
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

6-1-1999

Fast Out-of-Core Sorting on Parallel Disk Systems Fast Out-of-Core Sorting on Parallel Disk Systems

Matthew D. Pearson
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Pearson, Matthew D., "Fast Out-of-Core Sorting on Parallel Disk Systems" (1999). Dartmouth College
Undergraduate Theses. 197.
https://digitalcommons.dartmouth.edu/senior_theses/197

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601031?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/197?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Technical Report PCS-TR99-351 1 of 20

Dartmouth College Computer Science Technical Report PCS-TR99-351

Fast Out-of-Core Sorting on Parallel Disk Systems

Matthew D. Pearson

mdp@alum.dartmouth.org

Dartmouth College Department of Computer Science
Hanover, NH 03755

Abstract

This paper discusses our implementation of Rajasekaran’s (

l,m

)-mergesort algo-

rithm (LMM) for sorting on parallel disks. LMM is asymptotically optimal for large

problems and has the additional advantage of a low constant in its I/O complexity.

Our implementation is written in C using the ViC* I/O API for parallel disk systems.

We compare the performance of LMM to that of the C library function

qsort

 on a

DEC Alpha server.

qsort

 makes a good benchmark because it is fast and performs

comparatively well under demand paging. Since

qsort

 fails when the swap disk fills

up, we can only compare these algorithms on a limited range of inputs. Still, on

most out-of-core problems, our implementation of LMM runs between 1.5 and 1.9

times faster than

qsort

, with the gap widening with increasing problem size.

1. Introduction

Researchers in many fields often wish to solve problems that are too large to fit into

main memory, but traditional in-core methods are generally unable to handle very

large sets of data. Performance suffers due to excessive demand paging; worse,

many in-core implementations simply crash when the data is larger than available

swap space.

Improving the performance of out-of-core sorting is an important goal. Sorting is

a fundamental problem and is a key component in many algorithms. While recur-

sive in-core methods such as

qsort

 fare reasonably well under demand paging (as

they eventually reduce the problem size to one that fits in-core), they still are lim-

ited by available swap space. Sorting algorithms designed for out-of-core situations,

because they minimize I/O operations, can run considerably faster than in-core

algorithms pushed past memory limits. Furthermore, when such algorithms are

implemented to run on parallel disk systems, they can handle much larger prob-

lems. This paper examines the implementation and performance of one such algo-

rithm, Rajasekaran’s (

l,m

)-mergesort (LMM) [3].

Technical Report PCS-TR99-351 2 of 20

The remainder of this paper is organized as follows. In Section 2, we describe Vit-

ter and Shriver’s Parallel Disk Model (PDM) [4], under which LMM is asymptotically

optimal for large problems. Section 3 presents a theoretical outline of LMM. Section

4 is an in-depth discussion of our implementation of the algorithm where we focus

on practical matters of implementation. Test results from a DEC workstation are

presented in Section 5. Section 6 presents some suggestions on altering LMM to

work faster and more efficiently. We conclude the paper in Section 7.

2. The Parallel Disk Model

The Parallel Disk Model, or PDM, is an abstraction under which many out-of-core

algorithms such as LMM are designed. Imagine a problem with

N

 records on a com-

puter with

D

 disks and a random-access memory capable of holding

M

 records. The

records are distributed evenly across the disks

D

0

,

D

1

,

D

2

, …,

D

D

 – 1

, such that each

disk contains

N / D

records. The records on each disk are arranged in blocks of

B

records each,

1

 and blocks are striped across the disks. Each stripe consists of

D

blocks, or

BD

 records. We assume for simplicity that

N

,

M

,

D

, and

B

 are all exact

powers of 2. If

N

 is 64,

D

 is 8, and

B

 is 2, the records are laid out as in Figure 1. A

record with index

x

 is located on stripe



x / BD



 of disk

D



(

x

mod

 B

)

 / D



.

Figure 1.

PDM layout of records for

N

 = 64,

D

 = 8,

B

 = 2. Each rectangle delimits
one block. Numbers indicate the index of each record.

A

parallel I/O operation

 can move up to

D

 blocks between the disks and main

memory, with no more than one block transferred per device. The most general

form of I/O is

independent I/O

, where the blocks in a given I/O operation can be in

any stripe on their respective disks. Another common form of I/O is called

striped

I/O

, where the blocks accessed must be in the same stripe on each device.

We make two assumptions concerning memory. Since a parallel I/O operation

can move up to

BD

 records, we assume that main memory is large enough to hold

this data:

M

�

BD

. We also make the assumption that

N

�

M

 to ensure that the prob-

lem is truly out-of-core. PDM convention uses lower-case letters to indicate the

1. These ‘logical blocks’ might consist of one or several sectors of a physical device,
or even several physical devices in the case of a RAID.

D

0

D

1

D

2

D

3

D

4

D

5

D

6

D

7

stripe 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

stripe 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stripe 2

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

stripe 3

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Technical Report PCS-TR99-351 3 of 20

base-2 logarithm of the corresponding capital letter; in this paper, we use

b

 as short-

hand for log

2

(

B

) and set

d

�

 log

2

(

D

).

Note that the PDM ignores the variations in disk-access times caused by latency

and head travel. While at first this may seem a serious omission, recall that the RAM

model glosses over performance-affecting factors such as secondary cache, yet still

provides a reasonable framework for predicting an algorithm’s efficiency.

In the RAM model, an algorithm’s performance is measured by the number of

primitive operations needed to solve a problem of size

N

. The PDM was designed to

analyze out-of-core problems, however, and uses a different metric. Because I/O is

the limiting factor in out-of-core problems, under the PDM an algorithm is assessed

by the number of parallel I/O operations it requires.

3. How LMM works

LMM is essentially an extension of merge-sort, but instead of merging 2 sequences

at a time, we merge

l

 sequences at a time. Suppose we have

l

 sorted sequences

U

1

,

U

2

, …,

U

l

of equal length: for 1

�

i

�

l

,

U

i

�

u

i

1

,

u

i

2

, …,

u

i
r

,

 where

r

 is some arbi-

trary constant. First, break each sequence into

m

 parts by unshuffling; in this way,

U

i

 becomes

U

i

1

,

U

i

2

, …,

U

i
m

. The specific sequence

U

i
j

, where 1

�

j

�

 m, consists of

the elements ui
j, ui

j�m, ui
j�2m, …. After all l sequences are unshuffled, there are lm

subsequences, each of which is sorted. It’s like dealing a deck of cards out to a group

of friends — if the deck at first is sorted, then each friend’s hand will be sorted.

Next, for 1 � j � m, recursively merge U1
j, U2

j, …, Ul
j to create the sorted

sequence Xj � xj
1, xj

2, …. Each sequence X has a very similar distribution of num-

bers, which results in some interesting properties. Consider the nth element of Xi. It

is greater than or equal than the nth element in sequence Xj where 1 � j � i. This

property, coupled with xi
n being greater than or equal to any xi

k, 1 � k � n, means

that the data as laid out in Figure 2 is sorted both horizontally and vertically.

x1
1 x1

2 x1
3 x1

4 x1
5 …

x2
1 x2

2 x2
3 x2

4 x2
5 …

x3
1 x3

2 x3
3 x3

4 x3
5 …

… … … … … …

xm
1 xm

2 xm
3 xm

4 xm
5 …

Figure 2. Table of sequences X1, …, Xm. When laid out in this way, rows and col-
umns are in increasing order left-to-right and top-to-bottom. Each row
is a sequence Xi ; each consecutive group of m columns forms a
sequence Zi.

Technical Report PCS-TR99-351 4 of 20

The similar distribution of elements in the m sequences makes merging them

quite a simple task. We shuffle the elements of the Xi’s together to form the

sequence Z � x1
1, x2

1, …, xm
1, x1

2, x2
2, …, xm

2, …. Because the Xi’s have such similar

distribution of elements, Z will be “mostly sorted.” That is, all of its elements will be

very close to where they are supposed to be. In fact, it can be shown that every ele-

ment in Z will be no more than lm spaces away from its proper place. There are

many ways to perform the cleanup operation. One way is to partition Z into seg-

ments of length lm each, called Z1, Z2, Z3, …. Sort each of the Zi’s, then merge Z1

with Z2, Z3 with Z4, etc. Finally, merge Z2 with Z3, Z4 with Z5, and so on. We discuss a

more efficient way to clean up in our discussion of implementation in Section 4.

When we discuss LMM in the remainder of the paper, it will be helpful to refer to

steps of the algorithm by number. Here, then, is a recipe for sorting:

To merge l sorted runs of equal length,

1. Unshuffle. Unshuffle each run Ui, for 1 � i � l, into m parts, and call them

Ui
j for 1 � j � m.

2. Recursive merge. For each i, recursively merge Ui
1, Ui

2, …, Ui
m, and call the

result Xi. If all m subsequences fit in memory, use a base-case algorithm.

3. Shuffle-merge. Shuffle the elements of the X sequences together again.

4. Clean up. Compare each element with its neighbors and shift its position

by up to lm places if necessary.

4. Implementation

Our implementation of LMM, slmm (for Simple LMM), is written in C and uses the

ViC* API for I/O [1]. The ViC* API is a portable interface that implements the PDM

abstraction for parallel I/O operations. It supports many architectures and file sys-

tems; our implementation is built atop UFS, the traditional UNIX File System.

Our goal was an implementation of LMM that was fast and had efficient I/O pat-

terns. The top-down approach of LMM described in Section 3 recurses into many

subproblems which can spread out over the disks and require large amounts of

head travel. To avoid recursion on the call stack and to provide more efficient

accesses to the disks, we work bottom-up, starting with small sorted runs and merg-

ing them together repeatedly. Data is laid out on the disks in stripe-major order, like

the data pictured in Figure 1. We set l � m for simplicity; this way, merge and

unshuffle operations mirror one another. To take maximum advantage of disk par-

allelism, we set m � D whenever possible. (Occasionally we will need to merge

fewer than D sorted runs, in which cases we simply use a smaller value of m.) slmm
bottoms out with a base problem size of F � BDq, where q is the greatest integer

Technical Report PCS-TR99-351 5 of 20

such that BDq � M; that is, q � (log2(M) � b) / d. Since there are BD records per

stripe, our base case consists of Dq–1 stripes’ worth of data.

Since the operation of slmm is complex, we will supplement the description of

our implementation with a running example. Imagine a computer with D � 4 disks

and B � 4 records per block. To keep the description simple, we set M � BD, so that

q � 1 and F � 8. Suppose we want to sort the following N � 128 integers:

Figure 3. 128 integers, arbitrarily arranged.

On the first pass over the data, we read F records at a time and sort them in core.

This procedure is easy to do using striped I/O and any in-core sorting algorithm;

slmm uses qsort for in-core sorting. The initial sort pass yields N / F sorted sequences.

In our example, we end up with 8 of them. Since m is limited by the number of disks,

we can merge only 4 at a time. Thus, we break the problem into 2 subproblems, each

of which contains 4 sorted sequences. We call these groups of D sequences “run-

sets”; each iteration of slmm takes s run-sets each with D sequences as input, and

produces s sequences D times longer as output. Sometimes we need to merge fewer

than D sequences; in that case we have one run-set containing m sequences. What

we’ll need to do in our example is run slmm twice, once with s � 2 to form two

sequences of length 64 from eight of length 16, and once more with s � 1 to form

one sequence of length 128 from those two 64-element sequences.

Speaking more generally, after the first sorting pass we end up with N / FD run-

sets containing D sorted sequences each; each one of these run-sets is a list of

sorted sequences U1, …, UD , following our notation of Section 3. When FD � N, we

have just one run-set containing m � D sequences. Since N is a power of 2, the

number of run-sets, and sequences within each run-set, must always be a power of

2. Below, we show our example after the initial sorting pass. The first run-set con-

D0 D1 D2 D3

stripe 0 1 8 8 7 7 1 5 7 3 7 1 2 4 6 7 7

stripe 1 7 4 9 7 4 9 6 9 8 2 9 6 4 8 9 6

stripe 2 9 1 5 9 9 5 9 0 9 9 1 0 9 5 0 9

stripe 3 2 1 1 2 3 5 2 1 1 0 3 2 1 3 0 1

stripe 4 8 2 1 7 2 1 3 4 4 3 2 1 1 9 3 5

stripe 5 7 5 5 7 5 6 5 7 6 5 7 5 5 6 5 5

stripe 6 8 5 6 3 8 4 6 8 6 5 4 9 5 6 5 5

stripe 7 2 0 1 0 0 2 2 0 0 1 2 2 2 0 2 2

Technical Report PCS-TR99-351 6 of 20

sists of sequences occupying stripes 0 – 3, and the second contains the sequences

on stripes 4 – 7. The first element of each sequence is written in boldface.

Figure 4. Sequence of numbers after the initial in-core sort pass.

Unshuffling

The idea behind the unshuffle pass is to break up each sequence into m parts, so

that later when we merge them back together we have a nice, even distribution of

numbers. In the case of our example, we want to unshuffle the elements of each

sequence Ui so that 4 of them are part of each sequence Xi after merging. U1 pro-

vides the first 4 elements of each sequence to be merged in the base case, U2 the

next 4, and Um the last 4 of each. U1 contains the elements with indices 0 – 15,

which should be permuted to indices 0 – 3, 16 – 19, 32 – 35, 48 – 51 (these numbers

are the first 4 indices of each Xi). From the unshuffling discussion in Section 3 we

know the permute should be done in this way: 0→0, 1→16, 2→32, 3→48, 4→1,

5→17, 6→33, 7→49, …. A simple and fast way to unshuffle them uses the binary

representation of the source and destination indices. Look at the last two bits of the

source indices: 0, 4, 8, and 12 all end in 00; 1, 5, 9, and 13 all end in 01. The other even

indices end in 10, and the remaining odds end in 11. If you look at the first two bits

of the destination indices2, 0 – 3 start with 00, 16 – 19 begin with 01, 32 – 35 start with

10, and 48 – 51 start with 11. Thus we can map source to destination indices by pro-

moting the 2 least significant bits to the most significant bits, and shifting the rest

right by 2.

In the general case, we can implement the unshuffle operation by a log2(m) right

barrel shift of each element’s index. Since our parameters are all powers of 2, it is

D0 D1 D2 D3

stripe 0 1 1 1 2 3 4 6 6 7 7 7 7 7 7 8 8

stripe 1 2 4 4 4 6 6 6 7 7 8 8 9 9 9 9 9

stripe 2 0 0 0 1 1 5 5 5 9 9 9 9 9 9 9 9

stripe 3 0 0 1 1 1 1 1 1 2 2 2 2 3 3 3 5

stripe 4 1 1 1 1 2 2 2 3 3 3 4 4 5 7 8 9

stripe 5 5 5 5 5 5 5 5 5 5 6 6 6 7 7 7 7

stripe 6 3 4 4 5 5 5 5 5 6 6 6 6 8 8 8 9

stripe 7 0 0 0 0 0 0 1 1 2 2 2 2 2 2 2 2

2. In the case of our example, we express the indices using 6 bits because
each run-set has 64 elements and log2(64) � 6.

Technical Report PCS-TR99-351 7 of 20

easy to break the bit-wise representation of the index into sections and shift them

around. As each sorted subsequence is F � BDq records long, the least significant

b � qd bits of each element’s index represent its position within the sequence. The

next log2(m) bits represent the sequence’s position relative to the others in its run-

set, and the bits higher than that mark its position within the problem as a whole.

Since we are breaking the sequence into m parts, but wish to keep it within its run-

set, we only alter the lower log2(m) + b � qd bits. Our index permutation is as fol-

lows, where bit 0 is the least significant index bit.

For each bit x from 0 to the most significant bit, move x to position f(x), where

(the value c is explained later when we discuss recursion; here, c � 0.)

Our running example does not illustrate very well how the unshuffle step works,

since the values are so small and simple. In a more complicated situation, say where

b � 4, d � 3, q � 2, m � 4, a 16-bit address with bits a – p is permuted as follows:

abcd efgh ijkl mnop ⇒ abcd opef ghij klmn

The unshuffle pass, then, could be done by reading in one sequence at a time, per-

muting its elements’ indices, and writing the data out. Since a sequence can be of

arbitrary length this isn’t a good way to unshuffle, because in later iterations main

memory may not be large enough to contain a full sequence. Our implementation

passes over the data one stripe at a time, reading in BD records of a sequence,

unshuffling them in-core, and then writing them out. Note that slmm may read from

one section of the data and write to a different location altogether. The bottom b bits

represent an element’s position within a data block, the next d bits determine which

disk it is on, and the upper bits are the stripe number. In the above example, before

the permute, the element in question was located on block [abcdefghi] of disk [jkl];

afterwards it moves to disk [hij], block [abcdopefg]. Whenever e is 0 and o is 1, this

element permutes to a higher location on the disks. Thus, if we blindly wrote out

data as we permuted it, we would overwrite blocks we have not yet read. By writing

to a different file, we avoid overwriting data we need later. Using this scratch file,

however, doubles the disk space needed for sorting.

Figure 5 shows how our example looks after the unshuffle pass. We again mark

the first element of each sequence in bold type; we use subscripts to represent the

elements’ indices before they were unshuffled.

f x()
0 x log2 m()��

log2 m() x log2 m() b d q c�()� ���

log2 m() b d q c�()� � x�

x b d q c�() log2 m()� � �

x log2 m()�

x log2�








�

Technical Report PCS-TR99-351 8 of 20

Figure 5. After the unshuffle pass. Boldface numbers mark the beginning of each
sequence; subscripted numbers mark elements’ original indices. The
contents of each block are sorted left-to-right, but runs across adjacent
blocks may not be.

After the unshuffle pass the sequences start on different disks. This staggering is

not part of the unshuffle function described above, but is fairly straightforward to

implement. We want to have each sequence start on a different disk so that the

merge step can access the disks more efficiently. When a sequence hits the end of

DD–1, it wraps around to the same block of D0. That is, indices are wrapped modulo

F. We’ll return to this point after we discuss the base merge pass.

Merging in the Base Case

Step 2 is the recursive step, but since this is the first iteration of the algorithm we use

a base-case operation here. We want to create m sorted runs in each run-set that are

properly prepared for the shuffle-merge step. This task can be done in-core, since

the end result of the operation is a run of length F and F � M. The unshuffle step dis-

tributed the elements nicely in our example so that the elements that make up a

specific Xi are all in one stripe. For larger values of q, the elements to be merged in

the base case are all located in Dq–1 contiguous stripes. The easiest way to merge the

base case is to read in F stripes at a time and sort the data in core, then write it out,

keeping track of which disk the sequence started on. In our example where B is

small this isn’t a bad way to do it. But for real-life applications where B � 8 kilobytes

or so, and where q � 1, this is awfully inefficient.

Our implementation reads in F records, does an m-way merge in-core, then

writes out the data. This can be done in-place with regard to the file system because

the unshuffle step wrote out data to its proper sequence (the base merge simply

rearranges that data). This locality holds for q �1 as well. In Figure 6 we show the

D0 D1 D2 D3

stripe 0 10 34 78 712 216 620 724 928 032 136 940 944 048 152 256 360

stripe 1 049 153 257 361 11 45 79 713 417 621 825 929 033 537 941 945

stripe 2 034 538 942 946 150 154 258 362 12 66 710 814 418 622 826 930

stripe 3 419 723 927 931 135 539 943 947 151 155 259 563 23 67 711 815

stripe 4 164 268 372 576 580 584 588 792 396 5100 6104 8108 0112 0116 2120 2124

stripe 5 0113 0117 2121 2125 165 269 373 777 581 585 689 793 497 5101 6105 8109

stripe 6 498 5102 6106 8110 0114 1118 2122 2126 166 270 474 878 582 586 690 794

stripe 7 583 587 691 795 599 5103 6107 9111 0115 1119 2123 2127 167 371 475 979

Technical Report PCS-TR99-351 9 of 20

example data after the base merge. We now have m sorted sequences in each run-

set, and those sequences have an even distribution of numbers, a property we will

use to our advantage in the next step.

Figure 6. After the base-case merge, the elements are distributed evenly as dis-
cussed in Section 3. Notice how the vertical ordering is skewed diago-
nally by the need to offset each sequence in preparation for the
shuffle-merge step.

Shuffle-Merging and Cleanup

For step 3, we want to take the first BD / m elements of each sequence in the run set

and merge them together, and write them out as Z1. The next BD / m elements from

each sequence are then read in, merged, and written out as Z2, and so on. Since

1 � m � D, we know BD � BD / m � B, which means we read data in blocks, not

stripes. Reading data from different areas of the disks in units smaller than a stripe

calls for independent I/O. In the case where m � D, such as in our example, the

merge reads one block at a time from each sequence. In other cases where m � D,

we read D / m blocks from each sequence, so that in any case we read BD blocks into

memory at a time. These many independent I/O accesses to different sequences is

why we stagger the runs across the disks, because if they were not distributed in this

fashion, we would have to read D blocks from one disk while the others sat unused.

Staggering lets us read one block each from the D disks, which speeds up the merge

considerably.

Our implementation does not write out Zi until Zi�1 has been read in and

merged. When we start the merge step on a run-set, we read in the first BD / m ele-

ments from each sequence and merge them, and then read in the next BD / m ele-

ments. We then merge these two sorted lists and write out the first BD elements to

disk. The latter BD elements are held over to be merged with the results of the next

independent I/O call. We continue to read in records until we have the last 2BD

D0 D1 D2 D3

stripe 0 0 0 1 1 1 2 2 3 3 6 7 7 7 9 9 9

stripe 1 8 9 9 9 0 0 1 1 2 3 4 4 6 6 7 7

stripe 2 6 6 7 8 8 9 9 9 0 1 1 1 2 3 4 5

stripe 3 2 4 5 5 6 7 7 8 9 9 9 9 1 1 1 2

stripe 4 0 0 1 2 2 2 3 3 5 5 5 5 5 6 7 8

stripe 5 6 7 7 8 0 0 1 2 2 2 3 4 5 5 5 6

stripe 6 5 5 5 6 6 7 8 8 0 1 1 2 2 2 4 4

stripe 7 2 3 4 5 5 5 5 6 6 7 9 9 0 1 1 2

Technical Report PCS-TR99-351 10 of 20

records of the run-set merged in memory. The final step is to flush all records to disk

to make room for the beginning of the next run-set.

We keep a buffer of BD elements in-core as a way of performing Step 4, the

cleanup step. If we assume that B � D, then BD � D2. Since l � m and m � D, we

have D2 � lm. We know that lm is the maximum displacement an element can have

in the reshuffled list. So if BD � lm,3 why do we keep 2BD records in memory? The

first element of our merged stripe could be lm spaces off-kilter, and might actually

belong in the previous stripe. So, in order to ensure that an element is cleaned up to

its proper place, we maintain BD records in memory from the previous merge.

When we merge this “holdover” stripe with the current stripe, we clean up elements

that may need to be moved across a stripe boundary.

This step, too, requires a scratch file. If we view the disk system as a table, the

merge step reads in diagonally, and writes out horizontally. Figure 7 shows the

read/write operations of Step 3 on 4 disks with 4 sequences each containing 4

blocks. The number contained in each block indicates the time it is read from or

written to. Note how our first two I/O operations are reads, in order to get a sorted

run of 2BD elements in memory. At t � 3, we write out the first BD elements. At t � 4,

we read in BD elements, at t � 5 we write some out, and so on until the end of the

merge operation where we write two stripes of data out. Notice how the write at

t � 3 obliterates data we need to read at t � 4. Since the data is in a scratch file

already, to prevent overwriting we simply write it back to the original file.

Figure 7. Table representation of read/write operations during the shuffle-merge
step. Numbers indicate the time a block is accessed, either via an inde-
pendent read on the left, or a striped write on the right.

After finishing steps 3 and 4, our example contains two sorted runs of length 64, as

shown in Figure 8 on the next page.

3. Generally by a long shot. On our DEC machine, B � 213. When m � D, BD is
roughly a thousand times larger than lm.

D0 D1 D2 D3 D0 D1 D2 D3

1 2 4 6 3 3 3 3

6 1 2 4 5 5 5 5

4 6 1 2 7 7 7 7

2 4 6 1 8 8 8 8

Technical Report PCS-TR99-351 11 of 20

Figure 8. After the first iteration of slmm, we have 2 sorted runs m times longer
than before. The offset of a merged run-set is the offset of its first
sequence – for both of these run-sets, that offset was 0.

Larger Problem Sizes and Recursion

Each iteration of slmm creates sorted runs m times longer than those with which it
started. If N � FD we need to perform at least one additional iteration after the first
one. We unshuffle the longer runs into run-sets whose sequences are as long as the
sequences on which the previous iteration worked, and then recurse. That is, for a
second-level iteration, we want to unshuffle the sequences into runs of length
greater than or equal to F. This sets up the data so we can repeat the first iteration to
even out the distributions by unshuffling and merging the sequences together.
Finally, we merge them back together again to create runs of length up to FD2. In
our example we unshuffle the elements of the two sorted sequences, setting m to be
2 instead of 4.

Since these sequences are D times longer than before, our permutation should
move the rightmost bits d bits further to the left than in the previous iteration. In the
index-permutation function f(x) from page 7, we set c to 1. Adding 1 to q increases
the range of the barrel shift by d bits. Later unshuffles, since they work on still longer
sequences, use correspondingly higher values of c.4 In Figure 9 on the next page we
show the results of this second-level unshuffle operation.

D0 D1 D2 D3

stripe 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

stripe 1 2 2 2 2 2 2 3 3 3 3 4 4 4 4 5 5

stripe 2 5 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8

stripe 3 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9

stripe 4 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2

stripe 5 2 2 2 2 2 2 2 3 3 3 3 4 4 4 4 5

stripe 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6

stripe 7 6 6 6 6 6 7 7 7 7 7 8 8 8 8 9 9

4. The value c is the depth of recursion minus 1.

Technical Report PCS-TR99-351 12 of 20

Figure 9. Results of unshuffling the larger run-set containing 2 sequences of
length 64. Elements 532, 596, 633, and 597 are italicized to indicate the
beginnings of “phantom runs.”

Notice that the resultant runs are half as long as the originals, and that the bottom

run-set is offset by 2 relative to the top one. The reason for this larger offset is that

the top and bottom run-set will be merged recursively to form one sequence each,

and we want these two sequences X1 and X2 to be laid out properly to prepare for

the last merge step. Since we will read 2 blocks from each sequence on each inde-

pendent I/O read and want to access each disk equally, we stagger the runs here by

two disks. Notice also how the bottom sequences wrap modulo FD rather than

modulo F as in the previous iteration. The third sequence starts on stripe 4 and ends

on 6, while the fourth starts on stripe 6 but has 2B elements that are written on the

beginning of stripe 4. The reason we wrap around in this fashion is to keep the

sequence as contiguous as possible. Suppose we offset over individual stripes, so

that a sequence filled each stripe before moving to the next. Then every stripe’s

worth of data would have a discontinuity in its ordering. Reading data with gaps

such as these is more complicated than reading in continuous stripes that wrap

around to the beginning because it requires more independent I/O calls. A little

added complexity on write operations makes reading much easier, so we wrap on

the sequence level rather than on the stripe level.

Even though each run-set contains 2 sorted sequences, we treat it as if there were

4 for the next iteration. A sorted sequence can be viewed as two sequences that do

not overlap. In our example, we break each sequence half, and show the leaders of

these new “phantom sequences” in italics. Treating the run-sets in this way greatly

simplifies the algorithm because we can reuse our last set of parameters. Another,

more important, reason for increasing m in this step is that if there were several lev-

D0 D1 D2 D3

stripe 0 00 02 14 16 18 110 112 114 216 218 220 322 324 426 428 530

stripe 1 532 634 636 638 740 742 744 746 848 850 952 954 956 958 960 962

stripe 2 064 066 068 170 172 174 276 278 280 282 284 286 388 390 492 494

stripe 3 596 598 5100 5102 5104 5106 5108 6110 6112 6114 6116 7118 7120 8122 8124 9126

stripe 4 6113 6115 6117 7119 7121 8123 8125 9127 01 03 15 17 19 111 113 115

stripe 5 217 219 221 323 325 427 429 531 633 635 637 739 741 743 745 847

stripe 6 849 951 953 955 957 959 961 963 065 067 069 171 173 175 277 279

stripe 7 281 283 285 387 389 491 493 595 597 599 5101 5103 5105 5107 5109 6111

Technical Report PCS-TR99-351 13 of 20

els of recursion, the algorithm reaches the base case far more quickly using larger

values of m, so setting m high for one step yields good savings for later steps.

More generally, whenever we need to merge the results of the first iteration of

slmm, we use that first iteration recursively as a base step. The results of our first

slmm iteration are of length FD. A level-2 iteration would consist of the following:

First we perform one m-unshuffle operation to create run-sets whose sequences are

of length FD/m. Since these unshuffled runs are at least as long as our initial runs

that consisted of F elements, we can use a level-1 slmm iteration to recursively merge

them together. Per the above discussion, we perform one unshuffle pass, an in-core

merge pass, and a shuffle-merge pass to create nicely distributed runs of length FD.

We perform a shuffle-merge pass again to result in sorted runs of length FDm. Fig-

ure 10 shows the state of our example problem after the level-1 slmm has finished

merging the two run-sets into sequences X1 and X2 of length 64. Notice how X2

starts on stripe 4 and wraps around back to it with its final 2B elements.

Figure 10. Sample case after the level-1 merge, ready for the final level-2 merge
pass. Note how evenly distributed the elements of these two sequences
are. They have the same number of each value, except the first
sequence has one more 2, and the second has one more 5.

The level-2 shuffle-merge step for our example is very similar to the level-1 shuffle-

merge, except that it reads two blocks at a time from each sequence. We first read

block 0 of D0 and D1, and block 4 of D2 and D3. Next we read block 0 of D2 and D3,

and block 5 of D0 and D1. Our final independent I/O call reads block 3 of D2 and D3,

and block 4 of D0 and D1. Figure 11 shows the results of this merge, a single sorted

list of 128 elements.

D0 D1 D2 D3

stripe 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2

stripe 1 2 2 2 2 2 2 2 3 3 3 3 4 4 4 4 5

stripe 2 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 7

stripe 3 7 7 7 7 7 8 8 8 8 9 9 9 9 9 9 9

stripe 4 8 9 9 9 9 9 9 9 0 0 0 0 0 1 1 1

stripe 5 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3

stripe 6 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 5

stripe 7 6 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8

Technical Report PCS-TR99-351 14 of 20

Figure 11. After the final merge pass, the sequence is sorted.

Inductively, to merge together D sorted runs of length FDk, k � 0, we perform k

unshuffles, followed by a base merge pass, followed by k shuffle-merge passes.

When we have C � D runs of length L, FDk–1C � L � FDk, we sort in the same fash-

ion, except that the first unshuffle and last merge use m � C rather than m � D.

Thus, in order to sort FDk elements (a “problem of depth k”), we need to perform

1 � 3 � 5 � … � (2k � 1) � (k � 1)2 passes. The first pass forms sorted runs of

length F, and each successive group of passes forms sorted runs D times longer than

before. Again, in cases where the problem size lies between FDc and FDc�1, the first

unshuffle and last shuffle-merge of the last iteration use a value of m less than D.

Even though each unshuffle or shuffle-merge operation copies the data, the total

number of these copies is always even, so that when slmm finishes the data is sorted

in the original file.

Our example hinted that offsetting can get complicated when we are performing

multiple shuffle-merges. The result of one pass must be offset properly for the next,

and the result of that pass must be positioned correctly for the next, and so on, to

get the best performance. As we have seen, if we are performing two shuffle-merge

passes, we want the original run-sets to be offset, as well as their members. That

way, when the first pass is done, each resultant sequence is offset properly.

In the general case, shuffle-merging a problem of depth k, we have k “levels of

offset”. When we start merging from a base run of length F, we must track its posi-

tion within k nested run-sets. An easy way to track this is to imagine a k-digit num-

ber in base m associated with each base run of length F. The least significant bit

represents the base run’s position in its run-set. The next bit represents that run-

set’s position relative to its parent run-set, and so on. We label the original

sequences by counting, starting at 0. The absolute offset of any sequence, that is, the

disk it starts on, is simply the sum of its label’s digits, modulo D.

D0 D1 D2 D3

stripe 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

stripe 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2

stripe 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3

stripe 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5

stripe 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

stripe 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7

stripe 6 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8

stripe 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Technical Report PCS-TR99-351 15 of 20

5. Test Results

We now present and compare the running times of slmm and qsort. We ran test runs

on adams, a DEC 2100 server with two 175-MHz Alpha processors. adams has 320

megabytes of memory, uses eight 2-gigabyte disks for storage, and runs Digital

UNIX 4.0E. The disks are distributed among three SCSI chains connected to a DEC

RAID controller. We allotted 64 megabytes of main memory to the slmm and qsort
executables.5 Both were coded in C and compiled using cc with options -fast, -arch
host, -tune host, and -inline speed.

The following tables show the run-times we measured on inputs of randomly

ordered6 sequences of 4-byte ints. First we show qsort’s performance, in Table 1.

Table 2 gives run times for slmm using synchronous I/O, and Table 3 shows slmm’s

run time using asynchronous I/O. Since the shuffle-factor m is bound by the num-

ber of disks, we show slmm’s performance for D � 8 and D � 4.

Table 1. Test runs of qsort. We show the run time in seconds, as well as the
normalized time (in 	s) which is the run time divided by Nlog2N.

Not surprisingly, qsort is the fastest way to sort smaller problems of N � 223 inte-

gers; it generally runs 20 – 30 percent faster than slmm. While slmm’s I/O times for

these problems are small due to file caching, it has significantly more computa-

tional overhead than qsort, which accounts for its poorer performance for in-core

problems. For N � 224, qsort pages, making its performance drop sharply. Its nor-

malized times for N � 227 are nearly 4 times greater than for N � 223. Because even

more recursive steps would be required to reduce a problem to an in-core size, we

expect that for N � 228 qsort’s performance would be even worse. However, qsort

5. Of course, qsort uses far more swap space than slmm on larger problems.
6. We used the standard C library function rand for this purpose.

qsort

Problem size runtime (s) normalized (s)

N = 222 34.14 0.417

N = 223 73.00 0.378

N = 224 301.57 0.749

N = 225 694.65 0.828

N = 226 1686.40 0.967

N = 227 5439.42 1.501

N = 228 — —

N = 229 — —

Technical Report PCS-TR99-351 16 of 20

cannot handle these problem sizes because it completely fills the scratch disk at

N � 227 and causes a segmentation violation at N � 228.

Table 2. w the run time in seconds and the normalized time in 	s. We also give k,
the problem depth, and the percentage of time spent on I/O.

Table 3. Test runs of asynchronous slmm. Data are as in Table 2, except the I/O col-
umn now gives time spent waiting for asynchronous calls to complete.

* Indicates k should be 0. Since slmm with k = 0 is essentially be qsort, we
reduce M for these problems to raise k to 1.

** Due to hardware trouble on adams we did not complete this test. We
expect sorting N = 229 integers under these conditions to take approx-
imately 32,000 seconds.

slmm, on the other hand, does not suffer the same sharp performance drop when

the problem size exceeds main memory. Normalized times do rise, however, when k

increases. Recall that for a given problem size, k is the smallest integer such that

slmm / synchronous I/O / 8 disks slmm / synchronous I/O / 4 disks

Problem size k runtime (s) normalized (s) I/O % k runtime (s) normalized (s) I/O %

N = 222 * 52.09 0.564 8.6 * 48.37 0.524 8.8

N = 223 1 100.61 0.521 8.4 * 100.30 0.520 9.5

N = 224 1 202.76 0.504 8.5 1 214.75 0.533 18.1

N = 225 1 444.01 0.529 14.0 1 477.40 0.569 24.7

N = 226 2 1872.43 1.073 41.7 2 2011.45 1.152 49.6

N = 227 2 3663.03 1.011 38.8 2 4071.05 1.123 49.2

N = 228 2 7423.74 0.988 38.4 3 13295.01 1.769 56.1

N = 229 3 23550.42 1.513 44.8 3 27385.43 1.759 56.6

slmm / asynchronous I/O / 8 disks slmm / asynchronous I/O / 4 disks

Problem size k runtime (s) normalized (s) I/O % k runtime (s) normalized (s) I/O %

N = 222 * 51.11 0.554 1.1 1 46.77 0.507 3.7

N = 223 1 99.16 0.514 2.2 1 95.20 0.493 1.7

N = 224 1 198.87 0.494 1.6 2 288.93 0.718 7.8

N = 225 1 414.59 0.494 1.9 2 689.97 0.823 22.9

N = 226 2 1400.16 0.802 15.8 3 2572.50 1.474 40.9

N = 227 2 2814.41 0.777 13.8 3 5219.11 1.440 41.2

N = 228 2 5659.27 0.753 11.8 4 15451.34 2.056 45.0

N = 229 3 17518.78 1.125 17.1 4 ** ** **

Technical Report PCS-TR99-351 17 of 20

N � FDk, and the number of passes required to solve a given problem is (k � 1)2.

Thus, every time N increases by a factor of D, k increases by one and the number of

passes rises.7 For example, normalized times for asynchronous 8-disk slmm increase

by about 50–60 percent from N � 225 to 226, and again from N � 228 to 229. These

sizes mark boundaries where the data requires more passes to be sorted. At N � 226,

k increases from 1 to 2 for 8-disk slmm, which means the number of passes required

to sort more than doubles from 4 to 9. At N � 229, the number of passes nearly dou-

bles again, to 16.

For D � 4, the number of passes needed to solve a problem rises far more quickly.

Let’s look at the run times with asynchronous I/O for N � 223 and 228 on 4 and 8

disks. On the smaller problem, both have k � 1 and the 4-disk run is slightly faster

than the 8-disk run. For N � 228, however, k � 2 for 8-disk operation, indicating 9

passes are necessary to sort. Using only 4 disks, k � 4, so slmm needs 25 passes. 4-

disk slmm requires nearly 3 times more passes over the disks to sort the numbers,

which explains why it takes nearly 3 times longer to do so.

Looking over the I/O percentages for synchronous slmm we see it can spend a

large amount of time waiting for I/O to complete, especially for larger problems.

This is especially noticeable for D � 4 where slmm spends over half its time in I/O

sorting N � 228 integers. By using asynchronous calls (reading ahead and writing

behind) we can generally cut the time we wait for I/O by a factor of more than 2 for

D � 8. Over 4 disks the improvement is not that great: I/O times drop by less than 25

percent. More interesting, switching from synchronous to asynchronous I/O actu-

ally slows slmm down from N � 224 on up. These issues point out some interesting

tradeoffs involved in deciding what kind of I/O to use, and we will discuss them

briefly.

When slmm runs on 4 disks, the bandwidth of the disk system is a real bottleneck.

The processor can manipulate the data, whether by unshuffling or shuffle-merging,

faster than the disks can supply it. Switching from synchronous to asynchronous

I/O simply changes the read and write calls that slmm waits for. If a computation is

heavily I/O bound, then overlapping I/O and computation increases the speed by at

most the computation time, which is a relatively small percentage of the total time.

Thus, prefetching by one operation does not provide as significant a speedup as it

does on 8-disk slmm. Reading further ahead, say, 2 or 3 steps, might alleviate the I/O

bottleneck further. But given the other performance limitations slmm has on 4 disks,

it’s probably a better idea to go find a machine with more disks instead.

The fact that asynchronous I/O can still spend a lot of time waiting explains why

asynchronous operation isn’t much faster than synchronous for 4 disks, but it cer-

7. In Section 4, we defined F � BDq � M for the largest possible q. For asynchronous
slmm on adams, B � 213 and M � 222, so when D � 8, q � 3 and F � BDq � 222.

Technical Report PCS-TR99-351 18 of 20

tainly does not explain why using asynchronous I/O actually slows slmm down. The

reason for this slowdown hinges on memory use. Using asynchronous I/O reduces

M by a factor of 4: we need to allocate a prefetch and write-behind buffer each as big

as our main buffer, and since M must be a power of 2 we must round it down. Our

tests ran slmm in a memory partition of 64 megabytes (16 million records). Synchro-

nous I/O use sets M � 224 ints, but asynchronous operation must use a smaller

value, M � 222. This difference affects the base case size F. With synchronous I/O,

since B � 213 and D � 4, we have F � BDq � 224, Dq � 211 and q � 5. Switching to

asynchronous I/O, we have Dq � 29 and q � 4.8 Thus the base case size F for syn-

chronous I/O is 4 times that for asynchronous when D � 4. For synchronous I/O

and 4 disks, the value of k is 1 less than its asynchronous counterpart for N � 224 on

up because we can use a base case algorithm on larger sequences. This great reduc-

tion in the number of passes more than makes up for the slight savings gained from

using asynchronous I/O.

Note, however, that even in the slowest case, asynchronous I/O with D � 4, at

N � 227 slmm is still faster than qsort. Under better conditions, asynchronous I/O

with D � 8, it is nearly twice as fast. We expect slmm to really shine on larger disk sys-

tems with D �16. By keeping k lower for larger problem sizes, slmm on larger disk

systems should be able to sort even more quickly.

6. Potential Modifications

In deciding how to implement LMM we made a few changes to the algorithm as

Rajasekaran presented it in [3]. For example, we always set l and m to be the same,

and we work bottom-up, rather than top-down. Both of these changes simplify the

algorithm and make it faster in practice. Now that we have a working implementa-

tion of LMM and have examined its test data, a few other potential improvements

come to light.

slmm, like Rajasekaran’s presentation of LMM, uses a logical block as the basic

unit of data. The reads in the shuffle-merge step are independent I/O calls that read

a different block from each disk. The unshuffle step repeatedly reads in a stripe of

data, permute its indices, and writes it out to D different blocks. Looking back, using

a logical block as the basic element was probably not the most efficient way to

implement LMM.

When merging or unshuffling long sequences of data, reading in units as small as

one block can result in a lot of head travel for the amount of data moved. When k is 3

or more, during the last iteration’s first unshuffle and last merge I/O wait times can

8. When D � 8, F is the same for synchronous and asynchronous I/O. F � 222 and
q � 3 in either case.

Technical Report PCS-TR99-351 19 of 20

exceed 70 percent of that step’s run time. The reason for this is the disk heads are

traveling long distances from where they are reading to where they are writing.

Reading a block, traveling a great distance, then writing it out, only to go back again

is not the most effective way to perform I/O. Significantly faster would be working in

larger units, say stripe size or more. If unshuffles read in m stripes at a time, they

could write out a stripe rather than a block to the beginning of each sequence. Simi-

larly the shuffle-merge operation could read a stripe rather than a block from each

sequence per merge and hence write out a larger portion. This would cause the size

of the buffers used in these steps to increase by a factor of D to BD2, but since the

base case works in units of BDq this should not change the memory requirements

for most real-world applications (on our test machine q ranged from 3 to 5). A good

general case solution would be to use Dq–1 blocks as the basic unit of data rather

than just one block.

Another advantage of changing the basic unit of data from a block to a stripe or

more is that if we never read or write in units smaller than a stripe, we do not need

to stagger the runs. For each read step in the merge pass we would read a stripe from

each run, which is D blocks each from D disks; offsetting the beginning of each run

by any amount would not change this distribution at all. Reducing the different

ways data can be offset to removes complexity from the code and makes it easier to

maintain. Further, if all runs start on D0, striped I/O can be used exclusively. Since

striped I/O is generally a bit faster than independent I/O, this should provide some

speed improvement.

We believe that changing LMM’s focus from blocks to stripes would greatly sim-

plify its implementation and provide significant speed gains.

7. Conclusion

We have implemented LMM and analyzed its real-world performance. It runs sub-

stantially faster than qsort under demand paging and can handle much larger prob-

lems. As Rajasekaran predicted, LMM performs much more strongly when the

number of disks is large.

Although it runs on a multiprocessor DEC 2100, slmm only uses one processor for

sorting and merging. With a faster disk system, computation time, rather than I/O

time, can become a bottleneck. We are investigating ways to adapt LMM to run on a

shared-memory SMP. It is our belief that a multiprocessor implementation of LMM

could run very quickly, since unshuffle and merge tasks are essentially independent

across run-sets and could thus be handled by different processors.

Technical Report PCS-TR99-351 20 of 20

Acknowledgments

Many thanks to Thomas Cormen for introducing me to the problem of out-of-core

sorting, and for his help and support during all phases of this project. His revisions

and advice have made this paper far stronger than it would have been otherwise.

James Clippinger maintains the ViC* API and answered countless questions regard-

ing programming for parallel disks. He also helped squash a pesky bug in slmm.

Wayne Cripps keeps the server adams running, and on the side, answered many

systems questions. Daniel Epstein provided many thoughtful comments on an ear-

lier draft of this paper. The purchase of the DEC 2100 server named adams was

made possible by a grant from Digital Equipment Corporation.

References

[1] T. H. Cormen, M. Hirschl, Early experiences in evaluating the parallel disk model with

the ViC* implementation, Parallel Computing 23 (1997) 571–600.

[2] T. H. Cormen, D. M. Nicol, Performing out-of-core FFTs on parallel disk systems,

Parellel Computing 24 (1998) 5–20.

[3] S. Rajasekaran, A Framework For Simple Sorting Algorithms on Parallel Disk Systems,

10th Annual ACM Symposium on Parallel Algorithms and Architectures (1998) 88–97.

[4] J. S. Vitter, E. A. M. Shriver, Algorithms for parallel memory. I: Two-level memories,

Algorithmica 12 (2/3) (1994) 110–147.

	Fast Out-of-Core Sorting on Parallel Disk Systems
	Recommended Citation

	LMM.auto.fm

