View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Dartmouth Digital Commons (Dartmouth College)

Dartmouth College
Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

1-1-1986

Algorithms for Iterative Array Multiplication

Shinji Nakamura
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

b Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation
Nakamura, Shiniji, "Algorithms for Iterative Array Multiplication" (1986). Computer Science Technical
Report PCS-TR86-106. https://digitalcommons.dartmouth.edu/cs_tr/7

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.


https://core.ac.uk/display/337601055?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/7?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

ALGORITHMS FOR ITERATIVE ARRAY MULTIPLICATION
Shinji Nakamura

Technical Report PCS-TR86-106



1. Introduction

The multiplication operation is one of the most vital functions in
many computer applications. Because of the inherent complexity of the
operation, the execution speed of multiplication tends to be the dominant
factor in the entire processing time. Therefore, with the advent of VLSI
technology, parallel algorithms for multiplication become increasingly
important. In this paper we will discuss new multipliers which are composed of
identical cells interconnected in a homogeneous connection pattern. The speed
of the multiplication algorithms can be twice as fast as known algorithms for
the same type of multipliers without substantially increasing the complexity of
the hardware. Since the interconnections required by the algorithms are
realized in systematic structures, the algorithms are ideal for VLSI
implementation.

With our usual numbering system the multiplication operation of two
n~digit numbers is based on n2 one digit by one digit multiplications, and n
additions of n digit numbers, which are appropriately shifted to the correct
positions. The same holds for the binary system. However, since the multipli-
cation of one binary digit, as by another binary digit, bj’ is just a simple
logical AND operation between a, and bj, the major part of the multiplication
is in the n additions of n bit binary numbers. In ordinary sequential
multiplication the multiplicand is shifted bit by bit and added to a large 2n-
bit accumulator when the bit at the corresponding bit position of the
multiplier is 1. To increase the multiplication speed the addition operation
can be performed in parallel. 1In a straightforward parallel multiplication
[1], the addition operations are carried out by an array of n(n-1) full adders

interconnected as shown in Figure 1(a). In the figure full adders are



aa\io azjo alig 350
a3\51 - aijl - al\tl - apb,
aa\iz - az\iz - ali)z - %P2
"“3\53 - az\is - al\iB - %P3
«— <
\1’ \l/ \I/ \\4 A\ V
Pe Ps Pg P3 P2 P Pg
(a) A 4 by 4 bit binary full adder multiplier.
in . in .
\1/0 / ing \LO /ml
aibj outl R A—— < in,
out1 outO Ou\tO
(b) A full adder cell with a partial- (c) A full adder cell without
product a.b. as an {nput. The partial product. The output
output valud is calculated as: value is calculated as:
20utl+outO = 1n0+1n1+aibj. 20ut1+out0 = ingting+in,.

Figure 1



shown using the diagrams shown in Figure 1(b), (c), or a variation of these
diagrams; where input arrows are removed the values of removed inputs are
assumed to be zero. After generating n? bit partial-products of aibj(Ogi,jgn),
the full adder array adds the partial results simultaneously. This method is
referred to as an iterative array algorithm, in which the same type of com-
ponent cells, or simply cells, are interconnected by a structured connection
pattern. We refer to this particular iterative array algorithm as a straight-
forward algorithm, or simply a binary full adder multiplier. The speed of
multiplication is expressed by the delay time associated with the array cells.
For the above straightforward algorithm the speed of one n bit by n bit
multiplication is 2n-1 cell delays since the longest carry propagate chain in
the array is through the right and bottom edge of the parallelogram composed of
full adder cells. The number of cell delays for the parallel multiplication
be decreased substantially by applying another type of method which allows
more freedom in the variety of components and their interconnections [2]-[4].
This approach, referred to as a partial-product matrix reduction or column
compression scheme, is based on the use of various parallel counters and can
make the number of cell delays 0(log(n)) to O(log...log(n)) for an n bit by n
bit multiplication. Compared to the linear delay of the iterative array
algorithm, column compression is more advantageous as to the number of cell
delays, especially for large n. For VLSI implementations of a single chip
multiplier, however, column compression, requiring a large number of irregular
interconnections between different types of cells, is at a major disadvantage
over the iterative array algorithm. In other words, column compression is
~advantageous for multiple chip multipliers where the wiring between chips is

not a critical issue.



The single chip implementation of a multiplier is very attractive in many
respects. It 1s very compact and can be a built-in multiplier for a single
chip processor, but most of all, since a single chip multiplier does not have
to transfer the intermediate results between chips, there is no overhead for
the amplifiers which drive off-chip devices. Thus the cell delay is much
smaller than those cell delays associated with the multiple chip cells. 1In a
single chip design the interconnections between cells become very significant.
In many cases it is the dominant factor of the design because wiring must be
done with two-dimensional restrictions and consumes area which could otherwise
be used for logic. From these facts, although the number of cell delays tends
to be greater, iterative arrayralgorithms are more suitable for VLSI parallel
array multipliers. Therefore, we only consider iterative array algorithms in
subsequent discussions.

The above-mentioned iterative array multiplier of Figure 1 was proposed for
unsigned integer multiplication, later 2's complement array multiplication
algorithms were introduced [5], [6], but their structure of the array and
interconnection between the array elements are almost identical to the original
design, and the number of full adders and delay times of the two's complement
multipliers differ only by constant factors from the unsigned one (i.e., the
difference is independent of the length of multiplicand and multiplier). For
these highly regular iterative array multipliers, as far as the basic structure
and multiplication speed is concerned, there has been no major improvement
since the original unsigned integer array multiplier was introduced. In this
paper we discuss two new iterative array multiplication algorithms, based on
different types of cells, and their interconnection structures, which result in

faster multiplication speed.



In Section 2, we discuss a simple speedup method for the straightforward
algorithm of Figure 1, which uses higher radix. Our new algorithms are
presented in Sections 3 and 4 and their speed and complexity are discussed

using the higher radix method as a benchmark.



2. Radix 4 Multiplier

One obvious method to improve the speed of the original full adder array
multiplier while using a similar interconmnection structure between cells is to
adopt a higher radix numbering system than the binary system. For instance,
the same multiplication as that of the binary 4 by 4 array multiplier of Figure
1 can be realized by a 2 by 2 array multiplier of radix 4. The two 4 bit
numbers asa,a,3, and b3b2b1b0 are expressed by AIAO and BlBO where Ai and Bj
represent one digit of radix 4 number. The radix 4 multiplier can be composed
of radix 4 full adders as shown in Figure 2. Therefore if we implement a radix
4 full adder which can perform three (in general four but for small size arrays
such as 2 by 2 it can be done in three) radix 4 digit additions at binary full
adder speed, the radix 4 array multiplier is approximately twice as fast as the
original 4 by 4 binary array multiplier. In general, to perform the equivalent
of an n by n binary multiplication using a radix 2" array multiplier, approxi-

mately 2_2(1'"1)112 full adders are required and the multiplication speed is

2_(r—1)n full adder delays. That is, by assuming that all full adders have the

same delay time independent of the radix, incrementing the radix by one reduces
the number of full adders by 1/4 and the multiplication time by 1/2. Hence, if
the complexity of a radix 4 full adder is about four times that of a binary
full adder we would have a multiplier which is twice as fast as the binary
multiplier without increasing its total complexity. To make this argument more
precise let's consider the radix 4 multiplier in more detail.

The radix &4 partial éroduct AiBj produces a two digit result, Pij and Qij’

h

i*3+1 and 41+J, respectively. The ijt cell in

with the positional weight of 4
the radix 4 multiplier is a radix 4 full adder. Two of its inputs, Qij and

B, and A

18 The other inputs

Pi—l,j’ are halves of the partial products A i—lBj'

to the i1j cell are supplied from its neighboring cells so that the inter-



4180
A;By ApBq
\'4
) P,
Figure 2. A 2 by 2 radix 4 multiplier

400




connection between the ij cell and its neighbor should be as showﬁ in Figure 3.
As seen from Figure 3 the cell must be a radix 4 adder of four one-digit
inputs. Since in electronic digital circuits the direct realization of radix 4
numbers by four distinct levels of voltage potential or current flow is hardly
practical, a reasonable design for the cell is obtained by representing one
radix 4 digit by two binary positions. One such realization is shown in Figure
4(b).

In the diagram the A, B, Q, S, C, and P radix 4 inputs are replaced by
ajags blbO’ 9199» $18g» ©1p° and P1Py two bit binary inputs and the output C
and S are replaced by ¢ and $18¢ binary outputs. A comparison of the radix
4 cell with a radix 2 cell (Figure 4(a)) makes it clear that the radix 4 is far
more than four times as complex as the radix 2 cell., The number of input lines
has increased from four to ten, the outputs from two to four, one single AND
gate was replaced by one 2 bit by 2 bit multiplier, and a full adder was
substituted by an adder of four two bit numbers which calculates

2(qp + 8p + e+ F gy * st cp * Ry
and produces their four bit sum. To gain the improvement in the multiplication
speed by the factor of two, the four two-bit addition ﬁust be done in one full
adder delay time. To make a quantitative argument for this comparison we
introduce the complexity measure that was used for the general counters [3] in
the column compression technique. Column compression is accomplished by
various parallel counters which count the number of partial products whose
value is one and have the same weight. The implementation of parallel
counters, even for a moderate number of inputs such as 7, by a combinational
circuit of small cascading levels is difficult because the number of inputs for
a gate becomes very large. Therefore, a practical implementation of such a

high-speed counter is based on ROM memory where the counting is done by a table



Figure 3.

The interconnection of radix 4 full adders.
A circle indicates an adder of four radix 4
digits whose position in the array is shown
by the indices in the circle.



Py

3) 8, by

Sl SO Cl CO

2 by 2
. Multiplier Py P
AN
I VRN [/
Y
¢ Pl pO Adder for four 2 bit
numbers
P , 2(qi+sl+cl+pl)
Full
ad]jr + qgtsytegtp,
c s
‘1 % %1 %
(a) A radix 2 cell (b) A radix 4 cell

Figure 4.




lookup operation on the ROM memory. The number of ROM memory bits necessary
for a counter gives a clear measure of the hardware complexity of the counter.
For instance, a 7-counter has 7 input lines and 3 output lines. Each output
requires 27 ROM bits to produce the results for all possible input values, so
that a 7-counter requires a total of 21<3 = 384 ROM bits, The same practical
difficulty exists for the radix 4 adder cell; it has too many inputs to realize
the cell in a flat combinational circuit. Since Ai and Bj are primary inputs
and theilr values are defined from the beginning, the one digit radix 4 multi-
plier which generates a radix 4 partial product can be designed in a many-level
combinational circuit, but the rest of the cell still has 8 inputs. If we
adopt the same table lookup method for the radix 4 cell, the complexity of one
cell, excluding the one digit radix 4 multiplier, becomes 28x4 = 1024 bits
because there are 8 inputs and 4 outputs. For the entire multiplier there are
(1/4)n? cells so that the complexity is 1024%(1/4)n? = 256n2. Note that this
value does not include the complexity of the one digit radix 4 multipliers, so
that the actual complexity is greater than this value.

Although the complexity measure discussed 1s based on a specific design
method the results represent the relative complexities of combinational designs
when the number of gate levels are small, The binary full adder multiplier has
the cell complexity of 23x2 = 16 and a total complexity of 16n?. Hence, by
this measure it is concluded that the radix 4 algorithm increased the speed by
a factor of two and at the same time increased the hardware complexity by a
factor of 16 (which probably actually reduced the speed!). It is clear that
the required complexity is too heavy for the gain in speed. This is why the
higher radix number systems are not popular in the actual design of array
multipliers.

Then the question we address is, is there any other iterative array



algorithm which may have more cells than the radix 4 multiplier with a

different interconnection structure between them, but that would still have a
faster multiplication speed, faster than the 2n binary full adder equivalent
delay time? Our affirmative answer to this question are the two new array

multipliers described in the following sections.



3. Iterative Array Multiplication Using 5-Counters

Our first new iterative array algorithm is based on the five input
parallel counter. The five input counter, or simply the 5-counter, is
expressed by the diagram shown in Figure 5. The five inputs to the 5-counter
are the three 1nputs through input lines ino, in_l, in‘z and the two partial
products of aibj and ajbi’ which are shown at the center of the diagram. The
5-counter counts the number of ones on these 5 inputs and produces a binary
number of the count on the three output lines outo,

1

correspond to the 20, 27, and 22 positions, respectively, i.e., the function of

outl, and outz, which

a 5-counter cell is:

2 1
out22 + out12 + out0 = ino + in_1 + in_2 + aibj + ajb

The entire interconnection of the input and output lines of S5-counter

i

cells in a 6 bit by 6 bit multiplier of two numbers

358,8383)818 X bgb,bybybibg = pyyPyge. Py
is shown in Figure 6. We refer to this iterative array algorithm as a
5-counter multiplier.

In Figure 6 the numbering of rows and columns starts at the bottom row and
leftmost column with O. The cell at (i,j) position, Cij’ has a,b inputs of
aibj and ajbi for i,j<5. The cells in the top row marked as "D" are delay
cells to synchronize the carry signals. If the circuit is designed by
asynchronous combinétional logic, these delay cells can be replaced by simple
wires. The small cells on the diagonal marked by "®'" are exclusive~OR gates.

In general, for n+l bit by n+l bit multiplier of

a a x b b eesb

n%n-1"""20 * ®n°n-1 0~ P2n+1Pon***Pp?

~ has interconnections defined as follows:
(1) For 1,5>0 and i+j<n, Cij has inputs from product terms aibj and ajbi‘

The ino, in_l, and in_2 input lines are connected to Ci+1,j—1’ Ci,j—l’



NS

n_ i j ————~——€>out

7\

Figure 5. A 5-counter cell. The output value
is calculated as:

2 0

2 out 2i = a, b + a, b + Z in,.
i=0 j i=-2



agh, 5

1°s5
—
1
s X N
a.b a.b a.b ‘A‘|'!i
alb4 : azba 5 a3b4 > a0, @ L
471 4°2 4°3 "!ii"'a
:>x<z :>X<Z 'I \\\\\\\EQ Py
a.b a.b
1b3 —> 2b3 > a3b, @
a3°1 a3°, Pg
. :>X<: Py
a,b
1°2 E

5

Figure 6. 6 bit by 6 bit 5~counter multiplier.

indicates an exclusive OR and &
indicates an inclusive OR.



10

and C cells through their out, out,, and out, output lines,

i-1,3~1

respectively., The outz, out,, and out0 output lines of Cij are connected

to the C, cells through their input lines

i+1,141° C1 3410 and C

i-1,3+1
in-z’ in_l, and inO, respectively.
(2) The diagonal cells Cij’ where i+j=n, have only one input from product
terms ajbj. The other product term is produced by an AND operation

between the outO output of the C 1 cell and the out1 output of the

i,3~

Ci-l,j—l cell, The same outO and out1 outputs from the Ci,j—l and

Ci—l j-1 cells are connected to an exclusive OR gate to produce the 2j-1
-

bit of the result, i.e., p2j—1' The out0 output line of the diagonal cell

C,. 1s the thh bit of the result, i.e., p,..

33 23

(3) The output line out2 of the cell Co 3 in the second row from the top,

j<n, is connected to the delay cell Dn The input line in, of C., ., is

»j+1° 0 0,]

connected to the output Iine of the delay cell Dn,j—l’

(4) The input lines ino, in_l, and in_z of the leftmost column's cells,

Ci,j’ are connected to the 0.

As shown in Figure 6 the carry propagates from left to right so that the
longest delay for n bit by n bit multiplication is n 5-counter delays. The
diagonal cells have a slight difference from the rest of the cells. Since one
of their product inputs is not produced directly from the primary inputs of the
a's and b's but from the output lines of the previous stage cells, the direct
implementation by an AND gate will increase the one cell delay by an additional
one AND gate delay. Hence, the total delay is increased by n AND gate delays.
However by applying some acceleration method to these diagonal cells, one AND
gate delay per one cell could be absorbed without significantly increasing the

hardware complexity. An alternative solution for this problem is to leave the

diagonal cells as 3 input counters and add another stage of n full adders, each



11

of which have four inputs. Two of the four inputs have a positional weight of

1/2 so the SUM and CARRY outputs of the full adder cells C are defined as:

ij
out0 = SUM(w,x,y,2) =w & x & (yz)
= WwXyz + WXy + WXz + WXy + WXZ + WXyz,
out1 = CARRY(w,X,y,2) = wx + wyz + Xyz,
where w = out0 of Ci+1,j—1’ X = out1 of Ci,j—l’ y = out0 of Ci,j—l’ and z =
out, of Ci-l j—1; v,z inputs have the positional weight of 1/2. Such a full
b

adder cell is simpler and faster than a 5-counter. By the alternative
solution, overall delay is n 5-counters plus one full adder delay. Some minor
improvements in speed can be made by replacing all the 0th column cells (i.e.,
Ci,O) by half adders.

The major issue in this array multiplication algorithm is the complexity
of a single 5-counter cell and its delay time. Since the longest carry chain
in the array is n for n bit multiplication, if the delay speed of a single
5-counter is equal to a binary full adder delay the new algorithm is twice as
fast as the old one. But such a 5-counter should be more than twice as complex
as a binary full adder - but how much more? According to the same complexity
measure we used for the radix 4 multiplier, the complexity of a S5-counter is
expressed as 25x3 = 96. This value is six times more than that of a binary
full adder, but because the required number of 5-counters in a multiplier is
approximately (1/2)n2?, the 5-counter multiplier is three times as complex as
the binary full adder multiplier. Hence, with the new iterative array
algorithm the delay time reduces to 1/2 by sacrificing the hardware complexity
by the factor of three.

The other critical aspect in the comparison is their requirement of inter-
connections. In this respect, the 5-counter multiplier is very close to the

binary full adder multiplier, because only one more interconnection line per



12

cell is needed for the 5-counter multiplier. The added line is used to
transmit a super carry which propagates twice as fast as the ordinary carry.
This is why the 5-counter multiplier has an n cell delay rather than 2n. As
shown in Figure 6 all the interconnections between cells are made hetween
either nearest neighbors or next-nearest neighbors. This property is vital for
VLST implementation because wiring in integrated circuits is confined to two-

dimensional restriction.



13

4, - Tterative Array Multiplier by Generalized (6,3,4) Counters

Our second algorithm with n cell delay speed is based on two different
types of cells and a nearly regular, but partially irregular, interconnection
structure of the cells. Therefore, in the strict sense this design is not an
iterative array algorithm; however, as is shown in Figure 8 the irregular part
is limited to a diagonal column at the final output stage and the design is |
still practical for VLSI single chip implementation.
The notion of a generalized (Ck—l’ck~2""co’d) counter [4] which has

k

Z ¢y inputs and d outputs was extended from the notion of an ordinary counter
i=0
[3]. The output value v of a (Ck—l’ck—Z"'°c0’d) counter depends on the

weighted binary inputs inij, where there are cy bits of binary inputs that have

the weight of Zi. Hence the value v is:
k-1 ¢371
v = Z Z in,, 2
i=0 j=0

i

Since d is the number of output lines from the counter, the following

inequality should hold:

d kel g
27 =12 ]2

i~-0
With this generalized notation of a counter, the 5-counter and the binary full
adder we discussed in the previous sections can be expressed as a (5,3)
counter, and (3,2) counter, respectively.

The new iterative array multiplier uses n-1 (6,3,4) counters and
(n-2) (n-3) full adders. We refer to this iterative array algorithm as a
(6,3,4) counter multiplier. A (6,3,4) counter has a total of nine inputs, of
which six are weighted by 21 and the other three by 20. Therefore, the maximum

value of the four output lines of the counter is 6><21 + 3x2O = 15, The



14

graphical diagram of a (6,3,4) counter is shown in Figure 7. The six inputs
with a weight of 21 are inlO through in14 and a partial product ajbj’ and the
three inputs with a weight of 20 are inOO’ inOl’ and ino?. The four outputs

04 0<i<3, have a weight of 21; i,e., the function of a (6,3,4) couhter is:

3 i 4 2
'Z outiZ = Z(ajbj + z inli)-+ .z inOi

i=0 i=0 i=0

A 6 bit by 6 bit multiplier with this array algorithm is shown in Figure
8. The n-1 (6,3,4) counters are placed in a main diagonal column of the array
and the (n-2)(n-3) full adders, expressed by similar diagrams of Figure 1(b),
are placed on the grid points in the rest of the array. Through the binary
full adders both sums and carrys propagate in two directions. Sums propagate
diagonally from upper left to lower right and lower right to upper left.
Carrys propagate from left to right and bottom to top. All the four streams of
sums and carrys meet at the main diagonal where the (6,3,4) counter chain is
located, The (6,3,4) counter chain absorbs all the partial results from the
four streams of data flow and produces the final 2n-~bit results in an n cell
delay time. Since the longest carry chains in the array are n the entire speed
is also n (complex) cell delays. In the previous 5-counter multiplier all the
cells have a super carry line, and the extra task of speeding up the operation
is evenly distributed across the entire arréy, while in the new algorithm the
same result is achieved by changing the flow of data streams and speeding up
the process in the data congested area by introducing heavily equipped super
cells, i.e., (6,3,4) counters.

By the same complexity measure used in the previous sections, a (6,3,4)
counter is 29X4 = 2048, which is two times more complex than a radix &4 full
adder and more than 20 times as complex as a 5-counter. A comparison of

complexities in 6 by 6 bit array multipliers by the four different algorithms



in 2 out3

out2

out .
1 ing,
13

outO inoz

A (6,3,4) counter cell. The output value is calculated as:
3 i 4 . 2 .
.Z out.2" = 2 ajbj+ ZO ing |+ 120 ing;

i

0 i

Figure 7



o
o~
o
N
o
(N
o
B
o
o

[+¥]
no
o
N\L
fol)
[AV]
o
—
k®]
(o)}
k=]
~
[»1}
w
o
EN
ot}
(#%]
o
w

N\ & Pg asby asby a3b;
‘ p
a5y 4 \
P3  apb, a;bq a1y a;bg
2 T\ T\ W\\\\\
Py aob1 aOb2 aob3 aob4 aob5
b

A 6 by 6 bit (6,3,4) counter multiplier.

Figure 8



15

upon which they are based, binary full adder, radix 4 full adder, 5-counter,

and (6,3,4) counter, is shown in Table 1.

Algorithm Complexity in Number Normalized
of ROM Memory Bit

Binary full adder 424 1.00
Radix 4 4736 11.17
5-counter 956 2.25
(6,3,4) counter 6480 15.28

Table 1. Complexities of 6 by 6 bit array
multipliers by four different iterative
array algorithms.

In Table 1 all the absolute complexity values were calculated after applying
possible simpiifications for the cells near boundaries. Because of the
peculiarities of the small value of n=6 the normalized complexities for the
radix 4 and 5-counter cases are smaller than the predicted values of 16 and 3,
respectively, With increased values of n, since the ﬁumber of internal cells
becomes dominant, the normalized complexities asymptotically approach 16 and 3.
The most complicated algorithm in the table is the (6,3,4) counter
multiplier, which is 15.28 times as complex as the binary full adder
multiplier, but it should be noted that this is only for n=6 or for small n.
The number of (6,3,4) counters in an n by n bit multiplier is n-1 while the
number of binary full adders is (n-2)(n-3) so that when n increases, the
algorithm's overall complexity is dominated by the binary full adders.
Therefore, the normalized complexity of the (6,3,4) multiplier is asymptoti-

cally equal to 1. If we exclude the requirements in interconnection structure,



16

when n=50 the complexity of a (6,3,4) counter multiplier is approximately equal
to that of a 5-counter multiplier. For n>50 the (6,3,4) counter multiplier
becomes simpler than the 5~counter multiplier.

Even though the (6,3,4) counter multiplier has a homogeneous intercon-
nection structure among the binary full adder cells, the diagonal (6,3,4)
counter cells introduce substantial irregularity in the array structure. From
the complexity measure a single (6,3,4) counter needs 128 times more area than
a binary full adder cell so that the counter chain cannot be embedded in an
array as shown in Figure 8. Hence, the practical VLSI single chip design of
this algorithm will have two separate segments, one for the (n-2)(n-3) full
adder segment and the other for the n-1 (6,3,4) counter segment, and
approximately 4n distinct wireé, which will route partial results from the full
adder segment to the (6,3,4) counter segment. The previous complexity
comparison made for the 6 by 6 bit multipliers did not include this factor so
that the actual value for the (6,3,4) counter multiplier will actually be much
larger., This is also true for the comparison between the (6,3,4) counter
multiplier and the 5-counter multiplier. Hence, the break-even size, n=50,
will increase significantly; however, since the dominant factor is still the
binary full adder segment and not the interconnection between the two segments,
when n becomes sufficiently large the (6,3,4) counter multiplier will surpass
the 5-counter multiplier and approach the binary full adder multiplier in the

hardware complexity.



17

5. Summary of Comparisons

For the four iterative array multiplication algorithms we measured their
speed by the number of cell delays, with the assumption that, irrespective of
their functions, any type of cell had the same operational speed of one cell
delay. Because of this assumption, we measured the complexity of a single cell
by the number of ROM memory bits necessary to implement the cell by the table
lookup operatioﬁ on the ROM memory. The complexity of an algorithm was
calculated by summing up the complexity of all cells used in the algorithm.

The speeds and complexities of the four algorithms are summarized in Table 2.

Algorithm Speed in Number Complexity in Number Normalized Asymptotic
of Cell Delays of ROM Bits Complexity
Binary full adder 2n i6n2-i6n 1
Radix 4 n 256n2 16
5-counter n 48n? 3
(6,3,4) counter n 16n2%+1968n-1952 1

Table 2. Speed and Complexity of Iterative Array
Multiplication Algorithms.

The first three algorithms, binary full adder, radix 4, and 5-counter
multipliers have a homogeneous iterative array structure. All of the three
require cell interconnections, either with the nearest or next nearest neighbor
cells. A binary full adder cell has 3 inputs and 2 outputs and a 5-counter
cell has 5 inputs and 3 outputs, but the total number of 5-counter cells

required in a 5-counter multiplier is about half that of a binary full adder



18

multiplier., Hence, their interconnection complexity is approximately the same.
Although the interconnection structure of the (6,3,4) counter multiplier is
much more complex than the others, for sufficiently large n, this algorithm is
the best in terms of the speed and hardware complexity; however for reasonable
sizes of n (at least n<50), the 5-counter multiplier is simpler than the
(6,3,4) counter multiplier,

For those multiplication algorithms which are based on the binary number
system, the conversion from unsigned multiplication to signed two's complement
multiplication is simple. For instance, by applying the usual technique of
two's complement number addition [6], a two's complement 5-counter multiplier
can be realized simply by changing some of the AND circuits to NAND and the
final output OR gate to a NOR gate. A 6 by 6 bit two's complement multiplier
is shown in Figure 9. A similar type of conversion can be ﬁade for the binary
full adder and (6,3,4) counter multipliers. However, the above technique is
only for the binary number system; the signed radix 4 multiplier requires some

other method (e.g., sign conversion) which would increase hardware complexity.



Figure 9.

A 6 by 6 bit two's complement 5-counter
multiplier.



19

6. Conclusion

We discussed iterative array algorithms for parallel multiplication which
are suitable for VLSI single chip implementation. Of the four algorithms
discussed we considered three methods for improving the multiplication speed of
straightforward algorithms by a factor of two. We found that the radix 4
multiplier requires too much hardware, 16 times more than that of the binary
full adder multiplier, while another algorithm, the (6,3,4) counter multiplier
which is asymptotically as simple as the binary full adder multiplier, is
feasible for only large n. We conclude that the iterative array algorithm
based on 5-counter cells is a practical fast multiplication algorithm for VLSIT

single chip implementation.



(1]

[3]

[4]

(5]

(6]

20

References

E.L. Braun, "Digital Computer Design,'" Academic Press, New York, 1963.
C.S. Wallace, "A suggestion for a fast multiplier,”" IEEE Trans., Electron
Comput, EC-13, Feb. 1964, pp. 114-117,

L. Dadda, "On parallel digital multipliers," Alta Freq., No. 10, Vol. 45,
1976, pp. 574-580,

W.J. Stenzel, W.J., Kubitz, and G.H. Garcia, "A compact high-speed parallel
multiplication scheme," IEEE Trans. Comput., Vol. C-26, No. 10, Oct. 1977,
pp. 948-957,

S.D. Pezaris, "A 40-ns 17—Bit by 17-Bit Array Multiplier," IEEE Trans.
Comput., Vol., C-20, No. 4, Apr. 1971, pp. 442-447,

C.R. Baugh and B.A. Wooley, "A Two's Complement Parallel Array
Multiplication Algorithm," IEEE Trans. Comput., Vol. C-22, No. 12, Dec.

1973, pp. 1045-1059.



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1.

2.

4.

5.

8.

9.

LIST OF CAPTIONS

(a) A4 by 4 bit binary full adder multiplier.

(b) A full adder cell with a partial-product aibj as an input.

The output value is calculated as: 20utl+outO = in0+inl+aibj.
(c) A full adder cell without partial product. The output value
is calculated as: 20ut1+out0 = 1n0+1nl+1n2.

A 2 by 2 radix 4 multiplier.

The interconnection of radix 4 full adders. A circle indicates
an adder of four radix 4 digits whose position in the array is

shown by the indices in the circle.

(a) A radix 2 cell.
(b) A radix 4 cell.
A 5-counter cell. The output value is calculated as:
2 5 0 .
Z outiZ = aib. + a.bi + X in,.
1=0 3 i=-2
A 6 bit by 6 bit 5-counter multiplier. indicates an exclusive

OR and #® indicates an inclusive OR.

A (6,3,4) counter cell. The output value is calculated as:

2
inli )+ Z inOi'

3 1 4
2 out 27 = 2<a.b‘+ Z
i * 33 1=0

i=0 i=0
A 6 by 6 bit (6,3,4). counter multiplier.

A 6 by 6 bit two's complement 5-counter multiplier.



Index Terms: Parallel multiplication, iterative array, 5-counter, partial-

products, complexity, multiplication speed



Footnotes

This work was supported in part by IBM Corporation, Essex Junction, VT,
under an IBM Departmental Grant.
The author 1s with the Thayer School of Engineering, Dartmouth College,

Hanover, NH 03755.



	Algorithms for Iterative Array Multiplication
	Dartmouth Digital Commons Citation

	tmp.1599244929.pdf.GsD9a

