Dartmouth College

Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

6-23-1987

Matching Multiple Patterns From Right to Left

Samuel W. Bent
Dartmouth College

M A. Sridhar
University of South Carolina

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

O‘ Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation
Bent, Samuel W. and Sridhar, M A., "Matching Multiple Patterns From Right to Left" (1987). Computer
Science Technical Report PCS-TR90-143. https://digitalcommons.dartmouth.edu/cs_tr/44

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/44?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

MATCHING MULTIPLE PATTERNS
FROM RIGHT TO LEFT

Samuel W. Bent

Technical Report PCS-TR90-143

Matching multiple patterns from right to left

Samuel W. Bent
Department of Mathematics and Computer Science
Dartmouth College
Hanover, NH 03755

M. A. Sridhar
Department of Computer Science
University of South Carolina
Columbia, SC 29208

June 23, 1987

Abstract

We address the problem of of matching multiple pattern strings against
a text string. Just as the Aho-Corasick algorithm generalizes the Knuth-
Morris-Pratt single-pattern algorithm to handle multiple patterns, we ex-
hibit two generalizations of the Boyer-Moare algorithm to handle multiple
patterns. In order to obtain worst-case time bounds better than quadratic,
our algorithms remember some of the previous history of the matching. The
first algorithm remembers at most 1+ log, D previous matches, and runs in
time O(Nlog D), where D is the length of the longest pattern. The second
algorithm provides a time-space tradeoff: given an integer k& > 2, it remem-
bers at most t/(k — 1} previous nonperiodic matches (where ¢ is the number
of patterns}, and runs in time O (kN log D).

Matching Multiple Patterns from Right to Left

Samuel W. Bent M. A. Sridhar
Department of Mathematics and Computer Science Department of Computer Science
Dartmouth College University of South Carolina
Hanover, NH 03755 Columbia, SC 29208

1. Introduction.

The problem addressed in this paper belongs to the well-known family of pattern-matching
problems. The general statement of such a problem is, “Given some finite set of patterns
P1; .-, Pt, and a text T, find occurrences of the patterns in the text.” The text is usually
a long string over some fixed alphabet X, and the patterns are often regular expressions
over L. Special cases of the general problem of particular practical and theoretical inter-
est include restricting the patterns to be fixed strings {regular expressions involving only
concatenation), restricting to only one pattern (¢ = 1), asking for the first occurrence, or
perhaps some combination of these restrictions. In this paper, we consider the problem of
finding the first occurrence of fixed-string patterns, but we allow multiple patterns.

Of all the work on pattern-matching, we call attention to three algorithms in partic-
ular. For the single fixed-string case, Knuth, Morris, and Pratt published an algorithm
that essentially simulates a finite-state machine accepting the single string p; [5]. The
states of the machine correspond to the prefixes of p;, with the start state correspond-
ing to the empty prefix, and the accepting state corresponding to all of p;. Each step
of the algorithm reads a text character. If the character matches the next character in
the pattern (extending the current prefix), the algorithm succeeds, advancing to the next
state and next input character. Otherwise it fails, retreating to the most recent state
whose corresponding prefix is a suffix of the current state and rereading the current text
character. This process attempts to find an occurrence of the pattern that overlaps the
already-matched prefix.

A single text character can cause many failures, but eventually progress is made since
failures from the start state {empty prefix) always advance the text. The state transition
diagram looks like a long line of states, augmented by failure transitions leading right to
left, as in Figure 1.

Aho and Corasick devised a generalization of the Knuth-Morris-Pratt algorithm for the
multiple fixed-string case [1]. Their algorithm again has states corresponding to prefixes
of the patterns. Two (or more) paiterns sharing a common prefix also share a common
state, so that there is exactly one state for each distinct pattern prefix. A state may have

1

o =abacabe

et e i

—

Figure 1.
Pattern matching machine.

more than one successor if its prefix is shared among patterns that disagree in the next
character. Upon reading a text character, the algorithm succeeds if it matches one of
the possible extensions of the current prefix, and fails otherwise. If it fails, it retreats to
the state corresponding to the longest prefix (among all prefixes of any pattern) that is a
proper suflix of the current state, again looking for a pattern occurrence that overlaps the
matched text. The state transition diagram looks like a tree fanning out from left to right,
augmented by failure transitions leading right to left (but not necessarily from descendant
to ancestor), as in Figure 2.

Back in the single pattern world, Boyer and Moore invented an ingenious algorithm
that matches the pattern from right to left (unlike the two algorithms above) [2]. As long
as the current text character matches the pattern character, the fingers on each string
move left. When a mismatch happens, the pattern is shifted to the right according to one
of two heuristics. The occurrence heuristic suggests that the pattern be shifted so that
the mismatching text character lines up under the rightmost occurrence of this character
in the pattern, avoiding an obvious mismatch in that one position. However, this may not
actually shift the pattern to the right if matching has already proceeded to the left of the
rightmost occurrence. So the match heuristic suggests that the pattern be shifted so that
a substring of the pattern matching the current successful suffix is lined up over the text
that matched the suffix, again avoiding an obvious mismatch with respect to the successful
suffix. The Boyer-Moore algorithm simply chooses the greater of the two shifts.

All three of these algorithms are remarkably efficient. Both Knuth-Morris-Pratt and
Aho-Corasick make at most 2n queries on a text of length n. The proof is a one-liner:

2

* ,’-‘71 =88b
< ~ '
/ \ \x a 1. ¢ . P, =sbeac
/
x

. 7 3 =bbac

Figure 2.
Left-to-right pattern tree.

Charge a successful query to the queried text character, and charge a failure to the most
recent character that succeded out of the failed-to state; each text character picks up a
charge of at most 2.

The Boyer-Moore algorithm makes at most 6n queries, but the best known proof uses
a much more sophisticated charging argument, and is very difficult [4]. Intuition suggests,
however, that the Boyer-Moore algorithm is much more efficient on the average, since it is
likely to make long shifts after reading only a few characters, either due to text characters
that don’t appear at all in the pattern or due to suffixes in the pattern that never recur.
Experiments bear out this intuition, and the algorithm has been adopted in text editors
and other real-life applications of string matching.

These admittedly incomplete descriptions of three well-known algorithms should serve
to give the reader a picture of part of thé pattern-matching landscape. Figure 3 shows
the algorithms classified according to two attributes, namely whether they handle one
or many patterns, and whether they scan the patterns left-to-right or right-to-left. The
Boyer-Moore algorithm, by scanning right-to-left, improves over the Knuth-Morris-Pratt
algorithm in practice without sacrificing much in the theoretical worst case. The research
described herein explores the fourth cell of the figure, attempting to do for Aho-Corasick
what Boyer and Moore did for Knuth-Morris-Pratt.

It’s not hard to imagine an algorithm of the sort just alluded to. Such an algorithm
was reported by Commentz-Walter [3], and can be briefly described as follows. Imagine a
finite-state machine with one state for each distinct suffix of one (or more) of the patterns.
The transition diagram might look like a tree fanning out to the left, as in Figure 4.

3

I Left-to-right Right-to-left
One pattern Knuth-Morris-Pratt Boyer-Moore
Multiple patterns Aho-Corasick ?

Figure 3.
String matching algorithms.

/71 = cdabed L < L} d @ 8 L b ® ¢ . d
e g b c d \p
F~ = eabedaec . o e ° ® .8 ¢
2 \o e ‘/

d e.c.y

pz = deccec

Figure 4.
Right-to-left pattern tree.

Initially, align the tree over the text so that the shallowest leaf lies just to the left of
the first character of the text. (In general, always think of aligning the tree so that the
states lie in between text characters). Now start at the right, matching from right-to-left
in the obvious way. If there is a mismatch, shift the pattern tree right so that either:

a) the mismatched text character lies under at least one edge with matching label (oc-
currence heuristic), or

b) some deeper occurrence of the successfully matched pattern suffix lies over the suc-
cessfully matched text (match heuristic), or

¢) the shallowest leaf lies where the root used to lie.

The algorithm should choose the longer shift of (a) and {b), but in no event longer
than (c}. The last rule is necessary to avoid entirely skipping over an occurrence of the
shortest pattern,

For many “typical” patterns and texts, this algorithm performs quite well, but un-
fortunately the worst case is horrible. If the two patterns are p; = ba™ and p; = b, and

4

the text is a”, the algorithm will look at m + 1 characters before finding a mismatch, shift
right by 1 according to rule (c), and repeat, leading to O(mn) queries. The problem is
that the work spent matching most of the long pattern is thrown away, because the shift
was governed by the short pattern.

Qur goal is to overcome this problem. The method we use is to furnish the algorithm
with memory about previous matches. In the above example, for instance, if the algorithm
remembers that it matched m a’s and only shifted to look for ps, it can abort the next
match immediately upon reading an a. Neither p; nor po can appear.

Remembering the entire history of previous matches is, of course, too unwieldy. We
propose two strategies for remembering matches, both of which forget about a given match
when the tree root is shifted far enough away from where the match occurred. The sim-
ple strategy remembers at most 1+ log, D matches at any time, and makes O(N log D)
queries of text characters. The more sophisticated strategy exibits a time-space tradeoff;
it remembers at most ¢/{k — 1) nonperiodic matches while making O(kN log D)} queries.
Here k > 2 is an arbitrary parameter, ¢ is the number of patterns, N is the length of the
text, and D is the length of the longest pattern.

In short, both strategies make a linear number of queries for patterns of bounded
length. The simple strategy needs memory related to the length of the patterns, while the
second needs memory related to the number of patterns.

2. Preliminaries.

Given a set of patterns pi, ..., pz, form a tree P whose vertices are in 1-1 correspondence
with the suffixes of the patterns. Denote by word(v) the suffix corresponding to node v.
If word{v) is not empty, then there is a unique vertex w with word(v) = aword(w); in this
case let w be the parent of v, and label the edge between v and w by a. Thus reading the
labels on the edges along the path from v to the root spells word(v).

Denote the depth of v by d(v); this is the distance from v to the root, or equivalently,
{word(v)]. If v is a descendant of w, let string{v,w) denote the string of labels along the
path from v to w. Two strings agree if one is a suffix of the other. We say that z occurs at
w if z agrees with string{u,w) for some leaf descendant u of w. In other words, z occurs
at w whenever matching z right-to-left from w either succeeds in matching all of z or hits
a leaf. We will allow z to contain “don’t care”® characters (#), that match any pattern
character.

A configuration is a sequence of pairs

C= ((Uladl), cavy ('U,,-,dr))

where each v; is a node in the tree, each d; > 0, and d; == co. This configuration represents
a piece of recent history, in which the algorithm matched text characters back to vy, shifted

5

the tree dy + d(v2) characters to the right (possibly with intervening matches), matched
text characters back to ve, shifted right ds + d{vs) positions, and so forth. The algorithm
thus knows that the text matches the characteristic string of C,

char (C) = word(v1) - #% - word(vs) - -+ #% . word(v,)

ending at the text position where the last remembered match v, began.

The general step of our algorithm is to align the pattern tree over the text, to match
right-to-left governed by the current configuration until failure or abortion, to replace the
configuration by a new one, and finally to shift the tree to the right. Shifting is the easiest
to explain. If C is the new configuration, we could shift by

sm(C) = min{d(v) | d{v} > 1 and char(C) occurs at v},
looking for the next deeper occurrence of char{C) (match heuristic). Or we could shift by
so{a) = min{d{v) | d(v) > 1 and some edge out of (v) is labelled a},

where a is the mismatching text character, looking for an occurrence of a (occurrence
heuristic}. Our algorithm picks the larger of these two shifts, but in no event larger than
Smin, the length of the shortest pattern.

Having shifted according to configuration C, it behooves us not to waste time exploring
paths in the tree that don’t lead to occurrences of char{C). Define

goal(C,j,D) = {v | d(v) = D, and char((vy,d1),...,(v;,d;)) occurs at v}

to be the set of nodes at depth D at which a prefix of configuration C occurs. When the
algorithm aligns the tree D positions to the right of the text known to match C, then
as it matches right-to-left, if it reaches a node whose descendants don’t include a node
in goal{C,r, D), it can abort the match — there’s no way to agree with the remembered
matches. On the other hand, if it reaches a node in goal(C,r, D), it knows that the next
portion of the text matches wbrd(’ur), s0 it can skip immediately to the descendant w of
the current node v with string(w,v) agreeing with word(v,). Such a descendant exists,
else we would have already aborted. At this point, we say that the current match closes
the previous match that ended at v,. The algorithm can now resume matching at node w,
using goal(C,r — 1, D + d, + d{v,}) in the criterion for abortion.

When a match either fails, because no edge leaving the current node v matches the
text, or aborts, as described above, it’s time to update the configuration and to shift. In
general, the algorithm may have skipped over r — j of the remembered matches in C,

6

so that v occurs between word(v;} and word(v;4+1) in char(C). Initially, the algorithm
appends new match v to the appropriate prefix of C, forming

¢ = ((vr,d1),.. ., (vy,d), (v, d)),

where the last displacement d is the distance remaining between v and its descendants in
goal(C, 7,-). Next, it computes the distance to shift, as described above. Finally, it applies
the memory function, deciding which of the matches in the configuration to retain for the
next round of matching. The choice may depend both on the current configuration and on
the shift distance. For example, if the algorithm shifts the tree far away from the text that
matches word{v;), the memory function may decide to drop (v1,d;) from the configuration
since no match can extend back far enough to need this bit of memory.

Figure 5 contains a more precise encoding of the ideas expressed above. It leaves
the memory function unspecified. Our two algorithms differ only in the choice of memory

function.

Variables:
7, the current text position of the root, initially sy,
v, the current tree node, initially the root
C = ({v1,d1),-..,(vs,d,)}), the current configuration, initally empty
7, the current goal prefix number, initially 0 -
D, the current goal depth, initially co
d, the distance to goal prefix, initially sy,

Figure 5a.
Variables for the algorithm.

repeat
let a = text[r — d{v)] be the current text character
if v has a child w with edge label a
then { match can continue }
if w has a descendant in goal{C, 3, D)
then
MoveLeft(w)
else { abort the match }
Shift{w)
else { match failed }
Shift(v)

until no more text

Figure 5b.

The main loop.

procedure MoveLeft(w)

d—d—1

ifd=0

then { skip over remembered match }
let u be the descendant of w such that word(v;) agrees with string{u,w)
if some ancestor of u terminates a pattern p
then announce an occurrence of p and halt
D «— D +d; + d(vy); d — dj; J e g1
DR

else { match one character }
Ve w
if w terminates a pattern p
then announce an occurrence of p and halt

end MovelLeft

Figure 5c.

Successful moves.

3. The Simple Algorithm.

A match consists of two parts, a tree node v and a character a. We write m = (v,2) when
the algorithm matches successfully from the root back to node v, but fails or aborts upon
reading text character a. By abusing the notation, we will let m denote the match, or
the successful portion of the match word(v), or the length of the successful portion of the

8

procedure Shift(w)
append (w,d) to the current configuration C
compute s = shift(C,a), as described above
C! — 0 D« s
fori«—1tor-+1do
if memory(C,1,s) is true
then { append i-th match to new configuration }
append (v;,d;) to C'
else { forget i-th match and adjust displacement of (¢ + 1)-st match }
dig1 — dig1 + di + d(v;)
{ by convention, let d,, refer to D }
end for loop
C « C'; T ¢~ T4 8
end Shift

Figure 5d.

Unsuccessful moves.

match d{v).

If match m began at text position r, define R{m}, the right neighborhood of match
m, to be the range of text positions r + 1 to r +m/4. Our algorithms will never remember
match m if the tree root has advanced outside of RB(m).

Define a node w to be critical for match m if w has an ancestor z such that

(i) 1 <d(z) <m/4

(ii) string(w,z) agrees with m
(iii}) d(w) > m/2.
This says that some later match starting in B(m) could overlap significantly with m. If this
were to happen, we could waste time rereading text characters under m. This motivates
the following memory function.

Memory Function. For a match m with right end at r, remember m if and only if

(a) the tree position 7 lies in R(m), and
(b} m has a critical node.

A match that is closed {skipped over by a later match while still being remembered)
can be considered paid for by the closing match. The remaining matches, which we call
open, can be accounted for by the following series of lemmas and definitions.

Lemma 3.1. Suppose matches m; and my are open. If match my begins in R(m;),
then my < m1/2

Definition. If m is open, partition the subsequent matches that begin in R(m) by setting

Sp{m) = {m’ | m’ begins in B(m) and 2:21 <m' < ;ﬁ_ }

Lemma 3.2. If1 <k <logD, then |Sk(m)| < 2%+1. And ifk > log D, then S(m) = 0.

Proof. If m’ € Sk(m), then m’' < m/2% < D/2* by definition of Sk, so that
D .
k <log— <logD
m

since m’ > 1. Therefore, if Sg(m) is nonempty, then k < log D.

Now suppose that 1 < k < log D, and that for some open match m, the cardi-
nality |Sg(m}l > 2"*1+ 1. Let matches my,...,mors1,; € Si{m), with right ends
T1,...,79e+141. Then, for each 7,1 < ¢ < 281 it must be that r; .y —r; > %mi; otherwise,
Mmiy1 begins in R(m;) and myq g > %mi (by definition of Sk(m)), so that lemma 3.1 is
contradicted with respect to m;.

Since m; > m/[2%*1, by definition of Si(m), we therefore have

I m
Tf+1 - Ty > me > z_——2k+l
so that
Fok+ig4y — Ty = Z Fig1 — T4
1<CipR+1
1 m
k+1 - e
> 2 ey
S 1
~ 1M
4

which is impossible, because all the matches in S;(m) begin in B{m).

We now account for the time spent matching open matches using the following charg-
ing argument. Charge to the first open match m all subsequent matches beginning in
R(m}. Remove all the matches so dealt with, and repeat the process with the first remain-
ing match. Continue until matches have been dealt with.

By the lemmas, an open match m accumulates at most 2mlog D units of charge, and
any two matches that receive charge must start fairly far apart from each other. Also,
if a sequence my,...,m; of matches is remembered at any time, then their lengths must
decrease by factors of 4. As a result, we obtain good time and space bounds.

10

Theorem 3.3. The number T(N) of text characters queried in a text string of length
N is bounded by
T(N) < (4N + D){(2log D + 1) = O(N log D).

Furthermore, the algorithm remembers at most 1 + log, D matches at any one time.

4. The Sophisticated Algorithm.

The simple algorithm requires memory related to the length of the longest pattern. Nat-
urally, we'd like to do away with this dependence, although it seems inevitable that the
memory will be related to the number of patterns. As usual in pattern-matching, most of
the trouble comes from periodic strings, and we are unable to eliminate the problems of
periodicity from our algorithm.

Definition. The (fundamental) period of string w, denoted p(w), is the smallest integer
p such that w##? agrees with ww. We say w is periodic if p(w) < w/4. A match m = (v,a)
is periodic if word(v) is periodic.

We conjecture that any memory function that doesn’t remember ¢ — 1 matches while
searching for ¢ patterns must query w{N) text characters, for some collection of ¢ patterns
and some text. In other words, you must remember something about all but one pattern
in order to avoid extravagant reéxamination of the text. All our examples involve periodic
matches, so we can hope to use less memory for nonperiodic matches.

Analagous to our previous definition, define R(m), the right neighborhood of match
m at position r, to be the range of text positions r +1 through r +m/16, and define L{m),
the left neighborhood, to be positions 7 — 31m/16 through r — m. Thus L(m), m, and
R(m) together span 2m text positions.

We also define an analog to a critical node, to capture the notion of a potential
reéxamination of text. This definition is much more complicated, and involves the current
configuration to a much greater degree. Whereas in the simple algorithm a critical node
for m corresponds to a potential future reéxamination of text, the definition of critical
path below corresponds to a possible previous reéxamination.

Definition. A path P from leaf v to node w is critical for match m; in configuration
C = ({vy,d1),...,(vr,d,)} if all the following conditions are satisfied:

) word{w) is not periodic
C2) d{w) > m/2

) word{w) is a proper prefix of word{w'), for some node w’ along the path of m;
with 1 < d{w') — d(w) < m;/16
(C4) for 1 < j < i, if there is a node u; on P at depth d(w) + (m; — d(w')) + d; +

>, (mi+dy), then string(u,u;) agrees with m;.
J+1<i< :

11

Given such a critical path from u to w with node v’ in m;, call the quantity d{w) - d(w’)
the displacemnent of the path. Figure 6 illustrates a path {(u,w) that is critical for my in a

configuration containing matches m; and ms,.

3
3

—

g8,-----&4

Figure 6.
(u,w) is critical for mo.

Our second algorithm makes a time-space tradeoff, based on the parameter k > 2 that

appears in the next definition.

Definition. A k-mesh for match m; in configuration C is a set of k — 1 critical paths
for m; with distinct displacements.

Roughly speaking, a match m has a k-mesh if k previous matches could have read the
same text as m. Such a match is a candidate for remembering; this leads to our second

memory function.

Memory Function. Remember m in C if and only if the tree position 7 lies in R(m),
and either

a) m is periodic, or

b) m has a k-mesh in C.

We now proceed to establish a time bound for this algorithm. The main result that
the proof hinges on is lemma 4.2, which shows that when several open matches of about
the same length overlap, their right ends must be separated by a minimum amount. Once
we have proved this result, we can construct a charging argument to establish the time
bound.

In order to prove lemma 4.2, we will need two technical lemmas. The first is the
following “gcd lemma,” proved in Knuth, Morris and Pratt [1977]. Intuitively, the ged
lemma says that no string can have two short periods p and ¢ without having an even
shorter period that divides into both p and q.

Ged lemma. If p and q are periods of a string z, and p + ¢ < z, then ged(p,q) is also a

period of z.

]

12

We also have the following bound for v in terms of u:

1
vzu—igml
Zu__.}._mz
16
1 16
Zu- g
_ 6
w?u.
6

Now if p(u) > v, then p(u) > Zu, and we are done. Otherwise (i.e., p(u) < v), there
is some period of v of length p(u). Now p(v) does not divide p(u), for otherwise ms would
share the same period with m;, making ms periodic. Therefore, when the ged rule is
applied to v, it must be that

p(u) +plv) > v

for otherwise we would have a period of length ged{p(u),p(v}) < p(v) for both u and v,
making my, periodic. Thus,

[

We are now ready to prove our most important lemma, that we cannot have too many
open matches that are about the same length too close together. The method of proof
is to argue that if we did have many such matches close together, then at least one of
them must have had a k-mesh in the configuration in which it was forgotten. However,
in order to exhibit such a k-mesh, we will need to obtain nonperiodic strings in order to
meet condition (C1). This is where the result of lemma 4.1 will be applied.

Lemma 4.2. Let my,...,mq; be nonperiodic open matches with right ends rq,..., 7o
in that order, such that any two matches differ in length by at most a factor of 2, i.e., for
all v and j,

-2~m,' < mj < 2m.

14

Then rop —ry > %m;, where my is shortest among all the matches.

Proof. Suppose to the contrary that rop — 7y < my;. Figure 8 depicts the relationship

16
between the matches.
my
1 i
My
i E
mJ-
Ty L
f ‘ ;
! mp
Mok
| :
) i
Text
Ty Tk
Figure 8.
A collection of overlapping matches.

Since all the matches are open, mq,...,myr_; must all have been forgotten, because
they all have subsequent overlapping matches. Therefore, it suffices to show that there is
some match among my,...,mqk..; that has a k-mesh in the configuration in which it was
forgotten.

Let z1,...,zax be the nodes at the left ends of my,...,my. Consider some match m;
that was forgotten in configuration C;. The matches mi,..., m; that occurred earlier than
m; and were remembered in C; were certainly remembered at each of my,...,m;_1. So,
by definition of the shift function, there are leaf descendants vy,...,v;_y of z1,...,2;
such that the paths (vi,z1),...,(vj—1, ;1) all have “images” of mj,...,m}. So each of
these paths satisfy condition (C4) of the definition of critical path with respect to m; in
Cy.

15

The idea of our proof is to show that either myj or mag..1 must have had a k-mesh in
the configuration in which it was forgotten. We will first attempt to construct a k-mesh
for my. If we can choose nodes wy,...,wg..; along the paths of my,...,mx_1 respectively,
such that the paths (vi,w1),..., (Vk—1,wr—1) satisfy the rest of the conditions, we would
have a set of k& — 1 critical paths for my in Cy. Since the matches my,...,mr-1 have
distinct right ends, the corresponding critical paths all have distinct displacement values,
and thus we would have a k-mesh for m;. Now we may choose, for each ¢, any ancestor w;
of z; that satisfies (C3), and the paths (v;, w;) would satisfy {C4). It remains to choose the
w’s to satisfy (C1) and (C2). Therefore, suppose it is not possible to make such a choice.
Then, in particular, there is some z; such that none of its ancestors can be so chosen. We
will now construct a k-~mesh for mag_.1.

Since m; itself is nonperiodic and has the appropriate length (by hypothesis}, it must
be that my ends under m; (otherwise we could choose w; = x;). Furthermore, the node
y; along m; that aligns with zj is such that d{y;} > FSmu, since ry — r; < Jmy. So

p(word(y;)) <

We now have word(y;} and word(zy) satisfying the conditions of lemma 4.1, so it
follows that every suffix u of my with u > "{ngk must have p(u) > fu. Now each of the
matches mp,...,map_9 shares with my a suffix v of my of length at least T%mk, because
Tog T < -1%7’1’1,1 and any two matches differ by at most a factor of 2.

We can now construct a k-mesh for mop..1 by deriving, for each ¢ in the range £k <
1 < 2k — 2, a critical path for msr_1 from m;. These critical paths will all have distinct

displacement values, since the right ends of the corresponding matches are all distinct.

Case 1. mygj_ goes at least as far left as m;.

Choose w; = z;. This satisfies {C1), because m; is nonperiodic, by hypothesis. It
also satisfles (C2)}, because m; < mqg_; (since mog_; goes at least as far left as m;) and
m; > %mzkml, by hypothests.

Case 2. m; goes farther left than mop_y.

16

Choose w; = y;, where y; is the ancestor of z; that lines up with the left end zq5.1 of
Mak-.1. This choice satisfies {C2), because rop..1 — r; < »f%mi so that d(y:) > i—?mzk_l >
%mzk_l. This choice also satisfies (C1), because of the following: if my ends at or right

of y;, then word(y;) contains all of my as a substring, in which case

plword(y)) 2 plme) > gk > (),

since my and m; differ by at most a factor of 2. If my ends left of y;, then the suffix u of
my, that is a prefix of word(y;) is also a prefix of mar..1, so that

1
U 2 Mag—1 ~ 167k
1 1 .
2 5= TEM (by hypothesis)
>
— 16

Thus p(u) > %u Now since u is a prefix of mer; and a suffix of my, we must have

w = mak—1 ~ (T2k—1 — k)

1
a Mokt — mm%_l by hypothesis

FRe

>1.’5
—Mmar_t1.
= 1o k-t

Therefore,
16
dy:) <mok—1 < Y

so that, since u is a substring of word(y;),

2

plword(y;)) >

[y
Lo 54

2 » e d{1y)

>

S R 2 R A
2,

——— —

£ 5

Consequently, we can always choose nodes wy,..., w0 along the paths of my, ...,
Mgk —2 respectively, such that the paths (v, wi), ..., (vox—2, war—2) constitute a k-mesh
for myr_; in the configuration in which it was forgotten, contradicting our assumption
that myy, begins in R(max—1). (This contradiction is the only reason we needed may.)

L]

17

This result will now be applied to more specific situations. Our method of accounting
for matches is the following. For a given open match m, consider the subsequent matches
that have right ends close to that of m and overlap a significant amount with m. We can
divide these matches into three classes:

(1) matches that go strictly further left than m, and have left ends far from that of m;
(2) matches that go strictly further left than m, but have left ends close to that of m; and
(3) matches that do not go further left than m, but overlap m significantly.

We will first show (in lemma 4.3) that for a given match m, there cannot be very many
matches of the class 2. Next we will define precisely what we mean by a “significant
overlap” of class 3, and show (in lemma 4.5) that the matches of class 3 must sum up to
a constant times m. These two results will then allow us to argue, in the charging phase
(theorem 4.6}, that we can charge matches of the above two categories to m, and delete
all such matches, thus simplifying our problem.

Lemma 4.3. For an open match m, at most 2k — 1 open matches begin in R(m) and
end in L{m).

Proof. Ounly the last of the matches that begin in R(m) and end in L(m) can be periodic,
because any earlier periodic match would be remembered through R(m). Now if there are
at least 2k matches beginning in R(m) and ending in L(m), then the match m, together
with the first 2k — 1 matches that begin in E(m} and end in L(m), satisfy the conditions
of lemma 4.2, and m is the shorfest among these matches. This would contradict the
conclusion of lemma 4.2.

L

Definition. For match m with right end at r, we say that an open match m’ that ends
under m, with right end at r’ in R(m), is m-heavy if v’ —r < Im'. If #' is in R(m), but
r' —r > $m’, then we say that m’ is m-light.

Informally, our intent is to classify the matches that have right ends close to m as heavy
if they have a significant overlap with m, and light otherwise. Our immediate objective is
to bound the sum of the lengths of the m-heavy matches, for every match m. To do this,
we proceed as follows. First, for an open match m, we partition the m-heavy matches as
follows, according to the length of the region of overlap with m.

Definition. For an open match m, and for each 7 > 0, denote

oo m
Si(m) = {m’ : m' is m-heavy and nonperiodic, and 5T <m' - (r'—r)< —.} .

18

Next we show {in lemma 4.4) that the number of elements in each class in this partition
is bounded by a constant, and establish a bound on the maximum length and number of
elements of such a class. Lemma 4.5 will then establish the bound on the sum of lengths.

Lemma 4.4. For an open match m, with right end r,

1 1 m
T . < mi e e
max {m' :m 63St(m)}_mm{(21 + 16) m, 21_1}

and
1Si(m)| < min {2°7%k — 1,64k — 1} .

Proof. We will first establish the bound on the lengths. If match m' with right end at /
is in S;(m), then

T > ¢’ —r by definition of m-heaviness

>m' — g; by definition of 5;(m)

1 1
"<l =+ =
m‘(2‘+16)m

Also, observe that if m’ € S;(m) is a match that has right end ' as far right as possible,

so that

then r' —r < m/2%, for otherwise, since ' — r < im! (by m-heaviness),
m' > 2(r' ~r)

or
m’w(r’wr)zr’—r>-2r—n—t.—

which is impossible, since m' € S;{m). Now, by definition of S;{m),

m
! !
m——(r—r)<§—1.—
/ 1
or m<§""1"."~_m{.

Next, we will show the bound on the cardinality of S;{m). Suppose there are Ik
matches my,...,my in S;(m), with right ends at ry,...,r;; respectively. Then by lemma

4.2, we have for all 7,

1 m
T25k — T(25—2)k+1 16 3iF7

19

so that
I 1 m

SR S
T 7T 7 5" g ot

Therefore, I > 2°72 implies that

>
T’ —_— ‘r pre
Ik 1 16

which cannot be, since all the matches begin in R(m). Also, ! > 64 implies that

m
i — 71> 5%

which we have already observed to be impossible.

L]

We can now establish a bound on the sum of the lengths of the m-heavy matches,
for any given match m: we need only separate the perioidic and the nonperiodic m-heavy
matches, and apply lemma 4.4 to obtain a bound on the nonperiodic matches.

Lemma 4.5. For an open match m,

W

m’ is m-heavy

Proof. We will account for the periodic and the nonperiodic m-heavy matches separately.
Let my,...,m;, be the sequence of periodic m-heavy matches, with right ends at text po-
sitions ry,...,ry respectively. Then, for each ¢, m; is remembered unconditionally through
its right neighbourhood, by definition of the memory function. Also, any two of these
matches must overlap at least at the rightmost character of m, since all these matches are

m-heavy., Therefore,

1 .
Ti+1"““"i>zgmi fori<s<p-—1

and adding all these equations,

1
rpwr1>ﬁ z my.

1<i<p—1

Since rp — ry < J=m (by definition of m-heaviness),

ie.,

m-mp > E mi.
1<isp

But m, < %%m, since m, ends under m, so that

17
1<i<p
and thus
, _ 33
E < —m
16

m' is m-heavy
and periodic

Now using lemma 4.4 and the definition of 5;(m),

3w < Y |Si0m)] max {m s m" € Si(m))

m' is m-heavy 120

and nonperiodic
1 1 12 m
< Z m(~2-;+~1——6~)(2‘ kw1)+22i_1(64k—1)
0<i<3 i>4

143 19
<{—k——]m.
4 8

[

We are now ready to prove our time bound. The proof technique is a charging argu-
ment in four phases. For a given open match m, we divide the matches with right ends
close to that of m into three classes, as described earlier, and account for each of these
classes in the first three phases. The last phase sums up the resulting bounds.

Theorem 4.6. The algorithm consults O(kN log D) text characters.
Proof. As pointed out earlier, we need only account for open matches. The proof is a
charging argument in phases.

Phase 1. Tterate the following step: Charge to the first remaining match m all the
matches that begin in R(m) and either end in L(m) or are m-heavy; delete all the matches
so charged.

By lemmas 4.3 and 4.5, each match m picks up a cost ¢(m) of

15
< (mgk — ﬁ) m
- 4 16

21

At the end of this phase, one of the following holds for any two matches m; and m»
occurring in that order:

(1) mo does not start in R(m;);

(2) mgy is my-light; or

(3) ma goes left of L(mq).
Each of the subsequent phases will now deal with, and get rid of, one of the above condi-
tions.

Phase 2. Charge each match m, as well as ¢(m), to the first subsequent match m’
such that m’ begins in R(m) and goes strictly left of L(m) (if there is such an m/), and
delete m.

To account for the total cost picked up by a match, let S(m} denote the set of matches
charged directly to m by phase 2. Define, for match m,

height(m) = 0 if S(m) =10
ERT =1 1 + max {height(m'} : m' &€ S(m)} otherwise.

Let len;{m) be the sum of the lengths of the matches charged to a match m of height
t by phase 2. We will show by induction on height that

len;(m) < m Z (g)j.

1<5<i

Suppose m has height 1, and let my,...,m;, occurring in that order, be the set of
matches charged to m directly by phase 2. Then m starts in R{m,) for all 7, and therefore
my; is m;-light for 7 < j (because of phase 1). Therefore, if 71,...,7; are the right ends of
mi,...,my, respectively, then

1 .
Tisl — T > —2-m1-+1 for each 1,

and adding all these equations,
1
rp—ry > =~ E m;
H 1 = 2 . 7
255 <t

or

Z my; < my +2(Tg - ?‘1).
1<t

22

Nowr;—r; < —;—Gml, because all the m; begin in R(my}, since m itself does. Therefore,

1
Z my; < my + 2 (E?’m)

1<

9

= —m
g
18
—m,

— 31

because m; < %%m since m goes strictly left of L{m;).

For the inductive step, if m has height ¢, then all the matches my,..., m; have height
at most ¢ — 1, by definition of height. Therefore the cost charged to m is

len; (m) = Z (my + len;.1 (my))

1<5<
< Z my; -+ m; Z 18 ’ (by inductive hypothesis)
- - 7 7 / 31
1<5<t 1<p<i-1
X w) e X (R)
. - ' \31
1<7<1 t<pi—1
18 1817
S Em 14+ Z (:9,—1)
1<p<i-1
P
-m ¥ ().
o\ 31
1<p<s

Therefore, the greatest possible sum of lengths of matches that a match m can pick
up directly through phase 2 is

18\’ _ 18
len;(m) <m Z (_3?) < Em
- 1<j <00

and the total cost charged to m through phases 1 and 2 is

18\ /150 37
<1+ o) (k-
W(+13)(4 Iﬁ)m

4929
< - 1147 .
52 208

23

At the end of phase 2, for any two matches m; and my occurring in that order, at least
one of the following is true:

(1) mo does not begin in R(m;), or

(2) mg is my-light.

Phase 3. Iterate the following step: Charge to the first remaining match m all the
matches that are m-light; delete all the matches so charged.

We now derive a bound on the cost picked up by a given match through phase 3. As
with the m-heavy matches, we will divide the m-light matches into classes based on their
lengths. Define, for each 1,

Li(m) = {m" : m' is m-light and £~1— <m' < %n—t-} .
First observe that Ly = § (because no m-light match can have length m/2 or greater), and
that L; = 0 for all ¢ > logm — 1 (by definition of L;). Since the longest that any match m
can be is D characters, it follows that L;(m) = § whenever ¢ > log D — 1.

Now, for some 1 < ¢ < log D, let L;(m) = {my,...,m,}, occurring in that order.
Then, for any two matches m’ and m” in L;(m) occurring in that order, m” does not
begin in E(m'); otherwise, since m' and m” differ by at most a factor of 2 (since they are
both in L;(m)}, m” would be m/-heavy and would have been taken care of by phase 2.
Therefore, if ry,...,r, are the right ends of my,... , My, we must have

1 .
rip1— T > —my, for1<j3<p-1

16

so that, summing over all 7,

(The first inequality above holds because all the m; begin in R(m).) Now, noting that,
since my, is m-light, m, < wl%m, we have

; 9
m!EL; (m)

Since this bound holds for all the sets L;(m), we have

I

m' is m-light

mlog D.

| o

© Thus the total cost charged to a match m through phases 1, 2 and 3 is

4929 1147 9
< k— 1+ =logD .
“(52 2(}8)<+80g)m
Phase 4. For the remaining matches my,..., m; with right ends rq,...,r;,

1
rs — Ty > =Ny
J+1 J 16 3

1
so that n_r1>—1—6 Z my

1<j<-1
or Z my < my+ 16 (rp — r1)
1<5<l
< 17N.
Since each match now carries a charge,
Y, m< Y (myte(my)
m a match 1<5 <!
9 4929 1147
; 1+ =logD - :
< z (m;,%—(—3—8 og) (55 k 208)171])

1<y<l

= O(kN log D).

]

We will now establish a bound on the number of nonperiodic matches that the algo-
rithm remembers. To this end, we will need to examine the way in which the k-meshes of
the remembered matches interact. This is done in lemmas 4.7 and 4.8. But first, we need

some notation for the set of leaves of a k-mesh:
Definition. For a nonperiodic match m remembered in configuration €, denote
Ag(m) = {v : (v,w) is part of a k-mesh for m in C}.

Now we can show that there are no shared leaves either within a k-mesh or between

k-meshes.

25

Figure 9.
Paths in a k-mesh.

Lemma 4.7, For a nonperiodic match m remembered in configuration C,

’)\c(m)! Z k—1.

Proof. If not, then there are critical paths (v,w;) and (v, w2} in the k-mesh that share the
same leaf v, and with distinct displacement values (see Figure 9).

Assume without loss of generality that d{wsz) > d(w:). Then word{w;)} and word(ws)
agree at two distinct positions that are no more than ll—Gm < —éd(wl), by conditions (C3)
and {C2) of the definition of critical path. So the shorter of word(w;) and word(wz) is
periodic, contradicting condition (C1).

L]

Lemma 4.8, If m and m’ are both nonperiodic matches remembered in configuration
C, then

Ao(m) N Ae(m') = 8.

Proof. Suppose to the contrary that v € Ag(m) N Az(m'). Assume wlog that m and m’
occur in that order. So (v,w) is a critical path for m, and (v,w’) is a critical path for m/,

Now by condition (C4) of the definition of critical path of m/, m occurs along this
path at depth at most E%m, so that, in particular, word (w) occurs along this path at depth
at most '

1 9 1 1 1
T + (Igm — §m> =gm < Zword(w}.

So word{w) is periodic, contradicting condition {C1) for m.

26

The bound on the number of nonperiocdic matches is now immediate:

Theorem 4.9. The algorithm remembers at most t/(k — 1) nonperiodic matches.

Proof. If nonperiodic matches my,..., m; are remembered in configuration C, then by
lemmas 4.5 and 4.6,

t> Y Po(m)| =ik —1)

1<i<t

or

5. Discussion.

The folklore of pattern matching says that most of the theoretical difficulties are caused by
patterns that rarely occur in practice, periodic patterns for example. Despite the rather
formidible form of our second algorithm, and the extravagantly large constants that come
out of its proof, the algorithm will never need to use its memory, nor will it come close to

the theoretical bounds, unless the patterns are

{a) periodic,
(b) overlap each other to a high degree, or
(¢} lengthening geometrically.

Examples that cause the algorithm to remember even two matches are difficult to construct.

We have omitted any discussion of the preprocessing needed to set up the memory
and shift functions. Suffice it to say that a suitable adaptation of the pattern-matching
algorithm itself can easily discover the required information. See [6] for details. In the
worst case, this information could require a huge amount of space; but again, only if the
patterns are pathologically bad as described above.

In summary, allowing multiple patterns introduces substantial difficulties over the
Boyer-Moore algorithm, but they can mostly be deait with satisfactorily (if not as spec-
tacularly as Boyer-Moore}. The algorithm behaves well in practice, as long as one avoids

pathological patterns.

27

6. References.

1.

Alfred V. Aho and Margaret J. Corasick, “Efficient string matching: an aid to biblio-
graphic search”. CACM 18 (1975), 333-340.

Robert S. Boyer and J. Strother Moore, “A fast string searching algorithm”. CACM
20 (1977), 762-772.

Beate Commentz-Walter, “A string-matching algorithm fast on the average”. Proceed-
ings of the Sixth Colloquium on Automata, Languages, and Programming (Springer-
Verlag, 1979), 118-132. '

Leo J. Guibas and Andrew M. Odlyzko, “A new proof of the linearity of the Boyer-
Moore string searching algorithm”. SIAM J. Computing 9 {1980), 417-438.

. Donald E. Knuth, James H. Morris, Jr., and Vaughan R. Pratt, “Fast pattern matching

in strings”. SIAM J. Computing 6 (1977), 323-350.

. M. A. Sridhar, Matching Multiple Patterns from Right to Left. Ph.D. dissertation,

University of Wisconsin-Madison, August 1986.

28

	Matching Multiple Patterns From Right to Left
	Dartmouth Digital Commons Citation

	tmp.1599599163.pdf.cphyl

