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Abstract

Near-infrared (NIR) optical image reconstruction that incorporates blood oxygen

level dependant (BOLD) magnetic resonance imaging has the potential to

improve both quantifiable measurement of oxygenation and the spatial

resolution involved in such mapping.  My thesis continues some preliminary

work in this area through development of an analytic diffusion parameter

estimation algorithm for use with a NIR imaging array and development of a

finite element mesh utility to read a priori BOLD images and tag them with

property elements for NIR image resolution improvement.
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1 Introduction

Oxygen is a required substrate for the brain but currently there is no acceptable

method for accurately monitoring and mapping cerebral oxygenation.  Many

disorders widespread in incidence are attributed to affected cerebral

oxygenation.  For example, pre-term infants are especially at risk for

abnormalities associated with underdeveloped vasculature which limits the

supply of oxygen and nutrients to the brain during the first few weeks after

birth.  Stroke patients also have a complex relationship between oxygenation

both during and after the infarct and survival and would similarly benefit from a

non-invasive method of spatially and temporally accurate monitoring.  A variety

of studies have indicated that oxygenation may change during normal brain

function, increasing during task activation, which may be useful in mapping

associated brain function (Bandettini et al., 1992; Kwong et al., 1992; Menon et al.,

1992; Ogawa et al., 1993).

Improving the technology involved in mapping and detection of cerebral

oxygenation has many practical applications in both research and clinical

diagnosis and treatment.

The problem with oxygen mapping in the cranium stems from the unpredictable

and non-uniform way oxygen is distributed and the lack of good measurement

systems to image these heterogeneous regions.  Oxygen tensions can vary from

miniscule amounts to over 70 mm Hg along microscopic tracks in the brain and

varies greatly between major structures.  These tensions vary greatly during task

activation and are abnormal in problem structures such as tumors and stroke
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infarcts.  Two technologies developed have vastly improved the ability to work

around these limitations.

1.1 Magnetic Resonance Technology

The first technology is function MR imaging (fMRI), otherwise known as blood

oxygen level dependant imaging (BOLD).  According to theory, decreases in

local deoxyhemoglobin content cause a decrease in magnetic susceptibility which

results in a brightened MR image (Ogawa et al., 1993).  The methodology

involves magnetic resonance imaging of the brain using specific MR sequences

which are sensitive to field inhomogeneities.  These sequences are sensitive to

deoxyhemoglobin content.  Modeling studies and work with phantoms indicate

that the relationship between the image intensity and deoxyhemoglobin

concentration is predictable if certain key parameters such as sample orientation

and magnetic field strength are fixed (Yablonskiy & Haacke, 1994; Dunn &

Swartz, 1996; Yablonskiy, 1998).  BOLD imaging provides excellent spatial and

temporal data but requires careful calibration and, because of the effort and time

involved in MR imaging, is not a practical medium for real-time monitoring of

oxygenation.

1.2 Near Infrared Spectroscopy

The second technology is near infrared (NIR) spectroscopic diffuse tomography.

NIR has been used to quantitatively map hemoglobin concentration and

hemoglobin oxygen saturation in tissue-like phantoms as well as determine

average values in vivo.  The methodology involves shining laser light at the head

and detecting the scattered light with photomultipliers.  This method has been
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used in research to monitor brain oxygenation.  The light source can be intensity

modulated in the hundreds of megahertz range to measure the photon’s

migration through the tissue which is essentially the average optical pathlength

through the tissue.  The absorption due hemoglobin in the tissue can be used to

determine the blood oxygen level through measurement of amplitude and phase

distortions in the light signal.  The optical properties of absorption and scattering

coefficients are dependent on tissue and wavelength.  By recording light signals

from many illumination and detection positions and determining the

distribution of optical property values required to maintain the observed light

signal for each condition, the needed coefficients can be estimated on a spatial

scale to form an image.  NIR also has the benefit of decreased cost in recent years

for advances in optoelectronics.  In clinical trials although NIR has been used

with some success to detect changes in blood flow and oxygen saturation in a

monitoring situation (Rolfe et al., 1992), but these trend monitors have limited

use in diagnosis of pre-existing conditions.  The main limitation is that it is very

difficult to take measurements within highly scattering tissue such as the brain

with its non-homogenous distribution of hemoglobin.

1.3 Merging of Magnetic Resonance and Spectroscopic Imaging

Theoretically, a merging of BOLD imaging and NIR detection may yield

increased spatial resolution of brain oxygenation as well as an improved

quantifiable measurement of oxygenation that can be mapped to specific brain

structures.  The advantages are that the spatial information from MRI can be

used in finite element modeling to increase the spatial resolution of NIR images.

The NIR data can also be used to aid in calibration of the MRI results.  Unlike
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other detection methodologies, the magnetic fields caused by MRI tubes do not

affect the accuracy of the NIR measurements so that the two systems are

compatible for simultaneous data acquisition.  However the development of a

combined MRI-NIR imaging system has many engineering challenges as well

which need to be addressed for successful system implementation.

1.4 Goals of this thesis

The two main goals of this thesis project are to improve upon the NIR methods

of deriving absorption and scattering coefficients and to begin preliminary work

on the melding of NIR and BOLD technology.

The research detailed in this thesis had two distinct stages.  The first stage was

the development and testing of an automated algorithm in Fortran for fitting

measurements of phase shift and amplitude to an analytic diffusion theory

expression to derive absorption and scattering coefficients based on an analytic

theory.  The current method of NIR requires iterative calculations and therefore

has an associated time cost.  The second stage was preliminary work in

combining NIR and BOLD imaging by development and image testing of a

MATLAB-based program to turn a priori BOLD data sets into finite-element

meshes tagged with tissue properties.

The outline for this paper will be as follows.  First I will discuss several prior

works related to both problems I studied.  Then I will discuss my own algorithm

and the theory related to it.  Next I will describe problems associated with the
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system developed.  Finally I will discuss results and discuss extensions to both

the experimental and theoretical systems.

2 Related Work

The work for this thesis was mainly inspired by prior research in NIR at the

Thayer School of Engineering and the Dartmouth Hitchcock Medical Center

(DHMC) which has been concentrated on the application of imaging for cancer-

detection in the human breast.  Concurrently, BOLD images of rat craniums to

study artificially-induced tumors has been a concentration of researchers at the

Dartmouth Medical School.  Use of structural MRI images to enhance NIR

images of rat craniums has been a recent adaptation of the breast-imaging study.

Extension of this technology of BOLD and NIR imaging for human cerebral

oxygen studies is a logical next step.

2.1 NIR Breast Imaging

Near infrared spectroscopy is a noninvasive method sensitive to oxygenation of

tissue.  Specifically, because the absorption spectra of deoxyhemoglobin and

oxyhemoglobin exhibit a marked difference, the hemoglobin oxygen saturation

may be determined from the tissue absorption spectrum when reconstructed

from appropriate reflectance measurements (Hull et al., 1998).  Determination of

oxyhemoglobin saturation in the near infrared spectral region depends on the

ability to determine the absorption spectrum in the presence of scattering by

tissue and the ability to account for particles other than hemoglobin in the

measured tissue.
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The driving force behind the development of NIR spectroscopy and imaging has

been the increase in blood volume within cancerous tumors corresponding to an

increase in hemoglobin concentration — estimated to exist at four times contrast

with normal tissue.  McBride et al., 1998 showed that a series of phantom

calibrations could achieve accurate absorption and reduced scattering coefficient

images at multiple optical wavelengths.  A least squares fit was used to

determine hemoglobin concentration and hemoglobin oxygen saturation images

from the absorption coefficient images at multiple NIR wavelengths.  This

methodology was tested both on phantoms composed of intralipid and water

with varying hemoglobin concentration and oxygen saturation and in breast

tissue in vivo.

The breast imaging setup (McBride et al., 1998) consisted of 16 source and 16

detector optical fibers positioned in a circular array.  A titanium sapphire laser

was used as a light source to pass a laser beam through a source fiber for

subsequence detection in each of the 16 detector fibers.  The laser was tunable

between 700 and 850 nanometers (nm) using a single optical setup).  A

photomultiplier tube is used for detection within a circuit which allows for

detection of the signal amplitude and phase shift at a lower frequency of 1 kHz.

Data acquisition, signal processing and instrument control routines were written

within the LABVIEW language.  The software to perform image reconstruction

collects the 256 data points acquired for a single wavelength and reconstitutes

them into an image of tissue optical properties consisting of absorption and

scattering coefficients using a finite element based calculation of the diffusion

equation (McBride et al., 1998).  This same hardware and software is not limited
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to breast imaging and has been adapted for use with rat craniums and can be

further extended.

Light propagation in tissue is approximated by the diffusion equation:

      −∇ ⋅ ∇ + + =D r i c sa( ) ( , ) [ ( ) / ] ( , ) ( , )Φ Φr r r rω µ ω ω ω0

where Φ is the optical light fluence rate, given at any point r, at modulation

frequency ω , traveling through tissue with optical properties defined by

diffusion coefficient D and absorption coefficient µa with the speed of light in the

medium, c.  The diffusion equation is solved numerically using a finite element

(FEM) algorithm (McBride et al., 1998) which I will detail later while describing

my new algorithm for faster NIR optical property calculation.

2.2 Rat Cranium Studies

Pogue et al., 1999 took NIR measurements of rat craniums and correlated them

with corresponding MRI images as a preliminary test of utilization of MRI

structure in functional imaging.  These experiments utilized the same laser array

and equipment previously used for breast imaging was adapted for use with

rats.

In these experiments the rats were anesthetized during the procedure and

oxygen was varied between low levels of about 10 percent and as high as 90

percent during these tests.  A variety of NIR-MRI algorithms were then used to

demonstrate the value of inclusion of a priori MRI tissue segmentation into the

already-existing NIR reconstruction algorithm.



9

3 Methods

The first part of my research involved calibration of NIR tissue spectroscopy for

cerebral measurements.  The second part was the development software to

generate a tagged finite element mesh to integrate a priori BOLD information

with NIR data.

3.1 Tissue Spectroscopy Calibration — Analytic Infinite-Medium Diffusion

There are various problems associated with NIR measurement in tissue.  The

method for NIR measurement described in related work processes NIR

measurements using a finite-element solution.  This solution uses a forward

solution of the diffusion equation where the calculating program iteratively fits

the computations of measured data to determine the closest tissue optical

properties for a homogeneous medium (McBride et al., 1998).  The equation

involved 40 iterations of this solution and results in an algorithm that has a

substantial downtime.

Pogue et al., 1999 compared three methods of frequency-domain measurement

processing with a modified Beer-Lambert diffusion law method, an analytic

infinite-medium diffusion theory expression and the aforementioned numerical

finite element solution which requires iterative processing.

In analytic infinite-medium diffusion theory, the propagation of light is

described by radiation transport theory whose simplification results in a

diffusion equation that can be solved analytically for simple geometric objects.

But this assumes the tissue geometry is regularly shaped.  An analytic solution
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with multiple source and detector locations, as in the setup used by McBride et

al., 1998 in their NIR research, can be used to approximate spatial derivatives of

the phase shift and intensity ratio which can fit their analytic counterparts.

For the analytic solver I wrote, the expressions:

    

d
d D c

c

d I

d D c

a

a

a

AC a

a

a

φ
ρ

µ ω
µ

ω
µ

ρ
ρ

µ ω
µ

ω
µ

= 



 +













































( )( )
= 



 +



















−

−

1
2

2
1
4

1

1
2

2
1
4

1

1
2

1

sin
tan

ln
cos

tan
cc



























2

were used where IAC is the AC intensity measured by the detector, D is the

diffusion constant D = (3µaµs’)
-1 where µa is the absorption coefficient and µs’ is

the derivative of the scattering coefficient, ρ is the chord distance between source

and detector.  These expression are matched to measurements of phase shift

versus distance and ln(ρIAC) versus distance to derive µa and µs’ values (Pogue et

al., 1999).

3.2 Finite Element Mesh

Using the MATLAB programming environment, for ease of image manipulation,

I wrote a utility program which can be utilized almost immediately with BOLD

images to create a heterogeneous finite element mesh to improve the overall

reconstruction quality of an NIR image using appropriate tissue values.  This is

an extension of the previous tests combining MRI and NIR data because the
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mesh derivation tool is intended for use with BOLD data corresponding to the

subject being tested: in this case a rat with an (unfortunately small) artificially-

induced tumor.  These tumors could be seen in the resulting BOLD image and, in

theory, the BOLD image can be used to enhance NIR spectroscopy to an extent

that the tumor will show up in a combined updated image.

3.3 Actual Trials

It was my hope that the tools I developed for my thesis would be tested on rats

with artificially-induced tumors as well as clinically at DHMC on healthy infants

as a precursor to pre-term infant testing and monitoring of brain oxygenation.

Unfortunately these trials did not pan out and remain needed tests of the

software written.

4 Results and Discussion

4.1 Analytic Infinite-Medium Diffusion for Tissue Spectroscopy

My NIR analytic algorithm was tested on the same NIR data set as the original

iterative finite element algorithm and the resulting diffusion expression and data

analysis can be seen in figure 1.  The main medium for comparison between the

two calculation methods is through the extinction coefficient.  Wray et al., 1988

characterized the extinction coefficient of the phantoms examined for figure 1 at

3.12 ×  10-4 [(ml/L)-1mm-1].  The calculated extinction coefficient for the two

methods of data analysis can be derived from the slope of the linear regression

lines.
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Figure 1: Analytic vs. Finite Element

Comparison of Measured Absorption Methods
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Comparison with prior theoretical and actual observed extinction coefficients

with regards to the absorption coefficient versus blood amounts demonstrates

that although the finite element algorithm demonstrates a large point-to-point

error margin, its final linear regression is closer to the actual absorption

coefficient of the tested phantom.  The analytic algorithm comes close in terms of

matching the actual absorption coefficient and extinction coefficient but has more

error as volume of blood and intralipid increases.

This result demonstrates the problems inherent in the infinite-medium

assumptions of the analytic algorithm utilized in my program.  The finite

element solution to the diffusion equation possibly has similar problems but

resolves them during the course of the 40-step iterative calculation process to
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match solutions with actual data.  A possible use of my analytic solution, which

is close but less accurate, is as a possible first-guess mechanism for a more

complex solution set that requires more time.

Figures 2 through 5 show the results of using my analytic solver as a first guess

for the finite element calculating program developed by McBride et al., 1998.

This is contrasted against an initial ‘bad guess’ which iteratively throws the

solution off track for as many as 40 iterations.  This is especially evident in the

error analysis of intensity and phase fit iterations in figures 4 and 5.  The analytic

solution may not be the most accurate solution but its speed makes it practical

for derivations of better solutions or for a quick analysis of the NIR data.

Figure 2
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Figure 3

Scattering coefficient iteration
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Figure 5

Phase fit iteration
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4.2 Material Tagging from BOLD images

Compared to the analytic diffusion work, the finite element mesh generated from

a priori BOLD images is relatively simple using the tools available in the

MATLAB programming environment.  MATLAB has several toolboxes built in

for image manipulation — in this case the MRI images were saved as ‘tiff’ files —

as well as edge detection, mesh generation and material property tagging.

The program I wrote relies heavily on user-feedback to generate the optimal

mesh for the specific image being studied.  Figures 6 through 11 show a sample

image of a rat at 21% oxygen tagged using my finite element mesh generator.
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Figure 6: Original BOLD image Figure 7: Threshold Image

Figure 8: Processed Image

In figures 6 through 8, the BOLD image is converted into a simple black and

white image with image thresholding.  Intercranial structures, such as bone and

the spinal column, which are interpreted by the computer as black are filled in to

create  a homogeneous solid representative of the actual cranium being studied.
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Figures 9 and 10 show the next steps: edge detection and generation of the finite

element mesh.

Figure 9: Edge Detection
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Figure 10: Finite Element Mesh
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Figure 11 shows the resulting material-tagged meshes.  These meshes have been

separated into three materials: brain, bone and muscle.  It is conceivable that in

the future more structures will be incorporated and the code easily supports such

an addition.  Currently these structures have pre-defined experimentally

determined diffusion properties which merely aid in NIR measurements but

future extension of the combination of NIR and BOLD can utilize the mesh to

maintain updated oxygenation information.
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Figure 11: Material Tagged Meshes
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5 Extensions

Obviously a great deal more research and work needs to be done before the

ultimate goal of utilizing MRI and NIR together for oxygen detection and

mapping is realized.  My original thesis proposal involved further testing on

multiple rat subjects — all with artificially induced tumors — to calibrate the

detection properties of NIR and BOLD with regards to detecting brain

abnormalities.  Unfortunately, the rat subject with the tumor died in a

preliminary BOLD scan while in the MRI tube.  Other rats failed to have the

tumor take.  This remains a needed study and will be a valid test of the software

I have written.

A more ambitious study initially planned involved NIR calibration and

monitoring of healthy infants at DHMC.  The eventual goal would be the

utilization of NIR and BOLD to monitor pre-term infants.  I co-wrote a

Committee for the Protection of Human Subjects (CPHS) protocol that was

submitted to DHMC but has yet to be approved.  The current breast-imaging

array provides the basis for this study to be carried to fruition in the near future.
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Appendix A — Analytic Diffusion Fitting Algorithm

c     nirfit.for

c     #######################################
c     # Program to fit phase and Ln(rIAC) slopes
c     # using NIR data with varying r values
c     # from chords around non-circular data area
c     # UNIX compile line: f77 -g nirfit.for -o nirfit

c     # Written David Kung '99
c     # on 2/99 based on phinfit.for program
c     # written by Brian Pogue

      PROGRAM NIRFIT

c     # variables
      character *64 dfname, sfile1, sfile2
      double precision rData(1:16), iData(1:16),diam
      real srcX(1:16), srcY(1:16), detX(1:16), detY(1:16)

      double precision Iac(1:16), R1(1:16), phi(1:16), lnrIac(1:16)
      double precision m0, mi

c     Declare functions
      DOUBLE PRECISION FIT

c     # files to open (commented defaults)
c     dfname = 'd:\labview\autoimag\nov98\no208g1.asc'

      sfile1 = 'd:\recon\16_S_loc.nod'
      sfile2 = 'd:\recon\16_D_loc.nod'

      print *, 'Input data file name... '
      read (*,8) dfname
08      format(a)

print*, 'What is the diameter of the cylinder (default=86) ?'
read*, diam
IF (diam.eq.0.0) diam=86.0

c      print *, 'Input source file name...'
c      read *, sfile1
c      print *, 'Input detector file name...'
c      read *, sfile2
      print *
      print *
      print *,'Opening:',  dfname, sfile1, sfile2

c     # load file data

      call loadData(rData, iData, dfname, 16)
print*, 'data OK'

c      print *, 'Before loadUnit'
c      do 10 k = 1, 16, 1
c         print *, k, ':Real:', rData(k)
c         print *, ':Imag:', iData(k)
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c 10   continue
c      print *

c     # load source/detector
      call loadUnit(srcX, srcY, sfile1, 16)

print*, 'sources OK'
      call loadUnit(detX, detY, sfile2, 16)

print*, 'detectors OK'

c      print *, 'After loadUnit'
c      do 11 k = 1, 16, 1
c         print *, k, ':Real:', rData(k)
c         print *, ':Imag:', iData(k)
c 11   continue
c      print *

c      print *, 'Source/Detectors'
c      do 12 k = 1, 16, 1
c         print *, k, ':S:', srcX(k), srcY(k), ':D:', detX(k), detY(k)
c 12   continue
c      print *

c     ##### Data Loaded ####

c     # Iac value, chord, phi

      srcX(1)=srcX(1)/86.0*diam
      srcY(1)=srcY(1)/86.0*diam
      do 20 k = 1, 16, 1

 Iac(k) = (rData(k)**2 + iData(k)**2)**0.5
 detX(k)=detX(k)/86.0*diam
 detY(k)=detY(k)/86.0*diam
 R1(k) = ((srcX(1) - detX(k))**2 + (srcY(1) - detY(k))**2)**0.5
 phi(k) = atan(iData(k)/rData(k))*180./3.14159
 lnrIac(k) = log(R1(k)*Iac(k))

 20   continue

      do 21 k = 1, 16, 1
 print *, k, ' Iac', Iac(k)

 21   continue

      do 22 k = 1, 16, 1
 print *, k, ' R1', R1(k)

 22   continue

      do 23 k = 1, 16, 1
 print *, k, ' Phi', phi(k)

 23   continue

      do 24 k = 1, 16, 1
 print *, k, ' ln(rIac)', lnrIac(k)

 24   continue

      m0 = FIT (R1, phi, 16)
      mi = FIT (R1, lnrIac, 16)
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      print *, 'Phi-Fit:', m0
      print *, 'ln(rIac)-Fit:', mi
      print *

      call phinfit (mi, m0)

      STOP

      END

c     #######################################
c     # loadData
c     # Subroutine to grab real/imag data from file
c     # This subroutine grabs the real and imaginary data
c     # from the file

      SUBROUTINE loadData(rData, iData, dfname, Length)

      character*64 dfname
      real unum
      double precision rData(1:Length), iData(1:Length)

      open (unit = 110, file = dfname, status = 'old')

      rewind (110)

      do 120 j = 1, Length, 1

 READ (110, *, END=120) unum, iData(j)
 READ (110, *, END=120) unum, rData(j)

 120  continue

      close (unit = 110)

c      print *, 'Inside Subroutine'
c      do 130 j = 1, Length, 1
c         print *, j, ':Real:', rData(j)
c         print *, ':Imag:', iData(j)
c 130   continue
c       print *

      RETURN

      END

c     #######################################
c     # loadUnit
c     # Subroutine to grab source/detector x&y locations

      SUBROUTINE loadUnit(X, Y, fname, Length)

      character*64 fname
      real unum
      real X(1:Length), Y(1:Length)
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      open (unit = 210, file = fname, status = 'old')

      do 220 m = 1, Length, 1
 READ (210, *, END=220) unum, X(m), Y(m)

 220  continue

      close (unit = 210)
      RETURN

      END

c     #######################################
c     # function fit
c     # Function to find best fit line given
c     # set of x and y data points

      DOUBLE PRECISION FUNCTION FIT (x, y, Length)

      double precision x(1:Length), y(1:Length)
      double precision delta, sumXsq, sumY, sumX, sumXY
      double precision B

      sumX = 0
      sumY = 0
      sumXsq = 0
      sumXY = 0
      B = 0
      fit = 0

      do 310 j = 1, Length, 1
 sumX = sumX + x(j)
 sumY = sumY + y(j)
 sumXsq = sumXsq + (x(j))**2
 sumXY = sumXY + (x(j)*y(j))

 310  continue

c      print *, 'SumX:', sumX
c      print *, 'SumY:', sumY
c      print *, 'SumXsq:', sumXsq
c      print *, 'SumXY:', sumXY

      delta = (Length * sumXsq) - sumX**2

c      print *, 'Delta:', delta

      B = ((Length*sumXY)-(sumX*sumY))/delta

c      print *, 'fit:', B

      FIT = B

      return
      end

c     #######################################
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c     # phinfit
c     # Code written by Brian Pogue
c     # Adapted for line-fitting

      SUBROUTINE phinfit (a1, p1)

      double precision a1, p1
      double precision w,c,ua,us,f1,alpha,phi
      integer nn(600)

      w=1.0e8*2.0*3.14159
      c=3.0e11/1.333
      ua=0.01
      us=.5
      D=1/(3*(ua+us))

      print*, 'Phinfit Region'
      print*
c      print*, a1,p1

p1=abs(p1)   

c      do 1010 j=1,5

 f1=((ua**2+(w/c)**2)/(D**2))**.25
 alpha=-f1*cos(0.5*atan(w/c/ua))
 phi=f1*sin(0.5*atan(w/c/ua))*180/3.14159

c         print*, ua,alpha,phi
c            print 1500, ua,us,alpha,phi,a1,p1

 do 1000 i=1,25
    f1=((ua**2+(w/c)**2)/(D**2))**.25
    alpha=-f1*cos(0.5*atan(w/c/ua))
    phi=f1*sin(0.5*atan(w/c/ua))*180/3.14159

    ua=ua+0.0001
    D=1/(3*(ua+us))
    f1=((ua**2+(w/c)**2)/(D**2))**.25
    alpha1=-f1*cos(0.5*atan(w/c/ua))
    phi1=f1*sin(0.5*atan(w/c/ua))*180/3.14159
    ua=ua-0.0001
    da=(alpha-alpha1)/0.0001
    ds=(phi-phi1)/0.0001
    ua=ua-(a1-alpha)/da
    us=us-(p1-phi)/ds*.1
    D=1/(3*(ua+us))
    f1=((ua**2+(w/c)**2)/(D**2))**.25
    alpha=-f1*cos(0.5*atan(w/c/ua))
    phi=f1*sin(0.5*atan(w/c/ua))*180/3.14159

c            print 1500, ua,us,alpha,phi,a1,p1

    us=us+.001
    D=1/(3*(ua+us))
    f1=((ua**2+(w/c)**2)/(D**2))**.25
    alpha2=-f1*cos(0.5*atan(w/c/ua))
    phi2=f1*sin(0.5*atan(w/c/ua))*180/3.14159
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    da=(alpha-alpha2)/0.001
    ds=(phi-phi2)/0.001
    us=us-0.001
    ua=ua-(a1-alpha)/da*.01
    us=us-(p1-phi)/ds*.2
    D=1/(3*(ua+us))
    f1=((ua**2+(w/c)**2)/(D**2))**.25
    alpha=-f1*cos(0.5*atan(w/c/ua))
    phi=f1*sin(0.5*atan(w/c/ua))*180/3.14159
    print 1500, ua,us,alpha,phi,a1,p1

 1000    continue
 print*, ' '
 print*, 'best fit absorption and scattering coeffs.'
 print 1500, ua,us
 write (11,1510) ua, us

 1010 continue

 1500 format (f10.5,f10.5,f10.4,f10.4,f10.4,f10.4)
 1510 format (f10.5,f10.5)

      RETURN
      END
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Appendix B — Finite Element Mesh Code

% bmesh.m

% David Kung '99
% Rat imaging, thresholding and tagging program
% Spring, 1999

% Clear all
clear all;
close all;

% Read in file

file = input ('Filename to open? ','s');
gray = imread (file);

imshow (gray);

% Determine threshold discrimination

okay = 'y';
while (okay ~= 'n'),
   threshold = input ('What is your desired threshold value (Btw 0 and
1)? ');
   bw = im2bw (gray, threshold);
   imshow (bw);
   okay = input ('Do you want to re-input threshhold (y/n)? ', 's');
end

% Create solid tissue object

okay = 'n';
times = 0;
solid = bw;
input ('We will now fill in the tissue voids to create solid tissue
object (hit enter)');
while (okay ~= 'y'),
        SE = ones(6,2);
        solid = dilate (solid,SE);
        imshow(solid);
        times = times + 1;
   okay = input ('Are you satisfied with the amount of fill-in? (y/n)
', 's');

end

for i = 1:1:times,
   solid = erode(solid);
end

imshow (solid);

% Edge
input ('Edge detection (press enter)');
ed = edge(solid);
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imshow (ed);

% Discern Edge Coordinates

f = 1;
for x = 1:1:size(ed,1),
   for y = 1:1:size(ed,2),
      if (ed(y,x) > 0)
         xy(f, 1) = x;
         xy(f, 2) = y;
         f = f+1;
      end;
   end;
end;

Max = max(xy);
Xmax = Max(1)/2;
Ymax = Max(2)/2;
Min = min(xy);
Xmin = Min(1)/2;
Ymin = Min(2)/2;

for x = 1:1:size(xy,1),
   xyT(x,1) = xy(x,1)-Xmax-Xmin;
   xyT(x,2) = xy(x,2)-Ymax-Ymin;
end;

% Tangent angle sorting

for x = 1:1:size(xyT,1),
   theta = atan2(xyT(x,2),xyT(x,1));
   xyA(x, 1) = theta;
   xyA(x, 2) = xyT(x,1);
   xyA(x, 3) = xyT(x,2);
end;

xyA = sortrows (xyA,1);

% Restoring centering
for x = 1:1:size(xyA,1),
   xyA(x,2) = xyA(x,2)+Xmax+Xmin;
   xyA(x,3) = xyA(x,3)+Ymax+Ymin;
end;

input ('Sorted semi-circular plot (press enter)');

plot (xyA(:,2),xyA(:,3));
axis ij

% Remove every fifth element (for size sake) - ~550 points down to ~180

for x = 3:3:size(xyA,1),
   xyFin(x/3,1) = xyA(x,2);
   xyFin(x/3,2) = xyA(x,3);
end;

pdepoly (xyFin(:,1)',xyFin(:,2)');
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% Wait for pde to finish

input ('Done creating and exporting mesh? (press enter)');

% Material Properties Needs:
% Ability for user
to threshold

input ('Now to add material properties. (press enter)');

for x= 1:1:size(p,2),
    node(x,1) = x;
    node(x,2) = p(1,x);

     node(x,3) = p(2,x);
end;

for i = 1:1:size(node,1),
  x = round(node(i,2));
  y = round(node(i,3));

  shade = gray(y,x);

  material2(i,1) = i;

  if (shade<30)
     % black
     material2(i,2) = 0;
  elseif (shade<95)
     % mid
     material2(i,2) = 1;
  else
     % light
     material2(i,2) = 2;
  end;

end;

for i = 1:1:size(material2,1),
  mat(i,1) = material2(i,2);
  end;

pdeplot(p,e,t,'xydata',mat,'mesh','off','colorbar','on','contour','on',
'levels',0);
axis ij
colormap ('gray')

okay = 'n';
okay = input ('Do you want to save mesh information (y/n)? ', 's');

if (okay == 'y')

dlmwrite ('edgedat.bm',xyFin);

dlmwrite ('nodes.bm',node);
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for x = 1:1:size(e,2),
    edge(x,1) = x;
    edge(x,2) = e(1,x);
    edge(x,3) = e(2,x);
    edge(x,4) = e(3,x);
    edge(x,5) = e(4,x);
    edge(x,6) = e(5,x);
    edge(x,7) = e(6,x);
    edge(x,8) = e(7,x);
end;

dlmwrite ('edges.bm',edge);

for x = 1:1:size(t,2),
    elt(x,1) = x;
    elt(x,2) = t(1,x);
    elt(x,3) = t(2,x);
    elt(x,4) = t(3,x);
end;

dlmwrite ('elt.bm',elt);

dlmwrite ('material.bm',material2);
end;
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