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Investigating Measures

for Pairwise Document Similarity
Jeffrey Isaacs

Advisor: Javed Aslam

Dartmouth College Computer Science Technical Report PCS-TR99-357

Abstract

The need for a more effective similarity measure is growing as a result of the
astonishing amount of information being placed online. Most existing similarity measures
are defined by empirically derived formulas and cannot easily be extended to new
applications. We present a pairwise document similarity measure based on Information
Theory, and present corpus dependent and independent applications of this measure. When
ranked with existing similarity measures over TREC FBIS data, our corpus dependent
information theoretic similarity measure ranked first.

I Introduction

Many similarity measures have been proposed and implemented. Popular examples
are the cosine measure, the Okapi measure, and the Dice Coefficient measure. An accurate
similarity measure is critical to most information retrieval tasks. Filtering, clustering, and
query retrieval are examples that are particularly dependent upon similarity measures.

We have derived an information theoretic similarity measure and three probability
models for bag-of-words based document representation. Each probability model makes
use of Information Theory, first described in 1948 by Claude Shannon of Bell Telephone
Laboratories1. Unlike many other empirically derived similarity measures, our measure is
derived from basic assumptions about general ‘feature’ similarity integrated with
Shannon’s fundamental theorems.

Through experiments over the TREC FBIS database, we tested each probability
model application of our similarity measure. The TREC FBIS database consists of a large
number of American news media articles indexed into ‘qrel’ topic groups. We used these
topic groups to measure the performance of each similarity measure. Our basic assumption
for these tests follows: an accurate similarity measure will always return a higher similarity
for two articles in the same ‘topic group’ than it does for articles not in the same topic
group. It should be noted that the TREC topic groups were not created by computer, but
rather by government security agency members.

II Derivation

First, we derive an information-theoretic definition of similarity using the following
definitions:

• A, B, C    Documents A, B, C, etc.
• I(A,B,C, ...) Information content of A, B, C

(number of bits to encode A, B, C as stated by information 
theory given a particular probabilistic model)

• A ∩ B ‘Features’ A and B share in common.
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• A ∆ B What features A and B have in difference.

A ∆ B = (A - B) U (B - A)

It follows that the information content of documents A and B is the sum of the information
content of the features they share and the information content of the features that have in
difference. Thus we can fully describe, or encode, A and B by describing their
commonalties and their differences:

I(A, B) = I(A ∩ B) + I(A ∆ B ) = I(A ∩ B) + I(A - B) + I(B - A)

Based on work by Dekang Lin2, we now propose the following information theoretic
definition of similarity for two documents:

sim A B
I A B

I A B

I A B

I A B I A B

I A B I A B

I A B
( , )

( )
( , )

( )
( ) ( )

( , ) ( )
( , )

= ∩ = ∩
∩ +

= −
∆

∆

We now derive three different probability models based on the bag-of-words model. In a
bag-of-words representation, documents are described by the words they contain and the
frequency of each word in the document. The ordering of the words is unimportant in this
model.

We use the following definitions in the derivation of the two corpus dependent probability
models:

• Let D1, D2, ..., Dn be a set of n documents
• Let w1, w2, ..., wm be a set of words found in these documents

The first corpus dependent probability model(referred to as nats model in data):

• Associated with each document Di is an m-dimensional probability vector pi = (pi1,
pi2, ..., pim) whose entries Pij are the fractional occurrence of word j in doc i.

Thus, P = (Pij) is an n x m stochastic matrix.

vπ = π π π( , ,..., )1 2 m
where

π =
=
∑j ij
i

n

n
P

1

1

• Thus, πj is the average fractional occurrence of word j in the corpus.

The second corpus dependent probability model(referred to as ‘bin model’ in data):

• Associated with each document Di is an m-dimensional vector qi = (qi1, qi2, ..., qim)
whose entries Qj is 1 if word j is in doc i, and is 0 if word j is not it doc i.
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Thus, Q = (Qij) is an n x m matrix.

vπ = π π π( , ,..., )1 2 m
where

π =
=
∑j ij
i

n

n
Q

1

1

• Thus, πj is the fraction of documents in which word j appears.

We can now choose either probability model and apply it to the definition of similarity
obtained earlier:

We consider the similarity of two documents Dr and Ds. By either probability model, Dr
contains Prj “amount” of feature/word j and Ds contains Prs. They both share min(Prj, Prs ) of
that feature in common. They differ by exactly max(Prj, Prs ) - min(Prj, Prs ).

As Shannon Information Theory asserts, the ‘information’ of an event(word) is equal to the
negative logarithm of its probability.

Thus,

 I D D P Pr s rj
j

m

sj j( ) min( , ) ( log )∩ = ⋅ − π
=

∑
1

Similarly,

 I D D P P P Pr s rj sj rj
j

m

sj j( ) (max( , ) min( , )) ( log )∆ = − ⋅ − π
=

∑
1

Therefore,
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Our third application is corpus independent and follows from the above derivation if we
restrict the corpus to the two documents being compared:
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III Existing Similarity Measures

The Cosine Measure:

The cosine measure can be thought of as similarity being the angle computed by taking the
dot product of two bag–of–words vectors:

cos( , )
( )( )
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If we consider such a vector to be a bag-of-words document representation, then:
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where ƒx,t is the frequency of term t in document x.

The Dice Coefficient is defined as follows:
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where ƒx,t is the frequency of term t in document x.

IV Data

To compare the different similarity measures, we chose the eleven-point average precision
test as an evaluation metric. Several definitions will be required before presenting this test.
The following contingency table will be helpful:

RELEVANT NON-
RELEVANT
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RETRIEVED A ∩ B A  ∩ B B

NOT
RETRIEVED

A  ∩ B A   ∩ B B

A A N

We now define precision and recall:

PRECISION = 
A B

B

∩

RECALL = 
A B

A

∩

Informally, precision represents the fraction of documents retrieved by our similarity
measure that are ‘correct’, or deemed relevant. Similarly, recall represents the fraction of
the relevant documents which are returned by the similarity measure.

The eleven point average precision(EPAP) test of a document  q with respect to similarity
measure  ƒsim over a collection of documents S  is computed with the following information
for each document d in the collection S:

1. ƒsim (q, d)              [The similarity rating of q and d]
2. relevant(q, d)  [A human scoring of 1 if q and d are relevant, 0 otherwise]

With the above information, the test returns 11 pairs of data , for each level of recall and its
associated precision:

{{recall-0,precision}, {recall-0.1, precision}, ... {recall-1, precision}}

For example, the second pair represents the precision  of the similarity measure ƒ at a recall
level of 10%.

Also returned is the eleven-point average, which is the average of the eleven precision
values.

    Application
We obtained one result for a given similarity measure ƒsim  using the following application
of the eleven point average precision:

• For each of approximately twenty(randomly chosen) ‘relevant’ documents in a
given TREC qrel topic(e.g. nuclear non-proliferation), compute the eleven-point precision
test of that document with respect to ƒsim  over the TREC FBIS document collection.

• We averaged these twenty sets of data to obtain one set of EPAP results for each of
twenty–one TREC topics.

• Moreover, we averaged(See Table 1) the twenty–one TREC average EPAP test
results to obtain a final rating for the similarity measure ƒsim.:
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• We ranked the performance of ƒsim. for each qrel topic, based on the 11-point
average precision average of averages. Table 1 contains the average rank over the twenty-
one experiments.

Table 1
IT(nats) IT(bin) Dice Cosine IT(nocorp)

Recall:
0% 1.0000 1.0000 1.0000 1.0000 1.0000

10% 0.5680 0.5719 0.5535 0.5389 0.5284
20% 0.3690 0.3774 0.3601 0.3422 0.3314
30% 0.3060 0.3144 0.2893 0.2797 0.2719
40% 0.2713 0.2772 0.2608 0.2504 0.2380
50% 0.2412 0.2467 0.2379 0.2245 0.2096
60% 0.2060 0.2121 0.2131 0.2026 0.1806
70% 0.1867 0.1922 0.1960 0.1873 0.1662
80% 0.1686 0.1722 0.1802 0.1725 0.1553
90% 0.1537 0.1555 0.1616 0.1578 0.1448

100% 0.1369 0.1377 0.1379 0.1379 0.1335
Average precision: 0.3279 0.3325 0.3264 0.3176 0.3054
Rank avg: 2.6667 1.8095 2.4286 3.6190 4.4762

V Conclusion

The information theoretic similarity measure based on the binary corpus–dependent
probability model consistently outperformed all other similarity measures we tested. The
nats-model performance more closely matched the performance of the Dice measure. Worst
performers were the cosine measure and the corpus independent model.

The most significant differences between the similarity measures appear at the early
recall stages, i.e. 10%. At this level we see that both of the corpus independent measures
surpassed all other measures in precision by 2 percentage points(4% improvement).
Towards later stages of recall, all of the measures  reached a similar performance limit.
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