Dartmouth College
Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

6-1-1984

An Image Processing Software Package for the Laser Scanning
Phase Modulation Microscope

William J. Murray
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

b Part of the Computer Sciences Commons, and the Engineering Commons

Dartmouth Digital Commons Citation

Murray, William J., "An Image Processing Software Package for the Laser Scanning Phase Modulation
Microscope" (1984). Computer Science Technical Report PCS-TR86-128.
https://digitalcommons.dartmouth.edu/cs_tr/27

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/27?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

An Image Processing Software Package
for the
Laser Scanning Phase HModulation Microscope

A Thesis
Submitted to the Faculty
in partial fulfillment of the reguirements for the
degree of

Master of Science

by
wWilliam J. ®Murray

Thayer School ¢f Engineering
Dartmouth College
Hanover, New Hampshire 03753

June 1984

Examining Committee:

Q/&wwm

Chairman

KZ,/(Lt X'C/ ..“,g.;., /

Dl Moo

[/ - Z/é/

Dean of Graduate Studies

e

{
Do v

s\‘J O
(© 1984 Trustees of Dartmouth College _jilli. ..

i
i
7

AN IMAGE PROCESSING SOFTWARE PACKAGE
FOR THE LASER SCANNING PHASE
MODULATION MICROSCOPE
William J. Murray

Technical Report PCS-TR86-128

Thayer School of Engineering
Dartmeuth College

An Image Processing Software Package
for the
Laser Scanning Phase Modulation Microscgope

William J. Murray
M.S. June 1984

ABSTRACT

This thesis documents the most recent effort to develop
a user-friendly image processing software package for the
Laser Scanning Phase dModulation Microscope (LSPMM). The
LSPMM is composed of three integrated subsystems, the Laser
Scanning (LS) system, the Phase #odulation (PM) system, and
Digital Image Aquisition (DIA) system. Under the control of
the image processing software, the DIA system can receive
and store the digital image data, display the image on a
monochrome monitor, and process the image to provide the
microscopist with quantitative information regarding the
image. The implementation of this image processing software
package required the specification of a four level software
hierarchy to serve as an organizational framework, with the
highest level interacting with the LSPM microscopist, and
the lowest level performing hardware control. This
framework should prove useful for the development and
implementation of additional software in the future. The
programs that were developed accept command line arguments;
however, most will interactively query the user 1f the
command line arguments are not known. This software
provides the microscopist with the capability to scan, save,
and display a 512 by 512 pixel image. The image may be
scanned to, saved from, or displayed in either of the two
DeAnza image display memory planes. Considerable effort has
been made to incorporate all of the devices useful for image
processing into a single operating system kernel. This
alleviates the problem of taking down one operating system
and bringing up another version in order to dump image files
on magnetic tape.

ii

ACKHOWLEDGEMENTS

It is hard to recognize all the people who assisted me
with the work involved in this thesis, and those who are not
noted here are deeply appreciated.

Special thanks is in order for Professor Strohbehn and
Professor Hansen for their support and guidance, and
Professor Sherman is thanked for reading the thesis on short
notice. 7The financial support of the National Institutes of
‘Health grant number ROLl GM28313 is gratefully acknowledged.

Finally, I would like to thank some of the special
people in my life, who offered support and expert advice.

My close friends and cohorts Dave Farrington, Jon Panek, and
Larry Bohs were always willing to lend a helping hand or
encourage extracurricular activities. Kevin Ryan provided
the opportunity for trips to Boston when the fresn air
became too fresh. I am also grateful to my Aunt Virginia
Sheehan and Uncle John ilacDonald £for their support and
encouragement towards achieving my gocals. Last, I thank my

parents and sisters for their support and patience.

iii

Abstract . s o « & o

Table of Contents

Acknowledgements . . « « .« «

Table of Contents . ¢ + « s« =

List of Figures . .« « » « « =

List of Tables .« ¢ « ¢ « ¢ & =

1.

2.

50

introduction +« + « + &« o .

System Hardware and dodifications

2.1 Background Information

2.2 PDP-11/60 Alterations

2.3 DeAnza rodifications

.

*

-

-

-

The Image Processing Software System

3.1 Introduction . .« « ¢ « + &

3.2 Hierarchy Level 1 .
3.3 Hierarchy Level 2 .
3.4 Hierarchy Level 3 .
3.5 Hierarchy Level 4 .

System Implementation . . .

4.1 Background Information

4.2 Tree Structured Directories

4.3 The Shell

4.4 Object Code Library

4.5 Operating System Interface

o

.

®

.

@

-

.

.

-

.

-

.

*

4.6 Current Image Processing Scoftware Overview

Level 1 Program Descriptions

iv

-

©

®

Y

[

©

Y

o

. id
. iid
. iV
. vii
viii
« o« 1
. . 8
. . 8
. 12
. 13
.17
17

. 18
. 24
. 25
. 26
. 28
. 28
28

. 31
. 33
. 36
. 40
. 43

Qverview

Level 1
Level 1
Level 1
Level 1
Level 1
Level 1

Level 1

- - L] - - . » - - - L] L] . * * -

Command ~ SCaN « « « s o o « = s s
COmmand - Save - - - * -« - L] & - o«
Command - display .« « ¢ + « « « .

Comand - remove . - . 3 . - o * ©

Command - datanal . .« ¢« ¢ o « « &
Command - ZO0O0M . e - ® ® - © . . (3
COmmand - help - » - - . L3 » L] [.

2 Program Descriptions . . « « « + o+ + « .

Qverview

Level 2

Level 2

- L3 * * - - - . - L] . L] - - - L] .

]
[
o]
o
pt
.

L
L
»

Program

Program — SCaN .+ « « + o « &« o =

Level 2 Program = SaVE .« « « + s &+ & « s+
Level 2 Program - diSP .+ « o + o « & = «+ =
Level 2 Program = aI « « « « + o « « + o
Level 2 Program - inrefs « + &
Level 2 Program - show . . « « &+ « « « «
Level 2 Program - hist . . « « . « « &« + .
Level 2 Program - tbzotm .+ « ¢ « « « o+

3 Function Subprograms . . « + ¢« « « o « o

OVEILIVIEW ¢ v o o s « o o s + o « o o »

Level 3
Level 3
Level 3
Level 3

Level 3

File Management Routines«
Data Transfer Routines+ . &

Hardware Reglster Control Routines

Annotation Display Routines . . .

Histogram Display Routines

43
45
46
47
49
30
51
52
53
53
55
56
57
58
59
60
61l
62
63
66
66

68

73
77

78

8. Level

Regen
9. Conciu
Appendix 1
al.l
Al.2
2 . .
AL.3
Appendix 2
AZ2.1
A2.2

References

4 Operating System Interface Code .

The Include Files .+ . ¢ ¢ o« o « o « = 4
DR-11lW Device Driver dodification . . .
The Trackball Device Driver . . ¢ + o &
Operating System Kernel Meodification and
eration . ¢ ¢ ¢ &« ¢ o s o e o & = s a
sions and Recommendations .« ¢ o « ¢ o &

- & ® a ° o ® ° a e ® e a L] L] L] @ 3 L] Ll

Software Demonstration . ¢ + & +« +« « @

The UNIX Manual Pages for Level 1 and Level

Program Listings for Level 1 and Level 2

& L] L] L] - @ ® ® 2 e L L3 e @ - L] - Ll * @

The Unix Manual Pages for Level 3 . . .

Program Listings for Level 3 and Level 4

- L L - -« * - - . ® - ® a L3 L] . ® % @ ®

vi

*»

80
80
82

83

87
91
94

95

Figure

aAl.l
Al.2
AL.3
Al.4
Al.5
Al.®

Al.7

List of Figures

Description

The Digital Image Acguisition System
PODP-11/60 Backplane Connections . .
UNIBUS Bootstrap Termination Module

UNIX Filesystem Organization . . .

The Thayer School logo

A Scanned Image + + « « « « ¢ » 2
A Saved Image Displayed
Zoom Magnification 1
Zoom Magnification 2
Histogram Display

Datanal Gray Value Display

vii

page

15

100

101

103

List of Tables

Table Description page

4.1 Current Image Processing Software Overview . . 42

viiil

Chapter 1: Introduction

The goal of this thesis was to develop a user-friendly
image processing software package for the Laser Scanning
Phase Modulation Microscope (LSPMi). Allen, Brault, and
Moore introduced phase modulation microscopy as an
improvement to conventional image contrast microscopy in
1963 [l]. & phase modulation microscope measures several
optical properties including birefringent phase retardation,
where retardation is the birefringence times the optical
path length through the microscope specimen. Given an
incident beam of plane polarized light composed of two
orthogonal components, the birefringent phase retardation is
the phase delay induced bhetween these components when the
light passes through the specimen. The current
configuration of the LSPMA is the result of three years of
joint effort between research groups at the Thayer School of
Engineering and the Dartmouth College Biology Department.

The LSPMA provides the microscopist with the means for
accurate measurement of birefringent phase retardation in
living specimens, along with the ability to apply digital
image processing technigues to images composed of mappings
of these measurements to a 512 by 512 pixel area. Each
pixel is a gray level between 0 {(black) and 255 (white),
where the gray level is a discrete representation of the
optical property currently being measured by the

microscopist.

The LSPrMM is composed of three integrated subsystems:
the Laser Scanning {(LS) system, the Phase Modulation (P#)
system, and Digital Image Aquisition (DIA) system. The LS
system, described in Pillsbury's thesis, provides the
scanning laser beam for specimen illumination, and the
timing signals necessary for correct digitization of the
image data [15]. fThe PM system, completed by Farrington in
1984, is an electrooptic system that acquires the
guantitative specimen measurement [9]. The DIA system
receives and stores the digital image data, displays the
image on a monochrome monitor, and processes the image to
provide the microscopist with quantitative information
regarding the image. The first work on the DIA system was
performed by M. Riley {1l6]. Riley specified the hardware
components to be used in this system, designed a hardware
double buffer critical to the aquisition of an image, and
provided the first programs for aguisition and display of an
image. The reader is referred to Riley's thesis for further
information {1l6].

This thesis documents the development of a
user-friendly image processing software package for use
within the DIA system. The hardware components selected for
the DIA system imposed some constraints on the image

processing software:

i. The scoftware must operate on a PDP-11/60 minicomputer
that serves as a host computer for a DeAnza image
display system.

2. The software must be written in the C programming
language and run under version 7 of the UNIX operating
systexﬁe

3. The software must provide the capability to acquire
and store a 512 by 512 pixel image in at most one
second.

Constraint 1 was met by making minor hardware modifications

that are described in Chapter 2. The seccond constraint was

met by writing all of the program code in either the C

programming language or the "sheli“.command language. Both

of these languages are supported by our version of the UNIX

operating system. 7The third constraint was first met by i.

Riley; thus any modified version of the original "scan"

program must also meet the specifications. The modified

version of "scan" described in Chapfer 6 does meet the third
constraint.
Several criteria were considered in the development of

"user-friendly" image processing software:

1. ovice microscopists should only need to be familiar

with a limited set of commands for use with the LSPIM.

Expert knowledge of the UNIX operating system should

noct be required.

2. The commands should provide an interactive mode that
prompts the user for necessary input information.

3. The commands should accept command-~line arguments and
have reasonable default parameters tc minimize the
typing necessary to execute a command.

4, Functions and programs should be developed in a
structured fashion with each program module performing
a logically distinct operation or set of operations.
This will provide a set of software tools useful for
future program development.

5. Tools should be provided for maintenance of the system
software in the event of modification or expansion.

Thirteen commands proposed for implementation are
described in Chapter 3. These commands are outlined in
order to satisfy the first criterion; however, all of these
commands are not implemented in this thesis, because the
amount of programming would be beyond the scope of a
master's thesis. The second and third criteria were
satisfied by providing both command-line and interactive
user interfaces in the programs. A four level hierarchy was
established to create an organizational framework for the
image processing software. The highest level contains the
commands used by the microscopist. The second and third
contain C programs and C function subprograms respectively.
Device driver code and operating system software resides in

the lowest level. This hierarchy provided a framework that

was useful in satisfying the fourth criterion.. The fifth
criterion was satisfied by establishing versions of a
"makefile" that are used by the UNIX program maintainer
“méke" [10]. The "make" command is used to recompile
general programs and to regenerate the operating system
kernel. If hardware is added to the system, the make files
will be useful for regenerating the software. As new
software is developed in the future, the make files can be
altered with a minimum of difficulty by using the current
versions as a model.

Once the four level framework was established, programs
were developed at all levels. This required modification of
existing programs to fit into the hierarchy in some cases
and the creation of new programs in other cases. Specific
goals_were set to provide the microscopist with certain
basic image processing capabilities; they are listed below:

1. The ability to scan an image into either of the two
memory planes available within the DeAnza image
display system.

2. The ability to save an image from either of the Deanza
image display memory planes in a disk file on the
PDP-11/60.

3. The ability tc display an image from a disk file in
either of the DeAnza memory planes.

4, The ability to use the trackball as a simple image

reviewing mechanism for the microscopist,

incorporating the hardware scroll and zoom features of
the DeAnza image display system.

These goals were met by developing the programs "scan,”
"save," "disp," and "tbzoom" contained in the second level
of the hierarchy which are incorporated into the commands
"scan," "save," “display," and "zoom" in the top level. The
programs accept command line arguments in a format
resembling standard UNIX commands; however, most will
interactively query the user if the command line arguments
are not known. The commands created are simple yet
versatile; for example, the "tbzoom" program provides the
microscopist with either a simple trackball zoom display
combination, or trackball zoom display with annotations for
cursor position and gray value. Generally, these commands
default to the most commonly used capability of the program,
with options for other possibilities provided by more
complex statements.

The following chapters and appendices describe the
implementation of the image processing software. Chapter 2
discusses the modifications made to existing hardware so
that the software would run correctly. The software
hierarchy is outlined in Chapter 3, and the technigques used
in the implementation of this hierarchy are described in
Chapter 4. The programs incorporated into hierarchy Level 1
are described in Chapter 5; these are the “commands"

currenfly available to the microscopist. Chapter 6 provides

a description of the Level 2 programs that actually perform
the work selected in a Level 1 command. YThe Level 3
function subprograms are documented in Chapter 7. A
discussion ¢f the operating system interface and system
regeneration software can be fcund in Chapter 8. Source
code listings and UNIX manual pages are reproduced in the

appendices.

Chapter 2: System Hardware and Modifications

2.1 Background Informaticn

This chapter describes the hardware modifications made
to the DIA system since it was first deécribed by M. Riley
[16]. Modifications were made to both the PDP-11/60 and the
DeAnza image display system to allow the trackball device
driver software to function correctly. The trackball is a
peripheral device that communicates with the PDP-11/60
through the DeAnza image display system via a standard
interrupt transaction. A short summary of the hardware
components in the DIA system is presented below. This
summary is followed by an outline of a standard interrupt
transaction, emphasizing the signals that must be present
for successful completion.

The input to the DIA system is the analog output from
the Phase iodulation subsystem. This signal serves as the
input to the analog-to-digital (A/D) converter. Referring
to Figure 2.1, the output from the A/D converter is
transmitted in parallel (EIA RS-422 standaré} to the
hardware double buffer inside the PDP-11/60 host computer.
The bytes of data are transferred to the DeAnza image
display memory through the DR-11lW DMA controller. The
dual-port, random-access memory within the DeAnza image
display system is scanned in a raster pattern and the output

is converted to an analog video signal. This video signal

jeuiwsay Jaqndwon

/

/,

1]

fregyoedy

Nl

aw 92 aw gF

© @

SO LU0l 0apLh

O

ELIFLFEYILT
[T 1Y
17=9%

S4B} BazuTE
WEEP
LERS

faocwaw

8] CEUOD

11-zZp

ezUYAQ

BngqLun

sAqiun

SJOANSBE Dk
B od
BULIBOL &

ndos

L) & S

Jepe

Jugpng

cBuUL § Btep

Sjgnop

Pawmp Iy

Jaynduos 3oy @gorsir-dpd

cer-8.Jd

JalJaeauos pru

Acquisition System

FIGURE 2.1 The Digital Image

serves as the input to a video monitor where the image is
viewed by the microscopist. The microscopist can interact
with the PDP-11,/60 host computer via the terminal to
manipulate the image. The trackball provides the
microscopist with an easy image reviewing mechanism,
allowing interactive scroll and zoom of displayed images.
For more detailed information concerning the A/D converter
or the Phase HModulation system, refer to D. Farrington's
thesis [9]. Ffurther information concerning the hardware
double buffer, DR~11W, and the UNIX device driver software
may be found in if. Riley's thesis [1l6].

The PDP-11/60 host computer communicates with
peripheral devices through a high-speed bus architecture
known as the UNIBUS [6]. Data, address, and control
information are transmitted through the 56 lines of the
UNIBUS. A peripheral device may interrupt the Central
Processing Unit (CPU) when it requires service. This method
of servicing the device allows the processor to perform
other tasks until the peripheral device needs attention.

The PDP-11/60 provides a two dimensional interrupt
priority structure to allow peripheral devices to
communicate with the host computer. The interrupt structure
consists of 5 vertical priority levels: NPR(non-processor
request) the highest level, BR7 (bus request 7), BR6, BR5,
and BR4, the lowest level. A horizontal level of priority

exists at each vertical level of priority with the device

10

electrically closest to the processor on any hoxrizontal
level having the highest priority.

A typical UNIBUS interrupt transaction follows the
pattern below. This pattern is valid for the trackball,
which issues a bus request 5 (BR5) and xeceives-a'bus grant
5 (BGS).E The interrupt vector for the trackball is (234
octal. SACK (Slave ﬁgﬁnowledge), BBSY (3us BuSY), SSIYN
(Slave SY¥Hchronize), and INTR (INTerrupt Request) are
electrical signals on the UNIBUS.

1. A requesting device asserts BR5 which is received by
the UNIBUS arbitrator.

2. Given that SACK negation occurs from the previous
priority arbitration and that the interrupt fielding
processor is ready to accept an interrupt vector at
this level, the arbitrator asserts BG5S and the
arbitration stops.

3. BGS is received by the device. The device asserts
SACK which is received by the arbitrator.

4. The arbitrator negates BG5 which is received by the
requesting device. Once the regquesting device
receives the‘negation of BBSY and S3YN, it asserts
BBRSY becoming bus master.

5. The bus master places the interrupt vector (0224} on
the D{data) lines, asserts INTR, then negates SACK.

6. The bus arbitrator and interrupt fielding processor

receive the asserted INTR. fThe interrupt fielding

11

processor strobes the interrupt vector from the data
lines, then negates S8YW.

7. The bus master receives the asserted SSYN, removes the
interrupt vector from the D lines, and proceeds to
negate INTR and BBSY.

8. The arbitrator and interrupt fielding processor
receive the negation of INTR. The interrupt fielding
processor then negates SSYN.

9. After receiviﬁg SACK negation (step 5), the arbitrator
Qaits 75ns, then resumes issuing HPG's (non-processor
grant) but not BG5's. This is followed by the
interrupt fielding processor info;ming the arbitrator

that it may start issuing BG3's.

The important thing to note here is that 6 control lines
must be present: BR5, BG5, SACK, BBSY, S5YN, and INTR.

2.2 PDP-11/60 Alterations

The software device driver for the trackball was
written to communicate with the trackball device from
programs running on the PDP-11/60 host computer. The DeAnza
image display contains the trackball controller board.
Through the process of debugging the trackball device
driver, it was determined by the use of a logic analyzer
that some of the control lines necessary to perform an
interrupt transaction were not physically connected to the

controller board. The results of the use of the logic

analyzer were that B3R5, BG5, SACK, and IHYTR were not present
in the DeaAnza image display.

The DeAnza UNIBUS cable is inserted in the section of
the PDP-11/60 backplane where the memory for the PDP-11/60
host computer resides. The memory does not request the bus,
because data 1s written in and read out by the CPU; hence,
interrupt signals are not routed to the memory portion of
the backplane.

The process of getting the signals to the DeAnza
required two steps. The first step invelved placing
wirewrap jumpers from the UNIBUS to the DeAnza and memory
backplane. BR5, B3G5, SACK, and INTR were wirewrapped from a
portion of the backplane where these signals exist to the
DeAnza/memory portion of the backplane (Figure 2.2). 7This
resulted in the "signals reaching the DeAnza; however, the
trackball controller was still unable tc issue a bus reguest
and receive a bus grant properly. Further investigation
with the logic analyzer revealed that the UNIBUS terminatorx
card inside the DeAnza image display card cage reguired
jumpers for proper termination of the BG5S line (Figure 2.3).
This Jjumper was inserted and resulted in the proper
operation of trackball interrupts.

2.3 DehAnza Modifications

The DeAnza ID5400 moncchrome image display system has a
resolution of 512 rows by 512 columns. Individual picture

elements (pixels) are coded with 8 bits of gray scale

13

Standard Unibus
Pin Designations

Standard Unibus
Pirt Dusignations

NOTE: D indicates 3 radesignated pin.

Deanza/Memory Backplane

Cotumn Column Cotumn Cotumn
A 8 A B
Pin 1 2 1 2 Pint 1 2y % 2
INST |+5V [BGE | BV] INIT |+6V |BGS | +BV
A L H A L H Y
INTR{GND [BGE 1 GND INTRI{GND |BGS GND
B ot & 8 — e 4 4
c DOC |GND [BRS GND - D00 |GND |BRS GND
L L - L L
D02 (DOl {GND 8R4 DOz |DOY |GND BR4
o L] 4 L o L | L 4 L
. 004 (O3 {GND BG4] D04 {D03 IGND BG4
L L ‘ 2] ‘ L L ‘ M ‘
. Dok (D05 |ac oc . Do6 {DOS |AC oc
L je JLOL Lot L L Lot |wot
" D08 {DO7 [A01 AO0 ; o3 [po7 {ADY AQC
L L L L L L L L
, D10 (Dog |ao3 A02 A4, D10 (D09 |A03 A02
Lt i L L |t L L
D12 (D11 [ADS AD4 D12 D11 [A0S AO4
K L L ot L K L L L L
14 {p13 Aoy AQ6 Di4 D13 |ACY ADS
- 3 L L L L L L L L
PA (D15 jAD9 A08 PA [D15 (A0S A08
A L L L M L L L L
GNp {PB jA11 A0 GND PB |at1 A1D
N L L L N L L L
. GND | BBSY] A13 A2 . GND |BBSY! A13 Al2
4 L L L L L L
GND |SAack] a1s | A4 GND |Ssackf A15 | a4
R 4 L& T T A 4 oy L
GND [NPR | A17 Al6 GND |NPR | A17 A6
s L L L s L L L
GND [BR? [GND 1 GND |BR7 [GND c1
¥ L L T L L
NPG {BRE [SSYN | CO NPG [BRE [SSYN | CO
v H L L L v H L L L
v 8G7 |GND {MSYN | GND v B8G7 |GND |MSYN | GNOD
S0 ¢ d L 4 80 g g L 4

NOTE: D indicates a redssignatad pin,

Normal I/0 Backplane

FIGURE 2.2 PDP-11/60 Backplane Connections

14

) | 1 € | y i § | 9 | £ | o
LI T O ™ ¥ of [T 1l
] .S,N_mmimmuﬁ e 12 LETT 1
Adw W Tm > .
v oot L B M@QEBH, (913 1} m_
HOLYMINHE AL B .
dvdisiood N m 1
L) kg
(SHIAIIDIY ONY SHIAIHO HOLYRIWMIL Snat - =
__T 8 - | SR || A
e T T PRpRp—— - N N "
v e AEET 2EGE 4 L Pra. T LAF EOP e i 7 AENL S e
s einiein Sa Lo smwiases L serven JLEIF P RS LD 3 LA AL e i we] o v IR | e ¥y $
PESREYINEN 3 & “ % " " £ %, FEF ” “ BN FiF I " ol K g b §F
i) R - T H 17/ 4 S anamem A 0 B o i |
For en® pommr el L] I svvm e Rl b PV wrvews n s i e I 3 s s 1 7o
1] Fer see|t 1§ 5% 58 M [ik R V|Fwe o ser),
> rew Sop v IR T ! 7 oo cor ity » iﬂlun:.”.uulm o !
N : ver ek |y % '’ ¥
1 mwmn“. e ' 1 [l . ”. 15 pe > 18 ¥ 800 $7%
u.‘uﬁi% 3 H ‘mxﬂ‘n.uwtnﬁﬂ \ i?th\u& " i¥ i} 26 AR “ w_E!Hr: d B BN " . \-I...[i -\?“\
A : " s ek | | PR - ALy 3 B IR e
. "%o‘ o ...“..%_8 .v-.\;.n.\..ﬁt,l.u.\.:qﬁrl.lu... " 7 08 S i ? wo -.awti:" o R‘J.S‘.IHI_ : " .
s Rt £ R PER t i F%s FET) 1]reer m
py s = a3 HEI T oes 3 ¥ riy 5u7 i = ~ 22 SO] -k PRE A 7 #0 £
H : VL Do F % i Han T TTF LA “ | wovoum g ee- 4
AR A |5 e M “ . 1] " - ° 1]re P Fxr XP)
iaidiiad™ 2] Wvvw PO [240 : 8 BEA s S wemm-
. " N
“ .«.RWM:KML__:‘!.U%!\ Py 1 “ oF 120 : ut(r.—!ii,iuﬂ;ﬂsﬁm_ﬂ\aannn H qﬂub‘s
o | . v
R]! : P 1 rwer ser
A s SEND HA&D i 3% ' £ 1 . e 1
_ Yy} R T % v WO ' i ..an.‘uwﬂﬁur I i thtﬁJmW{HﬂHshme 1 i 1T 2 v et
1 [§ 7 23 - \ -8 Y Viowee el
' —Il;lun.ﬂm.h o ere Ho T o hrs gy e 7t 7 W s
|- rfa " S8 FCE ! s] , . H ' + 390 30w tirwe mer|,
] . b1y wvew BVP ¥ T e ' R 21 Peve] 5 e)
[RE L o | Fkr FeE R s FEN i fFwr Sup
_ e L) O voven 110> R H o TF e " P vt 1Ll B WUV wvbon 1 =~ St
3 HESZRL LT ! - wops proailt® Prl| 5 poo 10 1220 S 1N
ittty >y wwai] " EXT) v ' b 2w 27 vl t o Fy 1 h
-~ €T " % 5 | " BT » o 400 [} Rl K srowe VITT il Y)
e . | 7|
W v - S (3 DV v > [P v - 4 1 N v
P 1] 5% aer ! V5w Sk “ #wr SLF m p | SN ik ”
i vy . [i 1 H
7 H L L, %% 3 N T [% I S
‘ b - Il 74 /] ¥
T e Ao
-~ g 3 .
—a
~ spd b1~ i grg
P BwAR FAVTIHLET o rhe &. -
=3 7 T B
i s o dve
” > 54 T
ihiad - £ TR
¥ RBHILTME MOTTH - K
- prat TR
i |- 7 2o S
v P P
ol h\w\u\a -2 che 500 7 Pl oW~
Fra T LALXS 4
. L2 9o to8 s b S -
ey
+- - 7 v toR AF
I T & A &
+ P aad L 7 pE SR
s
7 AASS s @O 0@ F— P 2 578

FIGURE 2.3 UNIBUS Bootstrap Te

. i i A

[thkduosizo-1 1811

€

w v

tion Mod{ile

.

rmina

15

information, resulting in a level of gray between U (black)
and 255 (white). ‘The ID5400 is capable of working with
three full 8 bit frames of image memory plus an overlay
plane with 4 bits of gray scale information. This image
display system is also capable of supporting a pipeline
array processor, a trackball, a joystick, and a lightpen.

The image and overlay memory planes are constructed of
high-speed, dual-port, random-access memory (RAM). The
dual-port nature of the memory allows the PDP-11/60 host
computer to write to and read from one port of the RA,
while the other port is scanned in a raster pattern and the
output is put through the intensity transformation table,
then through a digital-to-analog converter to provide the
video signal output to the display monitor.

The current configuration contains 2 full frames of
image memory, a 4 bit overlay plane, and a trackball with
its controller. The second frame ¢f memory was installed in
the DeAnza image display, and the trackball wés rendered
operatioﬁal after this system was first described by M.

Riley [16].

16

Chapter 3: The Image Processing Software System Hierarchy

3.1 Introduction

The DeAnza ID5400 monochrome image display system,
PDP-11/60 host computer, and the associated image processing
software are integral parts of the LSPMM. In order to
provide an organized design structure, top-down design, in
combination with structured programming, was used to
implement the image processing software. These programs
were written in the C programming language, running under
the UNIX version 7 operating system [13]. The image
software is organized in the form of a hierarchy, with the
highest level interacting with the LSPH microscopist, and
the lowest level performing hardware control. The goals are
to provide the novice microscopist with a friendly
environment in which to operate the LSPMM, and to provide
the future programmer with a structured enviromment in which
to develop programs.

The image software hierarchy consists of four distinct
levels. The top ievel, Level 1, ccntains all the commands
that the microscopist will need to know to operate the
microscope and process microscope images. Level 2 contains
the programs that actually implement the Level 1 commands.
Level 3 consists of functions and subroutines used by Level
2 programs. ‘'hese routines are available for the
experienced user to create custom programs, if the selection

available in Levels 1 and 2 does not suit the user's

17

particular need. <The lowest level, Level 4, contains the
routines that actually perform hardware control. This
permits the software programmer to control the display
system without actually being concerned with the register
bits necessary to perform a particular function.

This system hierarchy was utilized as a framework in
which to assemble programs considered bkasic to forming a
user friendly image processing sofiware package. The
following sections describe the different levels in more
detail. It is important to note herg that all the
capabilities described below have not been developed. These
sections simply ocutline the capabilities that may be
available now or in the future at each level. The next
chapter will discuss what was actually implemented within
the framework described below.

3.2 Hierarchy Level 1

Level 1 contains a series of "shell" programs that
allow the user to control display functions and file
management, along with other "shell" programs that perform a
broad spectrum of image processing operations [4].
Alternatively, an experienced user can create customized
command files on his own. A menu or listing of the Level 1
programs available to the microscope user can be displayed
on the DeAnza display and/or the user terminal simply by

typing the "help" command.

18

The following is a list of Level 1 programs/commands
that are available for the biocleogist's use, along with a
short description of the types of operations they control,
Seven ¢f the commands have been implemented to date, the
other six commands may be implemented in the future. In
order to minimize typing by the user, each of these commands
has a preset default mode of operation; thus the beginning
user does not need to comprehend all the capabilities of the
system in order to make use of it. Wherever functionally
feasible, the selection of command options is possible via
command line arguments. If further information is necessary
but not supplied, the terminal prompts the user for the

appropriate information.

1. <scan> -- This command allows user control of the
interface between the microscope and the DelAnza image
display system. dJsing this command, the biclogist can
control the different parameters of image scanning,
including input format, memory frame destination, and
number of images. For the beginning user, the only
input required is the number of images to scan. The
program defaults to a particular input format and
memory frame destination.

2. <display> -~ This command allows the user to display
images on the Dehnza display that have been saved in é

computer file on the system disks. Each image stored

195

on the system disk has an associated image file name.
Opticnally, the microscopist can create and display a
caption on the image display. The user can also
control whether or not the intensity reference scale
is displayed.

<save> -~ This command controls the various operations
involved in actually saving an image as a computer
file on the system disks. These operations include
naming the image file, the creation of the proper
image file header, and writing the image from the
DeAnza display to the disk file. Options may exist in
the future to allow the bilologist toc place a permanent
caption in the file header along with a box or other
cursor form to denote a particular area of interest on
the image. This command may alsc provide the option
of storing an image on magnetic tape.

“he preceding commands are basic to the operation of

the LSPM microscope. The rest of the commands available in

Level 1 will have a much broader scope.

4.

<remove> -~ Image files created through the use of the
"gave" command may be deleted using this command.
Histograms and other overlays displayed on the monitor
may be removed using this command.

<zoom> =-- Two types of zoom may be available to the
microscopist. Fast zoom utilizes the hardware

capabilities of the DeAnza display system with zoom

20

factors of 1%, 2X, 4X, and 8X. This fast zoom
capability is combined with the scrolling function and
trackball of the DeAnza display to provide the

biologist with a useful image reviewing mechanism.

Slow zoom will provide the biologist with non-standard

zoom factors. Through the use of trackball and
cursors, the user will be able to specify the area to
be zoomed. A new zoomed image will be generated via
interpolation technigues. This method will be
significantly slower than the hardware method. The
trackball cursocor shape may optionally be controlled
from this command.

{contrast> -- This command will allow the microscopist
to perform point operatiocns on an image. The point
operations will involve different types of gray scale
modification. Applications of point operations
include histogram flattening, histogram matching,
photometric decalibration, and display decalibration
(51.

<smooth> -- This command will allow the microscopist
to employ discrete convelution technigues to smooth a
noisy image. A choice of several different smoothing
algorithms will be available.

<filter> == This command should be highly interactive
when implemented. It should describe the filtering

schemes available and allow the microscopist to select

21

10.

cne of the schemes present in the system. These
schemes will include both spatial domain and frequency
domain filtering. The types of operations performed
in this program may overlap operations performed by
the "smooth" and "restore" commands. The "filter"
command will include general low-pass, high-pass,
band-pass, and notch filtering programs, along with
feature enhancement programs, and programs for the
removal of periodic noise.

{restore> -- Through this command, the microscecpist
can select from among various programs that remove
degradations in the image. Sources of this
degradation include the optical system imperfections,
image motion, and noise. The avallable restoration
methods will include Wiener deconvolution, power
spectrum equalization, and geometric mean filters [5].
<datanal> -- Operations available via this command
allow the microscopist to obtain measurements and
statistical information pertaining to an image or part
of an image. Routines are avallable to output a
specific pixel value, and to output an image
histogram. Programs may exist in the future to
calculate the area and perimeter of regions specified
with the trackball cursors, along with mean pixel

values for an outlined area.

22 -

11. <arithops> -- This command will allow the microscopist
- to perform simple arithmetic operations on all oxr part
of a specified number of images. Simple arithmetic
operations available under this command will include
;addition, subtraction, multiplication, division, and
logarithms. The trackball and cursocrs may be used
here to specify desired areas of operation.

'12. <graphics> -- Through the use of this command, the

. microscope user may display several types of overlay
graphics. Operations available under this command may
overlap some of the options present in other Lévei 1
commands. There will be programs available to display
histograms, to outline desired areas, and to display
arrows at desired points in the image.

13, <help> -- This command provides assistance for the
Level 1 users. &mxecuting "help" with no arguments
will display a general listing of the commands
available and their capabilities. Detailed
information on each command will be displayed by

typing "help®" followed by a Level 1 command name.

In the future, a typical user session for a beginner
might proceed in the following manner. FEFirst the
microscopist would log in to the computer, and then type
"help.' At this point, a menu with the selection of the

Level 1 commands avallable would appear on the DeAnza

23

display. The user might select "contrast" by either typing
the command inte the terminal or by positiconing the
rrackball cursor at the command on the display and pushing a
switch on the trackball controller. A new menu would appear
on the DeAnza display that lists the options available undex
the "contrast" command. An option might be selected in the
same manner as the original Level 1 command, and the
terminal would prompt the user for any necessary additional
information, then the desired task would be executed. In
the case of an experienced LSPM microscope user, this entire
operation could be specified at the terminal by typing on a

single line:
contrast [option} [information] <carriage return>

3.3 Hierarchy Level 2

Level 2 consists of task-oriented, interactive programs
that are called by Level 1 programs. The beginning user
need not be concerned with the programs available at Level
2; however, the experienced user may optiocnally wish to
invoke a Level 2 program to conserve time and typing. Each
Level 2 program may be considered an offspring from one oz
more parent Level 1 commands. The tight coupling of the 4
level hierarchy permits easy system expansion. As mnew Level
2 task routines are written, they can be incorporated into
the appropriate Level 1 command with a minimum of

difficulty.

24

A number of Level 2 programs are available for use,
including scan, disp, save, etc. Further information on
these and other Level 2 programs presently in use, along
with the necessary Level 3 and Level 4 functions, may be
found in Appendix 2. The Level 2 commands necessary to
implement the first three Level 1 commands "“scan,"
"display," and "save" have been developed and tested.

3.4 Hierarchy Level 3

Level 3 is presently oréanized as a singlé library of
image functions. There may be more libraries at this lével
in the future, containing commonly used functions, such as
matrix operations, file manipulation, and transform
generators. The functions in this level will be the
routines responsible for the majority of the actual work
done in the processing of an image. These additional
libraries may include, for example, addition, subtraction,
multiplication, and division routines with selectable input,
that is all or a specific part of an image. This level will
also contain the functions responsible for interprocess
communication between the host computer and the DelAnza
display system. ‘The functions at this level are hidden from
the microscopist and used only by the programmer. These
image libraries will be useful for program development,
providing a source of high.ievel software tools. Examples

of the type of functions included . in this level may be found

25

in Appendix 2, e.g. 1 _open{), i_close{}, i_da to_dsk(), and
i dsk_to_daf{}.

3.5 Hierarchy Level 4

The fourth and lowest level, Level 4, contains the
routines that provide the interface between the software
program in the host computer and the hardware capabilities
of the DeAnza display system. Hardware capabilities

presentiy include:

1. The ability to store and display two 512 by 512 pixel
images.

2. An alphanumeric character overlay generator to display
annotations.

3. An overlay memory plane to display graphics.

4. A cursor generator and trackball controller to provide
a simple user friendly system interface.

5. 8Seroll and zoom with a zoom factor cholice of L1, 2, 4,
or 8 to allow a fast method cf zooming an image.

6. An intensity transformation unit exists to allow the
image data to be routed through a look-up table en
route to the digital-to~analog converter and video

generator where pixel values may be altered.

This combination of features provides for the display of
menus and histograms, along with providing the microscopist
with a simple image reviewing mechanism. This level

contains the driver software for the DR-11W DMA controller

26

and the trackball. BSeveral secticns of the operating system
generation code were modified; this code also resides in

Level 4.

Chapter 4: System Implementation

4.1 Background Information

The UNIX operating system provides a. number of
convenient features useful in the creation of the four level
system hierarchy. The ability to create a tree structured
system of directories and subdirectories served as the
method for organizing the framework to contain the four
distinct levels of program code [l7]. Level 1 programs were
implemented through the use of the shell command language
[4). Level 2 programs were written in the C programming
language utilizing many of the functional tools implemented
in Level 3 [13]. Level 4 program code serves as the
operating system level interface for the DeAnza image
display. The following sections describe in more detail the
tree structured directories, the shell command language, the
object code library, and the system—-generation "make" files

used in the implementation [10].

4.2 Tree Structured Directories

The UNIX operating system's tree structured system of
directories and subdirectories provided the means for
implementing the four distinct levels of programming code.
The UNIX file system is orgahized in the form of an upside
down tree (Fig 4.1), with the ‘'root' directory of the
filesysﬁem at the 'top' of the tree. Several subdirectories

exlst as branches of the root directory. 1If one's current

bw' sdeps huoyodsdip 8yl

J48pUN §€31J0108J41pgns ayl smoys wedbeip siyjg

L

SRR

e

TR

g

ot (=1 4

L)

— L

dap

flaon08Jip 1004 BEi

Uty

L i

naep

Fuon

aep

3

UNIX Filesystem Organization

FIGURE 4.1

29

directory is the root, then these branches are referred to
as subdirectories of the root. However, one's current
directory may also be a subdirectory of the root directory.
This subdirectory may also contain further subdirectories,
the limit being a function of disk storage and machine
dependent operating system parameters.

Referring to Figure 4.1, the image processing software
resides in the subdirectory of the root called "/dsp/img."
A number of subdirectcories exist within the subdirectory
"/dsp/img," which may be categorized as follows: The
microscopist operates within the subdirectories "LI1," and
"L2," and the programmer operates within the subdirectories
"Liv, “L2," "L3," and "L4." "L1," “L2," “"L3," and "L4"
contain the program code for Level 1, Level 2, Level 3, and
Level 4 respectively. Programs may be developed or modified
in other subdirectories of "/dsp/img" to provide a margin of
safety; thus working programs are not replaced with
non-functional experimental versions. The "src" subdirecto-
ry contains the source code for Level 2 programs which are
available in executable form in the subdirectory "bin."
Level 3 function subprograms are available in the subdirec-
tory "lib," along with the appropriate archiving shell
command. The subdirectory "man" contains subdirectories L1,
L2, and L3, containing the text files for the manual pages,
and the text files for the help command. Level 4 program

code may be found in the appropriate operating system

30

directories "/usr/sys/dev" or "/usr/sys/conf." The
subdirectories "src,®, "bin,"™ and "lib," provide a margin of
safety for both the programmer and the microscopist;
allowing the programmer to develop and run programs separate
from where the microscopist is working. The result is that
programs being tested cannot alter those needed by the
microscopist until these programs are completely debugged
and ready to install in the four level system hierarchy.

4.3 The Shell

Level 1 programs were implemented through the use of
the UNIX shell [4]. The shell refers to both the command
line interpreter for the UNIX coperating system, and the
programming language used to direct the operations of the
command interpreter. This command interpreter serves as the
user inte¥face to the UNIX operating system. The shell
programming language provides a number of high level
algorithmic language constructs such as numerical variables,
string variables, control-flow structures, and argument
passing. "While-done," "if-then-else," and “"case" are
examples of the control-flow mechanisms available in the
shell programming language.

The shell programming language permitted a number of
Level 2 programs to be assembled together under a single
Level 1 command. A good exahple cf this is shown below in
the Level 1 command "display."

if test "§1" = "catalog"

31

then
cd ../L2/bin;ls -8 §Z

exit 1
elif test "$S1" = "channel"®
then
cd ../L2/bin;show -$2
exit 2 '
elif test "$1" = "caption"
then
cd ../L2/binjan 25 ¢=9 $2 $3 $4 §5 $6 $7 $8 $9
exit 3
elif test "S1Y = "gcale"
then
cd ../L2/bin;inrefs $2 $3 $4
exit 4
else
cd ../L2/bin;disp $1 $2
exlt 5

fi
This command controls a number of display capabilities
available within the image processing software. Five
separate Level 2 programs are integrated into "display."
These Level 2 programs individually provide for the display
of saved images, the display of captions on the image, the
display of an intensity reference scale, the ability to list
image directories, and the ability to change memory frames
displaved. It is a simple matter to add further
capabilities to this command through the use of the shell
programming language. The programmer starts with the
development of a Level 2 program that performs or controls
certain operations. This Level 2 program is then incorpo-
rated into the appropriate Level 1 program through the
addition of a small amount of code to the existing Level 1

Programe.

32

Level 1 programs may be created in a simple straight-
forward manner. A file, referred tc as a shell file, is
created containing the desired shell programming language
cperations. Since the shell is a form of command
interpreter, there is no need to compile the shell program.
There are two methods available to run the shell program.
The first metheod requires the person executing the shell
program to precede the shell program filename with "sh" as

indicated below:
sh <shell filename>

The second method reguires the programmer creating the
program to change the permissions on the shell file to make
the file executable. This can be accomplished via the UNIX

command (gv):
chmod 755 <shell filename>

The Level 1 program may now be executed by simply typing the
shell filename followed by a carriage return.

4.4 Obiject Code Library

Level 3 of the system hierarchy contains a group of
function subprograms that are used extensively in most Level
2 programs. 'These function subprograms are called from the
main program in Level 2; however, it 1s not necessary to
include the source of the function subprogram with the

source of the main program. These Level 3 function

33

subprograms are avallable in an object code library called
"/usr/lib/libimg.a." The programmer need only be informed
of the capability of a particular function subprogram to
make use of the function subprogram within a Level 2 program
or another Level 3 function subprogram. Level 3 function
subprograms can be used much like standard C languééé ”
instructions, once they are incorporated into the object
code library.

In order to appreciate the usefulness of this object
code library, cne must be aware of the procedure followed to
create an executable Level 2 program. The first step is the
creation of a file containing the Level 2 program source
code. The program below is a simple example of Level 2
source code.

FUNCTION: This program serves as a software toggle switch
for the channel annotation. If the channel annotation is
not displayed, this program will display it. If the c¢hannel

annotation is displayed, this program will remove it from
the display.

tinclude {Regdef.h>
main ()

{

/* local declarations */
int page;

int *reqg;

int chan;

int memcont;

int csr flag;

/* map to the Deanza display */

page = first page();

reg = virtual (page};

setreqg (page,IDREGPG);

/* read the channel currently displayed */

chan = reg[IXSPLT] & 03;

/* read the contents of the annotation memocry and the
annotation enable bit in the control status register */
memcont = (reg[ANOTTIN + 35] >> 8) & 0377;

34

csr _flag = reg[CSR] & ANOTENBL;
/* perform the switching function */

if ((memcont != 0) && (csr_£flag l= 0}) reg [ANOTTN + 35) &= (377;
else if ((memcont != 0) && (csr_flag == 0)) reqg {CSR] |= ANOTENGL
else aﬁprintf(l, Tz, 'w', "%4", chan);

}

The source code can contain standard C programming language
instructions, Level 3 function subprograms, and functions
available in any c¢f the standard C libraries of object code.
This source code is compiled, resulting in the creation of
an object code file. The next step in the process involves
linking this object code with the object code needed from
the libraries. This is accomplished via the addition of an
option flag such as "-1limg" in the compile string. This
option flag is passed to tﬁe loader at load time. The
loader performs the link operation and creates an executable
file. This program may now be run by simply typing the
executable filename fcllowed by a carriage return.

An object code library is created by using the UNIX
command "ar" {11}]. This command is an archive and library
maintainer. The process of creating the image object code
library can be broken down into three parts. The first part
requires the programmer to be in the L3 subdirectory. This
directory contains the source code for the image function
subprograms. Part two requires the programmer to compile
the function subprograms down to object code. This can be

accomplished via the execution of a shell file as follows:
compall <carriage return>

35

The final part assumes the compile stage was performed with
no errcrs returned. The programmer now proceeds to create
the image library with the execution of a shell file as

follows:
mklib <carriage return>

This shell file contains the "ar" command string in the
proper form to create the library "/usr/lib/libimg.a." This
process is standard UNIX protocol for creating an object
code library [3]. To add a function subprogram te the image
library is relatively simple. The programmer moves the
source code for the newly created function subprogram into
the subdiréctory "L3." dext, the "mklib" shell file is
modified to include the new object code filename. Finally,
the "compall" and "mklib" sequence is executed as described.
above. This will result in the creation of a one pass
object code library “/usr/lib/libimg.a" that includes the
new function subprogram. It is possible to simply add the
Level 3 function subprogram to the object code library with
the "ar" command; however, the library may no longer
function as a cone pass object code library. In this case,
the ~limg flag must be specified more than once in the
compile string.

4.5 Operating System Interface

The operating system interface code resides in two file

system sub-trees: "“/dsp/img/L4" and "/usr/sys." Two types

36

of programming code are grouped within Level 4. The first
group contains the device driver code "dr.c" and "tb.c" for
the DR-11W DMA controller and the trackball respectively.
This group also contains a version of DeAnza device driver
called da.c that was purchased from PAR Technology Inc.
[14]. The second group contains several system files that
were modified. This includes “/usr/sys/sys/machdep.c" which
was originally modified by M. Riley [16]. Anocther file that
required extensive modifications was
"/usr/sys/conf/mkeconf.c.” The most useful file in this
group, however, is a "make" file called
"/usr/sys/conf/makefile.”

The device drivers "dr.c" and "tb.c" contain the actual
routines that are used by the operating system. When a
‘running program requests any type of interaction with the
DR~11W DMA controller or the trackball, it must be through
the functions contained within the device driver, otherwise
the operating system will not recognize the device. A
generic character device driver will contain functions that
allow the programmer to open and close the device in the
same manner as a standard file. There will also be
functions that enable the programmer to write information to
a device and read information from the device. It is also
possible that there will be a function called "ioctl()"
(input~output control). This function allows the programmer

to control functions within a specific device. The

37

peripheral device appears as a special file created in the
subdirecteory "/dev."

The file "mkconf.c" provides the physical link between
the special file created in "/dev" and the operating system
[18]. The special file created allocates two special
numbers, known as the major and minér device numbers, to a
unigue peripheral device. The result of executing the
program "mkconf" is the creation of twe files called "c.c"
and "l.s." The file "c.c" has the majbr device numbers
incorporated into two arrays referred to as the character
and plock device tables. The assembly language file "l.s"
contains the code that provides the jump instruction to the
appropriate interrupt handler on receiving a unique
interrupt vector. These two files piay an integral part in
thé creation of a new operating system kernel. The system
kernel is regenerated in order to accommodate the addition
of new peripheral devices.

The creation of an operating system kernel is a
complicated process that is greatly simplified by the "make"
program supported under the UWIX operating system [10]. The
"make" program provides an organized framework for
maintaining computer programs. The operating system kernel
may be modified to include different peripheral devices with
a few simple steps. The UNIX "ar" (archive) command 1is used
to place the device driver for the peripheral in an object

code library "“/usr/sys/dev/LIB2.40" along with the object

38

code for the other known device drivers. “he programmer
must then modify the character and/or block device table
arrays within "mkconf.c," and recompile this using the

following commandg:
make mkconf <carriage return>

The next step requires the programmer o creaté or medify a
configuration file in the subdirectory
"/usr/sys/conf/conf.tbl." The "makefile" within the
subdirectory "“/usr/sys/conf" is modified such that the
particular system kernel one wants to generate has the
desired configuration table input to the "mkconf" command.
The system kernel "unixlspm" may be generated with the

following command:
make unixlspm <carriage return>

To illustrate how one can mecdify the operating system
using the program "make," consider the following example.
Suppose you wish to generate an operating system kernel that
contains the trackball device driver, but does not contain
the DR-~11W device driver. The simplest method to perform
this function involves two steps. The first step requires
the programmer to delete the following line from

"/usr/sys/conf/conf.tbl/lspmcont®:

dr

39

The programmer executes the following command as a second

step:
make unixlspm <carriage return>

This will result in the creation of a new system kernel
"unixlspm® that contains the trackball device, but not the
DR~11w DMA controller device.

4,6 Current Image Processing Software Overview

Table 4.1 summarizes the image processing software that
is currently available in each of the four system levels.

To give credit where it is due, indicators have been placed
beside programs where contributions were made by more than
one person. J3ome programs reguired only slight modification
prior to incorporating them into the four level system
hierarchy, others required extensive revision. For further
information regarding the modifications, the reader is
referred to the program listings in Appendix 2. Each
program and function subprogram source listing contains a
program header section labeled "MODIFICATION HISTORY."

The following chapters contain detailed descriptions of
the capabilities of each of the programs listed here. These
chapters will not contain a description of how they work.
The program header that precedes each program and function
subprogram includes a detailed program description. The
source code for each program and function subprogram is

heavily commented. The reader is referred to the program

40 -

-

listings in Appendix 2 for detailed information concerning

how the programs work.

41

Current Lmnage Processing Software Overview

LEVEL 1 scan contrast *
save restore *
display graphics *
zoom arithops *
datanal filter *
remove smooth *
help
LEVEL 2 adisable.c § disp.c § save.c
adisp.c $ hist.c & scan.c §
ainput.c $ inrefs.c show.c
an,c intl.c tbzoom.c
chan.c makefile unhist.c &
LEVEL 3 a_clran.c i close.c § i open.c 3
a_disable.c $ i_creat.c $ i _refs.c
a_display.c § i_curs.c i scan.c 3
a_doprnt.s i_da_to_dsk.c $ i_scroll.c
a_printf.c - i _dsk_to _da.c § i_show.c
compall : i flag.c 8 i_zoom.c
h_display.c & i_getpix.c mklib
h print.c & i_map.c tb _adb.c
LEVEL 4 dr.c 8 maxefile
th.c mkconf.c
da.c
* indicates the Level 1 command
“has not been implemented.
$ indicates that the original version of the
program was written by M. Riley.
& indicates that the original version of the
program was written by K. West.

TABLE 4.1

42

Chapter 5: Level 1 Program Descriptions

5.1 Cverview

Seven Level 1 commands were implemented £for use with
the LSPrM. Scan, display, and save were the first Level 1
commands to be created, since these commands are critical teo
the operation of the microscope. Versions of the Level 1
commands "remove," "datanal," "“zoom," énd "help" were alsco
implemented. The strategy followed in development of these
Level 1 commands began with the development of Level 2
program modules. These Level 2 program modules were written
as main programs with function subprograms utilized wherever
possible. Once the Level 2 program was completely debugged,
the function subpregrams were removed from the Level 2
program source file and placed in an object code library
"/usr/lib/libimg.a." This proved to be an efficient method
for developing useful software tools. Function subprograms
developed in previous Level 2 programs proved to be very
useful for further program developmeﬁt. The most efficient
Qay to write these programs is to build on the material
already present, making use of the software tools. If the
function subprograms cannot be used in their present form,
then a programmer may modify them to suit the purpose. This
method proved to be much faster than trying to write the
programs from scratch. When a Level 2 program was complete,
it was incorporated into the Level 1 command for which it

was developed.

43

Each of the Level 1 programs implemented here are
fairly simple in operation. The Level 1 commands "scan,"
"save," and "zoom" change the directory to the subdirectory
where the Level 2 commands reside, and execute the
appropriate Level 2 command. 'The remaining Level 1 programs
make use of the program "test" in order to perform stfing
comparing operations. By combining the if-then flow control
mechanism with the "test" program, Level 1 programs may
selectively execute Level 2 program modules given a
particular key word as an argument to the Level 1 command.
The Level 1 program "datanal" has been reprocduced below as
an example. In this shell program, two key word seguences
are accepted “gray value" and "histogram." The variables
"$51" and "S2" contain the first and second argument strings

supplied when the shell program is executed.

lf test ||$ln = ngayn -3 ||$2|| = Yyalue®
then
cd ../L2/bin;tbhzoom ~-czy
exit 1
elif test "$1" = "histogram"
then
cd ../L2/bin;hist $2 S3
exit 2
fi

#hen Level 1 commands are executed, the user is prompted in
an interactive format for information necessary to run the
program. Some programs will simply execute with a
particular default format. In the few cases where the

commands require command line arguments for execution, the

44

argument string is passed through the Level 1 command to the
appropriate Level 2 program module.

The Level 1 programs are somewhat restricted in the
operations they perform. Each command will execute in a
particular default format; however, there may be options
available within the Level 2 program module that is not
normally used within Level 1. This situation may be
remedied in the future through the development of a general
program to serve as a menu interface to the user. Through
this program, the Level 1 user could be given a complete
description of all the options available in a given Level 1
command. The user would then select an option by typing a
command string or by placing a curseor over the command
string with the trackball and pushing a button.

The following sections describe the function and
capabilities of the seven commands implemented in Level 1.

5.2 Level 1 Command -~ scan

T“his command executes a Level 2 program module called
scan. The ground work for this program was done by M. Riley
[l6]. “The main program at Level 2 was completely rewritten
for reasons which will be outlined in the next chapter.

This program will require modification in two cases:
1. A third DeaAnza memory plane is added to the system.
2. The hardware capability to scan an image of a size

other than 512 by 512 pixels is added to the system.

45

The microscopist makes use of this program cnce the
specimen, microscope, and associated hardware are set to
generate an image. The easiest way to use the program is to

type the following:
scan 1 <carriage return>

The second argument "1" refers to the number of images to
scan. It is important to note here that while scan does not
store more than one image at a time, it is possible to scan
more than 1 image at a time. The program currently allows
the user to scan to either of the two DehAnza memory
channels, defaulting to channel 0. The user is currently
restricted to scanning 512 pixel by 512 pixel images.

5.3 Level 1 Command - save

This command executes a Level 2 program called "save."
The microscopist uses this command to store a scanned image
in a disk file. The program "save" is interactive,
prompting the user for the required information. The user
may store an image in row or column format from either
memory channel 0 or 1, defaulting to a row format saved from
channel 0. 7The simplest way tc use this program is to type

the following command:

save 1/imagel <carriage return>

The characters "i/" in the command line argument refer toc a

special subdirectory created to serve as an image catalog.

46

The argument string "imagel" is the image file name supplied
by the user. This command would save the image in memory
channel 0 in row format under the filename "imagel," in the
image catalog "i."

5.4 Level 1 Command - display

Four separate Level 2 program modules are incorporated
into this command. The Level 2 program "disp" does most of
the work required in this command. The microscopist makes
use of "display" in order to display images stored in a disk
file on the video monitor, The command provides the option
to display the image in row or column format, and allows the
user to select memory channel 0 or 1. Assuming an image
named "imagel"™ has been stored in the image subdirectory "i"
using the "save" command as outlined in the previous
section, the image may be displayed using the following

command ¢

display 1/imagel <carriage return>

The above command string would cause the image "imagel"”
stored in a disk file in the image catalog "i" to be
displayed in row format on memocry channel 0.

Suppose the user wanted to list the contents of the
image catalog "i." An option exists within this Level 1

command to accomplish this by typing:

display catalog i <carriage return>

47

The "display" command allows the user tc select the
memory channel to be displayed through the use of a Level 2
program "show." If the user was currently displaying
channel 0, and wished to change the channel displayed to 1,

then the user would type:
display channel 1 <carriage return>

The DeAnza ID5400 contains a 2000 character annotation
memory which provides the mechanism for displaying
alphanumerics on the videc monitor. The "display" command
provides for the display of a caption on an image by typing

the following command:
display caption hello, world <carriage return’

fxecution of the above command would result in the display
of the caption “hello, world" in the bottom left corner of
the image.

Each pigel of an image contains 8 bits of information,
resulting in a gray value between 0 and 255. It is possible
to display an intensity reference scale on the bottom of the

image with the "display" command by typing:
display scale on

The intensity reference scale displayed is a sequential
scale of gray values from 0 to 255 in steps of four; thus 64

levels are displayed. The intensity reference scale display

48

may be turned off by substituting "off" for "on" in the
above command string.

5.5 Level 1 Command - remove

This command uses two Level 2 programs "unhist" and
“"an." The microscopist uses this command to delete an image
stored in a disk file. Suppose the microscopist wanted to
delete the file "imagel™ from the catalog "i." This is

accomplished by typing:
remove image i/imagel <carriage return>

This command invokes the UNIX command “"rm" to delete
"imagel"™ from the‘image catalog "i." A future release may
provide a "softer™ deletion command, i1.e., one that merely
marks the image file for‘later deletion when the user logs
out. If the user changes his mind, he can "un-remove" the
file before leaving the sfstem.

The "remove" command serves two other purposes. If the
microscopist wants to remove a capﬁion from the image on the

monitor, the following command string should be typed:
remove caption <carriage return>

To remove a histogram that has been displayed over the

image, the microscopist types:

remove histogram <carriage return>

49

These two commands do not have any options after the
keyword. The keyword "“caption" causes the shell to execute
the Level 2 program "an." The keyword "histogram" directs
the shell to execute the Level 2 program "unhist."

5.6 Level 1 Command - datanal

The "datanal" command incorporates two Level 2 programs
"hist" and "tbzoom." Suppose the microscepist has scanned
an image and wants to determine the gray value at a

particular point in the image. The microscopist types:
datanal gray value <carriage return>

This command enables the microscopist to roll a curscor to
this point on the image using a trackball and obtain the
gray value at any peint on the image. The keywords 'gray
value" direct the shell to execute the Level 2 program
"thbzoom" with a special set of options. The gray value for
a pixel at a given coordinate is displayed on the monitor
next to an annotation that reads "gray value =."

The histogram is a useful tool in determining the
quality of an image. It is a bar graph of the number of
pixels of given gray value for each gray value from 0 to

255. The microscopist can generate a histogram for an image

by issuing the command:

datanal histogram <carriage return>

50

The above command will generate a histogram of the image
displayed in memory channel 0 and display the histogram
overlayed on the image. The histogram display includes an
“annotation indicating the maximum number of pixels occurring
at .a gray value and that gray value;

2.7 Level 1 Command = zoom

The "“zoom" command invokes the Level 2 program
"tbzoom." This program provides the microscopist with
flexible image reviewing mechanism. The command is issued

by simply typing the following command string:
zoom <carriage return>

Through the use of the trackball, and the scroll and zoom
capabilities of the DeAnza display system, this program
allows the microscopist to zoom in on localized sections of
an image. This zoom 1s a form of.hardware zoom that is very
fast, providing 1X, 2X, 4X, and 8X magnification factors.
The switches on the trackball control several features. The
left switch controls magnification, and the right controls
the memory channel displaved. The magnifications are cycled
through 1X, 2X, 4%, and 8X by repeatedly pressing the left
button. The center switch functions as a store mechanism.
The microscopist may store a particular position,
magnification, and memory channel by pressing in this
switch, then toggle between the present state and, the stored

state using this switch.

51

5.8 Level 1 command - help

This command provides on-line assistance to the
microscopist. The "help" command does not use any Level 2

commands. It is invoked simply by typing:

help <carriage return>

o) o

help keyword <carriage return>

The command simply prints out particular document files for
a given keyword supplied. 1If no keyword is supplied, then
the command prints out a general help file with list of the
commands implemented and what they do, along with a list of
the valid keywords to type for more detailed informaticn on
a particular topic. Future development of this command
could integrate the UNIX command "man" with a menu selection
mechanism allowing the microscopist to select commands with
the trackball curscr from a command list displayed on the

screen.

52

Chapter 6: Level 2 Program Descriptiocns

6.1 Overview

Level 2 programs and their associated options are
described in this chapter. Each section begins with a
"usage" statement block containing the user command string
along with the options available under this program module.
The command string notation resembles the notation found in
the Unix manual, Volume I [2]. Briefly, any string within
square brackets "{]" is optional, and any string within
angle brackets "< >" must be supplied by the user. Standard
Unix protocol uses a "-" as a flag to indicate an option
selection. Some programs require an image filename if a
certain option flag is selected. The image filename is
typed after the option flag, separated from the flag by a
space. 1f one of the Level 2 programs 1is executed without
supplying any options or command line arguments, there are
three possible outcomes. The first and most probable
outcome is that the program will interactively dquery the
useﬁ for the information necessary to execute the desired
function. The second possible outcome results in the Level
2 program executing in a default format withoﬁt questioning
the user for more information. The third outcome results in
the output of a “usage" statement block similar to those
found in the beginning of each section.

A typical Level 2 program begins with the C language

statement "main(argc,argv)." This statement indicates the

53

start of the main program, into which 1s passed a command
line argument count and a pointer to the argument strings.
The "main" statement is followed by variable declaraticn
statements. ‘fhe variable declarations are followed by a
section that performs the command line interpretation. This
section will interpret the command line arguments supplied
by the user, or will handle the interactive inguiry
necessary to execute the program successfully. The command
interpretation section is followed by a section which
performs calculation, then calls one or more Level 3
function subprograms. The main program is usually completed
on return from the last Level 3 program to be called. The
sections below will indicate some of the important Level 3
function subprograms called in the Level 2 program. The
Level 1 programs into which the Level 2 program was
incorporated will also be specified.

Some of the Level Z programs below are modified
versions of programs that were developed by others. The
reader is referred to the program listings in Appendix 2 for
further information. Each previcusly existing program
contains a section describing the modifications made to
Level 2 program. The reader is also referred to . Riley's
thesis (Riley, 1982) and CT. West's B.E. project report
(West, 1982). The Level 2 programs below were either
developed for this thesis, or required extensive

modification, therefore they are documented here.

54

There were two major reasons for not using the scftware
available without modification: minimal upward
compatibility and incorrect host computer to DeAnza
interface. The software that existed was based on a starter
package of software tools purchased from PAR Technology Inc.
This software was designed to runm on a PDP-11/34 host
computer interfaced to a DeAnza display system with a color
video monitor, neither of which we had. The specificaticns
require the software to be capable of interaction with all
available monochrome memory channels; this was not possible
with the existing software. There was a considerable amount
of frustration with the documentation supplied by the DeAnza
manufacturer until the program "intl" was incorporated into
the software package. The existing software contained
statements that had to be modifiea once it was realized that
the DeAnza had to be initialized in a certain way before it
would function as indicated in the documentation.

6.2 Level 2 Program - intl

Usage: intl [-0123zh]
~0 initialize channel 0
-1 initialize channel 1
-2 initialize channel 2
-3 initialize the overlay memory plane
-z 1initialize the zoom and scrocll registers only
-h prints the help message
defaults to initializing all channeis.

485 indicated above, "intl" initializes the DeAnza
display system. The initialization procedure clears

numerous locations inside the DeAnza register page,

- 55

including the control status register and annotation memory.
The scrolling registers for each memory channel are set for
(0, 511) resulting in the top left corner of the image being
the display point (0, 511). If the Level 2 program "intl"
is not run on power up of the system, the scrolliné
registers may contain (0, 0). The DeAnza Qill'not function
as documented in this case. |

This program is a modified version of an initialization
program that was supplied by PAR Technology Inc. .It is not
incorporated into any Level 1 command; thus it remains
transparent to the microscopist. The program is executed
through the UNIX .profile mecﬁanism each time the
microscopist logs on to the computer.

§.3 Level 2 Program - gcan

Usage: scan [[-012ynrch] <integer number of frames>]

scan alone is interactive

-012 selects the channel scan destination

-yn enables or disables mirror image option

~-rc selects row or column format

-h prints out the help message

The original version of the "scan" program was written
by M. Riley [16}. Version 1 was modified in order to
incorporate several different features. The modified
version uses the standard protocol for the user interface
portion of the program with logical default modes set. The
new version also supports the capability to scan to any of

the available memory frames. A number of Level 3 function

subprograms are called from this Level 2 program, including

56

i refs(), i_show(), and i_scan{). The function subprogram

i _scan() performs the scan operation given the function
arguments supplied in the main program. The Level 1 program
"scan" simply changes directory to */dsp/img/L2/bin" and
executes this Level Z program. At present, all ¢f the
functional capabilities available through the Level 1 "scan®”
program are performed by this Level 2 program.

6.4 Level 2 Program - save

Usage: save [[-012dfrcsh] [nrow ncol] <filename>]
save alone is interactive
-012 selects the display channel
-df selects save from DelAnza or from a file
~rc selects row or column format
-5 indicates the next 2 arguments contain
the number of rows and columns in the image
-h prints out the help message
The microscopist makes use of this program through the
Level 1 program "save™ in order to store an image in a disk
‘file. The program accepts user input through command line
arguments in the standard protocol format as described
above. Default modes are set such that if the program is
supplied with a filename only, then an image will be saved
in row format from memory channel 0. The program
interactively questions the user for information 1if it is
not supplied in the command line.
This program provides a number of options that make it
useful as a general image processing tool. Besides allowing

format and memory channel selection, “save" is capable of

storing an image from another disk file; thus should the

57

header on an image file be destroyed, the image file may be
repaired using this command. The user may also specify a
non-standard image size, such as 256 by 236 pixels.

Several Level 3 function subprograms atre called from
this Level 2 program, including i_creat(), i_open(},
i close, and i da_to_dsk (). The function subprogram
i_da_to_dsk(}) performs the sa&e operation given the functicn
arguments supplied in the main program. The Level 1 program
"gave" simply changes directory to "“/dsp/img/L2/bin" and
executes this Level 2 program. At present, all of the
functional capabilities available through the Level 1 "save"
program are performed by this Level 2 program

6.5 Level 2 Program - disp

Usage: disp [[-01l2rch] <filename>]

disp alone is interactive

-012 selects the display channel

-r¢ selects row or column format

-h prints out the help message

The microscopist makes use of this program through the
Level 1 program "display" in order to display an image
stored in a disk file. The program accepts user input
through command line arguments in the standard protocol
format as described above. Default modes are set such that
if the program is supplied with a filename only, then an
image will be displayed in row format in memory channel 0.

The program interactively gquestions the user for information

if it is not supplied in the command line.

58

This program provides a number of coptions that make it
useful as a general image processing tool. Besides allowing
format and memory channel selection, "disp" is capable of
displaying any image stored with the Level 2 "save" program;
thus a 256 by 256 pixel image may be displayed provided it
is saved correctly.

Several Level 3 function subprograms are called from
this Level 2 program, including i open(), i_close, i refs{(),
i _show(), and i _dsk_to_da(). The function subprogram
i _dsk_to _da() performs the display operation given the
function arguments supplied in the main prﬁgram. The Level
1 program "display" defaults to changing directory to
"sdsp/img/L2/bin" and executes this Level 2 program.

6.6 Level 2 Program - an

Usage: an <row> [<c=column>] [-lsdwbh] [<string>]

-1 erase characters previously on line

-3 erase all characters previously on screen

-3 disable the annotation display, but leave

the characters in memory.

-Ww white characters on a black background (default)

-b Dblack characters on a white background

~-h prints the help message

The microscopist makes use of this program through the
Level 1 program "display" invoked with the "caption" option
in order to display a caption or annotation at the bottom.
left corner of the image. The program accepts user input
through command line arguments in the standard protocol

format as described above. The default mode prints cut the

"usage" statement block when no command line arguments are

specified. This program is also executed by the Level 1
"remove" command to delete a caption from the display.

This program provides a number of capabilities that are
not available through a Level 1 command. The program allows
the user to specify the row and column where the caption
will pe displayed, along with black or white character
selection.

Level 3 function subprograms are called from this Level
2 program, in order to map or connect main program variables
to actual physical address locations in the PDP-11/60 host
computer memory. The Level 2 program "an" was a precursor
used in the development of a general function subprogram in
Level 3 called "a printf()."
inrefs

6.7 Level 2 Program -~

Usage: inrefs ([<off>, <on>, <64>, <128>, ~0123h]

defaults to channel 0 reference scale

<256>,

off - turns off intensity reference scale
on - turns on intensity reference scale

defaults to 64 levels in the scale
64 - indicates 64 levels desired scale
128 ~ indicates 128 levels desired scale
256 - indicates 256 levels desired scale
-() - specifies channel 0 reference scale
-1 - specifies channel 1 reference scale
-2 - gpecifies channel 2 reference scale
-3 - specifies channel 3 reference scale
-h - prints out the help message

‘ihe microscopist makes use of this program through the
Level 1 program "display" invoked with the "scale" option in
order to display an intensity reference scale at the bottom
of the image. The program accepts user input through

60

command line arguments in the standard protocol format as
described above. The default mode turns on a 64 level gray
scale at thé bottom ¢of the image in memory channel 0.

This program provides a number of optional capabilities
that are available through a Level 1 command, provided that
the correct options are known to the user. The program
allows the user to specify the memory channel where the
scale is displayed, along with the number of levels in the
scale.

One Level 3 function subprogram is called from this
Level 2 program, in order to control the intensity reference
scale. This program operates by simply decoding what the
user desires done, and calling the Level 3 function i_refs()
with the correct function arguments.

6.8 Level 2 Program - show

Usage: show [-0123h |

-0 channel zero

-1 channel one

-2 channel two {notf yet purchased)

-3 overlay channel

-1 prints out the help message

The microscopist makes use of this program through the

Level 1 program "display" invoked with the "channel" option
in order to display the desired memory channel on the video
monitor. 'The program accepts user input through command
line arguments in the standard protocol format as described

above. The program interactively questions the user for

information if it is not supplied in the command line.

61

One Level 3 function subprogram is called from this
Level 2 program, in ocrder to control the memory channel
displayed. This program operates simply by determining what
the user wants done, and calling the Level 3 function
i _show() with the correct function arguments. The function
i_show() routes the video signal generated from the desired
memory channel to the video monitor.

6.9 Level 2 Program - hist

Usage: hist [1, 2, 3, p, t, f <image filename>, c, 1]
-1 channel 1 display
-2 channel 2 display
-3 overlay display
-p point display
-t terminal display
-f <filename> computes histogram of <filename>
stores the results in .hs file
~-c coerces new histogram computation of <filename>
-1 list out the histecgram values
-h prints out the help message
defaults to bar format histogram of 512 by 512 image
in the DeAnza memory plane 0

The original version of this program was written by C.
West [20]. 7The modified version uses the standard protocol
for the user interface portion of the program with logical
default modes set. Default modes are set such that 1f the
program 1is executed with no command line arguments, a
histogram will be generated from a 512 by 512 pixel image in
memory channel 0.

This program provides a number of optional capabilities
that make it useful as a general image processing tool.

Besides allowing display format and memory channel

62

selection, "hist" is capable of generating a histogram from
an image file. The "hist" program will also work with a
non;standard image size, such as 256 by 256 pixels, provided
that it is generated from the image file. The new version
supports the capability to generate a histogram directly
from any memory channel, along with a bar or point display
format. The histogram display is removed via a simple Level
2 command "unhist,”™ that disables the overlay memory
display. A variety of Level 3 function subprograms are
‘called from this Level 2 program, including i_refs (),
i_show(), h_print(), and h_display(). The function
subprogram h_display{() is passed a histogram array pointer
ﬁﬁom the main program in order to perform the histogram
display operation. When the Level 1 program “datanél" is
selected with the "histogram" option, the shell program
changes directory to "/dsp/img/L2/bin" and executes the
Level 2 program "hist.,"

6.10 Level 2 Program - thzoom

Usage: tbzoom [-hczgs0l2] [0, 1, 2, 3, 4, 5]
-h prints out the command description
-c enables running coordinate annotation
-z enables running zoom power annotation
-g enables running gray wvalue annotation
-5 allows selection of cursor shape
the shape is specified by an integer 0-5
in the next argument
-0 default condition to channel 0 display
-1 optional channel 1 display
-2 optional channel 2 display

Cursor shapes are as follows:

0 = full screen crosshair 3 = dashed croesshair

63

solid crosshair
solid crosshair

single element 4
crosshair (alphanumeric) 5

i
[E]

1
2
There exists a method of executing system commands while
this program is running. It involves using the exclamation
point in the same manner as in the system file editor <ed>.
Consult the section on the editor in the Unix manual Vol. 2
for further details.

The microscopist makes use of "tbzoom" through the
Level 1 program "zoom" in order to review images displayed
in either memory channel of the DeAnza display. It is also
used in the Level 1 program "datanal" with the "gray value®
option selected. The "grag value" option causes "tbzoom" to
be executed with options selected for a running coordinate,
zoom, and gray value annotation display. The program
accepts user input through command line arguments in the
standard protocol fotmat as described above. Default modes
are set such that if the program is executed with no command
line arguments, the program will enable the trackball with
scroll, zoom, and channel selection capabilities; however,
there will be no annotations displayed.

This program provides a number of capabilities that
make it useful as a general image processing toocl. Besides
providing scroll and zoom capabilities integrated with a
trackball, it is possible to execute commands while inside
the "tbzoom" program by preceding the command string with an
exclamation point. The microscopist may alsc select from

six possible cursor shapes.

64

This Level 2 program calls a number of Level 3 function
subprograms, including i_show(), i _curs{), i_scrolly(),
i _zoom, and a_printf(). The function subprograms i_scroll{()
and i_zoom() perform the operations necessary to control the
hardware scroll and zoom capabilities of the DeAnza. The
Level 1 program "zoom" simply changes directory to

"/dsp/img/L2/bin" and executes this Level 2 program.

65

Chapter 7: Level 3 Function Subprograms

7.1 Overview

Chapter 7 describes the Level 3 function subprograms
implemented to provide the programmer with a useful set of
software tools for the development of image processing
programs. The tools developed are grouped into 5
categories:

1. file management

2. data transfer

3. hardware register control
4. annotation display

5. histogram display

The software tools are made available to programmers
through the use of an object code library called
"/usr/1lib/libimg.a." The function call for one of these
tools can be inside a main program or another function
subprogram. Once the source code for the main program has
been completed, the routine is compiled with a compile
string of the form shown below:

cc main.c {main program) -limg -o main (output file)
This compile string instructs the compiler to compile main.c
and pass the object code generated to the UNIX loader
(1d(l)) to create an executable program. The flag "-limg",
also passed to the loader, instructs the loader to search
through the object code library "/usr/lib/libimg.a" for

unknown function references.

66

Problems may arise as a result of the single pass
nature of the search. If there is a function in the object
code library that references another function in the
library, the referenced function must appear after the
referencing function in the object code library. When this
is not the case, the loader will fail to include the earliér
function, causing the loader to terminate and produce an
unexecutable program.

The shell commands "compall" and "mklib" were created
to ensure that the object code library "/Jusz/lib/libimg.a"
is a working one pass library. These commands reside in the
directory “/dsp/img/L3." Both commands are used to create
the library as follows:

compall;mklib <carriage return>
The source code from all the Level 3 functions is compiled
into object code by the "compall" command. Once “compall®
has successfully completed, the object code library is
created with the "mklib" command. The "mklib" command
incorporates three UNIX commands into a shell command:
"ar(l)," "lorder(i)," and "tsort(i)." The "lorder”™ command
finds an ordering relation for the object code library which
is piped to "tsort." “he output of "lorder" is.processed by
"tsort" to order the library such that it is suitable for
one pass accesslby "ld (1) ." Finally, the library is created
with the "ar" command. The shell command "mkiib" is listed

below.

67

echo re-creating IMAGE system library:
rm /usr/lib/libimg.a
echo LORDER *.o piped to tsort and archived:
ar cr /usr/lib/libimg.a “lorder *.o | tsort’
rm *.0
chown bin /usr/lib/libimg.a
echo IMAGE library complete
The sections below give short descriptions of the Level
3 function subprograms in each of the five categories. The
ENTRY section of the function subprogram header is included
to indicate the proper function call, aleng with the

function arguments.

7.2 Level 3 File Management Routines

Image files contain the pixel data for an image, along
with a 512 byte image header that precedes the image data.
The functions below manage image files, allowing the
programmer to create, open, and close files. The
manipulation of image header flags is also dealt with by
functions in this category. The first versions of these
Level 3 routines were written by M. Riley {[16]. The first
two entries below refer to routines created by ii. Riley that
have remained unmodified since they were last documented in
his thesis, and are included here for completeness.

ENTRY: 1 _creat (filename, nr, nc)

filename -- name of image file

nr -- number of rows in image

nc -- numper of columns in image

ENTRY: Both of the Level 3 functions below are contained in
the source file "i flag.c"

i setf(ip,flag)
ip - struct image (IMAGE) pointer

038

flag - flag to be set (see macros in image.h)
i_rsetf(ip,flag}

ip - image pointer

flag to be RESET (macros in image.h)

The function subprograms "i cpen" and "i_close" have
been modified since they were. last documented in 4. Riley's
thésié fl16]. 70 copen and close étandard files, a user
program should use "i_ open" and "i_close" functions
respectively. The modification made to "i open" and
"i close™ results in these routines more closely resembling
the UHIX "open" and "close"™ functions. Permission access
modes were added to the "i open" routine, and "i_close" was
altered to compensate for this addition. Before the
protection modes were added, the files were always opened
with both read and write permission. The "i_ open" function
now opens the file first with both read and write permission
to check and set flags in the image header. After the
header check is successfully completed, the file is closed
and opened again with the proper permission mede. The
"i close" compensates for this change by first closing the
file, then opening the file with both read and write
permission. The image file header is checked, flags are
reset, and the image file is closed at the exit of the
"i close" function. The entries for the “i_open" and
"i close" functions are listed below.

ENTRY: 1 _open(filename, rwmde)

filename - image file name
rwmde ~ access modes

69

0 - read only
1 -~ write only
2 - read/write

ENTRY: i close(ip)
ip - image pointer defined in the include file "image.h"

7.3 Level 3 Data Transfer Routines

Three routines in this category are modified versions
of function subprograms originally written by 4. Riley [16].
The function subprograms "i scan," "i_da_to_dsk," and
"i_dsk_to_da" were modified to correct the DeAnza control
register initialization, and to enable the functiocns to
handle more than one memory frame. The "i da to dsk"
routine corresponds to a routine called "i_ read" and
"i_dsk_to_da" corresponds to "i_display," both documented in
M. Riley's thesis.

A program "intl," originally supplied by PAR Technology
Inc., was rewritten to properly initialize our DeAnza
display system [14]. This proved to be a valuable asset,
because a number of discrepancies showed up on the display
screen that led programmers to believe that the DeAnza was
not performing as documented in both the DeAnza programming
manual and the PAR software documentation. The key factor
leading to the discrepancies on the display turned cut to be
the fact that the scrolling registers in the DeAnza must be
loaded initielly with (0,511), the upper left corner of the
display, and not (0,0). Each time the "image" user logs in

to the system, the "intl" program is executed to initialize

70

the DeAnza display system through the use of the ".profile™
mechanism provided by the UNIX shell. Once this
modification was implemented, the programs were corrected
and the DeAnza functions as stated in the documentation.
The corrections to the function subprograms correct the
starting indicies loaded into the Control Base Coordinate
Registers (CBCR}.

Without the modifications made to these three function
subprograms, each memory frame would require a separate
group of functions dealing with the register level
interactions between host computer and DeAnza display
system. This problem was rectified by specifying a
structure, or template of variables external to the Level 3
function thus making the function channel independent. The
structure, _deanza, consists of variables representing
important channel dependent parameters which may in turn be
selectively initialized in source programs through the use
of appropriate pseudo-functions. These pseudo-functions act
as a movable window, allowing the programmer to selectively
initialize a global structure in a source program. The
_deanza structure resides in the include file
"/usr/include/pick disp.h.” The include file "pick disp.h"
iz a modified version of the original file supplied by PAR
Technology inc. [14]. These changes will make the system
upward ccompatible. When a new memory frame or other DeAnza

device is purchased for the system, the only changes

71

necessary, if any, will be to add the additional variable
parameters to the structure and recompile the new or
existing routines.

The entries for the three routines discussed above are
listed below.

ENTRY: i scan (nr, nc, nf, format, r flush)

nr -- § rows in image

nc -- # columns in image

nf -- # frames to read in

format -~ display in row or column format:

‘r!' for row
'g' for column

r“flush -—- reverse contents of data buffers
upeon flushing from dr/buffer hardware:
‘n' - forward data

' - reversed data
ENTRY: i da to dsk(ip, read_flag)
ip -~ valid image pointer, returned from
i_open.c found in the image library.
read flag -- ‘r' = read image from display in row format
'¢' = read image from display in column format
ENTRY: 1 dsk to da(ip, disp_£flag)
ip -- valid image pointer
disp flag -- 'r' display disk file in row format
'¢' display disk £ile in column format
The "i getpix" function was created as a mimic of the
UNIX "getchar"™ function. Given the x and y coordinates of a
pixel in a selected memory plane as function arguments,
"i getpix" returns the gray value of that pixel. The
"i getpix" function maps to the Deanza register and data
window, loads the ¥ and y coordinates into the CBCRs, and

returns the pixel value from the data page. The entry for

the "i getpix™ function is listed below.
ENTRY: 1 getpix(x_point, y_point)

72

x_point - x position coordinate on the image display
y_point - y position coordinate on the image display

7.4 Level 3 Hardware Register Control Routines

PAR Technology Inc. supplied the functions "first page"
and "virtual" in their software package, and they remain
unmodified. “hese functions allow the programmer to map
variables to physical memory addresses. Entries for both
functions are listed below; they reside in the same file
"i map.c"

ENTRY: 3Both of the functions below are contained

in the source file "i map.c"

first page() =- returns an integer referring to the first
available memory mapping register.

virtual {(page) - where page 1s the page number to be mapped
to a virtual address.

The function "i show" is the first in a series of
routines written to control the hardware capabilities of the
DeAnza image display system. The DeAnza can support 3 full
512 by 512 pixel frames of image memory, along with 1
overlay frame. Channel display selecticn is controlled
through the use of the "i_show" function. The function
"i“ShOW" is supplied the channel the programmer wishes to
display as an argument. The "i show" function maps to the
DeAnza register page and loads the correct location (denoted
IXSPLT in Regdef,h) with the appropriate bit pattern such

that the video signal from the channel selected is routed to

the monitor. The entry for "i show" is listed below.
ENTRY: 1i_show(channel)

73

where channel is 0, 1, 2, cxr 3

The "i_refs" function subprogram controls the state of
the intensity reference scale for each memory channel. The
intensity reference scale may be turned on with 64, 128, or
256 levels of gray. Channel selection is controlled within
the main program by using the "sel chn" pseudo—fuhctions
contained in the include file "pick_disp.h." The "i_refs"
function is called after the channel selection to select the
state and number of levels for that channel's intensity
scale. The "i refs" function maps to the DeAnza register
page and loads the correct location (denoted IREFC, IREFL,
IREF2, or IREF3 in Regdef.h) with thé appropriate bit
pattern such that the intensity reference scale for the
channel selected is altered as desired. The entry for
"i refs" is listed below.

ENTRY : i refs(state, level)
where state is off (0) or on (1)
and level is (64), (128), (256)}.

The "i_scroll" function subprogram controls the
scrolling state for each memory channel. Scrolling refers
to a position shift of an image pixel to the upper left hand
corner of the image. Normally the coordinates of the upper
left corner are (O,Sll), The "i_scroli“ function permits
the programmer to specify the coordinates of the pixel to be
placed in the upper left corner. Wtap around refers to the

sections of the image that are scrolled off screen. These

74

are "wrapped around" in the x and y direction as specified
by the programmer. The wrap around may also be blanked
where indicated by the programmer, blackening the portion of
the image that is wrapped. For further discussion of the
scrolling capabilities of the DeAnza display system, the

reader is referred to the DeAnza Programming Manual [12].

Channel selection is controlled within the main program by
“using the "sel chn" pseudo-functions contained in the
include file "pick disp.h." The "i_screll" function is
called after the channel selection to scroll the image to
the desired position. The "i_scroll"” function maps to the
DeAnza register page and loads the scroll control registers
with the bit pattern containing the x and y ccordinates,
wrap, and blank information requested by the programmer.

The entry for "i scroll" is listed below.

ENTRY: i _scroll(x, y, xmode, ymode)

¥ - starting(left) x coordinate

y - starting(left) y coordinate

xmode - 0 - 7 defined as follows:

0 - no blank on vertical wrap or horizontal wrap
blanking after horizontal wrap arcund

1l - no blank on vertical wrap or horizontal wrap
blanking before horizontal wrap around

2 - no blank on vertical wrap, blank on horizontal wrap
blanking after horizontal wrap around

3 - no blank on vertical wrap, blank on horizontal wrap
blanking before horizontal wrap around

4 - blank on vertical wrap, no blank on horizontal wrap
blanking after horizontal wrap around

5 - blank on vertical wrap, no blank on horizontal wrap
blanking before horizontal wrap around

6 - blank on vertical wrap, and blank on horizontal wrap
blanking after horizontal wrap around

7 - blank on vertical wrap, and blank on horizontal wrap
blanking before horizontal wrap around

75

ymode - 0 or 1 defined as follows:
0 - blank after vertical wrap around
1 - blank before vertical wrap around
The function subprogram "i_zoom" controls the zoom state
for each memory channel. Four hardware zoom factors are

available:' 1X, 2%, 4%, and 8X. The hardware zoom is

accomplisheé through a direct mapping of pixels:

1X = a 1 pixel to 1 pixel mapping (No zoom)
2X = a 1 pixel to 4 (2 by 2) pixel mapping
3X = a 1 pixel to 16 (4 by 4) pixel mapping
4X = a 1 pixel to 64 (8 by 8) pixel mapping

Channel selectibn is controlled within the main program by
using the "sel chn" pseudo-functions contained in the
include file "pick disp.h."™ The "i zoom" function is called
after the channel selection to zoom the image to the desired
magnification. The function "i_zoom" maps to the DeAnza
register pade and loads the scroll control registers with
the bit pattern containing the zoom factor requested by the
programmer. The entry for "i zoom" is listed below.

ENTRY: i zéom(power} power refers to the valid hardware

zoom factors. The valid parameter choices are:
1 === 1 to 1 {no zoom)

2 === 2 to 1 zoom
4 === 4 t0 1 Zoom
§ we= 8 to 1 Zoom

The function subprogram "i_ curs" controls the cursor
display state in the DeAnza display system. One or two
cursors can be displayed in one of eight formats described

in the DeAnza Programming Manual [12]. Cursor state is

controlled within the main program by using the

76

pseudo-functions "cur_enbl" and "cur_ dsbl" contained in the
include file "pick _disp.h." The "i curs" function is called
after the cursor state selection to actually load the
correct registers with the patterns selected in the main
program. The function "i curs" maps to the DelAnza register
page and loads the five cursor control registers with the
nit pattern chosen by the programmer in the main program.

The entry for "i_curs" is listed below.

ENTRY: 1 curs() - this function operates on the external
structure
_cursor defined in /usr/include/Regdef.h

struct _cursor

{

int cslx;

int csly;

int csdx;

int csly;

int csctij;

}i

7.5 Level 3 Annotation Display Routines

The "a printf" function subprogram is similar toc the C
language function call "printf" used to format output to a
file or terminal. It is useful to print formatted character
strings on the monitor (versus printf() for a terminal
output) in any position on the screen. The user must
specify the row (1-25) on which the line is to begin, and
specify the column (1~-80) where the string should Hegino
The user has the option of black or white characters. The
character string can be passed as a string pointer or as a

string enclosed in double quotes, along with any of the

77

standard conversion characters available with the "printf"
function. The arguments for conversion are appended to the
argument list in the same manner as "printf." The function
"a printf" maps to the DeAnza register page, converts the
arguments supplied to a valid character string, writes the
string to the annotation memory in the DeAnza, and enables
display of the character string on the monitor.

The "a clran" function subprogram is used to erase
either a line of characters, or the entire monitor screen.
The user must specify the row (1-25) for a line erase, and
can optionally erase the entire screen. It is also possible
to disable the annotation display while the character string
remalins in the annotation memory. The entries for
"a printf" and "a clran" are listed below.

ENTRY: a printf(row, column, option, fmt, args)
row - integer 1 to 25

column - integer 1 to 80 :

option - w or b: white or black characters

fmt - a string and/or argument format like printf()
args - arguments

ENTRY: a clran(row, options)

row - an integer 1 thru 25

options - e: erase the specified line

a: erase the entire screen

d: disable the annotation,

but leave the characters in memory

7.6 Level 3 Histogram Display Routines

The function subprograms "h display® and "h_print" are
second versions of routines originally written by C. West

[20]. The "h_display" function is used to generate a

78

histogram display on the overlay memory plane, while the

"h print" generates a compressed histogram display on a
terminal. The reader is referred to C. West's B.E. project
report for detailed information on version 1 of both these
routines. Two display formats, "bar™ and "point"™, are now
available through the "h_display"™ function. An annotation
was added to the "h display" function, indicating the
maximum histogram value and associated gray value.
Modifications made to the ﬁh_print" function were
essentially cosmetic in nature; an include file was
eliminated. The entries for both "h display"” and "h_print"
are given below.

EMTRY: h display(hist), hist iIs pointer to array of long
integers

ENTRY: hmprint(hist) where hist is a pointer to an array
of long integers

79

Chapter 8: Level 4 Operating System Interface Code

§.1 The Include Files

Three files are used extensively throughout all of the

program code in Levels 2, 3, and 4:

1. /usr/include/Regdef.h

2. /usr/include/pick disp.h

3. /usr/include/image.h
These files are incorporated into program source code via
the "include" mechanism éuppiied by the C preprocessor
portion of the C compiler. A section labeled "INCLUDE
FILES" exists in the program header for each routine in
Levels 2, 3, and 4. The include files are "included" in the
section under this heading using a statement with the
following syntax

$include <Regdef.h>

The angle brackets are required, since they instruct the C
preprocessor to search the directory "/usr/include"™ for the
file "Regdef.h." The include file "image.h" remzins
unchanged since last documented in Riley's thesis [l6].

Two of the include files, "Regdef.h" and "pick disp.h,”
are modified versions of files of the same name supplied by
PAR Technology Inc. [14]. The include file "Regdef.h"
provided definitions for parameters used on an IP5324 colox
display or an ID1124 1024 by 1024 pixel monochrome display.
The file “"pick_disp.h™ provided a means of selecting between

an IP5324 color display or an ID1124 1024 by 1024 monochrome

80

display. HNeithexr of these files were useful in their
original form, since we use a DeAnza I1D5400 512 by 512
monochrome display. Extensive modifications were made to
accommodate our‘particular display system.

The include file "Regdef.h" symbolically defines the
DeAnza (ID 5400) display registers as integer offsets
relative to the base of the address window and also defines
several commonly used constants associated with the
displays. Symbols are also defined for accessing the
trackball via its special device file. Structures are
defined for initializing the trackball mode, for reading the
trackball, for loading intensity transformation tables, for
flickering images, and for using registers and parameters
that vary from one display to another. These "definitions"
are made by using the "define" macro substitution mechanism
supplied the C Preprocessor in the following manner:

4define IDREGPG (07000
This statement defines the starting address of the DeAnza
register page in core clicks, where one core click is 32
words or 64 bytes; thus the starting address is 112K words
or 224K bytes.

The include file "pick disp.h"™ contains a structure array
definition for "_da“_and several pseudo~function definitions
for selecting a portion of that structure array such that
the structure pointer "da" points to the desired subsection.

The structure array is pre-initialized with register

81

addresses and display parameters that vary from one display
channel to another. The pseudo-functions simplify selection
of the appropriate element of the structure array. The
simplest analogy for what is created in this include file is
a table of variables defined by the structure definition
" deanza" with several columns of data beside the variables.
Bach data column contains register specific information for
each memory channel. By calling & pseudo-function such as
"sel chnO()," the programmer is filling the contents of the
variables within the structure with the data contained in
one particular column. The pseudémfunction is called in the
same manner as a normal C language function:

sel chn0();

8.2 DR-11W Device Driver Modification

The following modification was made to the "drioctl"
function within the device driver that was written by M.
Riley called "dr.c." fThe driver was modified to provide a 4
millisecond éﬁgnal pulse in order to compensate for mirror
flyback time.

case START:
DR->1 odr = START_ SYUHC;

temp = 10000; /* modification */
while(temp != 0) temp--; /* modification */
DR->1 odr = 0;

break;

The while loop increases the pulse duration of the START
signal supplied to the laser scanning subsystem of the LSPM

microscope.

82

8.3 The Trackball Device Driver

UNIX treats all peripheral devices as special files.
The special file for the trackball is called /dev/tb and it
is created by the following command:
/etc/mknod tb ¢ 8 0 where
th - is the name of the special device file,
¢ - indicates the special file is for a character
device,
8 - is the major device number,
0 « is the minor device number.
The special file entry appears as follows in the directory
"/dev":
4 crw-rw-rw- 1 adm 8, 0 Jul 26 1983 /dev/tb
The major device number for the trackball provides the
critical link between the programmer who opens the special
file, and the operating system kernel that processes all
requests for use of the trackball. The file
"/usr/sys/conf/c.c" contains a structure pointer "cdevsw"
that is directly incorporated into the operating system
kernel at load time via the object code file "c40.0." The
initialization of the "cdevsw" pointer contains several
lines of character strings that refer directly to the device
driver function names for a given major device number. The
position of the character string is directly related to the
number associated with that string; thus provided that all
character strings are in the correct format, the major

device number associated with a character string is set to

the string position within the initialization seguence. The

83

"edevsw" structure pointer initialization is given below to
clarify the above description.

struct odevsw cdevsw([] =

{

xlopen, klclose, klread, klwrite, klioctl, nulldev, 0O,
/* console = 0 */

nodev, nodev, nodev, nodev, nodev, nulldev, 0,

/* pc = 1 */ '

nulldev, nulldev, mmread, mmwrite, nodev, nulldev, 0,
/* mem = 2 */

nulldev, nulldev, r6llread, réllwrite, nodev, nulldev, 0,
J* r7 = 3 */

dzopen, dzclose, dzread, dzwrite, dzioctl, nulldev, dzli,
/* dz = 4 */

syopen, nulldev, syread, sywrite, sysioctl, nulldev, 0,
J* tty = 5 */

tmopen, tmclose, tmread, tmwrite, nodev, nulldev, 0,

/* tm o= 6 */

dropen, drclose, nodev, nodev, drioctl, nulldev, G,
/*dr:?*/

tbopen, tbclose, tbread, nodev, tbiocctl, nulldev, G,

/* tb = 8§ %/

nocdev, nodev, nodev, nodev, nodev, nulldev, 0,

/* adac = 9 */

0
i

The link between the operating system kernel and the
trackball device is the device driver "tb.c." This device

driver has five separate function subprograms:

thopen() - used when "/dev/tb" is opened
tbeclose () - used when "/dev/tb" 1is closed
thread () - used when "/dev/tb" is read from

thioctl() - used for input-output control on "/dev/tb"
tbintr () - the interrupt service routine
When the trackball requires attention, the current task
being performed by the PDP—ll/GO CPU is interrupted, and the

interrupt service routine "tbintr"is initiated. Cnce the

84

interrupt service routine is entered, a buffer structure is
filled with the current position cof the trackball cursor,
along with switch status. This buffer is common to both
“thintr" and "tbread"™ functions; hence a read call to the
trackball device supplies the programmer with cursor
position and switch status information.,

The sequence of operations required to service a
trackball interrupt are outlined below.

1. The CPU gives up control of the UNIBUS, priorities
permitting.

2. When the trackball gains control of the UWIBUS, it
sends the CPU an interrupt command and the memory
address 0234 {octal) which contains the address of the
interrupt service routine "tbintr." The memory
address 0234 is called the interrupt vector address.
The location (vector addzress + 2) 1s used as a new
Processor Status Word (PSW).

3. The CPU stores the current Processor Status (P3) and
Program Counter (PC) in temporary registers.

4., The interrupt vector provides the address for the new
PC and PS. The old PS and PC are then pushed onto the
current stack, and the service routine "tbintr" is
entered.

5. Whén the interrupt service routine "tbintr" has
finished, it causes the CPU to resume the interrupted

process. This is done by executing the Return from

85

Interrupt instruction, which pops two words from the
current stack and uses them to lcad the PC and PS
registers.
This sequence is the hardware/software interface between the
trackball device and the user software. The interfupt
vector information is incorporated into the operating system
kernel at load time (1d(l)} through the object code file
"140.0," which is assembled from the file "i.s."

The last link in the chain is the device driver library
called "/usr/sys/dev/LIB2.40C," where the object code "tb.o"
is archived. ‘ihe trackball device driver source code file
is "/usr/sys/dev/tb.c," which is compiled with the following
command string:

ce -¢ =0 tb.c
The resulting file "tb.o" is archived with following
command :

ar c¢r /usr/sys/dev/LIBZ2.40C tb.o
The device driver is incorporated into the last lcad (1d(l))
command in the sequence of events that generate an operating
system kernel.

The source code for the device driver "tb.c" may be
found in Appendix 2. The driver was modelled after the
device driver "da.c" supplied by PAR Technoclogy Inc. [l4].
The driver "da.c" was not implemented into the image
processing package because it required too much space in the

operating system kernel. The size limit for the ocperating

86

system kernel is 49,152 bytes (6 pages X 8K bytes/page). In
order to meet this constraint, another device such as the
tape drive would have to be eliminated from the operating
system kernel; this was judged to be unacceptable. The next
section addresses the implementation of the "unixlspm"
version of the operating system kernel that handles all the
required devices.

8.4 Operating $ystem Kernel Modification and Regeneration

The operating system required modification to
incorporate the trackball, DR-11W, tape drive, and the DZ-11
into a single system kernel. HNormally, the new device would
simply be added to the current system configuration; however
the system kernel is constrained to £it into & pages of
memory or 49,152 bytes. Extensive medification was made to
the file "mkconf.c" in order to reduce the code that 1is
actually incorporated into the system kernel. This
modification made it necessary to recreate the entire
directory "/dev." Modifications were also made to files in
the directory "/usr/sys/sys." The code concerning the "mpx"
(multiplex) filesystem was eliminated from all system code
through the use of the conditional compile statement
"iifdef." All these modifications led to the creation of an
operating system kernel called "unixlspm" with a size of
49,136 bytes (16 bytes to sparel}).

The source code listing for the file "mkconf.c" may be

found in Appendix 2. Essentially, the modifications to this

87

file were limited to the structure pointer initializations
for "cdevsw" and "bdevsw." The executable version of
"mkconf"™ accepts input in the form of a "configuration
table," such as "/usr/sys/conf/conf.tbl/lspmconf" listed
below.

r7

root r7 1

swap 7 1

swplo 6000

nswap 2724

dr

tm

th

dz 8
The configuration table contains a list of the devices to be
incorporated into an operating system. The resulting output
from "mkconf" is the files "c.c" and "l.s." Before the
modification was made to "mkconf.c," it generated a great
deal of unnecessary code in "c.c" and "l.s" concerning
devices that we would not (and could not in some casesl!)
ever use. These modifications resulted in the elimination
of 1021 bytes of code from "c.c." This reduction had a
direct effect on the size of the system Kernel.

The directory "/dev" contains all the special files for
devices that the system recognizes. The special files
indicate whether the device is a character or a block
device, along with the major and minor device numbers.

Since the structures "cdevsw" and "bdevsw" were modified in

the file "mkconf.c," the special file entries containing the

major and minor device numbers had to be changed. The major

28

device number is directly related to the position of the
device in the “"cdevsw" and "bdevsw" structures. The special
files in the directory "/dev" were altered such that the
major and minor device numbers corresponded to the correct
device file.

The operating system is recreated by entering the
directory "/usr/sys/conf" and typing the command:

make unixlspm
This command will only work correctly for the "root" user,
otherwise any user could write over the existing system
kernel. It uses the UNIX utility "make" which is a smart
program maintainer [1C]. The listing below is an edited
portion of the "makefile"™ that is concerned with the system
. kernel regeneration.
unixlspm:

make dr - installs the DR-11W device driver

make machdep DEANZA - installs DeAnza dependent code

echo making unix40 ...

mkconf < conf.tbl/lspmconf - creates "c.c" and "l.g"

make unix40 - actually generates "/unixispm"

size unix40 -~ sizes the system kernel

chmod 755 unix4uy

echo moving unixd4(0 to "/unixlspm” ..

mv unix40 /unixlspm

echo restoring the baseline unix form of machdep.c

make machdep base

sh -~¢ 'sync ; exit 0!

echo /unixlspm complete:
This listing is included to reinforce the fact that system
regeneration is made guite simple by the "make™ utility;

however, system regeneration is much more complicated than

this one command indicates. If modification are made to

89

this kernel in the future, an experimental version of the
kxernel should be created and tested before writing cover the

"/unixlspm” version of the operating system kernel.

90

Chapter 9: <Conclusions and Reccmmendations

An image processing software package has been developed
for the LSPiM. This software provides the microscopist with
the capability to scan, save, and display a 512 by 512 pixel
image. ‘The image may be scanned to, saved from, or
displayed in either of the two DeAnza image display memory
planes. The microscopist has also been supplied with a
versatile image reviewing mechanism combining the trackball,
scroll, and zoom capabilities of the DehAnza disélay into one
command called "zoom." Considerable effort has been made to
incorporate all of the devices useful for image processing
into a single operating system kernel. This alleviates the
problem of taking down one operating system and bringing up
another version in order to copy image files onto magnetic
tape. A four level hierarchy provided the organizational
framework for the program development. This framework
should prove useful for the development and implementation
of additional software in the future. All of the software
bugs known to this programmer have been eliminated; however,
bugs not known may crop up in the future as the image
processing software is used more often.

Regarding additional uses for this software, two
different applications have already surfaced. The first
application concerns the use of the DeAnza for a large data
buffer to hold electrocardiogram signal data from an

analog~to-digital converter. The Level 3 routine

91

"i dsk_to_da.c" was medified and incorporated inte ancther
high level program to accomplish this task. The other
application demonstrates that this software is useful for
general image processing. A magnetic tape containing images
of various sizes was oﬁtained from University of Southern
California. These images were-read in and stored in a
separate image catalog called “usc,“ This demonstrated that
the software i5 not limited to the 512 by 512 pixel images
generated by the "scan" command.

Having gained some experience in writing image
processing software, several recommendations are made
regarding future work:

1. If the Level 1 command "arithops" described in this
thesis is implemented in the future, a pipeline array
processor should be purchased to provide the
capability of performing high speed arithmetic
cperations.

2. The trackball provides.the user and programmer with an
elegant tool for interaction with the DeAnza image
display. Further development of this tool should be
pursued in areas such as combining the trackball
device with overlay plane graphics for feature
outlining.

3. Once the pipeline array processor has been obtained,
numerous image processing techniques can be

implemented that will operate at rates approaching

92

real-time (1 frame time = 1/30 sec). This includes
the development of time domain filtering under the
Level 1 command "filter," and area statistics
operations under the Level 1 command "datanal."

The last recommendation refers to moving the image
processing software and DeAnza display system to a
VAX~11/750 running Berkley UHIX version 4.2. This
problem is addressed because Thayer School has
purchased a VAX-11/750 to be installed in the summer
of 1984 that will run under Berkley UNIX Version 4.2.
The DeAnza display system and the image processing
software will be transferred to this machine, along
with the other peripherals currently available on the
PDP-11/60. Once the DeAnza display system 1is
integrated into the hardware via the UNIBUS
controller, a base memory address will be established.
Modification will have to bhe made to the include file
"Regdef.h" to provide all the image processing
programs with the correct base address for the DeAnza
register and data pages, and all of the programs in

Levels 2, 3, and 4 will have to be regenerated.

93

APPENDIX 1

94

Al.l Software Demonstration

This section contains a demonstration session with the image
processing software. The commmands typed by the user and the
computer output are offset from comments by an arrow (. =>). The
first thing done by the user is to turn on the coﬁputer terminal
and login to the computer as "image." |

~> login: image

- khkkdkkhkhhkhkkhhhhhhhihhdthkhhdhhhrhik
~> kkkk* QYSTEM: unixlspm *kk ok x
- IEEETEREEFEFETEEESEEESEER LR SRR &8 8 R K
-> Welcome to Unix

-> Mon May 21 03:48:34 EDT 1984

-> Let a fool hold his tongue and he will pass for a sage
-> $ ls

-> arithops

=> contrast

-> datanal

=> display

-> filter
-> graphics
-> help

-> ramove
-~» restore

~->» save
-> Ssc¢an
-> smooth
- zZoom
-> 8

This sequence logs the user into the system and lists the Level 1
commands. The monitor display might look as shown in Figure
Al.l. Suppose the user wanted to scan an image from the LSP!M.
The following sequence would perform this task.

-> § scan

-> Input the number of frames to scan: 1

-> Scan image in row or column format ('r' or ‘'c'): <

-> Do you want the mirror image of the input data (y or n): vy

95

FfIGURE Al.l The Thayer School Logo
P

-> Select the memory channel scan destination (¢, 1, 2): O
-> DBroadcast Message ...
-> Image scanning in 5 secondsS.....
-> Image scanning completed.
-> 8
This sequence could also be performed with the single command:
-> § scan 1
To display a caption on the image, the following command is
executed.

-» display caption bucal epi pm

96

The monitcr display after the above commands are executed is

shown in Figure Al.Z.

in

A

#

3
7

=

PRl "_u} ;
A &7 .
RN

>

FIGURE Al.2

a disk file by using the save command as outlined below.

$ save

Input the image filename:

Input number of rows & columns:

Read from DeAnza display or previous image file (d or f):

A Scanned Image

i/bucal.pm

512 512

DeAnza read in row or column format (r or c¢):

Select the memocry channel to read from (0,

$

97

L,

r

2)

®
v

The image that was scanned may be stored

0

d

The image can also be saved with the single command:

-> § save i/bucal.pm

The image "i/bucal.pm" can be removed from the image catalog "i"
with the following command:

-> -§-remove image i/bucal.pm

Suppose the microscopist wants to list the files in the image
catalog "i." The following command is executed:

-> § display catalog i
-> total 10260

-> 513 100x70amp
-> 513 lé6x450amp
-> 513 16x450brf
-> 513 16x450pmon
-> 513 davef.l

-> 513 grayscale
-> 513 ground

-> 513 logo

-2 513 ohbaby

-> 513 on.l.pm

-> 513 cn.2.bfd
-> 513 on.Za.pm
->. 513 on.2a.pol
-> 513 on.Z2b.pm
-> 513 on.2b.pol
-> 513 on.Z2c.pm
-> 513 on.2d.pm

To display an image saved in a disk file, the following command
is used:
-> $ display

-> Input the image file name: i/on.2c.pm

~-> Display the image in row cr column format ('r' or ‘'c¢'): ¢
~> Select the memory channel you wish displayed (0, 1, 2}: O
-> S

The same operation can be accomplished simply by typing:

-> display i/on.2c.pm

98

A caption can be displayed by typing:

-> display caption on.2c.pm

Figure Al.3 shows what is now displayed on the video monitor.
The “zoom" command provides the microscopist with a simple image
reviewing mechanism. The command is executed as shown below.

->» § zoom -C2Z _ |

-> The trackball module has a ball and three switches.
-> Pressing the wnite switch on the left will cause the

-> zoom magnification to toggle -- 1, 2, 4, 8 powers.
-> Pressing the white switch on the right will cause the
-> display channels to toggle =-- channel 0 or 1.

-> Pressing the red switch in the center will allow 2 images
~-> to be reviewed independently. You may toggle between

-> reviewing sessions using the red switch.

~-> There exists a method of executing system commands while

-> this program is running. It involves using the exclamation
-> point in the same manner as in the system file editor <ed>.
~> Consult the section on the editor in the Unix manual Vol. 2

FIGURE Al.3 & Saved Image Displayed

99

-> for further details

-> 70 end this session of tbzoom, type ¢ and return.

At this point the microscopist is able to use the trackball and
switches to scroll and zoom the image. A sample'of the monitor
display is shown in Figures Al.4 and Al.5. To end the session of

+he "zoom"™ command, the user simply types "g" as shown below.

In order to generate a histogram of the image "i/on.Z2c.pm" that
has been displayed as outlined above, the following command is

typed:

FIGURE Al.4 Zoom Magnification 1

106

-2

FIGURE Al.5 Zoom Magnification 2

datanal histogram

The histogram is displayed on the monitor as shown in Figure

31.6., If the microscopist wants to find the gray value at a

certain point in the image, then the following command 1is

executed:

->
->
->
->
->
->
->
->

datanal gray value

The trackball module has a ball and three switches.
Pressing the white switch on the left will cause the

zoom magnification to toggle -- 1, 2, 4, 8 powers.
Pressing the white switch on the right will cause the
display channels to toggle =-- channel 0 or 1.

Pressing the red switch in the center will allow 2 images
to be reviewed independently. You may toggle between

101

-> reviewing sessions using the red switch.
-> There exists a method of executing system commands while
-> this program is running. It involves using the exclamation

FIGURE Al.6 Histogram Display

-> point in the same manner as in the system file editor <ed>.
-> Consult the section on the editor in the Unix manual Vol. Z
~>» for further details

-> To end this session of tbzoom, type g and return.

As shown in Figure Al.7, the gray value at the point under the

cursor is displayed on the monitor as an annotation. This

command is ended by typing "g" as shown

Finally the user can log out of the computer by typing "login."

-> login

102

-> login:

FIGURE Al.7 Datanal Gray Value Display

103

Al.2 The UNIX Manual Pages for Level 1 and Level 2

104

	An Image Processing Software Package for the Laser Scanning Phase Modulation Microscope
	Dartmouth Digital Commons Citation

	tmp.1599252842.pdf.d9ooz

