Finding Largest Empty Circles with Location Constraints

L Paul Chew
Dartmouth College

Robert L. Scot Drysdale
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr
Part of the Computer Sciences Commons, and the Engineering Commons

Dartmouth Digital Commons Citation

Chew, L Paul and Drysdale, Robert L. Scot, "Finding Largest Empty Circles with Location Constraints" (1986). Computer Science Technical Report PCS-TR86-130. https://digitalcommons.dartmouth.edu/cs_tr/ 29

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of Dartmouth Digital Commons. For more information, please contact dartmouthdigitalcommons@groups.dartmouth.edu.

FINDING LARGEST EMPTY CIRCLES WITH LOCATION CONSTRAINTS

L. Paul Chew and Robert L. (Scot) Drysdale III Technical Report PCS-TR86-130

Finding Largest Empty Gircies with Iocation Constraints
L. Paul Chen(*) and Robert L. (Scot) Drysdale. II
Dept. of Mathematics $\%$ Computer Science
Dartmouth Coliege
Hanover. NH 03755

MBSTRACT
Let S be a set of n points in the plane and let CH(S) represent the conver hull of S. The Laxgest Enpty circle (EEC) problem is the problem of Einding the largest circle centered within CH(S) such that no point of sies within the circie. Shamos and Hoey [4] outined an algorithm for solving this problem in time O(n iog n) by Eirst computing the Voronoi diagram, $V(S)$, in time $O(n \log n)$, then using $V(S)$ and $C H(S)$ to compute the largest empty circle In time $O(n)$. Toussaint [7] pointed out some problems with the algorithm as outined by Shamos and presented an algorithm which, given $V(S)$ and $C H(S)$, solves the LEC problem in time O(n logn). Preparata and Shamos [2] show that the original clam was correct by outhining an algorithm that computes the wec in $O(n)$ time given $V(S)$ and $C H(S)$. We generalize their method to show that given $V(S)$ and any convex k-gon P, the $H B C$ centered within P can be found in time $O(k+n)$. We aiso improve on an aigorithm given by Toussaint for computing the LEG when the center is constrained to lie within an axbitrary simple polygon. Given a set S of n points and an arbitrary simple k-gon p, the Iargest empty circle centered within P can be found in time 0 (kn $+n$ iog n). This becomes $O(\mathrm{kn})$ if the Voronoi diagram of S is aiready given.
(*) Supported in part by NSF granc MCS-8204821.

TNTRODUCTION

Let s be a set of mpoints in the plane, and jet ch(s) xepresent the convex hull of S. The Largest Empty Circie problem (LEC) is to find the largest circle such that no point of S is within the circle and such that the center of the circle is within CH(S).

Shamos and Hoey [4] gave an $O(n \log n)$ algorithm for computing $V(S)$, the Voronoi diagran of S, and pointed out that the LEC problem (and many other problems in computational geometry) can be solved guickiy if one starts with the Voronoi diagram. Given n data points in the plane, the Voronoi diagram partitions the plane into n regions, one associated wth each point (see Figure 1). The region associated with data point ponsists of all points in the plane that lie closer to p than to any of the other n-1 data points. The boundaxies of these voronoi regions form a planax graph with o(n) vextices. Each of these Voronoi vextices is the center of an empty circie that intersects three or moxe points of S.

Note that the LEC must either (l) intersect two of the original points and be centered at a point on the conver huil ox (2) intexsect three of the oxiginal points. Rny other circle is incompletely constrained and could thus be enlarged. This is equivalent to saying that the LEC must be located eithex at a point where $V(S)$ intersects $C H(S)$ or at one of the Voronoi vertices. Thus, the LEC problem can be solved using a three step algorithm: first, compute $V(S)$ in time $O(n \log n)$ [4]; second, check the Voronoi vertices in time $O(n)$ using a simple depth-first-search of the Voronoi diagram graph; third, check the points where $V(S)$ intersects CH(S). Shamos $[4,5,6]$ has claimed that the third step can be done in time ofn, but was vague about the
details. Toussaint [7] has pointed out problems with the methods outlined by Shamos, and has given an $0(n \log n)$ algorithm for the third step. preparata and Shamos [2] show that the original claim was correct by outlining an o(n) algorithm for this step. We present a more general algorithm that can be used to find che wec centered within an arbitwary convex k-gon in time $o(k+n)$ assuming that $V(S)$ is already given.

In the same paper [7], Toussaint gives an o(n ${ }^{2}$ log n) algorithm for solving the LEC problem when the center of the cixcle is constrained to lie whin an arbitrary simple n gon. We give an $O\left(n^{2}\right)$ aigorithm for this problem. More generally, we show that given a set S of n points and a polygon P with k vertices, the argest empty circle centered within P can be found in time $O(k n+n \log n)$ where the term $n \log n$ is needed just for the construction of the Voronoi diagram of 3 .

We assume that polygons are simple (edges do not cross) and are presented as an ordered list of vertices (clockwise ordex). All points are presented in the usual Cartesian coordinates. As in [1], to simplify the presentation of the algorithm we form a boundary by preprocessing the points involved so that we need consider only finite edges and regions. This is used strictiy to simplify the presentation of the algorithm, but is not otherwise needed. For us then a Voronoi diagram is made up of Voronoi vertices, Voronoi edges, and boundary edges. The Voronoi diagram is given as an edge-ordered representation [1]:

1. if eis an edge joining vertex v to vertex w, then e is represented by the pair of directed edges $\{(v, w),(w, v)\}$;
2. each vertex v has associated with it not only its coordinates, but also a list in counterclocknise order of all directed edges whose source is $v ;$
3. each directed edge (v, w) has associated with it the edge (w, v) as well as the name of the region immediately to the right of (v, w).

The representation of a Voronoi diagram as produced by Shamos' O(n log n) algorithm can be processed in $O(n)$ time to produce such an edge-ordered representation, or the desired representation can easily be built as the Voronoi diagram algorithm is running.

We make use of the following theorem:

Theorem (Toussaint [7]). Given a set S of n points and k-gon P, the largest circle C such that the center of C is whinin P and such that no point of S lies winh c must be a circle centered at either: (1) a Voronoi vertex of $V(S),(2)$ a vertex of the $k-g o n P$, or (3) an intersection point of P and $V(S)$. (See Figure 2.)

CONVEX POLYCONS

The following algorithm checks each of the 3 classes of points mentioned in the previous theorem. The vertices of the convex polygon P and the intersection points of P with the Voronoi diagram are checked in the loop in step 3 of the algorithm. The basic idea, like that outlined in preparata and Shamos [2], is to follow the Voronol edges around P, staying outside of P and as close to P as possible. Our step is more complex than theirs because we must deal with general convex polygons rather than the special case of the convex hull. The Voronoi vertices are checked in step 4 . Note that to check the Voronoi vertices in $O(n)$ time we must be able to determine whether a Voronoi vertex is within P in $O(1)$ time. This is done using an intersection count (a count of intersections with p) for each edge of the Voronoi diagram. This intersection count for each Voronoi edge is used to keep track of whether the the Voronol vertices are inside or outside of p. For instance, if one endpoint of edge e is outside P and the intersection count for edge e is even (odd) then the other endpoint is outside (inside) p.

Some care must be taken when a vertex of p lies on an edge of the vononoi diagram or when voronoi vertex lies on an edge of P (see, for example, the discussion in [3] on determining whether a point is inside a polygon). Fox our presentation, we wili treat a vertex of p that lies on an edge of the Voronoi diagram as if it is actually located a very small distance to the right or, if the edge extends to the right, a small distance to the right and a bit down. Similariy, a Voronoi vertes that lies on an edge of P wil be treated as if it is actually located to the left or to the left and a bit up.

We use s to represent both a point of S and the Voronoi region of the point s. If p is a vertex of the polygon P then we use $E(p)$ to represent the edge of P clockwise from p and with p as an endpoint. we use $\mathbb{R}(p)$ to represent the ray with endpoint p in the direction of $E(p)$. $E(v, s)$ represents an edge of region s, starting at vertex v of region s and going clockwise.

Input: a set S of n points, a convex k-gon P.
Output: the largest empty circle centered within P.
Method: (Note that vertices of P that lie on a Voronoi edge and Voronoi vertices that lie on an edge of P can be handied as outlined above.)

0 . Compute V(S) the Voronoi diagram for S; work within a rectangle that contains both S and P (this makes all regions and edges finite).

1. Keep an intersection count for each edge of $V(S)$; initially, the count will be zero for each edge.
2. Choose any vertex p of P; find which Voronoi region contains p and let s be the data point for that region; find the edge $E(v, s)$ of region s that $\mathrm{R}(\mathrm{p})$ intersects.
3. While more of polygon P do

3a. if $R(p)$ misses $E(v, s)$ then
Mark $\mathrm{E}(\mathrm{v}, \mathrm{s})$ (used just to help with the time analysis);
Set $v=$ next vertex clockwise around s;
3b. else if $\mathrm{E}(\mathrm{p})$ misses $\mathrm{E}(\mathrm{v}, \mathrm{s})$ then
Set $p=$ next vertex clockwise around P ;
Check the circle centered at p through the point s;
3c. else

Increment the intersection count for $E(v, s)$;

Check the circle through s centered at the intersection of e(p) and $E(v, s)$;

Set $s=$ region adjacent to s through $E(v, s)$.
4. Do a depth first search of the Voronoi diagram graph, using the intersection count Eox each edge to determine which of the Voronol vertices lie within P (each time you pass an intersection you switch Exom inside to outside or vice versa); find the tec among those circles centered at Voronoi vertices within P.
5. Report the largest of the empty circles found in steps $3 \mathrm{~b}, 3 \mathrm{c}$, and 4.

Analysis:
0. O(n $\log n)[4]$.

1. O(n) time to initialize since there are $O(n)$ edges.
2. This step takes $O(n)$ time. We find the region containing p by simply checking each data point of S to find the closest. We find the edge e_{s} that $R(p)$ intersects by simply checking each edge of region 5 .
3. This $100 p$ is done $O(k+n)$ times. To see this, note that each time through this loop one of $3 a, 3 b$, and $3 c i s$ executed. We show these instructions are executed at most $O(n), O(k)$, and $O(n)$ times, respectively.

3a. It is clear that the following loop invariant holds: sis a region that P intersects; $v i s$ outside of P; either $E(v, s)$ is outside of P or it intersects P. So an edge is marked iff it is outside the polygon P and part of a Vorono region that P intersects. These marked edges form a simple polygon Q (see Figure 3). (Technically. O is not quite a simple
polygon because some edges are used more than once, but each such edge can be considered as two edges, As the algorithm runs we march clockwise around 9 , marking each edge as we go. Because the edges of 9 are also Voronoi edges and chere are only $O(n)$ Voronol edges, step $3 a \operatorname{can}$ be executed at most $O(n)$ times.

3b. There are only k vertices in polygon P and the loop ends when we finish the polygon: thus this instruction can be executed at most k times.

3c. Since the poiygon P is convex it can intexsect a single edge at most twice. There are $O(n)$ edges, so this instruction can be done at most $O(n)$ times.
4. O(n) time to do depth first search on a graph of size $O(n)$.
5. O(1).

This gives us the following theorem:

Theorem. Given a set S of n points, the argest empty circle cencered within an arbitwaxy convex $k-g o n p$ can be found in time $O(k+n$ log $n)$. If the Voronoi diagram for S is given then the LEC centered within p can be found in time $O(K+n)$.

As an immediate corollary:

Corollary. Given a set S of n points and $V(S)$ the Voronoi diagram of S, the largest empty circle centered within the conver huli of 5 can be found in time $O(n)$.

Fox the LEC problem as stated in the Corollaxy that is, find the REC centexed within the convex hull of s) the algorithm above can be simplifiad. Fox instance, the vertices of the convex hull are points of s; thus, they do not need to be checked as centers of possible Lecs.

With the exception of step 2 in which the region that contains the initial point of P is determined, the method used to find the intersection points of the convex polygon and the Voronoi diagram did not need any of the properties of a Voronoi diagram other than that such a diagram is a convex planar subdivision (a subdivision of the plane in which ali regions are convex). Note that the region that contains the initial point of p can be determined in $O(n)$ time by simply comparing the point with the boundaries of each region. This observation immediately leads to the following corollary that holds for convex planar subdivisions or (as in [1]) for any planar subdivisions that can be easily triangulated for instance, suodivisions with star-shaped regions).

Coxollary. The intersection of a convex k-gon and a convex planar subdivision of size n can be found in time $O(k+n)$.

SIMPLE POLYGONS

The algorithm for convex polygons can be used exactily as written to find the $G E C$ centered within an arbitrary simple polygon in time $0(k n+n \log n)$.

Input: a set S of n points, a simple $k-g o n P$.
Output: the largest empty circie centered within P.
Method: Exactly as for the convex case.
Analysis:
0.-2. As above.
3. This step takes time $0(\mathrm{kn})$. Because p is no longer convex, we may end up going all the way around a given region in step 3 a for each time that we get a new polygon edge in 3b. The best we can say is that for a given vertex p of P steps $3 a$ and $3 c$ will each be executed at most $O(n)$ times. Since there are k vertices of p this gives a time bound of $O(k n)$. 4-5. As above.

The algorithm outlined above clearly checks all the appropriate points. Step 3 has the worst time bound. Note, however, that there can be kn intersections between a polygon of size k and a Voronoi diagran of size n (see Figure 4): so as long as we check all the intersection points this bound cannot be improved. This gives us the following result for simple k-gons.

Theorem. Given a set s of n points and a simple k-gon P, the largest empty circle centered within P can be found in time $O(k n+n \log n)$. If the Voronoi diagram for s is already given then the LEC can be found in time $O(k n)$.

REFERENCES

[1] D. Kirkpatrick, Optimal Search in planar Subdivisions, STAM Journal of Computing 12:1(1983), 28-35.
[2] F.P. Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag (1985).
[3] R. Sedgewick, Algorithms, Addison-Wesley (1983).
[4] M. I. Shamos and D. Hoey, Closest-Point Problems, Proc. I6th IEEE Symposium on Foundations of Computer Science (1975), 151-162.
[5] M. I. Shamos, Problems in Computational Geometry, Carnegie-Mellon University (1977).
[6] M. I. Shamos, Computational Geometry, Ph, D. Thesis, Yale University (1978).
[7] G. T. Toussaint, Computing Largest Empty Circies with Location Constraints. International Journal of Computer and Information Sciences 12:5(1983), 347-358.

Figure 1. A Voronoi diagram.

Figure 2. Centers for possible largest empty circles.

Figure 3. The polygon made of Voronoi edges containing the convex polygon P.

Figure 4. kn intersections between a k-size polygon and a voronoi diagram of size n.

Figure 1

Figure 2

Figure 3

Figure 4

