Dartmouth College
Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

1-1-1990

Building Voronoi Diagrams for Convex Polygons in Linear
Expected Time

L Paul Chew
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

O‘ Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation
Chew, L Paul, "Building Voronoi Diagrams for Convex Polygons in Linear Expected Time" (1990).
Computer Science Technical Report PCS-TR90-147. https://digitalcommons.dartmouth.edu/cs_tr/47

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/47?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

BUILDING VORONOI DIAGRAMS FOR
CONVEX POLYGONS IN
LINEAR EXPECTED TIME

L. Paul Chew

Technical Report PCS-TR90-147

Building Voronoi Diagrams for Convex Polygons in

Linear Expected Time

L. Paul Chew

Department of Mathematics and Computer Science
Dartmouth College
Hanover, NH 03755

Keywords: computational geometry, Voronoi diagrams, convex polygons

Abstract

Let P be a list of points in the plane such that the points of P taken in
order form the vertices of a convex polygon. We introduce a simple, linear
expected-time algorithm for finding the Voronoi diagram of the points in
P. Unlike previous results on expected-time algorithms for Voronoi
diagrams, this method does not require any assumptions about the
distribution of points. With minor modifications, this method can be used
to design fast algorithms for certain problems involving unrestricted sets
of poinis. For example, fast expected-time algorithms can be designed to
delete a point from a Voronoi diagram, fo build an order k Voronoi diagram
for an arbitrary set of points, and to determine the smallest enclosing

circle for points at the vertices of a convex hull.

Introduction

The Voronoi diagram is one of the most useful data structures in
computational geometry. Given n data points in the plane, the Voronoi
diagram partitions the plane into n regions, one associated with each data
point. The region associated with data point p consists of all point in the
plane that lie closer to p than to any of the other n-1 data points. An
optimal O(n log n) time algorithm for building a Voronoi diagram was first
presented in [8].

We present a simple, linear expected-time algorithm for building the
Voronoi diagram for the set of poinis at the vertices of a convex polygon.
We include a number of applications of this technique: deleting a point
from a Voronoi diagram, building an order k Voronoi diagram for an
arbitrary set of points, building the farthest point Voronoi diagram and
determining the smallest enclosing circle for points at the vertices of a
convex hull, and building a line segment Voronoi diagram (a skeleton, in
the terminology of [5]) for a convex polygon.

Bentley, Weide, and Yao [2] have presented results on expected-time
algorithms for Voronoi diagrams. They showed that the Voronoi diagram
for a set S of points can be built in linear expected time provided the
points of S are uniformly distributed in the unit square. Results presented
in this paper are less general in the sense that for us the data points must
form a convex polygon; however, no extra assumptions are needed
regarding the distribution of the points.

Recently, Aggarwal and Shor [1] have developed a worst-case linear
time algorithm for this same problem. Although their result is of great
theoretical interest, the simple, linear expected-time algorithm presented

here is far easier fo implement and is likely to run faster in practice.

Fast Voronoi Diagrams for Convex Polygons

Let P be a list of points in the plane such that the points of P taken in
order form the vertices of a convex polygon. Assume P lists the vertices
of the polygon in clockwise order. [t is relatively easy to construct an
example to show that if the Voronoi diagram is built taking the points in
order, one point at a time, then it may require iime proportional to n? to
build the diagram in the worst-case (for example, consider points along
one branch of a parabola). We show that by finding neighboring points
off-line and by inserting the points into the diagram in random order, the

Voronoi diagram for P can be determined in linear expected time.

Notation. V(S) represents the Voronoi diagram on a set S of points.

V(pq,....p;) represents the Voronoi diagram on the points py,...,p;.

Algorithm - building a Voronoi diagram for vertices of a convex polygon.

1. Choose a random order for the points of P. Let rq,...,r, represent the

points of P in their random order.

2. For each point ry (i>1), determine a point a; in {ry,...,r;_4} such that
a; is a neighbor of r;; that is, a; shares a Voronoi boundary with r; in

V(T-g,...,l’i).
3. Create V(rq). For each point r; (i>1) insert r; into V(ry,..,r.q) by

following the boundary of its Voronoi region starting with the
border between a; and r;.

Analysis.

Step 1 obviously runs in linear time.

In step 2 we exploit the simple structure of a convex-polygon Voronoi
diagram to determine neighboring points off-line. Here, it is useful to
turn the problem backward, pretending that we are eliminating points one
at a time from V(P) the completed Voronoi diagram. The convex-polygon

Voronoi diagram has such a simple structure that neighbors can be easily

determined. Note that if, for instance, pg is eliminated then p, and p, are

neighbors in V(P-{pg}); if p4 were then eliminated, p, and pg would be

neighbors, etc.
A simple doubly linked list can be used to keep track of the neighbors

of each point still in the diagram. As a point r; is eliminated, its

neighbors are found, one of these neighbors is chosen to be a;, and the

links of both neighbors are adjusted so the eliminaied point no ionger
appears in the list. This clearly runs in linear time.

For step 3, consider a Voronoi diagram V(S) and a new point g to be
inserted into V(8). Let Q represent the region of q in V(SU{q}) and let m be
the number of edges of Q. If we know one edge of Q then the remaining
edges can be found in O{m) time by scanning along the edges of V(8) that
lie in the interior of Q. The edges in the interior of Q form a tree (one
vertex of Q is the root, the remaining m-1 verlices are the leaves)
containing at most 2m-3 edges; thus, the scan for region Q can be
completed in O(m) time. I[n other words, a new point can be inserted into a
Voronoi diagram in time proportional to the number of edges in the new
region, provided that we already know one of the edges of the new region.

To see that all of step 3 can be done in linear expected time, imagine

working step 3 backward, going from V(rq,...r,) to V(rq). Since ST (S |

a randomly chosen list, each substep of (backward) step 3 starts by
randomly choosing a region of a planar graph. For any planar graph, an
application of Euler's formulas shows that the expected number of edges
for a region of the graph is < 6. Thus, a region chosen in step 3 (forward or
backward) is expected to have < 6 edges. Since, from step 2, we already
know one edge of each new region, the time for each (forward) substep is
proportional to the number of edges, and the total expected time for step 3
is O(n).

Theorem. Let P be a list of points in the plane such that the points taken
in order form the vertices of a convex polygon. The Voronoi diagram for

the points of P can be found in linear expected time.

Applications

1. Deleting a point from a Voronoi diagram.

The technique introduced here for convex polygons can be used to delete
a point from a Voronoi diagram in O(m) expected time where m is the
number of neighbors of the deleted point. To delete a point we need to fill
in its former region with edges from the Voronoi diagram of its neighbors.
Previously, the best method was to apply the general Voronoi-diagram
algorithm requiring O(m log m) time.

Note that the neighboring points do not necessarily form a convex
polygon, so our technique requires some minor modification. To keep the
time linear it is sometimes necessary to check both neighbors during the

off-line neighbor calculation (step 2).

To see why the modification is required, consider a point g where g is
to be eliminated from a Voronoi diagram and let P be the polygon formed
by the neighbors of . Again, it is useful to consider the backward problem
of eliminating the points of P, one at a time, this time from the Voronoi
diagram of PU{q}. At each stage, adjacent points in P are neighbors in the
Voronoi diagram, except in the case where the region of q is infinite. In
this case there is one pair of points, such that, although the points are
adjacent in P, the points are not neighbors in the Voronoi diagram; these
are the points that are separated by the infinite region of gq. Sometimes
such points become adjacent when q is eliminated, but this does not
necessarily occur. The goal is to do the neighbor calculation (step 2 of the
algorithm) in such a way that these nonneighbor, adjacent points are not

proclaimed as neighbors.

A simple way to find the best neighbor point a; for the point r; in step
2 of the algorithm, is to determine both points adjacent in P-{r,,....r; 1]

then choose one without this infinite region problem. A prospective

neighbor point a; is OK if the point g is on the interior side (interior of
P-{rn,--.fj.4}) of the segment from r;to a;. To see that this simple test is
adequate, let Pi be the set Pa{rn,,..,riﬂ},_ and note that a nonneighbor

problem can occur only when q is on the convex hull of PU{q} (this is the
only way that the region of g can be infinite). K is easy to show that the
points of P; are given by order of angle around q. Thus, if g is not on the

convex hull of P;U{q} then g is on the interior side of all line segments of

F) .

i if q is on the convex hull of P;U{g} then g is on the exterior side of

exactly one line segment of P;. This one line segement with g on its

exterior side connects the two adjacent vertices that should not be
proclaimed as neighbors. Thus, simply testing for the location of g
relative to a line segment allows the correct neighbor to be chosen, giving
linear expected time for the entire algorithm.

An alternate method depends upon probability. Leave step 2 of the

algorithm unaltered; if we happen to get a bad choice for the neighbor of

point r,, 4 then it can take up to O(k) time to insert that point into the

diagram. Note, though, that since the order of the points is random, there

is only a 1/k chance that r . 4 is separated from one of its neighbors by

the infinite region of q (that is, if g even has an infinite region). Thus, the
expected time for inserting a point into the diagram is still constant.
2. Qrder k Voronoi diagrams.

For a set S of points in the plane, the order k Voronoi diagram for S
divides the plane into regions such that (1) each region R corresponds fo a
k-size subset H of S, and (2) every point of region R is closer o some
point in H than to any point of S not in H. Order k Voronoi diagrams first
appeared in [8]. Lee [6] has shown that, for a set S of size n, the order k
Voronoi diagram for S has O(k(n-k)) regions. Further, he has shown that
the diagram can be built in O(kzn log n) time. Chazelle and Edelsbrunner
[3] have presented algorithms using a transfomation to 3 dimensions and
taking time O(nzlog n + k(n~k)iog2n), space O(k(n-k)), or time
O(z12+k(n—k)iog2), space O(nz).

Our algorithm for building order k Voronoi diagrams is based on Lee's
method. The basic step is essentially the deletion of a point from a

Voronoi diagram. Using the O{m) expected time algorithm for deleting a

point, the order k Voronoi diagram for a set of n points can be built in
O(kzn + nlog n) expected time. This can be done using O(kn) space (more
space is needed if it is necessary to allow fast access to the list of data
points associated with a region).

3. Farthest point Voronoi diagrams.

The farthest point Voronoi diagram is equivalent to the order (n-1)
Voronoi diagram [8]. Nonempty regions of the farthest point Voronoi
diagram of S correspond to points on the convex hull of S. A slight
modification of our techniques can be applied to produce the farthest point
Voronoi diagram directly from the convex hull in O(m) expected time,
where m is the number of points on the convex hull. For many applications,
the convex hull can be built in linear time (example: for points sorted by
x-coordinate, connect the points in order and use the "Graham-scan" [4]
twice, once on the iop and once on the bottom); thus, the farthest point
Voronoi diagram for a sorted set S can be built in linear expected time.

4. Smallest enclosing circle.

Given a set S of points in the plane, the goal is to find the smallest
circle that encloses all the points of 8. Megiddo [7] has developed an
algorithm for this problem that runs in O(n) worst-case time where n is
the number of points in 8. Our algorithm is less general. We can find the
smallest enclosing circle for a set P of vertices of a convex polygon in
linear expected time. This is done by building the farthest point Voronoi
diagram for P; then, as in [8], using the diagram to determine the smallest
enclosing circle in linear time. This technigue is based on the fact that
the center of the smallest enclosing circle must lie on an edge or a vertex
of the farthest point Voronoi diagram.

For many applications, the set S already happens to be sorted; thus, the

convex hull can be constructed in linear time. In this situation, the
method suggested here runs quickly (with high probability) and is likely to
be easier to implement than Megiddo's more general algorithm.

5. Line_Seagment Voronoi Diagram for a Convex Pglygon.

Voronoi diagrams can be defined for a set S of line segments instead of
a set of points; the region associated with line segment s consists of the
set of all points in the plane that are closer to s than to any other line
segment of S. Kirkpatrick [5] and Yap [9] have given methods for
constructing the Voronoi diagram for S in O(n log n) time where n is the
number of line segmenis in S. (Note: these line segmenis may intersect
only at their endpoints.) A modification of the technique presented here
can be used to construct the line segment Voronoi diagram in QO(n) expected

time for an n-sided convex polygon.

10

References

[1]

A. Aggarwal and P. Shor, A linear time algorithm for computing the
Yoronoi diagram of a convex polygon, Technical Report, Math Sciences
Research Institute, Berkeley, California (1986).

J. L. Bentley, B. W. Weide, and A. C. Yao, Optimal expected-time
algorithms for closest point problems, ACM Trans. Math. Software, 6
(1980), 563-580.

B. Chazelle and H. Edelsbrunner, An improved algorithm for
constructing kth-order Voronoi diagrams, Proceedings of the
Symposium on Computational Geometry (1985), 228-234.

R. L. Graham, An efficient algorithm for determining the convex hull
of a finite planar set, Information Processing Letters, 1 (1872),
132-133.

D. G. Kirpatrick, Efficient computation of continuous skeletons, Proc.
20th IEEE Symposium on Foundations of Computer Science (1879),
18-27.

D. T. Lee, On k-nearest neighbor Voronoi diagrams in the plane, IEEE
Transactions on Computers, C-31:6 (1982), 478-487.

N. Megiddo, Linear-time algorithms for linear programming in R3S and
related problems, SIAM J. Comput., 12:4 (1983), 759-776.

M. [. Shamos and D. Hoey, Closest-point problems, Proc. 16th IEEE
Symposium on Foundations of Computer Science (1975), 151-162.

C. K. Yap, An O(n log n) algorithm for the Voronoi diagram of a set of
simple curve segments, Technical Report, Courant Institute, New York
University (Oct. 1984).

	Building Voronoi Diagrams for Convex Polygons in Linear Expected Time
	Dartmouth Digital Commons Citation

	tmp.1599599163.pdf.M4LUK

