3) UNIX System V (December 31, 1089) NETREAD(3)

NAME
netread — read from a remote connection

SYNOPSIS
#include net.h

int netread{fd, buf, nchars, bufsiz)
int fd;

char buff];

int nchars;

int bufsigg

DESCRIPTION
The function netread reads up to nchers characters from the file descriptor fd obtained from

netacp(3) or neteonn(3), and stores them in the buffer buf. If necessary, multiple invocations of
the system call read(2) will be made unless nehars is -1, in which case up to bufsiz characters will
be read in one call to read(2).

RETURN VAILURE
If anything is read, the number of characters read will be returned. If an EOF is encountered

before anything is read, netread returns 0. If an error is encountered before anything is read,
neiread returns -1. If an error occurs at any time, ne_errno and ne_call are set appropriately. It
is recommended you set them both to O before this call, and check them afterwards, since if the
error occurs after at least 1 character has been read, the return value will be non-negative hut
ne_errno and ne_cell will be set appropriately.

SEE ALSO
netperror(3)

Page 1 August 23, 1490

NETSERV(3) UNIX System V (December 31, 1988) NETSERV (3}

NAME
netserv — set up a socket to receive connections

SYNOPSIS
#include net.h

int netserv(portno)
int portnoj

DESCRIPTION
The function nelserv sets up an address so that the calling process can accept connections at the

port number porine.

VARIABLES

Several library variables may be used to configure the system. The socket is created in the
domain nso_domain {default AF_INET, the Internet domain); is of the type defined by nso_type
(default SOCK_STREAM, the stream socket type); and is created with the underlying protocol
nso_proto (default 0, the default Internet domain protocols). The connection by default is set to
be reused, and not to linger, this is done at the level nso_level (default SOL_SOCKET, the
socket level). The maximum length of processes waiting to be netacp’ed is nli_quelen (default 1).
You can change these, but unless you know exactly what you are doing it is strongly
discouraged.

RETURN VALUE
On success, the file descriptor of the socket iz returned. On failure, —1 is returned and ne_errno

and ne_call are set appropriately.

SEE ALSO
netperror(3)

Page 1 August 23, 1990

NETWRITE(3) UNIX System V {December 31, 1986} NETWRITE(3)

NAME
netwrite — write to a remote connection

SYNOPSIS
#inciude net.h

int netwrite(fd, buf, nchars)
int fd;

char buff];

int nehars;

DESCRIPTION .
The function nefwrie writes up to nehars characters to the file deseriptor fd obtained from
netaep(3) or netconn(3), obtaining them from the buffer buf.

RETURN VALUE
On success, the number of bytes successfully written is returned. On failure, -1 is returned, and
ne_errno and ne_call are set appropriately.

SEE ALSCO
netperror(3)

Page 1 August 23, 1990

OFFHOSTNAME(3) UNIX System V (December 31, 1989) OFFHOSTNAME (3)

NAME
offhostname — return official host name of a host

SYNOPSIS
#include net.h

char *offhostname(host)
char *hosty

DESCRIPTION
The function offhostname returns the official host name of the argument host. Here, host must
be a name and not Internet numbers.

RETURN VALUE
If the host name is not found in the database, NULL is returned and ne_call and ne_errno are

set appropriately.

WARNING
The return value is contained in a static buffer which is overwritten by each call.

SEE ALSO
netperror(3)

Page 1 August 23, 1990

SEAL(3)} UNIX System V (December 31, 1988} 8EAL(3)

NAME

seal, unseal — digitally sign, and optionally encrypt, messages

SYNGPSIS

#include seal.h

¢har seal{locproc, lochost, remproe, remhost, buf,
char *locproe, *lochost;

char *remproc, *remhost;

char buf{];

int bufaz;

rover_to msg;

unsigned int *flag;

char unseal(locproe, lochost, remproc, remhost, buf,
ehar *loeproe, *lochost;

char *remproc, *remhost;

char buffl

int *bufsg

rover_to msg:

unsigned int *flag;

DESCRIPTION

The function seal() takes the message contained in buf and of length bufsz (maximum DATASZ),
and writes a specially formatted message into msg containing the originating process (or user)
locproe, the originating host lochost, the destination process {or user) remproe, and the destina-
tion host remhost. This packet is cryptographically signed using (for seel and unseal) the key
associated with lochost@loeproe or (for rseal and runseal) the key associated with
remhost@remproe.

For seal and rseal, users may request two special options by setting the bits in flag appropriately:
F_NONE clear all bits
F_ENCRYPTencrypt the message
F_PERMESSAGEmake a new connection for each packet
These are to be or’ed together. The last flag is useful in conjunction with the rover(1) digital sig-
nature scheme; normally, that system keeps the first connection open. The flag instructs rover to
drop the connection after authenticating each packet.

The password is obtained by checking for a series of files, and if none are present, prompting at
the controlling terminal. Let 8HOME be the user’s home directory, proe be argument 0 of the
process (that is, the basename of the program executed), and “<3P>" the space character {octal
040, hex 0x20). Then the files

SHOME/..word.proc.host<SP>

$HOME/..word.proc</SP>

$HOME/..word < sp >

are checked for, in that order. If any exists, is owned by the real UID of the process, and is read-
able by the owner only, its contents are used as the password. If none of those files meet the cri-
teria, a prompt for the password is sent te the controlling terminal.

REETURN VALUE

Page 1

All routines return a nonzero code indicating the result of the sealing or unsealing. To under-
stand these, one must realize that the paradigm is that the local process will seal the message
using its key and send it to rover, which will then unseal the message and reseal it using the
destination’s key, and return the newly-sealed message to the originator. The originator then for-
wards the message to the destination. Hence, the result is returned as the logical or of the follow-
ing:

¥ _PERMESSAGEconnections on a per-message basis

August 23, 1990

SEAL(3) UNIX System V {December 31, 1888) SEAL(3)

F_ENCRYPTencrypt the message

F_EOF unexpected end-of-file encountered

E_NOORIGorigin password unavailable

E_NODESTdestination password unavailable

E_BADINT integrity check failed; corrupted message

E_STALEmessage older than ROVER_INTERVAL

E_GARBLEDmessage is garbled

E_DBADINTIintegrity check failed; corrupted message

E_DSTALEmessage older than ROVER_INTERVAL

E_DGARBLEDmessage is garbled
E_BADINT , E_STALE , and E_GARBLED refer to the message as unsealed by rover;
E_DBADINT , E_DSTALE , and E_DGARBLED refer to the message zs unsealed by the
destination. Note that error flags may be placed within the message itself, but all such flags are
included in the digital signature.

BUGS
The use of the password files is strongly discouraged, but for processes without a controlling ter-
minal and no cryptographic box, you’re stuck.

August 23, 1990 Page 2

DBM(5)

NAME

UNIX System V (December 31, 1988} DBM(5)

dbm — rover database format

SYNOPSIS
dbmfune.o

DESCRIPTION

The command dbm{1} builds and manages a database of eryptographic information for the digital
signature scheme rover. The format of each entry in the database is:

char
char
char
char
int

inuse;
proc[68];
host[68];
key[1025]
keylens

The first field indicates whether the item is active or has been deleted. The second indicates the
name of the process {user), the third, the host on which the process {user) executes; the fourth,
the cryptographic key; and the fifth, the number of bytes in the key.

SE ALSO

dbm(1}, rover(1)

Page 1

August 23, 1590

	Administrator's Guide to the Digital Signature Facility "Rover"
	Dartmouth Digital Commons Citation

	tmp.1599599163.pdf.01DqQ

