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Pinding Lergest Empty CUircles with Location Constraints

L. Paul Chew! ¥} and Robert L. {Scot) Drysdale, II1X
Dept. of Mathematics & Computer bBolence
Dartmouth College
Hanover, NH 03755

iet § be & set of n points in the plane and let CHIS) represent the

convex hull of 5. The Largest HEmpty Circle [LEC) problem 1s ithe probiem of

.

finding the largest circle centered within CH(S) such that no point of § iies
within the circie., Shamos and Hoey [4] outiined an algorithm for solving this
problem in time O{n log n} by first computing the Voronoi diagram, V{5}, in
time Oln log n}, then using V{5) and CH{3} to compute the largest emply circle
in time Of{n). Toussaint [7] pointed ocut some problems with the algorithm as
cutlined by Shamos and presented an algorithm which, given V(5) and (H{Z},
zolves the LEC problem in tiwe O{n log n). Preparata and Shamos [2] show that
the original claim was corxrect by cutlining an algorithm that computes the LEC
in Of{n} time given V{5) and CH{S). We generalize their method to show fhat
given Vi8] and any convex k-gon P, the LEC ventered within P can be found in
time O{k+n}. We also improve on an algorithm given by Toussaint for computing
the LEC when the center is constrained to lie within an arbityrsry simple
polygon. Given a set § of n points and an arbitrary simple k-gon P, the
largest empty circle centered within P <¢an be found in time O{kn + n iog nj.

This becomes O{kn) If the Voronol diagram of 9 is already given.

{*} Supported in part by NSF grant MCS-8204821.



INTRODUCTION

Let 5 be a set of n points in the plane, and let CH{EZ} represent the
convex hull of §. The Largest Empry Circle problem {LEC) is to find the
largest circle such that no point of £ iz within the circle and such that the
center of the circle is within CH(S},

Shamos and Heoey {4] gave an O(n log nj algovithm for computing VIiZ}, the
Voronoi diagram of 8, and pointed out that the LEC problem {and wmany other
problems in computational geometry) can be solved guickly if one starts with
the Voronoi diagram. Given n data points in the plane, the Voronoi diagram
partitions the plane into n regions, one assocliated with esch point (see
Figure 1). The region associated with data point p consists of all points in
the plane that lie closer to p than to any of the other n-i data points. The
boundaries of these Voronol regions form a planar graph with O{nj vertices.
Each of these Voronol vertices is the center of an empty circie that
intersects three or more points of 5.

Note that the LEC must either {1) intersect two of the original points
and be centered at a point on the convex hull or {2 intersect three of the
original points. BAny other cilvcle is incompletely constrained and could thus
be enlarged. This is equivalent to saying that the LEC must be located either
ab a point where V(8] intersects CH{S) or at one of the Voronol vertices.
Thus, the LEC problem can be golved using a three step algorithm: first,
compute V{5) in time O{n log n) [4]; gecond, check the Voronoli vertices in
time QO{n} using a simple depth-firvst-zearch of the Voronoi diagram graph;
third, check the points where V{5} intersects CH{S}. Shamos [4, 5, 61 has

claimed that the thiyd step can be dope in time O(n), but was vague about the



details. Toussaint [71 has pointed out problems with the methods outlined by
Shamos , and hasg given an O{n log n} algorithm for the third step. Preparata
and Shamos [27] show that the original claim was corvect by outlining an 3{n}
algorithm for this step. We present a more general algorithm that can be used
to find the LEC centered within an arbitrary comvex X-gon in time O{k+n)
assuming that V(8) is already given.

In the same paper [7], Toussaint gives an G{nziog nt algorvithm for
golving the LEC problem when the center of the cirvie is constrainsd to lLie
within an arbityrary simple n-gon. We give an G(n2} algoritim for this
problem. More generally, we show that given a set 5 of n points and a polygon
P with k vertices, the largest empty cvircle centered within P can be found in
time CG{kn + n log n} where the term n log n is needed just for the
gonstruction of the Voronoel diagram of 3.

We assume that polygons are simple {edges do not cross) and are presented
as an ordered list of vertices {clockwise order}. All points are presented in
the usual Cartesian coordinates. As in [1], to simplify the presentation of
the algorithm we form a boundary by preprocessing the points invelved so that
we need consider only finifte edges and regions. This is used strictly to
simplify the presentation of the algorithm, but is not otherwise needed. For
us then a Voronol diagram s made up of Voronol vertices, Voronol edges, and

poundary edges. The Voronoi diagram is given ar an edge-ordered

representation [11:

1. if = i% an edge joining vertex v to vertex w, then e is represented by

the pair of directed edges {(v,w},{w,v}};



2. each vertex v hag associated with it not only its coordinates, but alsc a
list in counterclockwise order of all directed edges whose source is v;
3. each directed edge (v,w) has associated with it the edge (w,v} as well as
the name of the region immediately to the right of {v,w).
The representation of a Voronol diasgram as produced by Shamos ' Of{n loy n)
algorithm can be processed in O(n} time to produce such an edge-ordered
representation, or the desired representation can easily be built as the
Yoronol diagram algorithm is running.

We make use of the following theorem:

Theorem {Toussaint [7]). Given a set 5 of n points and & k~gon P, the largest

¢irele C such that the center of C is within P and such that no peint of &

3

lies within ¢ must be a circle centered at either: (1) a Voronol wvertex of
V(S), (2} a vertex of the k-gon P, or {3} an intersection point of P and V(5).

{See Figure 2.)



CONVEX POLYGONS

The following algorithm checks sach of the 3 classes of points mentioned
in the previous theorem. The vertices of the convex polvgon P and the
intersection peints of P with the Voronoi diagram are checked in the loop in
step 3 of the algorithm. The basic idea, like that cutlined in Preparata and
Shamos [2], is to follow the Voronol edges around F, staying cutside of P and
as ciose to P as possible. Our step 1s more complex than theirs because we

must deal with general convex polygons rather than the special case of the

i

convex hull. The Voronol vertices are checked in step 4. Note that to check
the Voronol wvertices in O{n} time we must be able to determine whether a
Yoronol vertex is within P in O{1) time. This is done using an intersection
count (a count of intersections with P for each edge of the Voronol diagram.
This intersection count for each Voronol edge is used to keep track of whether
the the Voronoi vertices are inside or outside of P. For instance, if one
endpoint of edge e is outside P and the intersection count for edge e is even
{odd) then the other endpoint is ocutside (inside) P.

Some care must be taken when a vertex of P lies on an edge of the Voronol
diagram or when a Voronoi vertex lies on an edge of P (see, for example, the
discussion in [3] on determining whether a point is inside a polygon). For
our presentation, we will treat & vertex of P that lies on an edge of the
Voronoi diagran a8 1if it is actually located a very small distance to the
right or, if the edge extends to the right, a small distance to the right and
a bit down. Similaxly, a Voronol wvertex that lies on an edge of P will be

treated as if it is actually located to the left or to the left and a bit up.



We use s to represent both a point of § and the Vorconol region of the
point 8. If p is a vertex of the polygon P then we use E{p} to represent the
edge of P clockwise from p and with p as an endpoint. We ugse R{p) to
represent the ray with endpoint p in the direction of E{p). E(v,s} represents

an edge of region s, starting at vertex v of region s and going clockwise.

Input: a set § of n points, a convex k-gon P.
Gutput: the largest empty circle ventered within P,
Method: (Note that vertices of P that lie on a Voronoi edge and Voronel
vartices that lie on an edge of P can be handled as outlined above.)
0. Compute V{S) the Voronoi diagram for $; work within a rectangle that

contains both $ and P {this makes all regions and edges finite}.

1
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L. Xeep an intersection count for eac! ; initislly, the count
will be zero for each edge.
2. Choose any vertex p of P; find which Voronol region contains p and let s
be the data point for that region; find the edge E(v,s} of regiocn 3 that
R{p) intersects.
3. while more of polygon P do
Ia. if Rip) misses E{v,s5) then
Mark Ei{v,s) {used just to help with the time analysis):
Set v = next vertex clockwise around g;

3b. elgse if E{p) misses E{v,s5) Lhen

Set p = next vertex clockwise around P;

Check the circle centered at p through the point &)

3¢, else



Increment the interseciion count for B{v,s};

Check the circle through s centered at the intersection of E{p} and

E(v,s};

Set s = region adjacent to s through E{v,s;.
Do a depth first search of the Voronol diagram graph, using the
intersection count for each sdge to determine which of the Voronoi
vertices lie within P {each time you pass an intersection you switch from
inside to outside or vice versa); find the LEC among those circles

centered at Voronol vertices within P.

%, Report the largest of the empty circles found in steps 3b, 3o, and 4.
Analysis:

0. O{n log n) [4].

1. O{n} time to initialize since there are G{n) edges.

2. This step takes O{n} time. We find the region containing p by simply
checking each data point of § to f£ind the closest. We find the edge e,
that Ri{p) intersects by simply checking each edge of region s.

3. This loop is done G{k+n)} times. To see this, note that each time through
this loop one of 3a, 3b, and 3¢ is executed. We show these instructions
are executed at most Ofin), O{k}, and O{n) times, respectively.

3a, It is clear that the following loop invariant holds: § is a region that

P intersects; v is outside of P; either E{v,s) is outside of F or it
intersects F. 5o an edge iz merked iff it is outside the polygon P and
part of a Voronoi region that P intersects. These marked edges form a

simple polygon ¢ (see Figure 3}. (Technically, ¢ is not quite a simple



polygon because some edges are used more than once, bul each such edge
can be conzidered as two edges.) As the algorithm runs we march
cleckwise around &, marking each edge as we go. Because the edges of §
are also Voronoi edges and there ave only O{n) Voronel edges, step 3a can
be executed at most Oln) times.

3b. There ave only k vertices in polygon P and the loop ends when we finish
the polygon; thug this instruction can be executed at most k times.

3o, Since the polygon P is convex 1T can intersect a single edge abt most
twice. There are O{n) edges, so this instruction can be done at most
O{n) times.

4. O(n) time to do depth first search on s graph of size ((n).

5. O(1).
This gives us the following theorem:

Theorem. Given a set § of n points, the largest empty circie centered within
an arbitrary convex k-gon P can be found in time G{k + n log nj). If the
Voronoi diagram for § is given then the LEC centered within P can be found in

time O{k+n).
hs an lmmediate corollary:

Corollary. Given a set 5 of n points and V(S) the Voronol diagram of £, the
largest empty circle centered within the convex hull of § can be found in time

Giny.



For the LEC problem as stated in the Corollary (that is, find the LEC
gentered within the convex hull of 5} the\algorithm above can be simplified,
For instance, the vertices of the convex hull are points of 8; thus, they do
not need to be checked &s centers of possible LECs.

With the exception of step 2 in which the region that contains the
initial point of P is defermined, the method used to find the intersection
points of the convex polygon and the Voronol diagram did not need any of the
proparties of a Voronol diagram other than thet such a diagram is a convex
planar subdivision {(a subdivision of the plane in which all regilons are
convex }. Note that the region that contains the initial point of P can be
determined in O{n) time by simply comparing the point with the boundaries of
each reglon., This observation immediately leads to the following corollary
that holds for convex planar subdivisions or (as in [1]) for any planar
subdivisions that can be easily triangulated {(for instance, subdivisions with

star-shaped regions}.

Corollary. The intersection of a convex k-gon and a convex planar subdivision

of size n can be found in time Ci{k+n).
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SIMPLE POLYGONS

The algorithin for convex pelydgons can be used exactly as written to find

the LEC centered within an arbitrary simple polygon in time Olkn+n log nj,

Input: a set S of n points, a zimple k-gon P.
Oubkpuib: the largest empty circle centered within P.
Method: Exactly as for the convex case.
Analysis
§-2. As sbove.
4. This step takes time O{kn). Bevause P is no longer convex, we may end up
going all the way around a given region in step lJa for each Time thab we

get a new polygon edge in 3b. The best we can say is that for a given

(23

ime

i

vertex p of P steps 3a and 3¢ will each be executed ab most O{n}
Since there are k vertices of P this gives a time bound of O{kn}.

4-5, Az above.

The algorithm outlined above clearly checks all the appropriate points.
Step 3 has the worst time bound, Note, howewer , that there can be kn
intersections between a polygon of size k and a Voronoi diagram of size n (see
Figure 4}; so as long as we check all the intersection points this bound

cannot be improved. This gives us the following rxesult for simple k-gons.

Theorem. Given a set § of n points and a simple k-gon P, the largest empty

circie centered within P can he found in time Olkn + n log n}. If£ the Voronol

diagram for 3 is already given then the LEC can be found in time O(knj.
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Figure

. & Voronoi diagram,

Figure 2. Centers for possible largest empty circles.

Figure 3. The polygon made of Voronol edges containing the convex pelygon P.

Figure 4, kn intersections between a k-size polygon and & Voronoi diagram of
gize n.
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