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An Object-Oriented Learning/Design Support Environment

1.0 Introduction

We present an object-oriented experimental learning and design support environment, called AVT,
for an Algorithm Visualization Tool, implemented in Digitalk's Smalltalk/V ! on a Macintosh
[12. AVT provides a domain-independent visualization tool, an exploratory learning environment,
and an experimental heuristic design environment. Algorithm visualization is the exploration of ways
to visualize intuitively the computational behavior of an algorithm using multiple views, some of
which are visual in the graphical sense [2,4]. AVT employs other views (combining text and
graphics) to explain the probiem, the strategy, the heuristics, and the reasoning process behind the
solutions. User interaction in AVT includes not only passive viewing of the animated algorithmic
process but also active participation in the design of the steps of the algorithm. Qbject-Qriented
Programming (OOP) offers an attractive paradigm for rapidly implementing heuristics for our
experimental environrient and provides the adaptability for changing software requirements as well
as more coherent and understandable code {1,12]. Inheritance properties of OOP languages capture
natural mechanisms such as specialization, abstraction, and evolution allowing us to model our

gnvironment in a more natural manner [11].

1.1 Motivation

The initial implementation of AVT focuses on heuristics for VLSI (Very Large Scale Integration)
layout design problems, an area of both economic and educational importance. Since intuition is the
basis of heuristic design strategies, these strategies are not easy to teach or learn. AVT provides an
exploratory approach to learning and design specifically to fill this gap left by other tools in industry

and education, 1.e., to 2xplore heuristic design inside a learmning environment [4].

1 Smalltalk/V is a registered trademark of Digitalk, Incorporated.
2 Macintosh is a trademark of Apple Computer, Incorporated.



Using algorithm visualization, AVT can be used as supplementary material for an algorithms course
[2,4], a core course Tequirement in any computer science curriculum. An algorithms course teaches
algorithm design methodology and introduces the concept of algorithm complexity with respect to
optimal solutions. It also acquaints the student with a class of "very hard" problems (known as NP-
Complete or intractable problems) for which no known efficient optimal algorithms exist. A

standard teaching method for an algorithms course is to illustrate them by examples.

AVT can also be used as a learning and research tool by both computer science and electrical
engineering students in the area of computer-aided chip design. Recent advances in VLSI
technology make it possible to put more and more components on a chip. With the decrease in scale
to smaller dimensions, the effects of on-chip wiring become more important with respect to speed of
operation, processing costs, and reliability [9]. Hence, the problem of efficiently designing a chip
automadcally is very important. Unfortunately, almost all VLSI algorithms are inherently intractable;

thus, heuristics are used to develop algorithms based on human intuition.

1.2 Problem Domain Implemented

VLSI Layout design involves the assignment of logic circuits to physical design modules, the
placement of these design units onto larger function modules, and the determination of the routing
patterns for interconnection [6]. Although these problems are closely related, they have been treated
separately because of the inherent computational complexity of the entire layout design process.
Layout is divided into a placement and a routing phase. Placement consists of the assignment of the
logic modules to positions on the chip. The routing phase is usually divided into two stages:
global routing, which assigns nets to channels, and detailed routing, which determines the
final routing of the connections within the channels [3]. The primary goal in layout design is to
minimize the total silicon area occupied by the chip. Since most of the chip silicon area is composed

of the interconnections {wiring) between electronic components, the parameters to optimize in the



layout process are 100% completion of routing, minimum total wire length, and minimum chip area

[7]. These parameters often conflict, i.e., minimizing one may increase another.

2.0 Overview of AVT

The purpose of AVT is to promote a conceptual understanding of algorithm behavior for both a
novice and an expert algorithm designer. AVT uses algorithm visualization through multiple views
to achieve this goal. These multple views include: (1) an animation view, containing dynamic
visual images of the algorithm as it executes; (2) a learning view, consisting of a context-sensitive
help system in which the user explores background information of the problem at hand or retrieves
explanations of the heuristics decisions made during execution; (3) a data structure view, providing
the user with the ability to examine the values of data structures execution; and (4) an algorithm (or

code) view, which displays the abstract high-level algorithm, accessible and modifiable by the user.

The abstract architecture of AVT consists of several domain-independent modules that supervise user
interaction with the mustiple views in the learning/design support environment. The modules include
the Visualization Manger, the Execution Manager, the Algorithm Editor/Compiler, the Help System
Manager, and the User-Interface Manager. Figure I illustrates the visualization window of AVT in
which algorithm execution occurs. The animation pane, supervised by the Visualization Manager,
shows the animated results of algorithm execution. Figure 1 illustrates a problem instance for the
domain of detailed routing, The result pane displays the problem parameters selected by the user
as well as the dynamically changing optimization parameters of interest, while the algorithm pane
displays the abstract algorithm. The Execution Manager supervises algorithm execution and update
of other dynamically changing problem parameters in the algorithm and result panes, respectively.
The Execution Manager also handles the actions of the user-activated buttons Help, Next,

Explain, and Modify, in the control pane.



The menu bar at the top of the screen (see Figure 1) contains the Run, Algorithms, and Options
menus, provided by the User-Interface Manager for input of problem parameters. The Run Menu
contains selections tor running the same or a new example, for examining the data structures of the
domain object, and f-r editing the selected algorithm. The Algorithms and Options menus are
domain-dependent and vary according to the problem domain selected. The Options Menu has
selections for various input problem parameters, while the Algorithms Menu lists selections for the

algorithms currently implemented in the selected problem domain.

The user may activate the Algorithm Editor/Compiler through a selection on the Run Menu for

creating, editing, and verifying the syntax of an algorithm. Some of the user-modifiable instance
variables of an algorithm step object include userName, msgName, args, trace, and context.
The "userName" is a mnemonic user-defined name for the selected algorithm step which appears in
the algorithm pane view of visualization window. The "msgName" is the name of the method
actually executed when AVT interprets this step, and "args” are the arguments for the method
"msgName."” The user sets the trace instance variable to true if he wants the decisions of this step
recorded for use by the Help System Manager. The "contéxt“ variable optionally contains key
word(s) used by the Help System Manager for activating context-sensitive help in a hypermedia help

window,

The Help System Manager supervises the actions of the two control buttons Help and Explain.
Figure 2 illustrates a typical hypermedia help window activated by pressing the Help button in the
domain of global routing. Hypermedia is a popular approach to computer applications dealing with
on-line presentation of large amounts of loosely structured information, such as documentation,
instructions, or computer aided instruction (CAI) [8,13]. A user navigates through the hypermedia
or hypertext information by selecting a topic from the topic pane or by clicking on embedded links
(highlighted words) in the text pane. Hypermedia emphasizes user control by providing

information to those who need it (the novice) without boring those who do not {4]. The user may



also activate another hypermedia help window for instructions on how to use AVT by a menu
selection on the Run Menu. All hypermedia browsers include editing facilities for entering and
modifying topics and their associated text and graphics images. The Help System Manager also
handles the explanation facility which the user activates by pressing the Explain button in the
visualization window. When activated, an explanation window pops up showing the sequence of

heuristic decisions and their rationale made during algorithm execution.

3.0 OOP Design of AVT

3.1 Classes in AVT

The AVT environment for VLSI layout design problems consists of a set of methods (operations)
and objects (data structures that contain its state). In AVT, we define objects and a set of messages
for the following: (1} the visualization tool, (2) the hypermedia help facilities, (3) each problem
domain, (4) the algorithmic language, and (5) the algorithms themselves. We have defined the
following domain-independent classes in our experimental environment: VizTool,
HyperMediaBrowser, AlgorithmStep, Algorithm, AlgCompiler, AlgCommand, and a
class for each of the algorithm commands defined in AVT's algorithmic language. The domain-
dependent classes Chip, ChipGR, ChipDR, and Net define some of the objects for
implementing the routing problem domains [4]. Figure 3 displays the semantic hierarchy of AVT, a

VizTool object, showing the major instance variables and their classes.

3.2 Benefits of OOP

AVT takes advantage of the OOP property of abstract classes. An abstract class is a class out of
which no objects are ever created but which serves as a superclass to its subclasses {10,11]. An
abstract class contains all the operations (methods) and variables which are common to all its
subclasses. One example of an abstract class used in AVT is the domain-dependent class, Chip. Its
subclasses are ChipGR for the global routing domain and ChipDR for the detailed routing domain.

We define instance variable cells in abstract class Chip, but we define its representation in the



subclasses ChipGR and ChipDR, allowing us to cxpeﬁment with different implementations for the
same data structure. Figure 4 shows the class hierarchy of the routing domains. Another example of
an abstract class is the domain-independent class AlgCommand. AlgCommand contains
subclasses for each of the eight commands in AVT's algorithmic language. Methods for initialization
or displaying text or error messages are common to all subclasses [4]. Thus, these methods are
defined in AlgCommand. Since the parsing method for each command is slightly different, a
parse:with: method is defined within each command subclass. Defining separate subclasses for
each command further specializes an algorithm command and simplifies design of the compiler.

Figure 5 shows the class hierarchy of AlgCommand and each of its subclasses.

4.0 Smalltalk Contributions

The Smalltalk programming language provides a variety of user-interface, window, and graphics
tools for rapidly prototyping our learning/design support environment. Additionally, using
consistent design principles in a completely object-oriented environment simplified the development
of AVT. We discuss below several examples of how the use of Smalltalk contributed to the overall

design of AVT.

4.1 Execution Manager

AVT starts execution of an algorithm by a user selection from the Run Menu. AVT knows nothing
about the algorithm except that it consists of a sequence of steps which must be executed. After
execution of the first algorithm step, AVT returns control to the user. The user may continue
execution by pressing the Next button in the visualization window or activate one of the help
utilities. If the user presses the Next button, then AVT executes its next method, which consists of
an event loop in which AVT executes algorithm steps until a "waitEvent” (pause) or "halt" step
occurs. At the "waitEvent," the Execution Manager again waits for user interaction. Ata "halt" step,
AVT exits the evem loop and waits for user action. Placement of a "waitEvent" step within an

algorithm is user-modifiable through the Algorithm Editor/Compiler.



AVT executes an algorithm step by sending the Algorithm object the message performStep:
aStep. The method performStep: in class Algorithm interprets an algorithm step by determining
from the argument "aStep" the receiver object, the method name to execute, and the number of
arguments for this method. Then it sends the receiver object the message perform: aSymbol if
no arguments are present or perform: aSymbol with: anArg if one argument is present, and so
on, with up to four arguments. Since the domain object does not contain the method "perform: "(or
"perform:with:,” etc.), the message is passed up the hierarchy of superclasses until it reaches the
class Object, in which the above method appears. A system primitive then executes the method

aSymbol in the receiver object with any arguments present.

4.2 Dynamic Binding and Pelymorphism

Polymorphism, another useful property of OOP languages, is the ability of objects from different
classes to respond to the same message (operation), such as in objects from subclasses of an abstract
superciass [10]. Binding refers to the time when the data types of objects are determined.
Languages that determine the data type of an object at run time have late binding, enabling languages
such as Smalltalk to use the same message name for many different objects. If we combine late (or
dynamic) binding w'th polymorphism, then we get an enhanced form of polymorphism in which
objects from subclasses of different classes respond to messages with the same name. For example,
the method perform:with: defined in class Object is also defined in class VizTool. In the class
VizTool, the User-Interface Manager employs the "perform:with:" method to handles the actions for
menu selections in the visualization window. Since most of these selections are domain dependent,
then AVT's "perform:with:" method must first determine who the receiver object is (either itself or
the domainObject), and second, send the method name (argument of "perform:") with its argument
(argument of "with:") as a message to the appropriate receiver object. In this way, late binding and
polymorphism simplify coding by allowing the same method name to be used for totally different
objects. This would be much more cumbersome to implement in conventional programming

languages.



4.3 Predefined Classes

Smalltalk provides window, user-interface, and graphics tools which are useful in creating an event-
driven application program [5]. An event-driven program sits in a loop waiting for user interaction.
Smalltalk has a variety of window types which are subclasses of the predefined class Pane [5].
There are text windows, graphics windows, list windows, and button windows. Each window
class has all the necessary methods for manipulating themselves (e.g., opening, closing, scrolling,
sizing, etc.). For example, a text-window object from the TextPane subclass of class Pane has
methods for all the text editing functions normally associated with text windows. Thus, we can

"reuse” system code instead of writing our own text editor.

Smalltalk also has simple methods for the handling of mouse events in event-driven programming
systems. A mouse event occurs whenever the user clicks somewhere on the screen with the mouse.
The action taken by the system depends upon where the mouse event occurs (e.g., in a window, in a
menu, etc.). The syst:m must decide what kind of event occurred, where the event occurred, and
what action, if any, to 1ake. For example, to provide user interaction with a control button like the
Next button used in AVT's visualization window, a Smalltalk programmer only writes code for
performing the button action and provides a button window (ButtonPane class) for what is known
as the Control Pane in:AVT's visualization window (see Figure 1). A ButtonPane object has
instance variables for (1) the names of the buttons used, (2) the relative size and position of the
button box within the window, and (3) the names of the methods used to accomplish the actions of
each button. Since the Smalltalk environment itself incorporates such windows and user-interface
functions, we reuse system code by copying and modifying one of the system routines which uses

such windows or buttons [5].

Other software tools in Smalltalk include the graphics primitives in the classes Point, Rectangle,

Bitmap, Form, and BitBit, along with BitBIt's subclasses, Pen and CharacterScanner. These



classes provide methods for drawing graphical images, for writing text in graphics windows, and for
building animation sequences. For example, the method drawGrid: in class Chip uses a class Pen
object to draw a grid in the animation pane of the visualization window. Class Pen provides the

method grid: for automating this process (see Figure 1 for example of a grid in animation pane).

4.4 Access to Data Structures During Execution

The algorithm displayed to the user by AV'T corresponds to the top-level or initial design for solving
the problem. Each step represents an abstract operation of the algorithm, and AVT highlights each
step as it executes. The "waitEvent" step is one such abstract command in AVT's algorithmic .
language. Whenever AVT executes a "waitEvent,” the user can inspect the data structures of the
domain object via the menu selection InspectChip on the Run Menu in the visualization window.
"InspectChip"” uses the method inspect of class Object [5], one of the many methods provided by
Smalltatk for both user and programmer access to data structures. The method "inspect” sends a
message to class Inspector to open an inspection window on the data structures of the domain object

chip.

5.0 Summary

Choosing an OOP paradigm not only allowed us to model the domain problems in a more natural
manner via the class hierarchies and inheritance mechanisms, but it also made system prototyping a
faster and simpler process. The particular QOP language used, Smalltalk [5], enhanced and
expedited development by providing predefined classes with software tools for graphics, user

interface, and windows. This particularly encouraged code sharing and reuse.
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