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Abstract

When any computer communications network is built, its com-
munications protocol must always be implemented. The proto-
col is implemented on the switching nodes of the network.
The node software must respond in real time to events gen-
erated external to the switching node. Thus, the software
running on a switching node constitutes a concurrent pro-
gram; this complicates the design, implementation and test-
ing ¢f the switching node software. The task gueue model
presented in this paper defines a structure for this
software that facilitates the design, implementation and
testing of communications protocols.

0) Introduction

The construction of any computer network includes the
design and development of a communications operating system
which runs on the switching nodes of the network. The com-
munications operating system is an implementation of the
communications protocol used in the computer network. The
code of a communications operating system can be character-
ized as real time, asynchronous and concurrent. As such, it
is difficult to design, implement and test., Given the spe-
cialized nature of communications operating systems, a spe-
cialized structure can greatly reduce the complexity of an
implementation.

In this paper, we present a general model, which we
call the task queue model, of a protocol machine., This
model defines a structure for a communications operating
system that facilitates its design, implementation and test-
ing. 1In particular, the model limits the different kinds of
concurrency that can occur and clearly defines critical
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sections; furthermore, communications protocols map very
naturally into the task queue model.

To the best ¢f the author's knowledge, there has been
no work reported on the general question of communications
operating system design. Others have reported their work
within the context of particular network implementations!-3,
The researcn most closely related to this effort has been in
three areas. The first has addressed communications proto-
ccls: the design and specification of standards4,5_ the
analysis and measurement of protocol performanced- the
design of policies for flow control, routing etc.6,7, and
the verification of protocols%9,10, Second, research in
cperating system construction is also related to this
work11=-15, Finally, work in concurrent and distributed pro-
gramming is also relevant17-25,

In Section 1, we give a general overview of a communi-
cations network and discuss the characteristics of a commun-
ications operating system. The job of a communications
operating system is to provide communication services for
users; the nature of these services is discussed in Section
2. In Section 3, the task gueue model is presented. Two
related issues, dispatching algorithms and task priority
selection, are explored in Section 4; these issues are of
central importance in the implementation of a task queue
communiications operating system. In Section 5, we gutline
the general form of the code for a task queue communications
operating system. To illustrate how a protocol is mapped
into the task queue model, we present in Section 6 a task
queue imﬁlementation ¢f a very small part of CCITT's proto-
col X.25%, Finally, the central concepts of the paper are
summarized in Section 7.

1) Qverview of a Communications Network

"

All computer networks include switching nodes that han-
dle communication, The switching nodes typically implement
the phgsical through network levels of the ISQ Open Systems
Model2®, The lowest level of function in the IS0 model, the
physical level, includes the hardware needed to transmit and
receive the electrical signals which represent digital
information. Because the physical 1link is rendered unreli-
able due to noise, messages may be garbled in transmission
or lost entirely. The second level, data link, is responsi-
ble for reliable communication of message packets between
adjacent switching nodes. The data link level is defined by
a protocol and is typically implemented partially in
hardware and partially in software. Finally, reliable com-
munication from ¢ne end of the communications network to the
other is the responsibility of the network level, The net-
work level is ancther layer of protocol and is usually



implemented in software. Higher levels of the IS0 model
define the protocels to be used between hosts and user
processes,

Generally, a switching node interfaces one or more host
computer(s) and possibly some number of terminals to the
network. Communications line(s) connect the switching nodes
together., There is an agreed-upon interface between hosts,
terminals and the communications node; the data link and
network level protocols govern communication between switche
ing nocdes.

The program running on the switching nodes must imple-
ment the interface to hosts and terminals in addition to the
protocol. Thus, the node's software must respond in real
time to requests generated external to the switching node.
Implementation of the protocol entails managing I/0 devices
and other resources, most notably buffer space. Viewed in
this light, the software running on a switching node consti-
tutes a special purpose operating system. The primary
design goal when implementing such an operating system is to
achieve the protocol's inherent efficiency. This considera-
tion affects the choice of resource management strategies
and impacts the functional partitioning of the protocol into
software modules. The task queue model defines a structure
for a communications operating system.

2) Services Provided by a Switching Node

The mission of a switching node is to provide communi-
cation services., These services are available to three dif-
ferent kinds of customers: other switching nodes, host com-
puters and terminals. It is the responsibility of the
switching node to respond to requests from these customers.
The nature o¢f the requests depends on the customer.

The service, which a switching node provides to another
switching node, is message relaying. The communications
protocol defines how this is to be accomplished. To perform
this service, functions such as flow control, routing,
buffering and error control are required.

Two different paradigms for host computer service are
common. They are distinguished by whether the host computer
appears to the switching node as one or potentially many
customers. In the first paradigm, the host is a single cus-
tomer that requests communication services on behalf of its
users. This is typical in datagram networks or if the
host-to-host protocol multiplexes all user communication
onto one logical host-to-host link. 1In the second model,
the customers are individual host user processes. This
paradigm is found in virtual circuit networks or if the



host-to-host protocol is demultiplexed. Regardless, the
switching node performs essentially the same set of func-
tions. These functions include creating a connection to a
non local host or user process, destroying a connection, and
sending and receiving information using an existing connec-
tion.

The primary service provided to a terminal is informa-
tion transfer in both directions. A mechanism that allows a
user to connect to a particular host is employed at the
start of every terminal session. Ancillary services include
support of options specific to terminals.

3) The Task Queue Model

The task queue model is developed in the sections that
follow. 1In Section 3,0, the concepts of logical job, events
and tasks are presented. In Section 3.1, we discuss the
dispatcher which is responsible for sequencing the execution
of tasks.

3.0) Logical Jobs, Events and Tasks

A communications operating system maps requests for
service into the protocol used in the network. As such, the
communications operating system is an interpreter, i.e. a
dynamic translator. 1In the task queue model, this interpre-
tation is carried out by tasks which service the requests
made by the switching node's customers.

Each customer, supported by a communications operating
system, constitutes a logical job. As noted in the previocus
section, requests for service can be made by customers. The
arrival of a request for service is an event., Events are
generated external to the switching nede. (Usually, the
arrival of an event is signalled by an interrupt.) Thus, a
request for some communications service is synonymous with
an event.

To process a request, a sequence of actions must be
performed. In part, this sequence is defined by the inter-
face used between the switching node and the customer. This
interface stipulates what information is contained in the
request and what return (if any) is made to the customer.
Tne communications protocol also determines the actions
which comprise this processing. \Usually, the local switch-
ing node cannot completely process the reguest: message
packets must either be sent to or received from other
switching nodes in order to fulfill the request, The gen-
eral form of the sequence of actions is:



build the appropriate packet, have it transmitted and
walt for a response

or

wait for a packet (usually data.)

The key point is that the sequence of actions is broken at
certain places by a wait. At these places, the node is
obliged to wait for a packet from another switching node.

Several other points are noteworthy. The return to the
customer may be made at the beginning of the processing;
sending an acknowledgement (or arranging to send an ack=-
nowledgement) to an adjacent switching node on receipt of a
packet is an example of such a return. Alternatively, the
return may be made after all processing is complete; this is
typically the case when the customer is a host or host user
process. Also, there are some requests that can be pro-
cessed locally by the switching node. 1In these cases,
interaction with other switching nodes is not required, and
thus no wait is needed.

The processing of a request is carried out by a
sequernce of tasks. A task is c¢created when an event occurs
and is speciTic to the particular event. The task must per-
form the processing necessary to respond to the event. The
task terminates at the point where a wait is necessary or
when servicing of the request is complete,

Because the processing of a request is decomposed into
a sequence of tasks, it is necessary to remember where in
the sequence of actions to resume processing. This informa-
tion is maintained in the state associated with each logical
Job. Tasks modify the state of a logical job as appropriate
to indicate what event is expected and what task should be
created next to continue processing the request. The state
of each logical job is contained in a data structure that is
static.

For example, a host process might make a request to
receive data when its logical job is in the idle state. If
sufficient data is not available locally, the logical Job
enters the waiting-for-data state. When data arrives, the
logical job enters the transfer-data state, and a transfer
data task is created to return the data to the customer. If
data is available locally at the time the request is made,
then the logical job immediately enters the transfer-data
state, and a data transfer task is created. 1In either case,
when all the data has been transferred to the customer, the
logical job enters the idle state. Should the connection be
broken before sufficient data arrives, an error return is



made to the customer. In this case, the logical job enters
the abend-receive-return state, and a task to handle the
error return is created. After the error return, the logi-
cal Job enters the idle state.

A task is described by a data structure that contains
the name of the task or the address of the task code, In
addition, the task descriptor may also record information
about the event which spawned the task.

Although up to this point the discussion of tasks has
been within the context of processing customer requests for
service, the task model can be used for other purposes.
Certain other functions are generally needed to implement
communications protocols. Management of a timer (in gen-
erating time-outs) is a prime example of such a function.
The example presented in Section 6 illustrates a function,
which 1s not associated directly with any customer request,
but which i3 needed to implement CCITT's protocol X.25.

3.1) The Dispatcher

The dispatcher 1s responsible for causing the execution
of tasks. Associated with every task is the queue (or
priority) to which it belongs. When a task is created, it
is added to the end of the appropriate task queue. The
dispatcher is responsible for scanning the task gueues and
selecting the next task to be run. In general, there may be
many task gueues; a total ordering of the task gueues
defines the priorities of the queues. The dispatcher scans
the queues in priority order running down each queue in
first-come-first.served order. The state of the dispatcher
is defined by the priority of the queue currently being
scheduled and the task currently running.

When a task is dispatched, it is removed from its queue
and called as a subroutine of the dispatcher. Any relevant
information about the event which caused the task's creation
is passed to the task as arguments. The task then executes
to completion. When complete, the task returns to the
dispatcher which then schedules the next task.

Note that, logically, a task is never preempted by
another task; this prevents critical sections between tasks.
(A task may be interrupted when an event occurs. Such an
interruption may create a task which is queued for later
execution.) Preemption of a task is not necessary in a com-
munications coperating system because the processing per-
formed by a task is generally simple. Thus, the time needed
to complete a task is usually short. 1In cases where the
processing is long, it can be decomposed into a sequence of
tasks to create windows in which the dispatcher may run a
more urgent task.



4) Dispatching Algorithms and Task
Priority Selection

The performance of a task gueue communications operat-
ing system is largely determined by: the algorithm used by
the dispatcher in scanning queues, and the priorities
assigned to the tasks. 1In this section, we attempt to iden-
tify the considerations relevant to both issues. (These
issues are related.) However, given that the performance
goals for computer communications networks are diverse, it
is nearly impossible to be comprehensive, complete and gen-
eral.

The two concerns in designing a dispatching algorithm
are: time critical tasks must be run scon, and the schedul-
ing algorithm must be fair, i.e. all tasks must be run in a
timely fashion.

‘In general, a task should be regarded as critical if
its delay would reduce the efficiency of the protocol., For
example, many communications protocols employ time-outs and
retransmission (until a response is received) on control
messages. Thus, when such a control message or a response
to such a control message is received, it should be pro-
cessed as soon as possible so that the sender of the message
does not time out and send another copy. Transmissien and
processing of flow control information are other examples.
Tasks may also be considered critical if their delay would
preclude meeting response time goals. This is the case in
networks designed for real time response.

In addition to attempting to maximize protocol effi-
ciency, the communications operating system must also
attempt to minimize response time to customer requests.
These to goals contradict each other., Noncritical tasks
must not be delayed for a long time by the processing of
critical tasks; starvation may result. Thus, in assigning
priorities to tasks, distinctions between degrees of criti-
calness and fairness must be made,

Three main types of dispatching algorithm can be iden-
tified. Choice between them can only be made within the
context of a particular implementation of a given protocol.

In the simplest dispatching algorithm, the dispatcher
scans the queues in priority order, first-come-first-.served
within each queue. This is fair, but cannot respond in
timely fashion to critical tasks.

Improving response to critical tasks can be accom-
plished very easily., When a critical task is created, the
dispatcher is alerted. (A flag may be employed to accome
plish this.) For the most part, the dispatcher still



considers the queues in priority order and first-come-
first-served. However, when the dispatcher schedules the
next task, it checks to see if a more critical task awaits
execution. If so, then the more critical task is run.
After processing the more critical task, the dispatcher
should resume where it left off; this attempts to prevent
starvation. -

In certain circumstances for some protocols, critical
tasks may be generated very frequently; this can lead to
starvation which impacts response time, If this precludes
meeting the response time goals of the computer network,
then some mechanism to inflate task priorities is needed.
Priority inflation can be accomplished by keeping track of
the number of times processing is diverted to a critical
task. When a task (or possibly an entire task gueue) has
weathered a certain predetermined number of such diversions,
its priority is inflated to make it mere critical. (We
suspect that such an elaborate mechanism is probably never
needed because communications time usually predominates over
processing time in communications operating systems.)

5) Programming Considerations

The form of the code of a communications operating sys-
tem is dependent on the language used to implement it.
Nevertheless, its general form is:

Global Data: state information, buffer structures and
queues

Mainline: initialization;
call dispatcher();

Subroutines for the tasks

Utility Routines for packet assembly, disassembly,
buffer management etc.

Subroutines to respond to events

Certain information should be either global or accessi-
ble in many parts of the code., The logical state informa-
tion is accessed by the initialization code, task subrou-
tines and event code. Buffer structures are used by the
initialization code, task subroutines and event code; the
buffer free list need only be manipulated by the buffer
management routines. The task queues are updated by the
event code and the dispatcher.

After initialization, the dispatcher is invoked. The



dispatcher is in an infinite loop continuously dispatching
tasks. Thus, a task queue communications operating system
idles by running the dispatching loop.

The model presented above assumes that events are sig-
nalled by hardware interrupts that are processed by the
event subroutines, If the hardware does not support inter.
rupts then polling is necessary. (Interrupts are highly
preferred because, with interrupts, it is easier to prevent
second occurrences of an event before the first one is pro-
cessed.) Polling is performed by the dispatcher. Rather
than scan queues, the dispatcher polls devices to see what
task should be run. The order in which the devices are
polled is analogous to the order in which queues are
dispatched; thus, the remarks of Section 4 apply te polling
also. Although polling eliminates the overhead inherent in
the event code, most notably the creation of tasks, overhead
is incurred in polling.

The places in which critical sections can occcur are
limited. <Critical sections on state information arise
between the tasks and event code. 1In some implementations,
it may be possible to have the event code examine but not
charige state information; this eliminates critical sections
on state information., The task gueues are subject to criti-
cal sections involving the dispatcher and the event code.

If a single utility routine to insert a task on its queye 1s
used by all event subroutines, then task queue critical sec-
tions are limited to two routines: the task queue insert
subroutine and the dispatcher.

There 1is one other important issue to be addressed,
deadlock. Deadlock can be caused in two different ways,
First, a deadlock can occur locally within one switching
node. Typically, this occurs when a critical task abends
(possibly recreating itself or arranging to be recreated
after a time out) while a less critical task holds the
resource needed by the critical task. Such deadlocks can
easily occur for buffer space, but can be prevented by using
the protocol's flow control mechanism. Second, deadlock can
occur between adjacent switching nodes. (Grid lock out is
the classic example of such a deadlock.) Proper design of
the protocol can eliminate these problems.

6) An Example

To illustrate how a protocol maps into the task queue
model, we present an example of how a small part of CCITT's
protocel X.25 can be implemented. Specifically, the imple-
mentation of the packet level link restart procedure is
given. This part of the protocol does not directly service
the request of any customer, but is an integral part of the
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protocol.

Before presenting the example, it is necessary to dis-
cuss the part of X.25 covered by this example., X.25 is a
multilevel protocol which supports virtual circuits. It is
comprised of three levels that correspond to the lowest
three levels of the IS0 model. The part of X.25 used in
this example is at level three of X.25, which CCITT refers
to as the packet level. The packet level is responsible for
implementing virtual circuits. The link restart procedure
initializes the packet level link between two adjacent
switching nodes.

In X.25 two different kinds of switching nodes are
identified. Data Circuit Terminating Equipment, DCE, are
the switching nodes in the communications network to which a
user connects., The user's equipment is referred to as Data
Terminal Equipment, DTE. X.25 defines the interface to be
used between the DTE and the DCE. Before communication of
information over virtual circuits c¢can occur, the DTE and the
DCE must both be brought to a known state. The procedure
for this initialization, link restart, is best described by
a state diagram - see Figure 1.

There are three states, indicated by boxes, in the res-
tart procedure. Transitions between these states are indi-
cated by directed edges. Each edge is labelled to indicate
which party, the DCE or the DTE, causes the transition.
Transitions occur when one party sends a packet to the
other; the type of the packet is also shown on each edge.

At any time, either the DTE or the DCE may restart the
link., When the restart is initiated, the link is in the
packet level ready state. The actions which occur are
essentially the same regardless of which party initiates the
restart procedure. (Note that the state diagram is sym-
metric up to a renaming of packet types.) Thus, it suffices
to discuss restart as initiated by one party.

When the DTE decides to restart the level three link,
it indicates this by sending a restart request packet to the
DCE. At this point, the DTE enters the DTE restart request
state. The DCE can be in one of two states. First, if the
DCE is in the packet level ready state, upon receipt of the
DTE's restart request, the DCE acknowledges the restart by
sending a restart confirmation packet to the DTE; the DCE
reinitializes all virtual circuits to this DTE. Upon
receipt of this restart confirmation, the DTE returns to the
packet level ready state and initializes all virtual cir-
cuits to the DCE. Second, the DCE may itself be attempting
to restart the packet level 1link at the time the DTE sends
the restart request. 1In this case, a restart ccllision has
oceurred. Eventually, each party will realize that the
other is also attempting a restart. The DTE receives a
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Figure 1: X.25 Restart Link Procedure
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restart indication from the DCE (which is the way the DCE
requests a restart,) and the DCE receives a restart request
from the DTE. Both parties reinitialize the virtual cir-
cuits running between them and enter the packet level ready
state. ‘
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in this example, we show the actions taken in the DTE.
The DTE's link may be in ¢ne of two states:
packet level ready or DTE restart_request. The DTE has
three Tasks To handle the restart: one to send restart
request packets, one to respond to a restart indication
packet, and one to process a restart confirmation packet.
All three tasks should be given high priority because the
packets contain contrel information and because time outis
are being used. An outline of each task is given in Figure
2. The important point is that the code can be writien very
easily from the state diagram; the code iz an implementation
of the state machine for the restart procedure.

procedure send restart request
begin -
build a restart request packet and arrange for it to be
sent;
link state :=z DTE restart request;
arrange for a time out;
end;

——

procedure when receive restart indication
begin -
if 1link state = DTE_restart request then
T /#Trestart colTision ¥*7
stop the time out;
else
build and send a restart confirmation packet
link state :=z packet_level ready;
initialize all virtual circuits;
end:

[

procedure whern_receive restart confirmation
begin
stop the time out;
link state := packet level ready;
initTalize all virtual circuits;
end;

e

Figure 2: Tasks Lo Handle Restart in the DTE
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The code to handle the time out event is shown in
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Figure 3. Given that the time out was on the packet level
link, the send_restart request task is recreated to send
another restart request packet; this task will be run by the
dispatcher. We do not show the code invoked on the receipt
of a restart confirmation or restart indication packet.

This code is very similar to the timer event code; it
creates either a when receive restart indication or

when receive restart confirmation task as appropriate.

A R e e A A D e W e e e e ) W W M M T A AL Em e AR e W

Timer Event Code:
if the time out was on the packet level link then
create a send_restart request task;

Figure 3: Time Out Event Code
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7) Summary

We have presented a general model of a protocol
machine, the task queue model, that defines a structure for
communications operating systems. This structure facili-
tates the design, implementation and test of communications
operating systems. Concurrency is controlled and critical
sections are well defined by this structure. Furthermore,
communications protocol map very naturally into the task
queue model. Presently, we are using the task queue model
to design an implementation of the CCITT protocol X.25”; we
feel that it has greatly simplified our work.
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