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Planar Graphs and Sparse Graphs for Efficient

Motion Planning in the Plane

(extended abstract)

L. Paul Chew
Department of Math and Computer Science
Dartmouth College
Hanover, NH 03755

Abstract

Given a source, a destination, and a number of obstacles in the plane,
the Motion Planning Problem is to determine the best path to move an
object (a robot) from the source to the destination without col[iding with
any of the obstacles. For us, motion is restricted to the plane, the robot is
represented by a point, and the obstacles are represented by a set of
polygons with a total of n vertices among all the polygonal obstacles.
Currently, the best method for finding the optimal path (the path with the
shortest length) uses the visibility graph which can be constructed in time
O(nz). We show that one can determine a reasonably good path, with length
at most twice that of the optimal path, in time O(nlog n). This technique
uses a planar graph based on a special kind of Delaunay triangulation. An
extension of this technique uses k different triangulations to construct, in
time O(kn log n), a sparse graph which can be used to find a path with

length at maost 1+n/k times that of the optimal path.



1. Introduction

Given a source (A), a destination (B), and a set (8) of obstacles, the
Motion Planning Problem is to determine the best path to move an object (a
robot) from A to B without colliding with any of the obstacles of S. In this
paper, we study the special case in which all motion is confined to the
plane, the object to be moved is a point, and the obstacles are polygons.
We use n to represent the total number of vertices, vertices of all the
polygonal obstacles as well as the points A and B.

Currently, the best method for finding the optimal A-to-B path (i.e.,
the A-to-B path with minimum length) uses a particular graph called the
visibility graph. The vertices of this graph consist of the points A and B
plus the vertices of the obstacles. There is an edge between a pair of
vertices iff the vertices can "see" each other; in other words, there is an
edge between two vertices iff a straight line between the vertices does
not cross any of the obstacles. It can be shown that the optimal shortest
path must lie along edges of the visibility graph; thus, the shortest A-to-B
path within the visibility graph is the optimal (shortest possible) path
from A to B. Dijkstra's algorithm can be used to determine the shortest
path within the n vertex visibility graph in O(n?) time and the visibility
graph itself can be constructed in O(n2) time [We85, AAGHIB5]. This time
bound is optimal since the visibility graph can as many as n{n-1)/2 edges.

My own approach to the Motion Planning Problem is to drop the goal of
an optimal path and to look instead for a reasonable path that can be found
very efficiently. In this paper, we show how to construct a graph with the
properties that (1) the graph is planar {(in fact, the graph is a
triangulation), (2) the graph can be constructed in O(nlog n) time using
O(n) space, and (3) the length of the shortest path within the graph is at

most twice that of the optimal path. It follows from property (1) that the
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shortest path within the graph can be found in O{nlogn) time. The graph
with the above properties is based on a type of triangulation, called here a
triangle-distance (TD) ftriangulation. These results improve on results
presented in [Ch86] in which we developed a graph with properties 1 and 2
and a weaker version of property 3 (a bounding factor of ¥10 instead of 2).

In addition, we extend this technique, combining k triangulations to
produce a graph with the properties that (1) the graph is sparse (it has
O(kn) edges), (2) the graph can be constructed in O(kn log n) time using
O(kn) space, and (3) the length of the shortest path within the graph is at
most 1+n/k times that of the optimal path. It follows from property (1)
that the shortest path within the graph can be found in O(kn log n) time
using straightforward Dijkstra's algorithm or in time O(kn + nlogn)
using Dijkstra's algorithm with a Fibonacci heap [FT84].

The properties of some of the various methods for finding a path
among obstacles in the plane are summarized in the following table.
Running time is the time needed to find the shortest path within the graph
once the graph has been created. The bounding factor shows the bound on
the length of the shortest path within the graph; in other words, the length
of the shortest path within the graph is bounded by "bounding factor" times
"the length of the optimal path”.

repr in space running time bounding fagtor
visibility graph ond) O(n2) O(n?) 1
TD triangutation Q(n log n} Q) O(n tog n) 2
k triangulations Otkn log n) O(kn) O(kn + n log n) f+r/k

Frederickson's [Fr83] results on shortest paths in planar graphs can be
used to further reduce the running time for the TD triangulation, bringing

the time down to O(nlog*n) by using some additional preprocessing. This
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additional preprocessing requires time O(nlogn). Unfortunately, the
constant hidden by the big-O notation is large enocugh to make this method

impracticatl.

2. Background

The graphs we develop for efficient motion planning are based on a
form of Delaunay triangulation. The Delaunay triangulation is the straight
line dual of the Voronoi diagram. See [P586] for definitions and a large

number of Voronoi diagram applications.

A Voronoi diagram and the corresponding Delaunay triangulation.

The results discussed here use a Delaunay f{riangulation based a
different distance function than standard Euclidean distance. We use a
convex distance function based on an equilateral triangle. Convex distance
functions, often called Minkowski distance functions, were first used by
Minkowski in 1911, The distance for such a distance function can be

defined in terms of a unit "circle". "Circle", here, is printed with quotes
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because this circle can be any convex shape. To find the distance from
point p to point g, we center the unit "circle” at point p and expand (or
contract) the circle until its boundary intersects q. By definition, the
distance from p to g is the factor by which the circle changed. If the
circle is a true circle, with its "center” in the usual place, then we get the
usual Euclidean distance. [f the "circle” is an arbitrary convex shape with
a "center" anywhere in its interior then we get a convex distance function.
Note that the distance defined in this manner is not necessarily a metric,
since the symmetry property (the distance from p to g is the same as the
distance from g to p) holds only if the unit circle is symmeiric about its
center., The convex distance function that we have found to be particularly
useful for motion planning uses an equilateral triangle as the
distance-defining convex shape. (Since we are concerned only with
relative distances, any size equilateral triangle will do.)

The TD (equilateral friangle convex distance function) Voronoi
diagram is defined just like the standard (Euclidean) Voronoi diagram
except the equilateral ftriangle convex distance function is used 1o
calculate distances. A useful intuition is to think of circular waves (i.e.,
waves in the shape of the distance defining "circle”) expanding from the
set of data points; where the waves collide, we have a Voronoi boundary
[CD85]. Like the standard Voronoi diagram, the boundaries of the TD
Voronoi regions form a planar graph. My work with R. L. Drysdale [CD85]
has shown that, like the Euclidean Voronoi diagram, the TD Voronoi
diagram (and Voronoi diagrams based on many other distance functions)
can be constructed in O(n log n) time where n is the number of points in
the set S. The TD Delaunay triangulation can be derived from the
corresponding Voronoi diagram in O{n) time, or, alternately, it can be built

directly using a method similar to the Euclidean-case method presented in



6
[LS80). It is also possible to build such diagrams using the sweep-line

technigue of [Fo86].

A TD Voronoi diagram and the corresponding TD Delaunay triangulation.

An important property of Delaunay triangulations is that for any
empty friangle of the triangulation, the circumscribed circle contains no
points of S in its interior. Of course, for the TD Delaunay triangulation,
the circle in question is based on the equilateral triangle described above.
An examination of the previous diagram should convince the reader that a
Delaunay-triangulation empty circle is a reflection of the

distance-defining circle.

Orientations of the distance-defining circle and a Delaunay-triangulation empty circle.



See [CD85] for more information on convex distance functions and their

relationship to Voronoi diagrams and Delaunay triangulations.

3. Properties of TD Delaunay triangulations
The results of this paper are based on the following theorem. The

proof of this theorem uses techniques similar to those developed in [Ch86]

for the proof of a similar theorem about the L, Delaunay triangulation.

(The L4 metric is a convex distance function in which the unit “circle" is a

square tipped at 45°. The result developéd in [Ch86] has a bounding factor
of V10 instead of the better bounding factor of 2, presented here.) The
complete proof of this theorem will have to wait for a longer version of

this paper.

Theorem 1. Let S be a set of points in the plane and let T be the TD
Delaunay triangulation of S. For any points A and B of S, the shortest
A-to-B path along edges of T has length < 2 |AB|, where [AB| is the

Euclidean straight-line distance from A to B.

The Theorem as presented above is not immediately applicable to
motion planning since it does not allow for obstacles. One way to take
obstacles into account is to create a constfrained Delaunay triangulation
{called an obstécie tfiangulation in [Ch86] or a generalized Delaunay
triangulation in [Le78]).

Intuitively, the constrained Delaunay triangulation is the
triangulation (on the vertices of the obstacles) that is as close as possible

to the Delaunay triangulation with the restriction that the obstacle edges
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must be included in the triangulation. Lee [Le78] presented an O(n loan)
time algorithm for constructing such a triangulation. In [Ch87], we show
that a constrained Delaunay triangulation can be built in O(nlog n) time
using a method similar to that used by Yap [Ya84] for building the Voronoi

diagram of a set of simple curved segments.

Definition. Let G be a straight-line planar graph. A constrained Delaunay

triangulation of G is a triangulation T such that each edge of G is an edge

of T and for each remaining edge e of T there exists a "circle"” C with the

following properties

1} the endpoints of edge e are on the boundary of C, and

2) if any vertex of G is in the interior of C then it cannot be "seen" from
either endpoint of e (i.e., a line segment drawn from such an interior

vertex to an endpoint of e must cross an edge of G).

It follows from the definition that if G has no edges then the constrained
Delaunay triangulation is the same as the (unconstrained) Delaunay
triangulation. A constrained Delaunay triangulation can be defined for any
convex distance function - only the meaning of the word circle changes.
We use the constrained TD (equilateral triangle convex distance function)
Delaunay triangulation.

We show how a constrained TD Delaunay triangulation can be used for
motion planning. Let T be the constrained TD Delaunay triangulation for
our set of obstacles. If we choose a source and a destination among the
obstacles then the optimal path is made up of straight line segments
between obstacle vertices. (Recall that the the term "optimal path" refers
to the shortest source-to-destination path that does not go through an

obstacle; this path is not necessarily restricted to edges of the
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triangulation.) Let A and B be two obstacle vertices that are adjacent
along the optimal path. Then the portion of T between A and B has
properties similar enough to the (unconstrained) TD Delaunay triangulation
for a version of Theorem 1 to apply; thus, there is an A-to-B path along
edges of T with length £ 2 |AB|. Since this can be done for each segment of
the optimal path, we conclude that there is a path along edges of T with

length £ 2 times the length of the optimal path.

4. Using multiple triangulations

Instead of an equilateral triangle, an isosceles triangle can be used 1o
define a convex distance function and to define, in turn, a Delaunay
triangulation. Such an ITD (isosceles friangle convex distance function)
Delaunay triangulation has properties similar to those stated in Theorem 1
for the TD Delaunay triangulation. However, because of the asymmetries
of the isosceles ftriangle, the corresponding theorem has a preferred

direction. (The proof is similar to the proof of Theorem 1.)

Theorem 2. Let A be an isosceles triangle (oriented as in the following
figure) with an angle B<60° between the two equal sides. Let S be a set of
points in the plane and let T be the ITD (using A as the distance-defining
"circle"}) Delaunay ftriangulation of S. For any points A and B of S for which
segment AB is at an angle (from horizontal) between -B/2 and +83/2, the

shortest A-to-B path along edges of T has length £ (1 + 2 sin{3/2)) |AB].

Intuitively, the isosceles friangle can be thought of as a flashlight
beam projected from our source vertex. Vertices that are illuminated by
the flashlight are destinations for which we can find a reasonably good

path.
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Orientation of an empty "circle" and some directions in which good shortest paths can be found.

Of course, given a source and a destination, the problem is symmetric and
we have the option of switching our terminology, changing source to
destination and destination to source. For example, in the previous
diagram, directions opposite the checkmarked directions are also
directions for which a good path can be found.

By using several ITD Delaunay triangulations, each of which has a
preferred direction for good paths, we can handle all the directions. We
divide a semicircle by marking off equal portions of its circumference to
define k isosceles triangles, each with an angle of n/k at the center. Each
triangle can be used to build an ITD Delaunay triangulation that produces
good paths in the directions covered by that triangle (using the flashlight
analogy, the directions in which it shines and the opposite directions). By
using a set of triangles that fil a semicircle, we guarantee that for each
direction there is an isosceles triangle that handles that direction.

Given a set of obstacles in the plane, a semicircle full of isosceles
triangles (as described abo\)e) is used' in the following way. For each of
the k triangles, we form the constrained ITD Delaunay triangulation. This
produces k different triangulations which can be combined to make a
single sparse (O(kn) edges) graph H. Using Theorem 2 and arguments

similar to those used for the equilateral triangle case, it follows that for
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any source and destination there is a path along edges of H with length <
(1 + 2 sin{n/2k)) times the length of the optimal path. Some simple
properties of trigonometric functions can be used to simplify this, giving
an H-path with length < {(1+xn/k) times that of the optimal path. The time

bounds for this whole process are listed in the introduction.

5. Conclusions and further research

The motion planning methods presented here for finding a good
suboptimal path have significant advantages over available techniques for
finding the optimal path. The savings in preprocessing (the time to build
the graph), storage space, and running time (the time to compute the
shortest path within the graph) are particularly important in cases where
a large number of motion planning problems must be done for a single set
of obstacles. The savings in time and space outweigh the fact that the
techniques do not necessarily produce the optimal path, especially since
the paths produced are guaranteed to be reasonably good.

There may be graphs that are better for motion planning than the TD
Delaunay triangulations used here. For instance, the standard Euclidean
Delaunay triangulation may have a bounding factor of n/2. An attempt to
prove this conjecture led to the results presented in this paper.

A particularly interesting possibility is that of extending some of
these results to problems in 3 dimensions. It may be possible to develop
an algorithm for motion planning in 3 dimensions that runs in time O(nz)
and that produces a path with length bounded by a small constant time the

length of the optimal path.
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