View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Dartmouth Digital Commons (Dartmouth College)

Dartmouth College

Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

1-1-1986

Instructions for Using Logic

John W. Scott
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

b Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation
Scott, John W., "Instructions for Using Logic" (1986). Computer Science Technical Report PCS-TR86-102.
https://digitalcommons.dartmouth.edu/cs_tr/3

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://core.ac.uk/display/337601051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/3?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

INSTRUCTIONS FOR USING LOGIC
John W. Scott

Technical Report PCS-TR86-102

Instructions for using LOGIC

John W. Scott
Department of Mathematics and Computer Science
Dartmouth College
Hanover, NH 03755

Logic is a digital logic simulator. It's application, however, is not specific
to digital logic. It provides a useful way of investigating boolean logic in any
discipline. The user can create logic diagrams and test their results. Such
diagrams provide a graphic display of logical expressions. Where logical
expressions can become unwieldy quickly as they grow, diagrams are easy
to comprehend at a much greater levels of complexity. This application's
ability to easily display the results of all of the subexpressions can be
particularly helpful in understanding the expression.

Instead of character boolean operators digital logic uses gates. These
gates are icon representations of the same boolean operators. Thus, there
is an icon representing AND, one representing OR, etc.. Each gate has one
output (result) that can be either true or false, depending on the value of its
input(s). Wires are used to link the subexpressions to their operators. The
results of expressions are called sinks and the operand variables are called
sources. Thusin "A=BorC" Aisasink and B and C are sources.

These diagrams are created with a MacPaint-like interface. The user
selects gates from the palette and enters them into a document. These
gates may then be connected by choosing the diagonal line in the palette.
Connections are always drawn from the output to the input. They are
deleted by drawing over an existing connection while in the same mode. Any
input that does not have a connection has a default value of false. Gates
are deleted, along with all of their connections, by selecting the hammer from
the palette. This operation, like most of the others, is not undo-able so
caution is advised. Selecting the wire cutters from the palette allows the user
to delete all of a gate's connections simultaneously, without destroying the
gate.

figure 1

Sources for the circuits are provided in the form of light switch icons.
These have optional character labels used in identifying the source in an
equation. These sources may be turned on and off by selecting the finger
icon from the palette and clicking on the source. Sinks are represented by
light bulbs and also have optional labels. For the purposes of this

application white = on =frue =1 and black = off = false = 0. In the document
above sources A and C are true while B, D and the sink E are all false.

There are six types of basic logic gates provided. These are illustrated
in figure 2 along with their truth tables. These gates may be connected in
any fashion as long as no loop is created and each gate's output is
connected to no more than ten inputs (maximum fanout of 10).

> o0fojo D 0o

And Gate 1 | O [1 orGate 1 |11
0O 1 0
e 011 e ol1]o
Nand Gate 1| 1] 0 NorGate 11010
0 1
DY), 0O|lo| 1 > 0 1
Xor Gate 11110 Inverter 1160

figure 2

There are also two generic types of flip-flops provided. The firstis a
positive edged d-type flip-flop. Upon an positive edge (0 -> 1 transition) at
the clock (the lower input) the value at the top input is stored. The output
remains stable at all other times. A basic J-K flip-flop is also provided. The J
input is located in the top left corner, the Kinput in the lower left with the
clock in between. This gate is negative edged (1 -> 0). Upon a negative

transition from the clock the output toggles (inverts) if both J and K are true.
If J and K are false the output holds, If only J is true the output is set (true)
and if only K'is true the output is cleared (false). Note that conventionally an
inverted output is also supplied for these flip-flops. This can be simulated
with an inverter.

D-Type flip-flop

clock O 1

input

A
clock > __F- O .1

J-K flip-flop

clock ~d ~K J K J~K ~d K

J Y Hl Ty 110
clock >
" - |H|H|H|H
H = Hold previous output T = Toggle previous output
figure 3

The final type of gate provided is a four input black box. These black
boxes simulate programmable logic arrays (PLA). The PLAs are
"programmed" upon their creation by duplicating the truth table in the truth
table view. There is more information on the programming in the comments
on the truth table view.

Options:

Show Gate Values: the value of the output is shown for all gates. The value
is indicated in a circle inside the gate. Figure 1 shows an example of this
option.

Show Equations: shows the logical expressions associated with circuits.
When the value of a cicuit's sink (result) changes, the logical expression
that determines that sink is shown in a window in the table view. These
expressions are only useful for relatively small circuits. The nesting
becomes complex with more than five or six gates. These expressions
are truncated if they are longer than 60 - 80 characters. Figure 4 shows
the expression for the gates in figure 1.

Show Labels: displays the single character names for the sources and
sinks. These names are used in the logical expressions generated by
the "Show Equations" option.

Right Angles: draws perpendicular connecting lines rather than the normal
rubber band lines. This can be confusing if the circuits are complex or if
they are not layed out neatly. Figure 1 demonstrates this option.

Show Selections: indicates which gates are currently selected by drawing
rectangles around their extent. This is normally used in conjunction with
clean up operations and the evaluate command where gate selection is
important.

Evaluate: creates a truth table for selected gates. The table is then
displayed along with its karnaugh map in the truth table view. A table
may be created for a black box simply by selecting that black box and
chosing evaluate from the menu. Alternatively a complete circuit may be
evaluated. In this second case the user selects the gates in the cicuit
(possibly by chosing "Select All* from the menu) and then choosing
evaluate from the menu. There must be exactly one sink selected for the
result and fewer than five sources selected. It is not appropriate to
include a flip-flop in a truth table evaluation as they depend on transitions
as well as discrete values. There is a one to one correspondence
between the sink and the table output and between the sources and the
table inputs. If fewer than four sources are selected, any extra high
order inputs (W, X...) are left as "don't cares" (they do not affect the

output). The evaluate command provides a convenient way of cloning
selected gates into a black box. Figure 4 shows the evaluation of all of
the gates in figure 1.

Information: provides help on the selected palette item. To help save
resources some items are grouped together on help dialogs.

Clean-Up:

This menu provides basic clean-up operations for the document. Align
Vertical aligns all selected gates to their furthest left extent. Align Horizontal
aligns all selected gates to their highest extent. The spread options evens
the spacing between selected gates, either horizontally or vertically. Finally,
in case or error, there is an undo option.

Truth Table View:

The truth table view is used for three purposes: 1) to evaluate selected
gates in the document view, 2) to show logical expressions, and 3) to
program black boxes. The first two have already been discussed above in
the "Options" section.

The programming of black boxes (PLAs) may be done very simply by
evaluating selected gates and then creating a black box. In this manner the
black box will duplicate the logic of the selected gates. Black boxes may be
more direcly customized by editing the truth table. This is done by clicking
the mouse on the value that you wish to change. This may be done either in
the karnaugh map or in the truth table. Clicking in one will also change the
other.

The truth table and karnaugh map are two ways of looking at the same
information. The truth table clearly shows the output values for each
combination of input values. The least significant bit corresponds to the top
source. The karnaugh map shows the outputs in a manner convenient for
reducing the table's logical expression. Between any two adjacent cells only
one of the four input values changes. Thus, if two adjacent (not diagonal)

cells are both true then the single changing input becomes a "don't care"
and may be dropped from the sub-expression. Note that the concept of
adjacency wraps around. Thus the top row is adjacent to the bottom and
the left is adjacent to the right. In the karnaugh map the top source
corresponds to Z, the next lowest source to Y etc.. Consult a book on digital

logic for more information on the use of karnaugh maps.

Evaluate m_l
{......

Karnaugh Map <%

& Truth Table

W X
00 o1 11 10
oo 1°] o*| o] 1°
o1l 1] o] o 1°
Ve 11 03 07 015 011
2 6 14 10

0000
0001
0010
0011
0100
0101
0110
o111

OCOOOO —— —

1000
1001
1010
1011
1100
1101
1110
1111

COOOO —= — —

E=({"(A&B)& ~C) (+) "("C(C D))

	Instructions for Using Logic
	Dartmouth Digital Commons Citation

	tmp.1599244929.pdf.DeQ91

