
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

6-8-1999

A Two Dimensional Crystalline Atomic Unit Modular Self-A Two Dimensional Crystalline Atomic Unit Modular Self-

reconfigurable Robot reconfigurable Robot

Marsette Arthur Vona III
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Vona, Marsette Arthur III, "A Two Dimensional Crystalline Atomic Unit Modular Self-reconfigurable Robot"
(1999). Dartmouth College Undergraduate Theses. 194.
https://digitalcommons.dartmouth.edu/senior_theses/194

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601028?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/194?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Dartmouth College Computer Science Technical Report PCS-TR99-348

A Two Dimensional Crystalline Atomic Unit Modular Self-reconfigurable Robot

By
MARSETTE ARTHUR VONA, III

HONORS THESIS

Department of Computer Science
Dartmouth College

Hanover, New Hampshire

June 8, 1999

Approved:________________________
(Advisor’s Signature)

(Author’s Signature)

 1999 Trustees of Dartmouth College

2

3

Department of Computer Science
Dartmouth College

“A Two Dimensional Crystalline Atomic Unit Modular Self-reconfigurable Robot”

Marsette Arthur Vona, III

HONORS THESIS

ABSTRACT

Self-reconfigurable robots are designed so that they can change their external shape
without human intervention. One general way to achieve such functionality is to build a
robot composed of multiple, identical unit modules. If the modules are designed so that they
can be assembled into rigid structures, and so that individual units within such structures can
be relocated within and about the structure, then self-reconfiguration is possible.

We propose the Crystalline Atomic unit modular self-reconfigurable robot, where
each unit is called an Atom. In two dimensions, an Atom is square. Connectors at the faces
of each Atom support structure formation (such structures are called Crystals). Centrally
placed prismatic degrees of freedom give Atoms the ability to contract their outer side-length
by a constant factor. By contracting and expanding groups of Atoms in a coordinated way,
Atoms can relocate within and about Crystals. Thus Atoms are shown to satisfy the two
properties necessary to function as modules of a self-reconfigurable robot.

A powerful software simulator for Crystalline Atomic robots in two and three
dimensions, called xtalsim, is presented. Xtalsim includes a high-level language interface for
specifying reconfigurations, an engine which expands implicit reconfiguration plans into
explicit Crystal state sequences, and an interactive animator which displays the results in a
virtual environment.

An automated planning algorithm for generating reconfigurations, called the Melt-
Grow planner, is described. The Melt-Grow planner is fast (O(n2) for Crystals of n Atoms)
and complete for a fully general subset of Crystals. The Melt-Grow planner is implemented
and interfaced to xtalsim, and an automatically planned reconfiguration is simulated.

Finally, the mechanics, electronics, and software for an Atom implementation are
developed. Two Atoms are constructed and experiments are performed which indicate that,
with some hardware improvements, an interesting self-reconfiguration could be demonstrated
by a group of Atoms.

4

i Table of Contents

II LIST OF TABLES ___ 6

III LIST OF ILLUSTRATIONS __ 7

IV PREFACE ___ 9

IV.1 PROJECT HISTORY ___ 9
IV.2 NATURE OF DUAL THESIS __ 10
IV.3 ACKNOWLEDGMENTS ___ 10

1 INTRODUCTION ___ 12

1.1 SELF-RECONFIGURABLE ROBOTS ___ 12
1.1.1 Locomotion and Manipulation ___ 13
1.1.2 Self-Repair __ 13
1.1.3 The Unit Modular Approach___ 14
1.1.4 Applications ___ 15
1.1.5 Research Issues___ 16

1.2 CRYSTALLINE ATOMIC ROBOTS __ 17
1.2.1 Materials Science Metaphor ___ 19
1.2.2 Atom Actuation Variants__ 19
1.2.3 Structure Formation ___ 20
1.2.4 Module Relocation __ 21
1.2.5 Advantages __ 26

1.3 PROJECT OUTLINE___ 27
1.4 RELATED WORK __ 28

2 SIMULATION __ 32

2.1 SYSTEM MODEL __ 33
2.2 INPUT LANGUAGE ___ 35

2.2.1 Relative Deformation Grammar __ 35
2.3 THE XTALEXP SIMULATION ENGINE ___ 38

2.3.1 Initialization ___ 38
2.3.2 Connection Updates ___ 39
2.3.3 Expansion Updates __ 40

2.4 THE XTALANIM INTERACTIVE DISPLAY ANIMATOR ___ 46

3 AUTOMATED PLANNING ___ 48

3.1 GRAINED CRYSTALS ___ 49
3.2 DETAILS AND ANALYSIS OF THE MELT-GROW PLANNER _____________________________________ 52
3.3 IMPLEMENTATION ___ 58

4 PHYSICAL IMPLEMENTATION__ 59

4.1 DESIGN SPECIFICATIONS __ 59
4.1.1 Number of Dimensions ___ 59
4.1.2 Actuator Sophistication___ 60
4.1.3 Contraction Ratio ___ 61

4.2 DESIGN PARAMETERS __ 62
4.2.1 Degrees of Freedom ___ 62
4.2.2 Overall Size/Weight and Speed/Strength of Expansion ___________________________________ 64
4.2.3 Connector Issues: Size, Strength, Speed, Clearance, and Power Consumption_________________ 66
4.2.4 Overall Rigidity, Accuracy, Compliance, and Connector Fault-Tolerance ____________________ 68
4.2.5 Running Time, Power Consumption, and On-board Power Storage _________________________ 70
4.2.6 Logistical Issues __ 70
4.2.7 Summary of Design Parameters __ 70

4.3 DESIGN ALTERNATIVES __ 72

5
4.3.1 Expansion Mechanism ___ 72
4.3.2 Connection Mechanism___ 75

4.4 EXPANSION MECHANISM ___ 78
4.4.1 Basic Design___ 79
4.4.2 Actuator Stage ___ 82
4.4.3 Rack and Pinion Stages __ 84
4.4.4 Sensor Stage ___ 87

4.5 CONNECTION MECHANISM __ 88
4.5.1 Basic Design___ 88
4.5.2 Active Face __ 89
4.5.3 Passive Face___ 90

4.6 ON-BOARD ELECTRONICS AND SOFTWARE __ 93
4.6.1 Power Storage and Supply __ 95
4.6.2 Actuator Interface Circuits __ 95
4.6.3 Sensor Interface Circuits ___ 96
4.6.4 Control Software__ 97

4.7 HOST ELECTRONICS AND SOFTWARE __ 98
4.7.1 Level Translation and Synchronization Beacon Electronics _______________________________ 99
4.7.2 Software ___ 100

4.8 EXPERIMENTS AND EVALUATION __ 100
4.8.1 Construction __ 102
4.8.2 Measurements___ 103
4.8.3 Experiments __ 104

A1 REFERENCES ___ 107

A2 LEGO MINI-MOTOR MEASUREMENTS __ 110

A2.1 THE LEGO MINI-MOTOR ___ 110
A2.2 EXPERIMENTAL PROCEDURE __ 111
A2.3 EXPERIMENTAL RESULTS ___ 111

A3 SCHEMATIC DIAGRAMS ___ 114

A3.1 ON-BOARD ELECTRONICS __ 115
A3.2 HOST ELECTRONICS ___ 116

A4 LISTINGS ___ 117

A4.1 DOGCOUCH RELATIVE DEFORMATION ___ 117
A4.2 ATOM HARDWARE EXPERIMENT STATE SEQUENCES ______________________________________ 122

A4.2.1 Experiment 1 __ 123
A4.2.2 Experiment 2 __ 123

A4.3 TABLE-TO-CHAIR MELT-GROW PLANNER INPUT ___ 123

6

ii List of Tables

Page Table
71 Table 4.1: Primary parameters
71 Table 4.2: Derived parameters

7

iii List of Illustrations

Page Illustration
12 Figure 1.1: Self-reconfigurable robot schematic
13 Figure 1.2: Locomotion
14 Figure 1.3: Self-repair
18 Figure 1.4: Inchworm
20 Figure 1.5: Atom CAD
21 Figure 1.6: Atom relocation simulation
22 Figure 1.7: Atom relocation cross-section
23 Figure 1.8: Atom relocation on concave substrate
24 Figure 1.9: Theorem 1.2 proof figure 1
24 Figure 1.10: Theorem 1.2 proof figure 2
25 Figure 1.11: Theorem 1.2 proof figure 3
25 Figure 1.12: Theorem 1.2 proof figure 4
29 Figure 1.13: Related work: Yim et. al.
29 Figure 1.14: Related work: Murata et. al.
30 Figure 1.15: Related work: Chirikjian et. al.
30 Figure 1.16: Related work: Rus et. al.
31 Figure 1.17: Related work: Tanie et. al.
32 Figure 2.1: dogcouch simulation
40 Figure 2.2: Compound Atom movement
40 Figure 2.3: Expansion update with crash
40 Figure 2.4: Inconsistent expansion update
46 Figure 2.5: xtalanim GUI screenshot
48 Figure 3.1: Grained Crystals
49 Figure 3.2: Grain relocation
50 Figure 3.3: Grain convert operation
53 Figure 3.4: Melt-Grow algorithm example
60 Figure 4.1: Coordinated Atom movement
60 Figure 4.2: Avoiding coordinated Atom movement
61 Figure 4.3: 4:3 contraction ratio
61 Figure 4.4: 1:0 contraction ratio
61 Figure 4.5: 2:1 contraction ratio
62 Figure 4.6: 8DOF Atom
63 Figure 4.7: 8DOF Atom poses
63 Figure 4.8: 3DOF Atom
64 Figure 4.9: 3DOF Atom interfaces
67 Figure 4.10: Atom core and faces
68 Figure 4.11: Compound movement 1
68 Figure 4.12: Compound movement 2
69 Figure 4.13: Atom rigidity
69 Figure 4.14: Atom accuracy
73 Figure 4.15: Springs and reel
73 Figure 4.16: Lead Screws
74 Figure 4.17: Linkage

8

74 Figure 4.18: Rack and Pinion
76 Figure 4.19: Breakable Permanent Magnet
77 Figure 4.20: Clasp
77 Figure 4.21: Channel and Key
79 Figure 4.22: Rack and pinion dimensions
80 Figure 4.23: Expansion mechanism stages
81 Figure 4.24: Contracted Atom
81 Figure 4.25: Expanded Atom
83 Figure 4.26: Actuator stage
84 Figure 4.27: Rack and pinion stage
85 Figure 4.28: Rack and pinion insufficient meshing
86 Figure 4.29: Rack and pinion sufficient meshing
86 Figure 4.30: Protrusion of racks
88 Figure 4.31: Expansion sensors
89 Figure 4.32: Channel and key details
90 Figure 4.33: Connection mechanism active face
91 Figure 4.34: Connection mechanism passive face
92 Figure 4.35: Connector cut-away 1
92 Figure 4.36: Connector cut away 2
93 Figure 4.37: On-board electronics block diagram
99 Figure 4.38: Host electronics block diagram
101 Figure 4.39: Atom hardware
104 Figure 4.40: Experiment 1
105 Figure 4.41: Experiment 2
106 Figure 4.42: Connection mechanism rigidity
106 Figure 4.43: Experiment 2 failure
110 Figure A2.1: Lego Mini-Motor
112 Figure A2.2: Lego Mini-Motor: Torque vs. Speed
112 Figure A2.3: Lego Mini-Motor: Current Draw vs. Speed
113 Figure A2.4: Lego Mini-Motor: Efficiency vs. Speed

9

iv Preface

This preface includes preliminary material and information. It is divided into three

sections:

• A project history, which documents the origins of this thesis and which describes how

this work fits in with related research at the Dartmouth Robotics Laboratory.

• A description of the dual nature of this work: parts of this project serve in fulfillment

of the requirements of the Honors Program in Engineering Sciences, other parts serve in

fulfillment of the requirements of the Honors Program in Computer Science.

• Acknowledgements, which give credit to persons who have helped in the development

of this work.

iv.1 Project History

The Dartmouth Robotics Laboratory (DRL), under the direction of Professor Daniela

Rus, has been actively pursuing research in self-reconfigurable robotics since the fall of

1997. The author is a member of this research group and was involved in the design of

DRL’s first self-reconfigurable robot, called the Molecule [13, 14, 15, 16, 18, 27].

The original concept for the Crystalline Atomic self-reconfigurable robot, the central

topic of this thesis and DRL’s second self-reconfigurable robot, was formed by our group in

the Spring of 1998. Xtalsim, a software simulator for Crystalline Atomic robots described in

Chapter 2, was developed during the following Summer. The Melt-Grow planner described

in Chapter 3 was developed in the Fall and implemented in the subsequent Winter. Recently,

this planner has been presented at the 1999 International Conference on Robotics and

Automation as [32]. Also during that Winter the hardware design presented in Chapter 4 for

a two-dimensional Atom was developed. Finally, two Atoms were constructed in the Spring

of 1999 and hardware experiments were performed.

10

iv.2 Nature of Dual Thesis

Some parts of this project serve in fulfillment of the requirements of the Honors

Program in Engineering Sciences, and other parts serve in fulfillment of the requirements of

the Honors Program in Computer Science. This arrangement has been officially accepted by

Ursula Gibson, Undergraduate Advisor in Engineering Sciences, and by Thomas Cormen,

Undergraduate Advisor in Computer Science.

The following segments of this work are to be considered especially for the Honors

Thesis in Engineering Sciences:

• Mechanical design of the two-dimensional Atom

• Design for the on-board and host control electronics for the Atom

• Development of the on-board and host software for the Atom

These segments are to be considered for the Honors Thesis in Computer Science:

• Design and implementation of xtalsim, a software simulator for Crystalline Atomic

robots

• Development of several reconfiguration simulations

• Design and implementation of the Melt-Grow planner, a centralized planner for shape

metamorphosis of Crystalline Atomic robots

The basic concept of the Crystalline Atomic robot and the construction and evaluation

of two Atoms are to be considered fundamental to both the Engineering Sciences Thesis and

the Computer Science Thesis.

iv.3 Acknowledgments

• Daniela Rus, director of the DRL and the author’s advisor in Computer Science, has

provided extensive support for this project in many forms. Professor Rus was involved in

the development of the Melt-Grow planner, among other things, and she co-authored

11

[32]. Funding for this project was provided by Professor Rus, and most of the design,

construction, and experimental work for all segments of the project were conducted at the

DRL.

• Laura Ray, the author’s advisor in Engineering Science, provided helpful advice and

guidance in the design and construction of the Atom.

• Keith Kotay, a graduate student in Computer Science and a member of the research

group at DRL, was involved from the start in discussions about the Crystalline Atomic

system. Keith helped shape the fundamental design of the Atom. Keith also contributed

the central idea behind the design of the fault-tolerant connection mechanism included in

the hardware implementation.

• Michael Shin, an undergraduate student in Computer Science, was involved in the design

of the central simulation algorithm in xtalsim. Michael also developed the original

implementation of the 3-D animation component of xtalsim.

• Brian Locke, Pete Fontaine, and Leonard Parker, staff members at the Thayer School

of Engineering Machine Shop, have trained the author in the use of the tools used to

fabricate the Atom.

12

1 Introduction

In the first part of this introduction, the concept of a self-reconfigurable robot is

presented and motivated. Crystalline Atomic self-reconfigurable robots, the specific topic of

this research, are introduced next. The scope and extent of this work and the structure of this

document are then described. Finally, related research in the field of self-reconfigurable

robotics is summarized.

1.1 Self-reconfigurable Robots

We wish to develop versatile, extensible, and robust robotic systems. We believe

these goals can be attained by self-reconfigurable robots. Self-reconfigurable robots are

designed so that they can change their aggregate external shape without human intervention.

The field of self-reconfigurable robotics is a sub-field in the more general area of

reconfigurable robotics, which also includes systems whose shape can be changed manually.

Self-reconfigurable robots can be two-dimensional, in which case their shapes are restricted

to the plane, or they can be fully three-dimensional.

A primary design goal for a self-reconfigurable robot is to allow the robot to assume

any arbitrary geometric shape. This is different from other types of shape-changing robots,

which may only take one of a small number of shapes. Figure 1.1 illustrates this concept.

Figure 1.1: This schematic representation of a two-dimensional self-reconfigurable robot
illustrates that it can take on any arbitrary shape, including the amoebic form at left, a square
shape, a chair shape, and the overturned E shape at right.

We call a reconfiguration from one shape to another shape metamorphosis. The

capacity for shape metamorphosis is the defining characteristic for a self-reconfigurable

13

robot. Other useful and important capabilities are attained through shape metamorphosis or

by composing sequences of shape metamorphoses.

1.1.1 Locomotion and Manipulation

A very important example which illustrates a useful composition of shape

metamorphoses is locomotion: self-reconfigurable robots can move relative to their

environment. One way this might be accomplished is to have the robot metamorphose from

one state to another in a statically stable gait, as illustrated in Figure 1.2.

Figure 1.2: A schematic representation of one way a self-reconfigurable robot might
locomote. A statically stable gait is used to translate the robot to the right.

It is important to note that manipulation, since it can be considered the dual of

locomotion in a general sense, can also be accomplished through the composition of shape

metamorphoses.

1.1.2 Self-Repair

Another potentially useful application for shape metamorphoses is to realize general

self-repair. If an arbitrary part of a fixed-architecture robot fails, the robot cannot usually

repair itself. A human (or perhaps another robot) must perform the repair. This is not

necessarily the case for a self-reconfigurable robot: If we have constructed the robot to

contain some extra material in an unobtrusive location, it may be possible to compose shape

metamorphoses to excise any failed part of the robot and to replace it with the spare material.

This concept is illustrated in Figure 1.3.

14

Figure 1.3: A self-reconfigurable robot undergoing self-repair. The robot contains a
gripper which has been partly damaged. The damaged part is ejected and replaced with spare
material from the body of the robot.

1.1.3 The Unit Modular Approach

In the previous section we defined the concept of self-reconfigurable robots and

explored some of their capabilities, we now examine a fundamental approach which is basic

to the realization of practical self-reconfigurable systems. This approach is to develop

systems composed of multiple, identical unit modules. The term “unit module” was first

popularized in [30] as a descriptive term for the homogeneous mechanical units that compose

a manually-reconfigurable robotic system therein introduced. As summarized below, every

major self-reconfigurable robotic system that has been developed has been based on a unit

modular approach. A system composed of a specific unit module is self-reconfigurable if the

unit module satisfies two properties. These are stated as the following theorem:

Theorem 1.1 A unit modular robotic system is self-reconfigurable if its unit modules possess
the following two properties:
(1) structure assembly: a group of the unit modules can be mechanically assembled into

arbitrarily shaped rigid structures
(2) module relocation: in any structure composed of the unit modules, some unit module can

be relocated arbitrarily within and/or about the structure without human intervention

Proof: (1) satisfies the design goal of allowing any arbitrary shape to be assumed by the
robot. (2) provides for shape metamorphosis in a general way: Given a starting structure S
and a goal structure G, relocate modules from places in S to places in G until G has been
fully assembled.

Theorem 1.1 will be used shortly to argue that systems composed of the unit module

proposed in this research, the Atom, can self-reconfigure. But before we introduce the

15

Atom, we will consider applications and research issues which motivate the study of self-

reconfigurable robotics.

1.1.4 Applications

Self-reconfigurable robotic systems can be applied in situations where few, if any,

existing technologies are suited. Four such applications are: situations with incomplete a-

priori task knowledge, situations requiring robustness in inaccessible environments,

visualization, and entertainment.

• Situations With Incomplete A-priori Task Knowledge It is often difficult to produce

fixed-architecture robots which will reliably perform in situations where the operating

task is not well specified at design time. General examples are real-world locomotion

and manipulation, where the robot may be called upon to traverse or manipulate

environments which the designers did not consider. A more concrete example is disaster

site reconnaissance: a self-reconfigurable robot might be deployed into the rubble of a

large building that has been destroyed by an earthquake to search for survivors. If the

robot encounters some boulders which prevent its passage except through a narrow gap,

then it could reconfigure into a snake form to pass through the gap. If the robot then

comes across a pool of water, it might reconfigure into a flagella structure and swim

across. When the robot locates a survivor it might even change into a structural shape in

order to stabilize the surrounding rubble.

• Situations Requiring Robustness in Inaccessible Environments A major application

for all types of robots is to replace humans in situations where it is inordinately expensive

or dangerous to send people. Examples include planetary and undersea exploration,

nuclear reactor operations, and some industrial situations. The fixed-architecture robots

which are currently employed in these situations are often adequate, but reliability and

16

robustness are almost always major complicating issues in their design and operation.

Failure of some part of a fixed-architecture robot is often devastating, and the repair of

such failures usually requires human intervention (or the intervention of another robot in

a few cases). Self-reconfigurable robots, however, can be made to self-repair as

described above. If any part of a self-reconfigurable robot breaks, the robot could

potentially eject that part and replace it, all without human intervention.

• Visualization It is now common to use software to visualize three dimensional data.

The use of special-purpose output hardware, called rapid prototypers, to automatically

construct real three dimensional objects from such data is also becoming more

widespread. Though current rapid prototyping systems can be quite speedy, requiring

only a few hours to build geometries that might take days or weeks to produce by other

means, there may be a better way for some applications. An appropriate self-

reconfigurable robot can be viewed as a sort of rapid prototyper, where the hardware

itself becomes the prototype. Such prototypes are probably best considered temporary

geometry representations, but for some applications this exactly what is required. In

these cases, this approach might be both faster and more economical (as no consumables

are required) than conventional rapid prototyping systems.

• Entertainment Living room furniture that incorporates self-reconfigurable robotics

could be the home re-decorator’s dream! A self-reconfigurable robot might also be a fun

toy for technically-minded youngsters.

1.1.5 Research Issues

On a more serious note than reconfigurable furniture, it is important to point out that

the study of self-reconfigurable robots raises some important research issues. Self-

reconfiguration poses new challenges in designing and controlling distributed robot systems.

17

Because the connectivity topology of unit modular self-reconfigurable robot systems changes

dynamically during shape metamorphosis, new models of synchronization, communication,

control, and planning are needed. Solutions to these problems will impact more broadly the

research field of computation in distributed systems. For example, new models of distributed

computing are emerging due to the proliferation of wireless computers. As with self-

reconfiguring robot systems, topology and reachability changes dynamically in wireless

networks of mobile computers, requiring new solutions to communication and routing.

Self-reconfigurable robots also pose new engineering challenges. New mechanical

connection mechanisms are needed that are strong, low-power, fault-tolerant, and

misalignment-correcting. New power storage and distribution schemes are needed in order

to supply energy to all the unit modules of a self-reconfigurable robot in a reliable and

efficient way while still allowing the modules to reconfigure.

1.2 Crystalline Atomic Robots

In this section we discuss the design of the specific unit modular self-reconfigurable

robot proposed by this research, the Crystalline Atom. The idea behind the Crystalline Atom

(or just the Atom) is to create a mechanism that can volumetrically compress itself and that

can attach itself to other units. We choose a design which can be realized in either two or

three dimensions. In three dimensions Atoms are cubic, in two dimensions they are square.

Atoms contain connectors to other modules at the center of each face and central prismatic

degrees of freedom which serve to reduce the Atom side-length by a constant factor. Atoms

can be assembled together into structures. We call such structures Crystals.

We can formalize the properties of Atoms by defining four Atom motion primitives

which encapsulate the basic operations of Atoms within a Crystalline Atomic system:

18

• (expand <atom>, <dimension>) - expand an Atom in the selected dimension
• (contract <atom>, <dimension>) - contract an Atom in the selected dimension
• (bond <atom>, <dimension>, <sense>) - activate a connector at one of the inter-Atomic

interfaces
• (free <atom>, <dimension>, <sense>) - free a connector at one of the inter-Atomic

interfaces

Figure 1.4 illustrates the use of these primitives for generating a locomotion

algorithm called the inchworm propagation algorithm for Crystals. The robot consists of

four connected Atoms which rest on a substrate of other Atoms (such a substrate is not

necessary for all locomotion algorithms). Initially, all four Atoms are fully expanded and

bonded to the substrate and to each other. In the first phase of the algorithm, all but the

rightmost Atom free their connection to the substrate. Next, the two middle Atoms contract.

This operation causes the leftmost Atom to advance to the right by one Atomic unit (the

distance spanned by the size of one Atom). In the second phase of the algorithm, the

leftmost Atom bonds to the substrate, the rightmost Atom frees from the substrate, and the

two middle Atoms expand. Finally, all Atoms bond to the substrate. The net effect of this

algorithm is a global translation to the right of one Atomic unit for the Crystal.

Figure 1.4: Three snapshots from a simulation, illustrating the inchworm propagation
algorithm for Crystals. The left image shows the initial state of a four Atom Crystal on a
planar environment of Atoms. The middle image shows an intermediate state where the two
middle Atoms in the Crystal have contracted. The right image shows the final state of the
Crystal after the middle Atoms have expanded. Note that the entire Crystal moved a distance
of one Atomic unit to the right.

19

1.2.1 Materials Science Metaphor

We borrow terminology—Atom, Crystal, Bond, and later Grain—from the field of

Materials Science. Our motivation is a simplified Materials Science model of the mechanism

of plastic deformation in crystalline solids. This model is used to understand the Atomic-

level interactions which lead to bending in metals. The Atoms in a metal arrange themselves

into a regular lattice. In order for the metal to bend macroscopically (i.e. reconfigure), the

Atoms from which it is composed must re-organize. Effectively, certain planes of Atoms in

the crystalline lattice must slide relative to the adjacent planes. Rather than moving all the

Atoms in a given plane simultaneously, a "defect" is formed at one edge of the plane so that

several rows of Atoms are temporarily compressed to fit roughly in the space of a single row.

The defect is then propagated across the plane of Atoms. When it reaches the opposite

boundary of the plane, it relaxes again into several rows. The net effect is a translation of the

entire plane. The process can be qualitatively compared to adjusting the position of a large

carpet: instead of simply pulling on the carpet in the direction of the desired adjustment, a

linear kink is formed at the opposite edge and pushed across the carpet.

1.2.2 Atom Actuation Variants

 So far, we have enumerated the basic properties and capabilities of Atoms, but we

have not precisely defined all the specifics of Atom actuation. This is because the design of

Crystalline Atoms is robust with respect to the specifics of actuation: many different

arrangements are possible. As long as all inter-Atomic interfaces contain a connection

mechanism and as long as all dimensions of the Atom can be compressed by some constant

factor, structures made of Atoms can usually be made to self-reconfigure. The two-

dimensional hardware implementation of an Atom, shown in Figure 1.5 and described in

Chapter 4, has only one prismatic degree of freedom which contracts both dimensions in

20

tandem by a factor of two, and only two connection mechanisms (since the connection

mechanisms are placed on adjacent faces, and since all Atoms in a Crystal are identically

oriented, then all inter-Atomic interfaces will contain one connection mechanism).

Figure 1.5: A CAD depiction of the mechanics of a two-dimensional Atom. The Atom is
shown expanded at left and contracted at right. In this implementation, the Atom contains a
single DOF which serves to expand and contract both dimensions in tandem by a factor of
two, and two connective DOF on the upper and leftmost faces.

In contrast, the three-dimensional Atom model employed by the software simulator

xtalsim (described in Chapter 2) contains three prismatic degrees of freedom which serve to

contract each dimension independently by a factor of two, and three connection mechanisms

(see Figure 1.4).

Now that we have discussed the properties of the Crystalline Atom, we describe how

Crystalline Atoms can form structures, and how individual Atoms in such structures can

relocate. Hence Atoms are shown to satisfy Theorem 1.1, and unit-modular systems

composed of Atoms are self-reconfigurable robots.

1.2.3 Structure Formation

Since Atoms are cubic in three dimensions and square in two, they can be close

packed. In such a close packing, we can bond all inter-Atomic interfaces shared by two

Atoms, thus locking the group of Atoms together into a solid structure (a Crystal). We can

21

use such packings of Atoms to represent any shape to an arbitrary precision by manipulating

the size of the Atom (this is analogous to reducing the aliasing error on a raster display by

increasing the resolution of the display). Figures 1.4 and 1.6 illustrate three-dimensional

Crystals. Figures 1.7 and 1.8 illustrate two-dimensional Crystals.

1.2.4 Module Relocation

An individual Atom cannot relocate without help. However, by contracting and

expanding groups of Atoms in a coordinated way, Atoms can be made to relocate within and

about Crystals. Importantly, we can successfully achieve such relocations in a virtual sense:

the Atom which is made to appear in the goal location is not identical to the Atom we

originally intended to move. Also, we are not restricted to motion about the surface of the

Crystal because we can use the Atoms’ compressibility to move Atoms directly through the

volume of the Crystal.

To illustrate these ideas, we consider the example of moving an Atom from one spot

to another on the surface of a Cubic Crystal, as depicted in Figure 1.6.

Figure 1.6: An Atom can be pushed into a Crystalline cube and popped out at any location
on the surface of the cube in constant time. The three images are snapshots from a
simulation. The left image shows the initial configuration (with the extra Atom located on
the side face) and the right image shows the final configuration (where the extra Atom is on
the top face). The middle image shows the base cube where two internal modules are
compressed (not visible in this figure).

Instead of propagating the Atom along the surface of the cube in this example, which

would require time linear in the side length of the cube, it is possible to reach the goal using a

constant number of Atom motion primitive operations. The number of operations remains

22

theoretically constant no matter where the start and goal locations are oriented relative to

each other and irrespective of how large the cube is. First, the Atom at the start location is

pulled inside the cube by contracting two internal Atoms. The two contracted Atoms are

selected to be on the supporting line for the start location and adjacent to the intersection of

that line and the supporting line for the goal location. Next, two more Atoms are contracted.

These Atoms are selected to be on the supporting line for the goal location and adjacent to

the intersection of that line and the supporting line for the start location. The four contracted

Atoms are selected so that a void is created at the intersection of the two supporting lines. At

this point, the first pair of contracted Atoms, those on the supporting line for the start

location, are expanded into the void. Finally, the second pair of contracted Atoms, those on

the supporting line for the goal location, are expanded in the direction of the goal location,

pushing along the entire column of Atoms on that line so as to pop out an Atom in the goal

location.

Collectively, we call such a sequence of Atom motion primitives a transition. In

Figure 1.7, a transition is depicted as a sequence of two-dimensional Crystal states.

Figure 1.7: This sequence illustrates Atom relocation through the volume of a Crystal
involving one transition. The leftmost image shows the initial state, with an extra Atom on
the lower surface of a square Crystal. Bowties mark two Atoms about to be contracted.
Dashed lines mark disconnected inter-Atomic interfaces. The supporting lines for the start
and goal locations are indicated with dotted lines. The rightmost image shows the final state,
where an extra Atom is present on the right side of the square. The intermediate sequence
shows the formation and destruction of a void at the intersection of the supporting lines for
the start and goal locations. Small dark diamonds mark two compressed Atoms about to be
expanded.

23

If the supporting lines for the start and goal locations in a three-dimensional Crystal

do not intersect, then two transitions will be required instead of one. In the two-dimensional

case, the supporting lines will always intersect for convex solid Crystals.

Using this algorithm, an Atom can be relocated in theoretically constant time on any

convex Crystalline substrate. We say “theoretically” because this algorithm assumes that the

actuators are strong enough to pull or push any number of Atoms during these two

operations. If the actuators are not strong enough an inchworm-like propagation can be used

instead, but this will no longer be a constant time operation. Alternatively, parallelism can be

employed in some cases to retain constant-time performance even with weak actuators.

When a Crystal is non-convex, a similar algorithm effects the Atom relocation

operation in O(k)-time, where k is the number of concave angles in the Crystal. The idea is

to augment the algorithm for convex substrates with additional transitions at each concave

angle between the start location and the goal location.

Figure 1.8 shows the details of an example for relocating an Atom on the surface of a

Crystal with two concave corners. The algorithm performs two transitions.

S

Figure 1.8: This figure illustrates an algorithm for relocating an Atom on a concave
substrate, involving two transitions. The left image shows the initial configuration. The
relocating Atom is in the upper right corner of the structure. The goal location is in the
bottom left corner. Bowties mark two Atoms about to be contracted. Small dark diamonds
mark two compressed Atoms about to be expanded. Dashed lines mark disconnected inter-
Atomic interfaces. The second image shows the structure after the contraction of the first
pair Atoms, and two Atoms preparing for the next contraction. The third image shows two
pairs of compressed Atoms and a void. The fourth image shows the first compressed pair
expanded into the void and a candidate pair of Atoms for the next contraction. The fifth
image shows the state of the structure after this contraction, with the resulting void. The
right-most image shows the structure after an expansion into the void. At this point, the
remaining compressed pair can be expanded into the goal location.

24

Before defining a general and complete algorithm for Atom relocation, we will first

develop a theorem which formalizes the transition operation. We define a scrunch to be two

adjacent, connected Atoms that are contracted in the dimension normal to their connected

faces. We define an axis to be a connected string of at least two Atoms along one dimension.

Two axes intersect if they have one Atom in common. Finally, we define the Atom

Connectivity Graph of a Crystal C, ACG(C), to be an undirected graph whose vertices

represent the Atoms in C and whose edges represent bonded inter-Atomic interfaces in C. It

follows that:

Theorem 1.2 If one of two intersecting axes in a Crystal C contains a scrunch, a transition
can be performed that transfers to the scrunch to the other axis, provided there exists
sufficient surrounding structure to maintain connectedness throughout the operation.

Proof: Call the axis initially containing the scrunch i and the axis to which the scrunch is
transferred f. We can assume that the scrunch in i starts out adjacent to the intersection of the
supporting lines for i and f, as shown in Figure 1.9.

i

f

Figure 1.9: Initially, i contains a scrunch that is adjacent to the intersection of the supporting
lines for i and f (shown dotted).

We first create a void at the intersection by contracting the Atom on the intersection
and an adjacent Atom in f, as shown in Figure 1.10.

i

f

Figure 1.10: A void is created at the intersection of i and f by contracting two Atoms in f.

The surrounding structure required for this operation must be such that ACG(C) remains a
connected graph even when the dashed inter-Atomic interfaces in Figure 1.10 are free and
when the Atom at the intersection of the supporting lines is removed.

Next, we expand the scrunch in i so that the void is filled, as shown in Figure 1.11.

25

i

f

Figure 1.11: The void at the intersection of i and f is filled by expanding the scrunch in i.

The surrounding structure required for this operation must be such that ACG(C) remains a
connected graph even when the dashed inter-Atomic interfaces in Figure 1.11 are free.

The scrunch has now been transferred from i to f, thus the theorem is proven for
situations where the two surrounding structure requirements are met. One general way to
guarantee that they are met is to only consider axes i and f which each have neighboring axes
i‘ and f‘ on the same side (i‘ and f‘ need to be on the same side in order to guarantee that i‘ is
always connected to f‘):

i

f

i’

f’

Figure 1.12: Axes i and f with neighboring axes i‘ and f‘ on the outside.

As an aside, we note that there are some pathological Crystals that contain a concave

angle at which no pair of intersecting axes meet the surrounding structure requirements.

Atom relocation may still be possible within a pathological Crystal. However, for simplicity,

we choose to consider only non-pathological Crystals for this algorithm. We can do this with

little loss of generality for large three-dimensional Crystals by specifying that we only

consider Crystals with a minimum cross-sectional dimension of two Atom units. This

guarantees that every pair of intersecting axes will have a pair of neighboring axes on the

same side.

26

To obtain a general algorithm for relocating an Atom from a start location to a goal

location on the surface of a non-pathological Crystal C the following four steps are sufficient:

Algorithm 1.1: Atom Relocation

1. Find a path with segments oriented along the principal directions from the start location
to the goal location.

2. Create a scrunch along the supporting axis for the start location, pulling in the Atom that
was in the starting location.

3. Drive the scrunch created in 2 along the path found in 1, performing transitions from each
segment of the path to the next.

4. Relax the scrunch along the supporting axis for the goal location, popping an Atom out
into the goal location.

Step 1 amounts to finding an optimal path from the start to the goal in the ACG(C), so

it could execute in O(n2), where n is the number of Atoms in the structure. The running time

of the remaining steps, which is the time required for the physical relocation to occur, is O(t),

where t is the number of turns in the path. Note that t = O(k), with k the number of concave

angles in the structure.

This Atom relocation algorithm and the structure formation property described in the

previous section show that Crystalline Atomic robot systems are self-reconfigurable by

Theorem 1.1.

1.2.5 Advantages

In this section, we discuss several reasons why Atoms are a particularly good choice

of unit module. We cite four specific factors: non-isometric reconfiguration, volumetric

transport, geometric regularity, and mechanical simplicity.

• Non-isometric Reconfiguration In a three-dimensional Crystalline Atomic system, the

starting and final configurations in a shape metamorphosis may differ in volume by a

factor as large as 8. This is true even if each configuration contains the same number of

Atoms. This is done simply by manipulating the ratio of contracted to expanded Atoms

in the initial and final states. For example, if every Atom in the initial state of some

27

shape metamorphosis is expanded and every Atom in the final state is contracted, then

the shape metamorphosis included a volumetric dilation of 8x.

• Volumetric Transport As illustrated above, Atom relocation can take place directly

through the volume of a Crystal, and in most cases literal relocations are equivalent to

much faster virtual relocations (where the goal state is achieved but the goal Atom is not

identical to the start Atom). In most other self-reconfigurable systems that have been

proposed, module relocation is restricted to the surface of the structure. This can lead to

much faster total reconfiguration times, since individual Atoms can take shorter paths to

reach their destination than modules in other systems.

• Geometric Regularity Since Atoms are simple cubes or squares, they are easily packed

into arbitrary shapes. This is not the case for some other self-reconfigurable systems that

have been proposed.

• Mechanical Simplicity Atoms can be constructed with as few as three degrees of

freedom. This is in contrast to some other self-reconfigurable systems that have been

proposed, which include as many as 15 DOF per module.

1.3 Project Outline

The rest of this thesis focuses on three segments of research which attempt to

determine whether the Atom is also a good choice from a practical standpoint. These are:

simulation, automated planning, and Atom hardware implementation.

• Simulation (Chapter 2) A powerful software simulator for Crystalline Atomic robots in

two and three dimensions, called xtalsim, is presented. Xtalsim includes a high-level

language interface for specifying reconfigurations, an engine which expands implicit

reconfiguration plans into explicit Crystal state sequences, and an interactive animator

which displays the results in a virtual environment.

28

• Automated Planning (Chapter 3) An automated planning algorithm for generating

reconfigurations, called the Melt-Grow planner, is described. The Melt-Grow planner is

fast (O(n2) for Crystals of n Atoms) and complete for a fully general subset of Crystals.

The Melt-Grow planner is implemented and interfaced to xtalsim, and an automatically

planned reconfiguration is simulated.

• Atom Hardware Implementation (Chapter 4) The mechanics, electronics, and

software for an Atom implementation are developed. Two Atoms are constructed and

experiments are performed which indicate that, with some hardware improvements, an

interesting self-reconfiguration could be demonstrated by a group of Atoms.

1.4 Related Work

There have been a number of projects in the recent past that address aspects of self-

reconfigurable robotics. This work includes robots in which modules are reconfigurable

using external intervention, e.g. [5]. In [6], Fukuda et. al. propose a cellular robotic system

to coordinate a set of specialized modules. Several specialized modules and ways of

composing them are proposed.

In [30], Yim studies multiple modes of locomotion that are achieved by manually

composing a few basic elements in different ways. This work also presents extensive

examples of locomotion and reconfiguration in simulation. Development is currently

underway to convert the system in [30] from manual reconfigurability to self-

reconfigurability (see Figure 1.13).

29

Figure 1.13: An image from a simulation of an extension of the robot presented in [30],
currently under development, which will be self-reconfigurable.

In [19, 31, 29, 20], Murata et.al. consider a system of modules that can achieve planar

motion by walking over one another. The reconfiguration motion is actuated by varying the

polarity of electromagnets that are embedded in each module. More recently [21] this group

developed a twelve DOF module capable of three-dimensional motion (see Figure 1.14).

Figure 1.14: Two modules as presented in [21].

In [24], Chirikjian et. al. describe metamorphic robots that can aggregate as two-

dimensional structures with varying geometry. The modules are deformable hexagons (see

30

Figure 1.15). This work also examines theoretical bounds for planning the self-reconfiguring

motion of such modules.

Figure 1.15: A motion sequence showing the operation of two modules as presented in [24].

In [18] we have shown a constant-time reduction between robotic molecule structures

our group at DRL has designed to support self-reconfiguration [14, 15, 16] (see Figure 1.16)

and metamorphic robots [24].

Figure 1.16: A CAD depiction of the Molecule robot presented in [14, 15, 16].

31

The robot proposed in this thesis is different than the previously proposed modules in

its actuation capabilities, which lead to new types of self-reconfiguration planning

algorithms. The high-level idea of a shrinkable module that can be a cell in a reconfigurable

system has been presented by Tanie et. al. as the patent [28] (see Figure 1.17).

Figure 1.17: A schematic depiction of one module as proposed in [28]. This module
functions by selectively retracting the small disks towards the spherical core.

32

2 Simulation

For reconfigurations that include more than a few Atoms, and for three-dimensional

reconfigurations, it becomes difficult to keep track of all aspects of the system by hand. In

these cases, a software simulation system is highly desirable. Such a simulator facilitates the

design and debugging of reconfiguration algorithms.

We have developed a software simulator for Crystalline Atomic robots called xtalsim.

Unlike the two-dimensional hardware implementation described in Chapter 4, xtalsim is

designed to simulate Crystalline Atomic robots that are fully three-dimensional. Of course,

xtalsim can also be used for simulations of two-dimensional systems.

Xtalsim was developed as two separate components, each of which is implemented as

a separate program: the simulation engine xtalexp, and the interactive display animator

xtalanim. Xtalexp accepts a simulation script called a relative deformation, specified in the

language described below, and produces a list of explicit Crystal states called an absolute

deformation. Xtalanim accepts absolute deformations and displays them as interactive three-

dimensional animations. Splitting the simulator into these two components simplifies

development because it neatly partitions the two main functions of the simulator: xtalexp is

entirely concerned with the logical model of the Crystalline Atomic system, and xtalanim is

focused on the user-interface and rendering operations.

Figure 2.1 shows several snapshots from a simulation where a three-dimensional

“dog” shape is metamorphosed into a “couch” shape.

Figure 2.1: Five snapshots from a simulation of a three-dimensional Crystalline Atomic
robot. The initial configuration (on the left) is a dog-shaped object. The final configuration
(on the right) is a couch-shaped object. The middle images show intermediate steps in the
transformation from dog to couch. The planning for this transformation was done manually.

33

The reconfiguration in Figure 2.1 was manually planned, and the xtalsim input code

which specifies it is presented in Appendix 4. Xtalsim has also been used to simulate several

other manually planned reconfigurations, for example the inchworm locomotion algorithm

shown in Figure 1.4. Additionally, xtalsim been interfaced to our implementation of the

Melt-Grow automated planner, as described in Chapter 3.

We have used xtalsim to simulate about a dozen different reconfigurations. These

range in complexity from the inchworm, which took only several minutes to implement, to

the dogcouch, which required about 4 days of development, to the automatically planned

table-to-chair reconfiguration in Chapter 3, which contains 176 Atoms and was planned and

simulated in several minutes.

2.1 System Model

As we can see in Figure 2.1, xtalsim maintains a fully three-dimensional Atom model.

Atoms are idealized as rectangular prisms. Atoms in xtalsim can expand and contract

independently in each dimension (x, y, and z). The contraction ratio is fixed at two. Atoms

are modeled to have passive connection mechanisms on three faces (+x, +y, and +z) and

active connection mechanisms on the other three faces (-x, -y, and -z). The active connectors

are depicted in the animator (see Figure 2.l) as narrow, light-colored protrusions on three

faces of each Atom. Each connector can be independently connected (bonded) and

disconnected (freed). All degrees of freedom are binary, so any given Atom is always either

expanded or contracted in each dimension and either bonded or free at each negative face.

All actions are logically modeled as discrete, instantaneous events (i.e. it takes no time to

expand or contract, bond or free), so only the order of specified actions is significant.

Atoms live in an absolute 3D Cartesian coordinate system with origin (0, 0, 0). The

orientation of the coordinate system is such that if x is positive right and y is positive up, z is

34

positive out of the screen. Atoms are identified by their centroid coordinates, which are

always integral. When expanded in a dimension an Atom occupies exactly four units in that

dimension; when contracted in a dimension the Atom occupies exactly two units in that

dimension. Atoms never change their orientation.

The plane whose normal is the y axis and whose y intercept is -2 has special

significance—it is called the ground plane. The ground plane is modeled as a fully

connected plane of 25 x 25 invisible, expanded Atoms with centroids at y = -4. The ground

plane establishes a stable reference point during reconfigurations: its absolute position is

constant, and all Atom motions are calculated relative to it.

An important aspect of the simulation environment is that only a single Crystal is

allowed (i.e. multiple disparate robots are not supported, unless they are all independently

connected to the ground). Formally, only a Crystal C where ACG(C) is a connected graph is

allowed (ACG stands for “Atom Connectivity Graph” and is introduced in Chapter 1). The

invisible Atoms that make up the ground plane are considered to be part of the Crystal, so as

a consequence all other Atoms must be connected through some path in the ACG to the

ground plane. If any specified simulation includes actions which cause the ACG to become

disconnected, this is flagged as an error and the simulation is aborted. We call such a

scenario fragmentation.

Another important assumption of the simulation environment is that Atom

movements are separated into two types: expansion actions and connection actions.

Simulations are divided into sequences of discrete updates, and all actions within each update

are applied simultaneously. However, only one type of action is allowed per update, so

xtalsim is not able to simulate one Atom undergoing a bond action at the same instant that

another Atom undergoes an expand action. This separation is by design: it simplifies the

internal algorithms of the simulator and avoids ambiguous simulation specifications without

35

imposing significant restrictions on the types of simulations that can be run (since all actions

are modeled to occur as discrete instantaneous events anyway).

2.2 Input Language
Having described the environment model employed in xtalsim, we are ready to

examine the language used to specify simulations. An example of a simulation script written

in this input language is included in Appendix 4. As mentioned above, the input language

specifies a relative deformation to xtalexp, and xtalexp creates a corresponding absolute

deformation for xtalanim (i.e. xtalexp expands the deformation). These names reflect the idea

that, in an input relative deformation, only the specific bond, free, expand, and contract

actions are specified for each update. Even though these actions may have the effect of

causing many other Atoms to re-locate, such movements are not explicitly specified in the

input. Rather, they are automatically extrapolated by xtalexp. The full result of each update

is calculated by xtalexp as a complete Crystal state which specifies the conditions of every

Atom in the Crystal. The ordered sequence of such Crystal states which result from all the

updates in a simulation form the absolute deformation that xtalexp produces.

2.2.1 Relative Deformation Grammar

Relative deformations are specified as human-readable text files. The C preprocessor

is employed, so C-style /* comments */, #directives, and macros can be used. The relative

deformation includes two components: the initial Crystal specification, which lays out the

position and state of each Atom in the initial configuration, and the update list, which

specifies the sequence of updates to be applied which effect the reconfiguration. So the top-

level relative deformation grammar production rule is as follows:

relative_deformation := ‘(‘ initial_xtal ‘(‘ update* ’)’ ‘)’

36

The initial Crystal is a list of Atom specifications which identify the location and state

of each Atom in the simulation:

initial_xtal := ‘(‘ atom* ‘)’
atom := ‘(‘ ‘atom’ ‘(‘ x y z ‘)’ conn_x conn_y conn_z exp_x exp_y exp_z ‘)’
conn_{xyz} := ‘b’ | ‘f’
exp_{xyz} := ‘e’ | ‘c’

In order to avoid fragmentation, the initial Crystal must be fully connected. Since the

environment ground Atoms are implied to be part of the Crystal, the initial Crystal specified

in the relative deformation must also include a connection to the ground plane.

The second part of the relative deformation, the update list, is an ordered sequence of

expansion and connection updates:

update := exp_update | conn_update
exp_update := ‘(‘ exp_action* ‘)’
conn_update := ‘(‘ conn_action* ‘)’

Expansion and connection actions are the four familiar Atom actions that were

introduced in Chapter 1:

exp_action := expand_action | contract_action
expand_action := ‘(‘ ‘expand’ atom_id dimension ‘)’
contract_action := ‘(‘ ‘contract’ atom_id dimension ‘)’

conn_action := bond_action | free_action
bond_action := ‘(‘ ‘bond’ atom_id dimension ‘)’
free_action := ‘(‘ ‘free’ atom_id dimension ‘)’

dimension := ‘x’ | ‘y’ | ‘z’

The grammar rules above are complete except for the definition of one non-terminal

symbol: atom_id. atom_id are used to specify which Atom or group of Atoms to which each

action should apply. The top-level grammar for atom_id is as follows:

atom_id := range | relative

An atom_id can either refer to an (absolute) range of Atoms, or it can refer to a group

of Atoms relative to some other Atom. First we consider the range grammar:

37

range := ‘<’ x_dim_range y_dim_range z_dim_range [conn_spec] [exp_spec] ‘>’
{x,y,z}_dim_range := ‘*’ | constant | % min max % | % min[,incr] max %
constant,incr := integer
min, max := integer | ‘inf’
% := parenthesis | square bracket
conn_spec := { ‘b’ | ‘f’ | ‘?’ }3

exp_spec := { ‘e’ | ‘c’ | ‘?’ }3

range is used to specify a group of Atoms whose centroid coordinates fall within

some range and whose connection and expansion state match a specified template.

Wildcards are provided for all fields, and the semantics of each dimension range can be

precisely specified. When evaluating a range, all matching Atoms are selected.

The relative specification contains both an atom_id and a range:

relative := ‘<’ ‘@’ atom_id range ‘>’

The atom_id in a relative specification is called the anchor and the range is called the

follower. A relative specification differs from the range specification which it includes only

(and importantly) in that the coordinates in the follower are relative to the centroid

coordinates of the anchor. If the anchor resolves to more than one Atom then the follower is

evaluated for each of these.

It is an error to specify an atom_id that resolves to the same Atom more than once.

Specifying an atom_id that resolves to no Atoms generates a warning but is not an error.

Anywhere a literal integer is expected a {curly brace} enclosed C-style integer expression

involving +-*/(){} is also allowed.

Here is an example of a moderately complex atom_id:

<@ <0 {8/2} 0> <(0,4 inf] 0 0 b??>>

This is a relative specification. The anchor is the range <0 {8/2} 0>, which simply selects

the Atom at (0, 4, 0) independent of its connection and expansion state (since the connection

and expansion specs are omitted). The follower is the range <(0,4 inf] 0 0 b??>, which

38

selects all Atoms along a line extending in the positive x direction from the anchor whose

centroid x coordinate is a multiple of 4 and whose -x active connector is bonded, not

including the anchor itself.

2.3 The xtalexp Simulation Engine

The relative deformation input language processor is the front end to the main

component of xtalexp, which is the simulation engine. The simulation engine maintains a

logical model of the simulated Crystal. The logical model is originally set to the initial

Crystal specification in the relative deformation. Each update specified in the relative

deformation is then applied in sequence to the model. An absolute Crystal is written to the

output (and thence to xtalanim) before application of each update. We can summarize these

steps as the following algorithm:

Algorithm 2.1: xtalexp Simulation

1. Setup the Crystal model according to the initial Crystal specification in the relative
deformation

2. Process the updates contained in the relative deformation in order

We’ll examine the functionality of the simulation engine in three parts: initialization,

connection updates, and expansion updates.

2.3.1 Initialization

Setup of the Crystal logical model is a relatively simple operation. Atom objects are

created for each Atom specified in the initial Crystal specification part of the relative

deformation. These Atom objects, along with hidden Atom objects which represent the

ground plane, are then linked together into two data structures: a flat list, and an interlinked

graph data structure corresponding to the ACG (we will loosely refer to this latter data

structure simply as the ACG). Two consistency checks are performed at this point: a

39

collision check and a fragmentation check. The collision check verifies that no Atoms are

specified to physically intersect with each other. The fragmentation check verifies that the

ACG is a connected graph. If either of these checks fail the simulation is aborted.

2.3.2 Connection Updates

Once the Crystal logical model has been set up, xtalexp begins to process the updates

specified in the latter half of the relative deformation. As described above, these will either

contain expand/contract actions exclusively or bond/free actions exclusively. The latter is

the simpler case, so we will describe it first.

All bond and free actions specified in a connection update are simulated to occur

instantaneously and simultaneously. An atom is allowed to bond one of its active connectors

iff both of the following are met:

1. the active connector is currently free (disconnected)
2. there is a neighbor Atom with a passive connector correctly positioned to mate (ground

plane Atoms are valid neighbors)

An Atom is allowed to free one of its active connectors iff both of the following are met:

1. the active connector is currently bonded
2. freeing the active connector will not cause the Crystal to fragment

Violation of any of the above, with one exception, is considered an error and causes

the simulation to be aborted. The exception is a bond request with no neighbor present,

which generates a warning and has no effect, but is not considered an error.

A fragmentation consistency check is run after processing each connection update to

verify that the Crystal has not become disconnected (if it has, the simulation is aborted).

40

2.3.3 Expansion Updates

As in connection updates, all expand/contract actions specified in an expansion

update are performed simultaneously and instantaneously. This needs to be done carefully

because the actions of individual Atoms may compound each other, as shown in Figure 2.2.

Figure 2.2: An expansion update that includes a compound movement. The four central
Atoms are contracted in unison, pulling the two external columns of Atoms together by a
total of one Atom unit.

Two erroneous situations also need to be accounted for: movements that cause Atoms

to crash into each other, and movements that are not feasible because they specify movement

in Atoms which are otherwise fixed. These two situations are illustrated in Figures 2.3 and

2.4, respectively.

ba

crash!

a b

Figure 2.3: An expansion update that causes Atom a to crash in to Atom b.

?
b ab a

Figure 2.4: An expansion update which specifies Atom a to move to the left even though it
is otherwise fixed (or is it that Atom b should move to the right?).

Xtalexp implements an algorithm to process expansion updates that can handle all of

the above cases. Before we present it we need to define a few terms: A segment is a

maximal connected component of Atoms in a Crystal, all of which will translate by the same

distance as a result of the expansion update. The d axis of a is the connected column of

41

Atoms containing Atom a and extending in both directions along dimension d. An active

face in a dimension d is either half (i.e. active or passive face) of a bonded inter-Atomic

interface between an Atom which is specified to expand or contract in d and a neighboring

Atom in the Crystal.

The main idea of the algorithm is to assign all the Atoms in the Crystal to segments,

each of which will move as solid blocks. Since the Crystal must be connected to the ground

plane, we can assign the segment that contains the ground plane Atoms (the ground segment)

a net translation of 0 units in all dimensions. We then calculate the displacement of all

remaining segments in each dimension relative to the ground segment. These steps can be

summarized as the following algorithm:

Algorithm 2.2: xtalexp Expansion Update

1. Assign every Atom in the Crystal to a segment so that all Atoms within each segment
displace by the same amount

2. Verify that the specified expansion update is feasible
3. Calculate the displacement for each segment based on the specified Atom expand and

contract actions

The pseudocode for Algorithm 2.2 is as follows:

C is the Crystal in its current state
a.action.d is any specified action (expand/contract) for Atom a in dimension d
a.segment is the segment assigned to Atom a
a.neighbors is the set of Atoms adjacent to a in the ACG
displacement[s].d is the calculated displacement for segment s in dimension d
g is a ground Atom
Size(a, d) is the size of Atom a in dimension d (4 if a is expanded in d, 2 if a is contracted)

42

DoExpansionUpdate(Crystal C)
FOR EACH Atom a in C

a.segment ← unassigned
AssignSegments(C)
CheckFeasibility(C)
FOR EACH Segment s

FOR EACH Dimension d
displacement[s].d ← undefined

FOR EACH Dimension d
displacement[0].d ← 0
CalculateDisplacements(C, d)

RETURN displacement

AssignSegments(Crystal C)
Integer next ← 0
SetSegment(C, g, next)
WHILE there exists an Atom a in C where a.segment = unassigned

next ← next + 1
SetSegment(C, a, next)

SetSegment(Crystal C, Atom a, Segment s)
a.segment ← s
FOR EACH n in a.neighbors

IF the interface between a and n does not contain an active face THEN

IF n.segment = unassigned THEN

SetSegment(C, n, s)

CheckFeasibility(Crystal C)
FOR EACH Atom a in C

FOR EACH Atom n in a.neighbors
IF the interface between a and n contains an active face THEN

IF a.segment = n.segment THEN

ABORT

CalculateDisplacements(Crystal C, Dimension d)
WHILE there exists an Atom m in C where m.action.d ≠ null

Axis x ← the d axis of m
IF there exists an Atom a in x where a.segment ≠ undefined

CalculateAxisOffsets(x, a, d)
m.action.d ← null

CalculateAxisOffsets(Axis x, Atom a, Dimension d)
FOR EACH Direction i

Integer shift ← HalfSize(a, d)
FOR EACH Atom m along the i direction in x, in order and starting from a

shift ← shift + HalfSize(m, d)
abs_shift ← displacement[a.segment].d + i*shift
IF displacement[m.segment].d ≠ undefined THEN

43

IF displacement[m.segment].d ≠ abs_shift THEN

ABORT

ELSE

displacement[m.segment].d ← abs_shift
shift ← shift + HalfSize(m, d)
m.action.d ← null

HalfSize(Atom a, Dimension d)
IF a.action.d = expand THEN

RETURN 2
IF a.action.d = contract THEN

RETURN 1
ELSE

RETURN (1/2)*(Size(a, d))

Correctness

The following four items are sufficient to demonstrate the correctness of the

DoExpansionUpdate algorithm:

1. AssignSegments will assign every Atom in C to a segment: AssignSegments runs until

all Atoms have been assigned, so as long as AssignSegments terminates this condition

will be satisfied. AssignSegments simply performs a DFS through ACG(C) (bounded by

active interfaces) for (up to) each Atom in C, so AssignSegments will always terminate.

2. Every Atom within a segment will displace by the same amount: Each segment is built so

that it will not contain two Atoms connected through an active interface (this is

guaranteed in CheckFeasibility). Thus, there is a path from every Atom in a segment to

every other Atom in that segment which consists of edges in ACG(C) that correspond

only to non-active interfaces. Since the centroid-to-centroid distance of two Atoms

connected through a non-active interface is constant, the centroid-to-centroid distances

between all pairs of Atoms in a segment will remain constant. So if any Atom within a

segment is going to move, all the other Atoms in that segment must move by the same

amount.

44

3 . C a l c u l a t e A x i s O f f s e t s will shift each segment by the correct distance:

CalculateAxisOffsets is given an Atom in the axis whose absolute displacement is

already known. The absolute displacements of all the other Atoms in the axis can always

be calculated relative to that known displacement because the actions of all these Atoms

are defined. A disagreement between the absolute displacement calculated for a segment

along one axis and the displacement calculated for that segment along any other axis

indicates an infeasible update (i.e. an error in the relative deformation), and such

situations are caught by CalculateAxisOffsets.

4. Every Atom that was specified to expand or contract (i.e. every active Atom) will be

processed: CalculateDisplacements runs until all active Atoms have been processed, so

this will be satisfied as long as CalculateDisplacements always terminates. We can

prove that CalculateDisplacements always terminates by induction: In the base case,

only the ground segment displacement has been defined. If there are no other segments,

then we are done because this means there are no active Atoms. If there are other

segments, then one of them must be connected to the ground segment through some

active interface (because the ACG is always connected). So the axis normal to this

interface will contain an active Atom that we can process. For the inductive step, we first

observe that each time we process an active Atom we define the displacement for at least

one more segment (that containing the active Atom). Then we observe that there will

always be at least one active Atom that we can process: Since the ACG is always

connected, there must always be a path from every Atom in every segment to every other

Atom in every other segment. Such paths will always contain edges which correspond to

active interfaces at the boundaries between segments. If we pick any segment whose

displacement is not yet defined, then we can follow a path from some Atom in this

segment to some Atom in some segment whose displacement has already been defined.

45

The last segment we pass through along such a path (before we hit the segment with

defined displacement) will be a segment with an undefined displacement that is

connected through an active interface to the final segment. The axis normal to this

interface will contain an active Atom that we can process.

Running Time

If the size of Crystal C is n Atoms, then the total running time for

DoExpansionUpdate is O(n3). We can demonstrate this most easily from the bottom up,

starting with HalfSize, which is O(1). Since CalculateAxisOffsets processes each Atom in

the axis once and since the number of Atoms in any axis must be O(n),

CalculateAxisOffsets will run in O(n). CalculateDisplacements will run in O(n3) time

since it does two nested Atom searches (O(n) each) and at the innermost level it calls

CalculateAxisOffsets. CheckFeasibility clearly runs in O(n) since it processes each Atom

once. SetSegment amounts to a DFS in ACG(C), so its running time is also O(n). Since

AssignSegments does a linear Atom search and then calls SetSegment at the inner level, it

will run in O(n2). Finally, we can consider the top-level DoEpxansionUpdate as a sequence

of several operations, the most time consuming of which is CalculateDisplacements (O(n3)),

which it calls for each dimension. Since the number of dimensions is always constant (in the

simulator it’s 3), DoExpansionUpdate will run in O(n3) time.

46

2.4 The xtalanim Interactive Display Animator

After all that analysis, it will be a welcome relief to look at a picture again. Figure

2.5 is a screenshot of the GUI that xtalanim presents.

Controls are provided in xtalanim to

• interactively change the three-dimensional viewpoint of the simulation
• start, stop, and single-step the simulation
• change the speed of a running simulation
• simplify the appearance of the simulated system by hiding the inter-atom connectors or

the ground plane or by specifying a wireframe rendering
• save a snapshot of the current view to a file
• automatically save snapshots of every view in an animation to a sequence of files

Xtalanim is a relatively simple program which graphically displays the absolute

Crystal sequences provided by xtalexp. Xtalanim uses Open-GL to handle rendering and

TCL/TK for the user interface.

47

Figure 2.5: A screenshot of the xtalanim GUI.

48

3 Automated Planning

In this Chapter we describe a planner for self-reconfiguration in Crystalline Atomic

robot systems. The reconfigurations we have seen so far (e.g. the inchworm in Figure 1.4

and the dogcouch in Figure 2.1) have all been manually planned. That is, a human generated

the sequence of Atom motion primitives for each Atom at each stage of the reconfiguration.

We would like to avoid this, if possible, and have a computer automatically determine all

Atom motion primitives for all stages of any given reconfiguration.

A reconfiguration plan is a partially ordered sequence of Atom motion primitives. A

reconfiguration plan is feasible iff at no time during the execution of the plan does the

Crystal become disconnected or crash into itself (see Figures 2.3 and 2.4). With these

definitions, we can define the planning problem for reconfiguration in Crystalline Atomic

robots more precisely: given a pair of crystals (S, G), each composed of n Atoms, find a

feasible reconfiguration plan P that transforms S into G.

One key observation for planning is that Crystalline systems consist of identical,

interchangeable modules, so it is not necessary to compute goal locations for each element.

Thus, self-reconfiguration is different from the related warehouse problem (where modules

are assigned unique identifiers and have to be placed at desired locations), which is

intractable.

We have developed a centralized planning algorithm called the Melt-Grow planner

that is complete over a useful subset Grain(4) of Crystals and which can run in O(n2) time,

where n is the number of Atoms in the Crystal:

Algorithm 3.1: Melt-Grow

1. Melt S into an intermediate Crystal I
2. Grow G out of I

49

3.1 Grained Crystals

Before we present the details of the Melt-Grow algorithm, we’ll explain what the

Grain(4) subset is and why we use it. The subset Grain(n) contains all Crystals that can be

tiled by cubic blocks of Atoms (or square blocks for two-dimensional systems) of side-length

n, so that the set of planes (or edges in 2D) that coincide with all sides of all such blocks

intersect only at block edges and corners. We call each such block a Grain, in keeping with

our Materials Science terminology metaphor (see Chapter 1). Figure 3.1 gives an example of

a 2D Crystal in Grain(4) and a 2D Crystal not in Grain(4).

Figure 3.1: Left: a 2D Crystal in Grain(4). Right: a 2D Crystal not in Grain(4).

We can say that the subset Grain(4) is useful because we can argue that by

manipulating the scale of the Atom, it is possible to approximate any finite solid shape to an

arbitrary precision with some Crystal in Grain(4). Effectively, we have only decreased the

resolution of our system—given enough Grains we can still represent any shape, and we can

regain the resolution we have lost by building smaller Atoms.

Why do we introduce Grains? The reason is that reconfiguration planning is

complicated by the surrounding structure requirements necessary for Atom relocation (see

Figure 1.8 and Theorem 1.2). Atoms always require some helpers in order to move, and it

can be difficult to guarantee that such helpers will always be available in the general case.

We introduce Grains in order to encapsulate these requirements. If we restrict ourselves to

50

Grained Crystals, then we can design reconfiguration plans without considering the low-level

surrounding structure requirements for each movement.

To simplify the generation of reconfiguration plans for Grained Crystals, we define

five Grain motion primitives:

• (scrunch <grain>, <dimension>, <sense>) - create a planar (linear in 2D) compression in
a mobile Grain at one of its faces

• (relax <grain>, <dimension>, <sense>) - expand a compression at one face of a Grain
• (transfer <grain>, <dimension>, <sense>) - move a compression at one face of a Grain

into the adjacent neighbor Grain
• (propagate <grain>, <dimension>, <sense>) - move a compression at one face of a Grain

to the opposing face of that Grain
• (convert <grain>, <dimension1>, <sense1>, <dimension2>, <sense2>) - move a

compression at one face of a Grain to one of the orthogonal faces of that Grain

 These five primitives are designed to satisfy two goals

1. They can be assembled into linear sequences to effect Grain relocation.
2. They are always feasible. That is, if any Grain is in a situation to which any of the

motion primitives apply, then that motion primitive can always be performed without
disconnecting or crashing the Crystal, no matter what the surrounding structure of Grains
happens to be.

We demonstrate graphically how the first design goal is met in Figure 3.2.

p
r
o
p
a
g
a
t
e

s
c
r
u
n
c
h

t
r
a
n
s
f
e
r

c
o
n
v
e
r
t

p
r
o
p
a
g
a
t
e

t
r
a
n
s
f
e
r

r
e
l
a
x

1 2 3 4

8765

81 four timestoRepeat

To Achieve:

Figure 3.2: 8 steps of a Grain relocation sequence built from the five Grain motion
primitives. At the top of the figure the desired Grain relocation is indicated. These 8 steps
are repeated four times to complete the relocation.

51

To meet the second design goal, we first impose the restriction that the Grains

surrounding a Grain undergoing a motion primitive (henceforth simply a moving Grain) that

are not directly involved in that operation are all fully expanded (i.e. all the Atoms they

contain are fully expanded and connected whenever possible throughout the operation). We

show later that the reconfiguration plans generated by the Melt-Grow planner always satisfy

this restriction. Given this, we can meet the second design goal by building each primitive to

maintain three invariants at all times during its execution:

1. The moving Grain remains internally connected.
2. The Atoms in the moving Grain never crash.
3. There is some path from some Atom in every neighboring Grain, through the moving

Grain, to some Atom in every other neighboring Grain.

With one exception, it’s trivial to design all of the Grain motion primitives to

maintain each of these invariants. The exception is convert. After some development, we

came up with the routine in Figure 3.3.

0 1 2 3 4

5 6

12

7 8 9

10 11

Figure 3.3: The convert operation can be carried out in 12 steps. Note that the algorithm is
symmetric; the Grain state after the sixth step is a rotationally symmetric midpoint, and the
remaining six steps are simply the reverse of the first six applied in the normal dimension.

52

The difficulty of the convert operation is also the reason we use Grains of size four

(rather than something smaller). We do not have an design for the convert operation for any

smaller Grain.

3.2 Details and Analysis of The Melt-Grow Planner

In this section we examine the details of the Melt-Grow planner. As presented above,

there are two major components: the Melt algorithm and the Grow algorithm. At a high

level, the Melt algorithm works by finding a mobile Grain g in S, transporting g to a place in

I, and repeating until all grains are in I. Similarly, the Grow algorithm works by selecting

mobile grains from I and transporting them to locations in G until all grains are in G. A Grain

is mobile iff it can be removed without disconnecting the Crystal.

We use the intermediate Crystal I for two reasons:

1. to help maintain stability during reconfiguration in situations where gravity is present
2. to simplify the selection of mobile Grains

The intermediate Crystal can help us satisfy 1 if we arrange S, I, and G to allow

Melting to happen from the top down and Growing to happen from the bottom up. If S and

G are three-dimensional, then we project them onto a two-dimensional I. If they are two-

dimensional, then we project them onto a linear I (though in 2D systems stability is often less

of a concern).

To see how the intermediate Crystal satisfies 2, observe that another planner might

generate Crystal states in which no out-of-place Grain is mobile. This would require the

sacrificial selection of a mobile Grain that is already in-place (by “in-place” we mean

“occupying a position in G”). For simplicity, we choose to avoid dealing with such

situations. By designing I to be as disjoint as possible from S and G (of course, they must all

contain at least one grain in common), we can guarantee that there will always be at least one

obvious mobile Grain while Melting and Growing. Many types of intermediate Crystal are

53

possible; for simplicity, we use a planar spiral of grains for 3D systems and a one-

dimensional line of grains for 2D systems. Such intermediate Crystal designs make locating

mobile grains in I trivial.

Before we formalize the details of the Melt-Grow planner, we define the Grain

Connectivity Graph of a Grained Crystal C, GCG(C), to be an undirected graph whose

vertices represent grains in C and whose edges represent active connections between

neighboring Grains in C.

Now we present pseudocode for the Melt-Grow algorithm (all Crystals involved are

assumed to be in Grain(4)):

g_dim is the vertical dimension (i.e. the dimension in which Gravity has an effect)
Volume(S) returns the number of Grains in Crystal S
GMPExecute(GMPList L, Crystal C) exectutes the Grain Motion Primitive List (GMPList)

L in Crystal C

Melt-Grow(Crystal S, Crystal G)
Grain stem ← LocateStem(S)

 Crystal I ← Melt(S, stem)
 Grow(I, stem, G)

Melt(Crystal S, Grain stem)
Crystal I ← {stem}
Crystal C ← DesignIntermediate(Volume(S), stem)
WHILE S ≠ {stem}

Grain mover ← FindMobile(S)
Grain parent ← FindParent(I, C)
Transport(mover, parent, S ∪ I)

RETURN I

Grow(Crystal I, Grain stem, Crystal G)
Crystal C ← stem
WHILE I ≠ {stem}

Grain mover ← FindMobile(I)
Grain parent ← FindParent(C, G)
Transport(mover, parent, C ∪ I)

LocateStem(Crystal C)
RETURN the Atom in C with the lowest g_dim coordinate

DesignIntermediate(Integer vol, Grain stem)

54

[RETURN a Crystal containing stem with volume vol and in which every Grain other
than stem itself has a g_dim coordinate less than that of stem (there are several
choices for such a Crystal, see text)]

FindMobile(Crystal C)
[RETURN a Grain in C corresponding to a vertex in GCG(C) that is not an articulation
point]

FindParent(Crystal actual, Crystal skeleton)
[RETURN a Grain in actual that is adjacent to a Grain that is in skeleton but that is not
in yet in actual]

Transport(Grain mover, Grain parent, Crystal C)
Path P ← A path from mover to parent in GCG(C)
GMPList L ← GMPDecompose(P, C)
REPEAT 4 times

GMPExecute(L, C)

GMPDecompose(Path P, Crystal C)
[RETURN a GMPList that implements P through C as a linear sequence of Grain
Motion Primitives (as in Figure 3.2)]

Figure 3.4 illustrates the details of the Melt-Grow algorithm with a concrete example.

Figure 3.4: Reconfiguring a two-dimensional table shape to a chair shape using the Melt-
Grow algorithm. Each square represents one 4x4 Grain (16 Atoms). Grains marked are

mobile, the stem grain is marked , and candidate parent grains are marked . This figure
represents schematically the output of a simulation where the table and chair are composed of
176 Atoms each.

The first step in the Melt-Grow algorithm is to compute the location and structure of

the intermediate Crystal I. This is done by the function LocateStem. The function

55

DesignIntermediate generates an intermediate Crystal with suitable volume. The second

step of the algorithm is to Melt S into I. The third step is to grow I into G. These steps

require locating a mobile Grain, locating a good destination (a parent Grain), and finding a

path for the mobile Grain to the destination. Mobile Grains in a Crystal can be located by

searching for vertices which are not articulation points in the Crystal’s GCG. While Melting,

any mobile Grain still in S is a suitable mover, and while Growing, any mobile Grain still in

I is a suitable mover. Parent Grains can be located by searching for Grains that are adjacent

to yet-to-be-filled vacancies. While Melting, any such grain in I is a suitable parent, and

while Growing, any such Grain in G is a suitable parent.

After locating a mobile Grain and a parent, the mobile Grain is transported to a space

adjacent to the parent by

1. Finding a route through the Crystal
2. Decomposing the route into a sequence of Grain motion primitives
3. Executing the Grain motion primitives, as in Figure 3.2

Completeness

We can prove that the Melt-Grow algorithm is complete for all Crystals S and G in

Grain(4) in two stages. First, we show that we can always find suitable mobile and parent

Grains while Melting and Growing:

Lemma: All finite connected graphs with at least two vertices contain at least two vertices
which are not articulation points.

Proof: We can prove this Lemma by induction on the number of vertices in the graph. In the
base case we have a graph with only two vertices. Trivially, neither of these is an
articulation point, so we start with a non-articulation point count of two. For the inductive
step, we show that the non-articulation point count cannot decrease as we add vertices to the
graph. We consider two cases as we add each vertex:

Case 1: If we only connect the new vertex to one existing vertex, then we have made that
existing vertex an articulation point, possibly decreasing the total non-articulation point
count by one. But the new vertex itself is not an articulation point, so such a decrease
will always be counterbalanced.
Case 2: If we connect the new vertex to more than one existing vertex, then the new
vertex cannot be an articulation point because there already existed paths from each of its
neighbors to every other neighbor. Also, addition of the new vertex cannot force any of

56

its neighbors to become an articulation point because there are multiple paths to the new
vertex from all other vertices.

1. while Melting there is always at least one mobile Grain left in S: As stated above, mobile

Grains correspond to vertices in the GCG which are not articulation points. Since, by the

prior Lemma, all finite connected graphs with at least two vertices have at least two non-

articulation points, and since the GCG of the remnants of S will always be such a graph

(the stem will be one vertex, and any remaining Grain in S will be another), there will

always be at least one vertex that is not an articulation point, and the corresponding Grain

will be mobile.

2. while Melting there is always at least one parent grain in I: Since we build I by filling in

a “skeleton” Crystal, which represents the shape I will take when it is complete, there

will always be some outer boundary surface of Grains in the current I which are adjacent

to vacant Grain locations in the skeleton. We can choose any such Grain in I to be a

parent.

3. while Growing there is always at least one mobile grain left in I: The proof of this is the

same as for 1.

4. while Growing there is always at least one parent grain in G: The proof of this is the

same as for 2.

The second stage of the proof demonstrates that we can always transport mobile

Grains to their destinations adjacent to parent Grains. More formally, we show that it is

always feasible to transport any mobile Grain to any parent grain in any Crystal:

1. there is always a decomposable path from the mobile Grain to the parent Grain: Since

the GCG is always a connected graph, there will always be a path from every Grain to

every other Grain. We can decompose any path into a sequence of Grain motion

57

primitives by converting all linear segments in the path to sequences of propagate and

transfer operations and all turns in the path to convert and transfer operations.

2. any such decomposition from the mobile Grain to the parent Grain can be feasibly

executed: As long as all surrounding Grains are fully expanded (as described above), the

grain motion primitives are all independently feasible by design. Since the Melt-Grow

planner only executes one Grain transport at a time, this surrounding structure

requirement will always be met. Thus, the execution of any serial composition of the

grain motion primitives, which constitutes the execution of any decomposed path, is

feasible because only one primitive is executed at a time.

Running Time

If the size of Crystals S and G is n Grains, then Melt-Grow can be implemented to run

as fast as O(n2). We can demonstrate this from the bottom up. First, we make a few

observations:

1. The GCG has maximum fan-out of 4 in 2D (6 in 3D). Thus, with suitable data structures,
the planner can DFS the GCG in O(n).

2. With suitable data structures, the planner can access (i.e. query existence, change state,
etc.) any Grain in O(1).

The running time for GMPDecompose is O(|P|) = O(n), since |P| ≤ n. Similarly, the

running time for GMPExecute is O(|L|) = O(n).

Transport performs three operations serially. We have just shown that the latter two

of these, GMPDecompose and GMPExecute, are each O(n). The first operation in

Transport is to find a path from the mobile Grain to the parent Grain. By our observation

above, we can find such a path through a DFS in the GCG in O(n) (if we don’t require an

optimal path, see below). Thus Transport is O(n).

The running time for FindParent is O(n), because it’s simply a linear search through

the Crystal-in-progress. FindMobile is also O(n) because the articulation points of any finite

58

connected graph G=(V, E) can be found in O(E) time [CLR p.496], and in the GCG E is

O(V).

DesignIntermediate can construct the skeleton of the intermediate Crystal in O(n).

FindStem is just a linear search through S, so it is also O(n).

Melt and Grow are each O(n2), because they perform several O(n) operations for

each Grain in the Crystal. Thus, Melt-Grow is O(n2) because it is a sequence of several

operations, the most expensive of which are Melt and Grow at O(n2) each.

Optimality

An optimal planner would find the shortest reconfiguration plan for any specified S

and G. This can be difficult, so the Melt-Grow planner sacrifices optimality for simplicity.

Also, during any Grain relocation there may be several paths through the Crystal from the

mobile Grain to the parent Grain. In our running time analysis, we suggested that some such

path can be found by DFS through the GCG in O(n). Paths found this way are not

guaranteed to be optimal. If optimal paths are desired, then Dijkstra’s algorithm can be used,

but this will raise the overall running time of Melt-Grow to O(n3).

3.3 Implementation

A two-dimensional implementation of the Melt-Grow planner was developed and

interfaced to the xtalsim Crystalline Atomic robot simulator described in Chapter 2. The

table-to-chair reconfiguration in Figure 3.4 was planned automatically. This reconfiguration

of 11 Grains (176 Atoms) requires less than 1 second for the planning stage and about 1

minute for the simulation stage on our workstations.

The implementation of the Melt-Grow planner accepts descriptions of S and G as lists

of Grain centroid coordinates. All further action is completely automated. The input file for

the table-to-chair reconfiguration is included in Appendix 4.

59

4 Physical Implementation

In this Chapter we consider the design, construction, and evaluation of a two-

dimensional Atom. The first several sections document the design process, including

specifications, parameters, and implementation alternatives. The next sections describe the

details of the implementation of each of the Atom’s subsystems. The final section discusses

the construction of the Atom and presents measurements and experimental results.

4.1 Design Specifications

Design specifications are guidelines that are fundamental to the design. They

formalize the important basic properties of the system. The design specifications were chosen

according to the analyses included in this section. For the remainder of the design process

they are fixed. We consider the following three major design specifications: number of

dimensions, actuator sophistication, and contraction ratio.

4.1.1 Number of Dimensions

Crystalline Atomic robots can be constructed both in two and three dimensions. In

two dimensions, Atoms are square; in three, they are cubic. Due to the high degree of

regularity in Crystalline Atomic systems, many algorithms developed in two dimensions are

readily extendible to three. Similarly, algorithms developed in three dimensions can often be

specialized to two.

Development of two-dimensional hardware, however, is more straightforward than

development of three-dimensional hardware. One reason is gravity: Atoms in a two-

dimensional system can always be supported by a planar environment and never need to

exert the strong lifting forces that three-dimensional Atoms must produce. Another reason is

60

simply the increased size (and possibly complexity) of the expansion and connection

mechanisms that a three-dimensional Atom would require.

This project is concerned exclusively with the development of two-dimensional

hardware. Where possible, physical designs are used that are readily extendible to three

dimensions, but only if such designs are no less optimal than other two-dimensional designs.

Even though the hardware is two-dimensional, some reconfiguration algorithms and

the software simulator are developed in three dimensions.

4.1.2 Actuator Sophistication

The actuators that effect Atom expansion and contraction might be designed with

fine-grained position and/or force control along the entire range of motion. This could be

useful to prevent binding and to maintain efficiency in situations where several connected

Atoms need to expand and contract in coordinated unison, for example in a push-pull

configuration, as illustrated in Figure 4.1.

a b
Figure 4.1: A motion sequence which requires coordinated movement. Atom a must expand
as Atom b contracts. Solid lines indicated bonded interfaces, dotted lines indicate free
interfaces, diamonds indicate expansion, and bowties indicate contraction.

In the interest of simplicity, fine-grained control is not implemented. Simple binary

actuators are used. Situations that suggest coordinated movement are avoided where possible,

as depicted in Figure 4.2.

Figure 4.2: A motion sequence which achieves the same reconfiguration as that depicted in
Figure 4.1, but without requiring any coordinated movements.

61

For those cases where coordination is necessary, the actuators are designed to

cooperate with minimal binding and acceptable efficiency.

4.1.3 Contraction Ratio

The contraction ratio is the relationship between the side lengths of the fully

expanded and the fully contracted Atom. This ratio is important because it determines the

number of helper Atoms that must contract in order to achieve the translation of a given

Atom. For example, if the ratio is 4:3, four helper Atoms are required, as shown in Figure

4.3.

ahhhh

Figure 4.3: A motion sequence which moves Atom a one unit to the left, implemented with a
contraction ratio of 4:3. The Atoms marked h are helper Atoms.

In order to minimize the number of physical Atoms required to effect reconfiguration,

the contraction ratio which yields the fewest helper Atoms necessary for translation is most

desirable. Obviously, zero helper Atoms is impossible. One helper Atom is also impossible,

because it necessitates an infinite (1:0) contraction ratio, as shown in Figure 4.4.

b a
Figure 4.4: A motion sequence which moves Atom a one unit to the left, implemented with a
contraction ratio of 1:0. Note that Atom b disappears.

Two helper Atoms would be required by a 2:1 contraction ratio. This is illustrated in

Figure 4.5.

a
Figure 4.5: A motion sequence which moves Atom a one unit to the left, implemented with a
contraction ratio of 2:1.

62

Since two is the fewest number of helper Atoms possible, 2:1 is the most desirable

contraction ratio. It is challenging to design a captive linear actuator with such a high

contraction ratio, but its benefits are deemed high enough to outweigh this difficulty.

4.2 Design Parameters

Design parameters encapsulate the important details of the design. Unlike the design

specifications in the previous section, design parameters are not taken to be immutable.

Rather, for each parameter an analysis is undertaken to identify a target value or range. The

important relationships between design parameters are represented as equations. This allows

the design process to be viewed as an optimization problem: we select the implementation

concepts which are predicted to yield design parameters closest to the target values. We

consider six categories of design parameters in this section: degrees of freedom, expansion

issues, connector issues, rigidity and fault-tolerance, power consumption, and logistics.

4.2.1 Degrees of Freedom

A two-dimensional Atom might be designed with up to eight independent mechanical

degrees of freedom. One prismatic DOF per face would effect expansion/contraction, and

one connective DOF per face would effect attachment to neighboring Atoms. Such a

configuration is shown in Figure 4.6.

Figure 4.6: An 8 DOF Atom shown fully contracted (on the left) and fully expanded (on the
right). Expansion actuators are symbolized by cross-hatching, and connection actuators are
drawn as gray rectangles.

63

Such a design would allow a high degree of controllability. Sixteen individual poses

are possible, the two above, and the following four and their isomorphs. This is stated

graphically in Figure 4.7.

Figure 4.7: In addition to the two poses shown in Figure 4.6, these four and their isomorphs
are possible with an 8 DOF Atom.

At the other end of the spectrum of mechanical complexity is a two-dimensional

Atom with only three independent mechanical degrees of freedom. One central two-axis

prismatic DOF effects expansion/contraction simultaneously on all faces, and two connective

DOF on adjacent faces effect attachment, as shown in Figure 4.8.

Figure 4.8: A three DOF Atom shown contracted and expanded.

A three DOF Atom is less versatile than the eight DOF version, but two-dimensional

systems of such units can still self-reconfigure in a general way. First, since Atoms never

rotate relative to each other, the reduction from four connective DOF to two actually imposes

64

no mechanical restrictions on versatility. Every inter-Atomic interface still necessarily

contains one active connection mechanism, so all interfaces are still fully controllable, as we

can see in Figure 4.9.

Figure 4.9: A tiling of nine compressed 3 DOF Atoms. Note that every inter-Atomic
interface contains exactly one active connection mechanism.

The reduction of prismatic DOF that effect expansion/contraction does impose some

restrictions on the types of coordinated movements that are feasible in a neighborhood of

Atoms. However, these restrictions are not so severe that general self-reconfiguration in two

dimensions is precluded. The proof is by demonstration: most of the two-dimensional

reconfiguration algorithms presented herein, including the Melt-Grow planner for shape

metamorphosis, are developed so that they can be implemented by three DOF Atoms.

4.2.2 Overall Size/Weight and Speed/Strength of Expansion

The strength required of the actuator which effects Atom expansion and contraction is

determined by the internal and external forces it must overcome. There is one major internal

force: Fways, the force required to overcome the (static) friction in the mechanical ways which

guide the motion of the Atom faces. There are two external forces. One is Finertia, the force

required to overcome the inertia of the Atoms that move as a result of the contraction or

expansion. The other is Ffriction, the force required to overcome the (static) friction between the

Atoms to be moved and the planar environment. A safety factor

65

fsafety = 2

is employed, so the maximum force which the expansion/contraction actuator must produce

is

Fexpand = fsafety(Fways + Finertia + Ffriction).

The force required to overcome the friction in the sliding ways, Fways, is designed to

be negligible.

The force required to overcome inertia, Finertia, is calculated from the Atom mass,

matom, the maximum number of Atoms moved by any single expansion or contraction, nmovers,

and acceleration, the necessary acceleration:

Finertia = nmovers · matom · acceleration

As discussed below, acceleration and matom are kept small to keep Finertia negligible.

By keeping both Fways and Finertia negligible, Factuator is effectively determined by the

only remaining parameter, Ffriction. Ffriction is calculated from matom, nmovers, and ustatic, the

coefficient of static friction between the material which makes up the underside of the Atom

and the environment material:

Ffriction = ustatic · nmovers · matom · g.

The coefficient of friction between the Atoms and the environment surface, ustatic, is

kept low (less than about 0.4) by using smooth materials.

The Atom mass, matom, is made as low as possible (about 10 ounces or less) by

keeping the overall size of the Atom small and by using low mass components.

The number of Atoms that will be moved by any one Atom undergoing an expansion

or contraction, nmovers, is determined by the reconfiguration algorithms that are implemented.

The algorithms are designed to require only small nmovers. In all algorithms generated by the

Melt-Grow planner, nmovers is always less than two, demonstrating the feasibility of this goal

for general reconfigurations.

66

In order to keep acce le ra t ion negligible, the average speed sexpand of

expansion/contraction must be kept low. If contracted is the side length of a contracted

Atom, the contraction ratio is 2:1, and the time required for one expansion or contraction is

Texpand, then

sexpand = contracted/Texpand

The expansion speed, sexpand, is minimized with a small contracted and a large Texpand.

It is mechanically difficult to make contracted very small (less than about 2 inches).

Furthermore, in order to keep the overall running time of hardware experiments low, it is

undesirable to make Texpand very large (more than about 20 seconds). Even at these bounds,

sexpand = 0.1 inches/second is not large.

4.2.3 Connector Issues: Size, Strength, Speed, Clearance, and Power Consumption

The holding strength of the inter-Atom connector (measured normal to the inter-Atom

interface plane), Fconnector, is determined by the forces it must withstand during expansion and

contraction movements:

Fconnector = fsafety(Finertia + Ffriction)

When disconnected, the connector should impose no holding force.

The connector should be designed so that it can be actively commanded to connect or

disconnect. The response time for each of these actions, measured from the time of command

issue to the time when completion is guaranteed, should be less than Tconnect = 20 seconds. The

connector should consume power only while responding to commands; it should draw no

static power while in the connected or disconnected state.

In order to estimate the volume into which the connection mechanism should fit,

some simplifying assumptions are made:

67

1. The Atom is composed of a central square core of maximum side length core and four
trapezoidal faces of height face.

2. At no time do the core and the faces intrude on each other, nor do the faces of any Atom
intrude on the faces of any other Atom. Thus

contracted ≥ core + 2 · face
or

core ≤ contracted - 2 · face

3. For stability, the maximum allowable height of the Atom above the environment plane
height is set at 4 · contracted.

These are summarized in Figure 4.10.

core

expanded

contracted

face

Figure 4.10: A two dimensional Atom composed of a square core and trapezoidal faces.

Thus, the connection mechanism should fit within the trapezoidal face, and it should

not be taller than height.

Because all inter-Atom interfaces are guaranteed to be composed of one active face

and one passive face, protrusions can be allowed on the outer surface of the face trapezoids if

suitable intrusions are built into opposing faces. Such protrusions, if present, should be

designed so that faces with deactivated active connectors are able to approach faces with

passive connectors along any linear trajectory between 0° and 90°, as shown in Figures 4.11

and 4.12.

68

Figure 4.11: A compound movement showing several approach trajectories (dotted lines),
including 0°. The upper portion of the figure shows a configuration of 8 Atoms, with two
compressed Atoms preparing to expand. The lower part of the figure shows the resulting
structure after the expansion of the two Atoms.

Figure 4.12: A compound movement showing a 90° approach trajectory. The left side of the
figure shows a configuration of four Atoms, with two compressed Atoms about to expand.
The right side shows the structure that results from the expansion of those Atoms.

4.2.4 Overall Rigidity, Accuracy, Compliance, and Connector Fault-Tolerance

If all Atoms in a Crystalline Atomic system were perfectly rigid (always exactly

square) and perfectly accurate (always exactly contracted x contracted when contracted,

expanded x expanded when expanded), then the connectors at inter-Atomic interfaces would

always be positioned at exactly the right locations. Since it is unlikely that either of these

suppositions will be true, the connectors are designed to be fault-tolerant to some extent, and

the Atoms are designed to be somewhat compliant. When an Atom becomes slightly

misshapen (due to a lack of rigidity, accuracy, or both), its connectors should still be able to

69

activate and connect with neighboring Atoms. By doing so, the built-in compliance should

allow the connectors to pull the Atom back into shape.

The rigidity of the Atom is quantified by the maximum angle rigidity that a face

normal in an expanded Atom can deviate from the core normal, as shown in Figure 4.13.

Figure 4.13: Atom rigidity is quantified by the angle rigidity.

rigidity should not be more than about 5°.

The accuracy of the Atom is quantified by the maximum distance accuracy that a face

position (relative to the Atom center) in an expanded Atom can err from expanded/2, as

depicted in Figure 4.14.

Figure 4.14: Atom accuracy is quantified by the distance accuracy.

70

accuracy should not be more than about 1/32 inch.

The compliance of the Atom in each dimension should be at least as great as 2 ·

accuracy, in case the maximum complimentary deviations occur simultaneously on opposing

faces:

compliance ≥ 2 · accuracy

The fault-tolerance of the connector should be able to handle all combinations of

angular and linear deviation.

4.2.5 Running Time, Power Consumption, and On-board Power Storage

The Atom is powered by on-board batteries. These batteries should have sufficient

capacity, Cbattery (mA · h), to support Trun = 4 hours total running time. If the time-averaged

current draw of the Atom is Iatom = 140 mA, then

Cbattery = 600 mAh ≥ Trun · Iatom.

4.2.6 Logistical Issues

This project is conducted with limited resources. We would like the Atom to cost no

more than cost = $300. The average construction time per Atom, after all off the shelf and

automatically manufactured parts are in hand, should be no more than Tbuild = 10 hours. Rapid

prototyping technology is utilized to speed construction.

A restrictive logistical parameter is Tdesign, the time available to develop a working

Atom. Only nine weeks are available.

4.2.7 Summary of Design Parameters

The major design parameters are summarized below in tabular form. They are

separated into two categories: primary and derived. Primary parameters are asserted with a

71

numeric value and are independent. Derived parameters depend on the primary parameters

and on each other.

Table 4.1: Primary Parameters

Parameter Units Target
Value

Description

fsafety (none) 2 factor of safety
Fways ounces ~0 force required to overcome static friction in face motion

ways
matom ounces < 10 Atom mass
nmovers (none) 2 maximum number of Atoms moved by any single Atom

expansion or contraction
acceleration inches/second2 ~0 acceleration of Atoms to be moved by a single Atom

expansion or contraction
ustatic (none) < 0.4 coefficient of static friction between the material which

makes up the underside of the Atom and the environment
material

contracted inches 2 side length of contracted Atom
Texpand seconds ~20 time required for expansion or contraction
Tconnect seconds < 20 time required for connector activation/deactivation
face inches 0.5 height of Atom face trapezoid

rigidity degrees 5 Atom rigidity (max angle of face normal deviation)
accuracy inches 1/32 Atom accuracy (max face position deviation)

cost dollars 300 maximum construction cost per Atom
Tbuild hours 10 maximum construction time per Atom
Trun hours 4 minimum total running time
Iatom mA 150 time-averaged Atom current draw

Tdesign weeks 9 time available for Atom design

Table 4.2: Derived Parameters
Parameter Units Target

Value
Expression Description

Finertia ounces ~0 nmovers · matom ·
acceleration

force required to overcome the inertia of the Atoms
that move as a result of the contraction or expansion

Ffriction ounces < 8 ustatic · nmovers · matom ·
g

force required to overcome the static friction between
the Atoms to be moved and the planar environment

Fexpand ounces 16 fsafety(Fways + Finertia +
Ffriction)

maximum force which the expansion/contraction
actuator must produce

sexpand inches/
second

~0.1 contracted/Texpand average speed of expansion/contraction

Fconnector ounces 16 fsafety(Finertia + Ffriction) minimum connector holding strength
core inches 1 contracted - 2 · face maximum side length of Atom core

expanded inches 4 2 · contracted side length of expanded Atom
height inches 8 4 · contracted maximum Atom height

compliance inches 1/16 2 · accuracy minimum Atom compliance (per dimension)
Cbattery mA · h 600 Trun · Iatom minimum battery capacity

72

4.3 Design Alternatives

In this section we describe the several best results from brainstorming different ways

to implement the details of the design. They are each developed far enough to allow a

comparison among them to be performed in light of the design specifications and parameters.

4.3.1 Expansion Mechanism

Four alternative concepts for implementing the Atom expansion mechanism are

presented. Except for cost (construction cost per Atom), Tdesign (design time) and Tbuild

(construction time per Atom), it is likely that each of these concepts could be realized so that

all design specifications are met and all design parameters are acceptably close to their target

values. Thus, cost, Tdesign and Tbuild are the critical deciding factors for determining which

concept is implemented.

Each concept is developed enough to indicate the major components, allowing cost to

be compared. Similarly, the number and complexity of components can be predicted, and the

number and scope of possible design difficulties can be estimated. These allow Tdesign and

Tbuild to be compared.

The four concepts are all based on the simplified Atom geometry described in section

4.2.3. Passive sliding ways are assumed, which allow the trapezoidal faces to move rigidly in

and out. The concepts are: “Springs & Reel,” “Lead Screws,” “Linkage,” and “Rack and

Pinion.”

73

“Springs & Reel”

Springs

Reel

Figure 4.15: The “Springs & Reel” expansion mechanism implementation concept.

In this concept, compression springs are mounted between each face and the core so

that a continuous outward force is maintained on the faces. In the center of the core a

reversible gearmotor is mounted with its drive axis vertical. The motor turns a reel to which

four concentric inelastic tapes are attached. The tapes are guided by rollers to exit the core

behind the center of each face. The ends of the tapes are fixed to the inner surfaces of the

faces. By spinning the reel in one direction, the tapes are let out, and the Atom expands under

the force of the springs. By spinning the reel in the other direction, the tapes are pulled in,

and the Atom contracts.

“Lead Screws”

Figure 4.16: The “Lead Screws” expansion mechanism implementation concept.

Here, lead screws are rigidly mounted to the rear of each face. The screws are

mounted off-center, so that they do not collide with each other in the core. As each screw

enters the core it passes through a motorized lead nut. Spinning the nuts in one direction

causes the leadscrews to move outward, and the Atom expands. Spinning the nuts in the

other direction causes the Atom to contract.

74

“Linkage”

Linkages

Actuator

Figure 4.17: The “Linkage” expansion mechanism implementation concept.

In this design, a two-bar linkage in the plane of the Atom is attached to the rear of

each face. The linkages behind adjacent faces are staggered vertically so that they do not

collide with each other. The bars in each linkage are pivoted freely against each other and

against the rear of the face, but are rigidly attached to the shaft of a vertically mounted

reversible gearmotor at the center of the core. By spinning the motor in one direction, the

linkages are forced to collapse, and the Atom is contracted. By spinning the motor in the

other direction, the linkages are forced to extend, and the Atom is expanded.

“Rack and Pinion”

Pinion

Racks
Figure 4.18: The “Rack and Pinion” expansion mechanism concept.

Gear racks are rigidly mounted to the rear of each face. So that they miss each other

at the center of the core, racks from opposing faces are mounted off-center, and racks from

adjacent faces are staggered vertically. The racks are spaced so that a vertically mounted

pinion at the center of the core mates simultaneously with all racks. The pinion is driven by a

75

gearmotor, which spins in one direction to extend the racks, expanding the Atom, and in the

other direction to retract the racks, contracting the Atom.

Comparison

Except for “Lead Screws”, each concept seems to require a at least one gearmotor,

which would probably be the most expensive component. “Lead Screws” seems to require

either multiple gearmotors or some type of gear train, either of which elevate its cost relative

to the other concepts.

Tdesign would probably be high for “Springs & Reel” because the relative strengths of

the springs and the gearmotor need to be carefully matched in order to achieve the required

values of Texpand and Fexpand. This could involve custom design or very careful selection of the

springs and motor. Tdesign would also be relatively high for “Linkage” because the geometry of

the bars and pivots of the linkage would need to be carefully calculated and constructed in

order to ensure Texpand, Fexpand, accuracy, and compliance are all met.

Tbuild would probably be relatively high for “Lead Screws” and “Linkage” due to their

relatively higher moving parts count.

This leaves “Rack and Pinion” as the concept with the fewest apparent complications.

It requires only one moving part per face (the rack) plus one moving part for the core (the

pinion). The required motor strength for a given Fexpand and speed for a given Texpand are related

simply to the diameter of the pinion, and there are no antagonistic forces to consider as in

“Springs & Reel”. accuracy can be controlled by carefully positioning limit sensors.

4.3.2 Connection Mechanism

We considered three alternative concepts for implementing the inter-Atom connection

mechanism. As with the expansion mechanism, all three concepts could potentially be

realized, so the deciding factors are cost, Tdesign, and Tbuild.

76

All three concepts assume the asymmetric active/passive face scheme described in

section 4.2.1. The concepts are: “Breakable Permanent Magnet,” “Clasp,” and “Channel

and Key.”

“Breakable Permanent Magnet”

Cam
Retracting

Magnets

Plate

Figure 4.19: The “Breakable Permanent Magnet” connection mechanism concept.

In this design, strong permanent magnets are mounted flush with the outer surface of

the passive face. The active face contains a ferrous plate which can either be positioned at the

outer face surface or slightly retracted. The plate position is controlled by a cam attached to a

gearmotor. When the plate is in the outer position, the connector is bonded due to the force of

attraction between the magnets in the passive face and the closely positioned ferrous plate in

the active face. When the plate is in the retracted position, the force of magnetic attraction is

greatly decreased due to the increased distance between the plate and the magnets, and the

connector is freed.

77

“Clasp”

Recesses

Gripping
Fingers

Actuator
Linkage

Figure 4.20: The “Clasp” connection mechanism concept.

Here the passive face contains two deep recesses. Between the recesses a rib is

formed. The active face contains a two-finger gripper actuated by a motor and linkage or gear

train. The connector is bonded by extending the gripper so that it clasps the rib in the passive

face. The connector is freed by retracting the gripper.

“Channel and Key”

Channel Actuator

Pocket
Key

Figure 4.21: The “Channel and Key” connection mechanism design concept.

In this concept, the passive face contains a deep horizontal channel its outer surface.

Pockets are built into the upper and lower inside surfaces of this channel at the center of the

face. The active face contains a gearmotor mounted with its drive axis horizontal and normal

to the outer face surface. A bar is attached transversely to the output shaft of the gearmotor.

78

At one angle, the bar can move unobstructed through the channel of the passive face, and the

connector is freed. At another angle, the bar is rotated so that it extends into the pockets in

the passive face, and the connector is bonded.

Comparison

The parts cost would probably be relatively equal for each of these concepts, as they

all seem to require a single gearmotor and few other components. One exception could be

“clasp”, which might contain a relatively expensive gear train or linkage.

Tdesign would probably be relatively high for “Breakable Permanent Magnet,” as the

cam mechanism would need to be carefully specified and constructed to give consistent and

reliable movement of the ferrous plate. Tdesign for “clasp” could also be relatively high due to

the linkage or gear train that may be necessary.

Tbuild would likely be high for “clasp” due to the larger number of moving parts

relative to the other concepts.

“Channel and Key” has the fewest apparent complications. It contains only one

moving part (the bar). In fact, there are only four components in all: the motor, the bar, the

channel, and the motor surround.

4.4 Expansion Mechanism

In this section, we consider the details of the expansion mechanism design. Given the

above comparison, this design implements the “Rack and Pinion” concept.

All structural blocks in the expansion mechanism are constructed out of ABS plastic

by a Fused-Deposition Modeling rapid-prototype system directly from the CAD model. All

other parts are stock or modified from stock.

79

4.4.1 Basic Design

The basic design concept, “Rack and Pinion”, and dimensions, contracted = 2 inches

and expanded = 4 inches, of the expansion mechanism have already been determined. They

are summarized in Figure 4.22.

Rack

2 inches

Pinion

4 inches

Contracted Expanded

Figure 4.22: The “Rack and Pinion” design concept and major dimensions.

The expansion mechanism is constructed as a stack of four vertical stages. The lowest

stage contains the actuator which spins the pinions. The second stage contains the racks,

pinion, and guide ways for the North-South (NS) faces. The third stage is the same as the

second, but it is rotated 90° in order to support the West-East (WE) faces. The fourth stage

contains sensors which allow the expansion and contraction motion to be controlled. The

height of each stage is kept minimal, but is limited by the packing of the components which

must be enclosed. Figure 4.23 gives a schematic representation of the four stages.

80

Environment Surface

NS Stage

WE Stage

1 inch

1 inch

Actuator Stage 1.5 inches

Sensor Stage 0.75 inch

Figure 4.23: The four vertical stages of the expansion mechanism.

Composing the Atom from vertical stages is beneficial in several ways. First, the

stages help impose a good scheme for packing the various components in a regular and

symmetric fashion. The inter-Atom connection mechanisms for the West-East dimension fit

nicely in the West and East faces at the level of the NS actuator stage, and conversely the

inter-Atom connection mechanisms for the North-South dimension fit in the North and South

faces at the level of the WE actuator stage. Second, the stages facilitate a design which reuses

a relatively small number of geometric components in several places, thereby simplifying

construction. For example, the face geometry at the actuator stage is identical at all four

faces.

A fully detailed CAD model of the mechanics was developed. In the sections that

follow, detailed views are presented of each major component. Figures 4.24 and 4.25 present

81

two views which show the entire mechanism in the fully contracted and fully expanded

states.

Figure 4.24: The fully contracted Atom. The viewer is looking down at the Atom from an
angle. The South face is nearest the viewer.

Figure 4.25: The fully expanded Atom.

82

In these views of the CAD model, separations between the four vertical stages are

visible as solid lines. The trapezoidal cross-section of the faces is evident, as is the square

cross section of the central core.

The faces and core are designed so that their internal surfaces are all recessed 1/32

inch. This leaves 1/16 inch clearance between the faces and the core, even when the Atom is

fully contracted. This clearance allows for adjustments to be made in order to fine-tune the

contracted size of the Atom.

Finding a clean way to arrange the various electrical connections that are required to

the faces and the core was a challenge. The electronics for the Atom are mostly contained in

a circuit board that is mounted vertically on the top of the mechanics, so cabling is required

to connect all sensors and actuators in the lower stages. In order to accommodate these

cables, a wiring channel is designed into the clockwise-most vertical surface (looking down

on the Atom) of each face trapezoid. The two wires which supply power to the expansion

motor, which is located in the core at the actuator level, are affixed to two chamfered vertical

corners on the core block.

A veneer of Teflon sheet is affixed to the bottom of each face and to the bottom of the

core in order to minimize friction with the environment.

4.4.2 Actuator Stage

Because the actuator stage contains both the expansion drive motor and the batteries,

it was placed lowest in order to keep the center of mass of the Atom close to the environment

surface. Figure 4.26 presents a detailed, exploded view of the actuator stage.

83

Motor

BearingBattery
Wiring
Channel

Figure 4.26: The actuator stage, exploded view.

The batteries are 3V 2/3A size Lithium cells. Their electrical selection is discussed

below in section 4.6.1. They are placed in semi-cylindrical pockets in the actuator stage of

each face.

The motor is a Lego toy "Mini-Motor". This motor was selected for its small size

(~5/8 inch cube), relatively high torque (about 2 oz-in peak at 10 rpm, 12 V, 80 mA), and

low cost ($11). The motor's torque and current draw were measured experimentally as a

function of speed (see Appendix 2). It was critical to ensure that the motor would supply

enough power to satisfy the expansion force (16 ounces) and expansion speed (0.1

inch/second) design parameters. Since the pinions that the motor drives have 1/4 inch pitch

diameters, the motor could theoretically supply (2 oz-in) / (1/8 in) = 16 ounces of force to the

four racks at a speed of (10 rev/min) · (3.14 · 1/4 in/rev) = 7.85 in/min = 0.13 in/sec. Thus,

both design parameters are met.

The motor transmits rotary power to the pinions in the NS and WE expansion stages

through a single 1/8 inch shaft. The shaft is supported at its extremities by shielded ball

bearings. While the shaft itself is not illustrated, the bearing which supports its lower end is

visible in Figure 4.26.

84

4.4.3 Rack and Pinion Stages

The rack and pinion stage contains the pinion gear, racks, and sliding support ways

for two opposing faces of the Atom. There are two rack and pinion stages, one for the

North/South pair of faces, the other for the West/East pair of faces. The components of the

two rack and pinion stages are exactly identical; the NS rack and pinion stage is positioned

above the actuator stage, and the WE rack and pinion stage is positioned above and arranged

normal to the NS stage. A detailed, exploded view of one rack and pinion stage is presented

in Figure 4.27.

Guide Rails

Pinion

Rack Attachment
Screws

Guide Rail Bushings

for opposing guide rails
Clearance Holes

Rack

Figure 4.27: The rack and pinion stage, exploded view.

85

The sliding ways which support each face are composed of two 1/8 inch diameter

steel guide rails affixed to the rear of the face. The guide rails extend into Rulon bushings

mounted in the core, which allow the rails to slide with minimal friction. Two guide rails are

used per face for increased rigidity. In order to support a 2:1 contraction ratio, the faces are

designed to include clearance holes which allow the ends of the guide rails from the opposing

face to pass through when the Atom is contracted. At full contraction, the end surfaces of the

guide rails for each face are coplanar with the outer surface of the opposing face. At full

expansion, about 1/2 inch of the guide rails remain embedded in the Rulon bushings.

The 64 diametral pitch racks, which are 1/8" wide at the face and 1/8" deep, were

chosen as the smallest commonly available size. They are mated with 16 tooth 1/4 inch pitch

diameter pinions, again chosen for their small size. The racks are rigidly mounted to the rear

of each face with transverse screws.

The boundary state of interaction between the racks and the pinion that occurs at full

expansion was carefully considered. Since the contraction ratio is 2:1, it would seem that at

full expansion the end surfaces of the racks would need to coincide exactly with the center

plane of the pinion. This would not be a good situation, because it is likely that there would

not be enough meshing between the pinion and rack teeth to ensure that the racks are held

captive, as shown in Figure 4.28.

Rack

Rack

Pinion

Meshing
Insufficient

Figure 4.28: Detail of interaction between racks and pinion at full expansion, showing lack
of sufficient tooth meshing. Teeth are not modeled directly; only pitch surfaces are shown.
The racks are in danger of becoming disengaged from the pinion.

86

If the racks are made longer, this situation can be avoided. This is the solution

employed in the design. The racks are made 1/8 inch longer (about 2.5 teeth) than they would

be in the flush situation, as illustrated in Figure 4.29.

About 2.5 teeth
overlap

Figure 4.29: Detail of interaction between elongated racks and pinion at full expansion,
illustrating sufficient tooth meshing.

But if the racks are made longer, then they will protrude out of the outer face surfaces

when the Atom is fully compressed, as shown in Figure 4.30.

Protrusion

P
ro

tr
us

io
n

Protrusion (not visible)

P
ro

tr
us

io
n

Figure 4.30: Top view of compressed Atom, showing protrusion of racks.

87

This is a serious consequence, because it implies that adjacent compressed units will

not be able to slide relative to each other. Since the racks in both units are at the same height,

they will collide during some sliding motions between compressed units. This imposes a

limitation on the type of movements possible during reconfiguration. However, this

particular imposition is minor. No reconfiguration plans generated by the Melt-Grow planner

require adjacent compressed units to slide relative to each other, nor do any of the hand-

coded reconfigurations.

4.4.4 Sensor Stage

Two bi-level position sensors are used to control the expansion and contraction

movements of the Atom. Hall-effect sensors are used because of their small size, ease of

adjustment, and low cost.

One sensor is used to determine when the faces have moved close enough to the core

during a contraction movement. The Hall element for this sensor is rigidly affixed to the core

block. A permanent magnet that trips the Hall element is mounted to the face via a linear

adjustment screw mechanism. This allows the contracted face position to be fine-tuned.

The other sensor indicates when the faces have moved far enough from the core

during an expansion movement. A permanent magnet is affixed to the top of the pinion drive

shaft so that it spins with the pinions. The Hall element for this sensor is mounted to the core

block so that it is triggered by the rotating magnet once per revolution. Since about 2.5

revolutions are required to fully expand the Atom, the third triggering of the Hall element

during an expansion is interpreted as the limit indication. Fine-tuning of the extended face

position is achieved by adjusting the rotational phase of the spinning magnet. Figure 4.31

illustrates this arrangement.

88

Contraction Sensor
Hall Element

Expansion Sensor
Hall Element

Magnet

Pinion Drive Shaft

Rotating Magnet
Adjustment Screw

Figure 4.31: Detail of the two expansion/contraction sensor assemblies.

4.5 Connection Mechanism

Now we consider the details of the connection mechanism design, which is based on

the “Channel and Key” design concept. As with the expansion mechanism, structural blocks

are constructed out of ABS plastic by a Fused-Deposition Modeling rapid-prototype system,

and all other parts are stock or modified from stock.

4.5.1 Basic Design

The basic parts and operation of the “Channel and Key” connection mechanism have

already been described. The half of the connector that contains the key is called the active

face, and the half containing the channel is called the passive face. Figure 4.32 presents a

high-level representation of the components.

89

Key

Active Face Passive Face

Front
View

Side
View

Channel

Key in locked position

Pockets (simplified geomtery)

Figure 4.32: The “Channel and Key” design concept. When in the locked position, the key
on the active face fits into the pockets in the passive face, locking the two faces together.
This diagram presents a simplified pocket geometry; in the actual design, the pockets are
profiled and the key is in a locked position when it is diagonal rather than vertical.

The channel on the passive face is designed to accommodate a rectangular protrusion

on the active face. This way, horizontal sliding is permitted between the two mated faces as

long as the key is not in the locked position, but vertical sliding and rotation are prevented.

When the two faces are mated and the key is rotated into the locked position, all motion

between the faces is prevented. The above diagram shows a simplified pocket geometry; in

the actual design, the pockets are profiled and the key is in a locked position when it is

diagonal rather than vertical.

4.5.2 Active Face

The active face contains a gearmotor for rotating the key as well as sensors for

detecting the position of the key. The same motor is used as that in the expansion

mechanism, the Lego Mini-Motor. The Mini-Motor was chosen for its compactness,

appropriate mechanical configuration, and relatively slow speed. Hall effect sensors are used

to detect the position of the key. Two sensors are employed: one to detect when the key is in

the unlocked position, and one to detect when the key is in the locked position. The Hall

elements for the sensors are mounted in the body of the active face below the key. Permanent

90

magnets, which trip the sensors, are mounted in the extremities of the key. When the key is in

a horizontal position, one of the magnets is located above the unlocked Hall element. When

the key is in a diagonal position, one of the magnets is located above the locked Hall

element. Figure 4.33 shows the details of the active face.

Wiring Channel

Key

Protrusion (fits
into channel on
passive face)

Magnets

Hall Element

Hall Element
(unlocked)

(locked)

Motor

Figure 4.33: The connector active face, containing the key.

The end surfaces of the key are rounded to a radius that is slightly shorter than the

circular path through which the key travels. This eases the mechanical interference which

occurs when the key is rotated into the pockets in the passive face. Also, the ends of the

protrusion are formed into conical chamfers to aid self-alignment when the active and

passive faces approach each other.

4.5.3 Passive Face

The passive face contains a channel into which the protrusion on the active face fits

as well as the pockets which receive the key, as shown in Figure 4.34.

91

Wiring Channel
Pockets

Chamfers

Cha
nn

el

Figure 4.34: The connector passive face, containing the channel and pockets.

Chamfers are included to help guide the protrusion of the active face into the channel.

As discussed in Appendix 2, the Lego Mini-Motor must not be driven to a full

mechanical stall. If it is, it becomes impossible to operate the motor at all, even to back it out.

This is one factor that complicates the design of the key and pocket geometry. Another factor

is that it is desirable for the key and pocket to interact so that the rotary action of the key

during locking serves to actively correct the alignment of the two faces. As discussed above,

the faces may not start out perfectly aligned due to play in the Atom rigidity and compliance.

To account for these factors, a “scooping” action was designed for the key and

pockets. The pockets are elongated, have rounded profiles, and are positioned with

complementary offsets from the center of the connector. The key is always actuated in the

same direction, clockwise in Figures 4.35 and 4.36.

92

Figure 4.35: Cut-away view of the connector showing the key in the unlocked position.

Figure 4.36: Cut-away view of the connector showing the key in the locked position. The
connector is always rotated clockwise.

If the key is not perfectly centered horizontally in the channel, then the clockwise

rotary scooping action will draw it into alignment during the locking movement. Even though

horizontal movement is prevented when the key is in the locked position, the only restriction

ever imposed on the rotary movement of the key is friction. Thus, the motor should never be

presented with a hard mechanical stall.

To effect locking, the key is assumed to start out in the unlocked position. The motor

is activated in the clockwise direction until the locked position sensor is tripped. To effect

unlocking, the motor is activated in the clockwise direction until the unlocked position sensor

is tripped.

93

4.6 On-board Electronics and Software

In the past several sections, we have examined the design of the major mechanical

subsystems of the Atom. The mechanics are controlled by another major subsystem: the on-

board electronics and software. The Atom contains an on-board processor, power supply,

and support circuitry which allows both fully untethered and tethered operation. Atoms are

connected by a wired serial link to a host computer for purposes of hardware debugging and

low-level control. For untethered operation, an experiment-specific operating program (an

Atom state sequence) is first downloaded to each Atom over its tether. When the tether is

removed, the Atoms rely on their on-board infra-red receivers to detect synchronization

beacons from the host. As described below, each Atom transitions to its next stored state

upon receipt of a synchronization beacon.

In this section we will discuss the on-board electronics and control software. In the

subsequent section, we will present the host electronics and software that is used to

communicate with the Atom. Figure 4.37 presents a high-level block diagram of the on-board

electronics, and Appendix 2 contains a full schematic diagram.

Expansion

Sensors

West Connector

Sensors

North Connector

Sensors

West Connector

Motor Driver

Expansion Motor

Driver

North Connector

Motor Driver

North Connector

Motor

West Connector

Motor

Expansion Motor

Microcontroller

Detector
IR Beacon

Program Download
Interface

5V Regulator Unregulated 12V

WCM-

WCM+

NCM-

NCM+

EM+

EM-CONTRACT

EXPAND

/WC_MOTOR

/NC_MOTOR

/EXPANDED

/CONTRACTED

/WC_OPEN

/WC_CLOSED

/NC_OPEN

/NC_CLOSED

/STEP

RXD TXD

VBATT

GND_SIGNAL GND_POWER

VCC

BATT+

BATT-

Power Supply

Figure 4.37: Block diagram of the on-board electronics.

94

The on-board electronics are contained entirely on one 2 by 3 inch printed circuit

board, which is mounted vertically to the top of the Atom. Cables embedded in the wiring

channels built-in to the mechanics connect the electronics to the Atom’s sensors and

actuators (see Figures 4.26, 4.33, and 4.34).

At the heart of the on-board circuitry is an Atmel AT89C2051 microcontroller (U5).

This chip runs the on-board software which communicates with the host over the program

download interface (i.e. the tether) and which monitors and controls the Atom’s sensors and

actuators. The AT89C2051 (or just the ‘2051) is an 8-bit microcontroller with an MCS-51

(8051) compatible core. The ‘2051 was chosen for the following reasons:

• Ease of Development - assemblers, monitors, development boards, technical data, and

programmers are all readily available for the ‘2051.

• On-chip Flash - the ‘2051 has 2k of on-chip flash memory for storing programs, in

addition to the 128 bytes of RAM which are part of the MCS-51 core. This means that

chip count can be reduced, since neither separate program storage ROM nor data storage

RAM devices are necessary.

• I/O Configuration - the ‘2051 is a tight fit to the I/O requirements of this project. Only

two I/O pins are left unused.

• Low Cost - the ‘2051 is available from a friendly supplier for only $3.49 each in single

quantities.

The ‘2051 is run at 11.059MHz by a crystal oscillator. This frequency is chosen to

match the baud rate requirements for the program download interface. A power-on reset

circuit is included, as well as a terminal for manual reset.

We will consider the ‘2051 more when we examine the on-board control software.

But first we will look at the three major types of circuit which interface to and support the

‘2051: the power supply, actuator control, and sensor interface circuits.

95

4.6.1 Power Storage and Supply

The Atom contains an on-board power supply designed to provide roughly 100mA

for 3-4 hours. Since the Atom is expected to require about 50-100mA of current on average

(depending on how often the motors are being used), this should yield a reasonable running

time before the batteries need to be replaced, thus satisfying the running time design

parameter. As described above, four 2/3A size Lithium primary cells provide about 3 volts

each at 600mAh. These cells are connected in series to provide about 12 volts, which is

used as the motor power supply. The rest of the Atom’s circuitry is run at 5 volts, which is

provided by a 7805 regulator (U1) in a TO-220 case.

Test points are provided to allow the power supply voltage levels to be monitored,

and a quick-release power switch is included to allow the Atom to be switched off in case of

disaster.

4.6.2 Actuator Interface Circuits

The Atom contains three actuators: the expansion motor and two connector motors.

As discussed above, all three of these are Lego Mini-Motors. An experimental analysis of

these motors was performed, the full results of which are presented in Appendix 2.

Importantly, this analysis showed that the Mini-Motors would be suitable if they were run at

about 12 volts, and that they would draw about 70-100mA while operating. MOSFET-based

power driver circuits were designed to meet these requirements. A two-stage approach is

employed for each driver. The initial stage for each driver is formed by a 2N2222 NPN

common-emitter amplifier, which translates the TTL-level signals from the microcontroller

to 0-12V levels suitable for the MOSFETs. The output stages are built from IRF7105

complementary power MOSFET chips, which each contain one P-type and one N-type

device.

96

Two ‘7105s (U6 and U7) are used in an H-bridge configuration to allow bi-

directional control of the expansion motor. Importantly, this configuration also serves to

electrically brake the motor when it is not energized.

One ‘7105 is used for each connector motor (U2 and U3). Even though the connector

motors are only driven in one direction, a design was chosen that uses two power devices per

motor to support electrical braking. In the off state, a 100 ohm braking resistor is connected

across the motor. This simplifies control, since the motors stop moving very soon after

power is removed.

1uF bypass capacitors (not shown in the schematic diagram) are connected across the

leads to each motor to reduce noise in the rest of the circuitry. These capacitors are

embedded in the Atom mechanics as close as possible to each motor to minimize the effect of

the inductance of the motor supply wires.

4.6.3 Sensor Interface Circuits

The Atom contains seven sensors: two for the expansion mechanism, two for each of

the connection mechanisms, and one infra-red detector. The six mechanism sensors are bi-

level DN6852 Hall-effect devices from Panasonic. These provide active-low logic level

outputs which, after 10k pullup resistors, are connected directly to the microcontroller.

The infra-red detector employed is a Sharp GP1U581Y module. This module

includes an IR phototransistor as well as signal amplification and conditioning circuitry. The

GP1U581Y provides a logic-level signal output that represents any digital control signal that

has been modulated onto the 38kHz IR carrier the unit is designed to receive.

97

4.6.4 Control Software

The on-board control software for the Atom is written entirely in MCS-51 assembly

language. The total code size is about 1.5k. There are two major modes of operation:

command mode and sequence mode.

Command Mode

The Atom enters command mode upon power-up, after all initialization routines have

been completed (these simply set up the microcontroller’s on-board peripherals and make

sure that the Atom’s motors are not active). In command mode, the Atom presents a full user

interface to a human operator (who uses a 9600 baud serial terminal program) via the host

program download (tether) interface. An interactive prompt is presented to the operator

which allows all Atom functionality to be explored. Commands are provided to allow

• interrogation of the Atom’s sensors
• activation and deactivation of the Atom’s motors
• entering a state sequence to be performed subsequently in untethered mode
• switching to untethered mode

Command mode is used for development, debugging, and alignment of the Atom.

Command mode is also used to set up each experiment that is performed in unthethered

mode.

Sequence Mode

The Atom enters sequence mode upon receipt of the corresponding command from

the operator. The Atom remains in sequence mode until it is powered off or until it receives

any data on the program download interface (i.e. until the operator hits a key on the host

while the tether is attached to the Atom). The Atom will only allow itself to enter sequence

mode when the on-board state sequence buffer is not empty.

The state sequence buffer is a region of RAM on the microcontroller which stores a list of

Atom states that define each configuration of the Atom during an experiment. Two bits are

98

used to store each state, and up to 256 states may be stored. Even numbered states define the

connection status of the Atom, and odd numbered states define the expansion status. Since

the Atom has two binary connectors, four connection states are possible:

0. Disconnected North, Disconnected West
1. Connected North, Disconnected West
2. Connected West, Disconnected North
3. Connected North, Connected West

Since the Atom has only one binary expansion actuator, two expansion states are

possible:

0. Expanded
1. Contracted

As described above, the operator enters a state sequence while in command mode.

Upon switching to sequence mode, the Atom waits to receive signals from its infra-red

detector. Such signals will be sent by the host to indicate when to transition from state to

state. This allows all Atoms involved in an experiment to stay temporally synchronized.

When an Atom reaches the end of its state sequence during an experiment, the sequence is

recycled so that the next state is the first state in the sequence.

4.7 Host Electronics and Software

A small interface board was constructed which allows the Atom to be connected to a

serial port on a host computer. The major components of this interface board are depicted in

Figure 4.38, and a full schematic diagram is included in Appendix 3.

99

Carrier Frequency

Generator

Program Download

Interface on Atom

Power

Driver

IR Emitter

Interface

Serial

RS232

Host

RTS
TD
RD TXD

RXD
BEACON

38kHz

Figure 4.38: Block diagram of the host electronics.

The host machine is an IBM-style PC. The host interface electronics connect to one

of the machine’s RS-232 serial ports through a 9-pin connector. We will consider the design

and function of the interface electronics and the software used on the host in the next two

sections.

4.7.1 Level Translation and Synchronization Beacon Electronics

One major function of the host interface electronics is to perform signal level

translation. A Maxim MAX232CPE chip (U8) is employed for this purpose. The ‘232

translates the RS-232 12 volt signals to and from TTL level for communication with the

Atom via the program download interface. The ‘232 also does signal level translation for the

RTS signal, which is an RS232 output that would be otherwise unused in this project. We

use RTS to control the infra-red synchronization beacon.

100

Control of the synchronization beacon is the other main function of the host interface

electronics. As mentioned above, this beacon must be supplied with a modulated 38kHz

squarewave carrier. In our implementation, the carrier waveform is generated by a 555 timer

circuit (U9) running in astable mode. We modulate the carrier with the signal from RTS

using a saturated 2N2222 switch. Finally, we amplify the modulated signal with another

2N2222 stage before it is sent to an infra-red LED.

4.7.2 Software

Two programs are run on the host to operate the Atom. One is just a serial terminal

program. We use the DOS program Kermit, but any such program should work. The other

program is a small utility used to control the synchronization beacon through the RS-232

RTS signal. We developed this utility, called simply atom, in C++ to run under DOS. atom

handles the low-level timing associated with generating the appropriate beacon waveform

(the beacon uses a pulse code to gain some noise rejection over a simpler level-activated

approach). atom can be run in automatic mode, where it supplies a beacon at regular

intervals (typically 10-20 seconds), or it can be run in manual mode, where the operator

specifies when to send each beacon.

4.8 Experiments and Evaluation

We have now completed our narrative of the design of the Atom. We turn to

discussing the construction of the Atom and the measurements and experiments that were

performed to evaluate it. Two Atoms were constructed. Figure 4.39 presents an image of the

completed Atom.

101

Figure 4.39: The completed Atom, shown expanded.

The Atom is 4 inches square when expanded and 2 inches square when contracted,

and it stands 7 inches tall above the operating surface (which is just the Formica veneer of

our laboratory workbenches). Thus the Atom meets the height and expanded design

parameters. The Atom weighs about 12 ounces, which is only slightly heavier than what the

matom design parameter calls for (10 ounces). The parts cost per Atom is roughly $250, which

is better than our cost design parameter of $300.

The next section contains a brief description of the assembly process for the Atom.

The measurements that were taken and the Experiments that were performed are described in

the following two sections.

102

4.8.1 Construction

Most of the structural components of the Atom were fabricated out of ABS plastic on

DRL’s Stratasys FDM1600 Rapid Prototyper (these are the white components in Figure

4.39). The FDM1600 requires about 48 hours to build all components necessary for one

Atom. Once all the components have been fabricated they require some post-processing to

remove the support material that remains from the build process. This takes about 3 hours.

The Atom does contain a few components which need to be machined: the racks need

to be cut to length and drilled, the pinions need to be fitted with setscrews, and the guide rails

need to be cut. These operations are easily accomplished in 3 or 4 hours at a machine shop.

Once all the components for the Atom have been gathered, assembly begins.

Cyanoacrylate glue is used to bond most of the structural components together. Each vertical

stage of the faces and the core is fabricated as a single block on the FDM1600. Guide pins

are used to maintain alignment from stage to stage. The racks are bolted to the faces and the

guide rails and Rulon bushings are pressed into their respective locations (see Figure 4.27).

Mechanical assembly takes about 3 hours

After all four faces and the core have been mechanically assembled, the wiring that

connects the sensors and motors on the faces and in the core is applied. Standard ribbon

cable is used, secured in place with Cyanoacrylate glue. This is another 3 to 4 hour job.

As mentioned above, the electronics are fabricated on a printed circuit board. We

have these boards printed off-site. Assembly and testing of the electronics takes about 2

hours.

Final assembly takes place after the faces and the core are each constructed and wired

and the electronics is assembled. Each face is carefully inserted into the core and the

expansion motor is activated to draw the faces in. Usually, several tries are necessary before

all four faces start themselves with the correct alignment.

103

In total, about 17 hours of labor are required to construct an Atom. This does not

include the 48 hours of FDM1600 build time, which can be largely unsupervised. We were

targeting a Tbuild of 10 hours, so we did not meet that goal. But 17 hours did turn out to be

acceptable.

4.8.2 Measurements

Four types of measurements were taken: current draw, speed, rigidity, and accuracy:

• Current Draw – The Atom was measured to draw about 35mA while powered on but

not moving. Activating any of the motors raises the current draw to about 60mA, and if

any of the motors becomes stalled current draw jumps to 120mA. These numbers

indicate that the time-averaged current draw is clearly better than the Iatom design

parameter of 150mA.

• Expansion and Contraction Time – The Atom takes about 3 seconds to contract and

expand under no-load conditions. When pulling another Atom, this time increases

somewhat, however it’s clear that the expansion speed design parameter was met.

• Rigidity – Since the Atom faces are rigid to within about 1° of the face normal when

fully extended, we have met the rigidity design parameter of 5°.

• Accuracy – The extension mechanism of the Atom is accurate to within about 1/32 inch,

which meets the accuracy design parameter

• Connector Fault-Tolerance – The connection mechanism can handle misalignments up

to about 1/8 inch in the lateral direction (Atoms sliding relative to the inter-Atomic

plane). However, very little (about 1/32 inch) misalignment is tolerable in the normal

direction.

104

4.8.3 Experiments

Two experiments were performed to evaluate the feasibility of using multiple Atoms

to demonstrate reconfiguration (the Atom state sequences for these experiments are included

in Appendix 4). To facilitate experimentation, a row of 8 static passive connectors was

constructed that simulates the surface of a Crystal. The static connectors are placed as they

would be for a Crystal composed of 8 Atoms, all in the contracted state. In the descriptions

that follow, we will refer to the two real Atoms as a and b, and we will number the static

connectors 0-7. The North and West faces of a and b (those that contain active connection

mechanisms) will be referred to as a.n, b.n and a.w, b.w, respectively, and the South and

East faces will be similarly named. a and b are always oriented so that a.n and b.n are facing

the row of static connectors.

The first experiment was designed to determine if an Atom could reliably expand and

then connect with a neighbor. The procedure was as follows: a was expanded and affixed to

0 (at a.n). b was contracted and affixed to 2 at (b.n). b was loaded with a state sequence

that caused it to expand and then connect with a at the b.w/a.e inter-Atomic interface, as

shown in Figure 4.40.

0

a

b

1 2 0

a b

0

a b

1 12 2
1 2

Figure 4.40: In the first experiment, a was affixed to 0, b to 2. b was programmed to expand
and connect with a.

This experiment was successful: it was demonstrated that b could reliably expand and

connect with a in most cases. One situation where it was observed to fail was when an

especially low-friction environment surface was used. In this case, step 2 usually does not

complete because Atom a is too easily pushed away from Atom b as it expands in step 1.

105

The second experiment was designed to evaluate whether Atoms could work together

to effect a reconfiguration. Initially, both a and b were contracted. a was connected to 0 (at

a.n) and b was connected to 1 (at b.n). a and b were connected together at b.w. The Atoms

were programmed with state sequences designed to perform an inchworm translation along

the static connectors:

1. free b.n from 1
2. expand a
3. expand b
4. connect b.n to 2
5. disconnect a.n from 0
6. contract a and b
7. connect a.n to 1
8. repeat

This sequence is illustrated in Figure 4.41.

a

0 1 2

b

b b

a

0 1 2

b

0 1 2

ba

a

0 1 2

b

0 1 2

ba

a

a

0 1 2

a

0 1 2 0 1 2

b

2 3

4 5 6 7

1

Figure 4.41: The second experiment tests an inchworm propagation algorithm.

This second experiment was partly successful and pointed out the need for some

design improvements. In all trials, failure occurred either at step 4 or step 7. These are the

two steps where an Atom re-connects with the static connector substrate after being moved.

It was clear that these connection operations failed because the active and passive faces

involved were too far misaligned in the normal direction (i.e. the direction normal to the

inter-Atomic interface plane). As mentioned above, the connection mechanism, as

implemented, can only handle about 1/32 inch misalignment in this dimension. During the

experimental trials, misalignments of 1/8 to 3/16 inch were commonly observed.

106

Why was the observed normal misalignment so much higher than the normal

direction fault-tolerance of the connection mechanism? The answer to this question is the

sum of the following two contributing factors:

• not enough normal fault-tolerance: The connection mechanism was designed with

good lateral fault tolerance, but the design failed to also provide similarly good normal

fault-tolerance.

• connection mechanism not rigid enough: As constructed, connected interfaces are free

to flex up to about 3°, as shown in Figure 4.42.

3
3

Figure 4.42: The connection mechanism, as designed and constructed, is not rigid enough.

These two factors, combined with the measured Atom face rigidity of 1°, lead to a

worst-case scenario in step 4 (and similarly in step 7) as shown in Figure 4.43.

b

0 1 2

a

Figure 4.43: A worst-case combination of the Atom face rigidity and connection mechanism
rigidity, which causes b.n to be too far misaligned from 2.

107

A1 References

[1] Y. Cao, A. Fukunaga, A. Kahng, and F. Meng. Cooperative mobile robots: Antecedents
and directions. Technical report, UCLA Department of Computer Science, 1995.

[2] Chen and J. Burdick. Enumerating the Non-Isomorphic Assembly Configurations of a
Modular Robotic System. To appear in the International Journal of Robotics Research.

[3] P. Chew and K. Kedem. Getting around a lower bound for the minimum Hausdorff
distance. In Third Scandinavian Workshop on Algorithm Theory, eds. O Nurmi and E.
Ukkonen, Lecture Notes in Computer Science 621, pp 318--325, Springer Verlag 1992.

[4] G. Chirikjian and J. Burdick. Kinematics of a hyper-redundant robot locomotion with
applications to grasping. In Proceedings of the IEEE International Conference on
Robotics and Automat ion, 1991.

[5] R. Cohen, M. Lipton, M. Dai, and B. Benhabib. Conceptual design of a modular robot.
In Journal of Mechanical Design, pp. 117-125, March 1992.

[6] T. Fukuda and Y. Kawauchi. Cellular robotic system (CEBOT) as one of the realization
of self-organizing intelligent universal manipulator. In Proceedings of the IEEE
Conference on Robotics and Automation, pp. 662-667, 1990.

[7] G. Hamlin and A. Sanderson. Tetrabot modular robotics: prototype and experiments.
In Proceedings of the IEEE/RSJ International Symposium of Robotics Research, pp 390-
395, Osaka, Japan, 1996.

[8] Kazuo Hosokawa, Isao Shimoyama, and Hirofumi Miura. Dynamics of self-assembling
systems --- analogy with chemical kinetics. Artificial Life, 1(4), 1995.

[9] D. Huttenlocher, G. Klanderman, and W. Rucklidge. Comparing images using the
Hausdorff distance. IEEE Transactions on Pattern Matching and Machine Intelligence,
1993.

[10] S. Kelly and R. Murray, Geometric phases and robotic locomotion. CDS Technical
Report 94-014, California Institute of Technology, 1994.

[11] K. Kotay and D. Rus. Navigating 3d steel web structures with an inchworm robot.
Proceedings of the 1996 International Conference on Intelligent Robots and Systems,
Osaka, 1996.

[12] K. Kotay and D. Rus. Task-reconfigurable robots: navigators and manipulators. In
The 1997 International Conference on Intelligent Robots and Systems, 1997.

[13] K. Kotay, D. Rus, M. Vona, and C. McGray. The self-reconfigurable robotic
molecule. In Proceedings of the 1998 International Conference on Robotics and
Automation, 1998.

108

[14] K. Kotay, D. Rus, M. Vona, and C. McGray. The self-reconfiguring robotic molecule:
design and control algorithms. In The 1998 Workshop on Algorithmic Foundations of
Robotics, 1998.

[15] K. Kotay and D. Rus. Motion Synthesis for the Self-reconfiguring Robotic Molecule.
In Proceedings of the 1998 International Conference on Intelligent Robots and Systems,
1998.

[16] K. Kotay and D. Rus. Locomotion Versatility through Self-reconfiguration. In
Robotics and Autonomous Systems, 1998 (to appear).

[17] J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers 1991.

[18] C. McGray and D. Rus. Motion Self-reconfiguring Molecules as 3D Metamorphic
Squares. In Proceedings of the 1998 International Conference on Intelligent Robots and
Systems, 1998.

[19] S. Murata, H. Kurokawa, and Shigeru Kokaji. Self-assembling machine. In
Proceedings of the 1994 IEEE International Conference on Robotics and Automation,
San Diego, 1994.

[20] S. Murata, H. Kurokawa, K. Tomita, and Shigeru Kokaji. Self-assembling method for
mechanical structure. In Artif. Life Robotics, 1:111--115, 1997.

[21] S. Murata, H. Kurokawa, E. Yoshida, K. Tomita, and S. Kokaji. A 3-D Self-
Reconfigurable Structure. In Proceedings of the 1998 IEEE International Conference on
Robotics and Automation, Leuven, 1998.

[22] R. Murray. Trajectory generation for underactuated systems with applications to
robotic locomotion. In Workshop on Algorithmic Foundations of Robotics, eds. P.
Agrawal, L. Kavraki, and M. Mason, A. K. Peters, 1998.

[23] B. Neville and A. Sanderson. Tetrabot family tree: modular synthesis of kinematic
structures for parallel robotics. In Proceedings of the IEEE/RSJ International Symposium
of Robotics Research, pp 382-390, Osaka, Japan, 1996.

[24] Pamecha, C-J. Chiang, D. Stein, and G. Chirikjian. Design and implementation of
metamorphic robots. In Proceedings of the 1996 ASME Design Engineering Technical
Conference and Computers in Engineering Conference, Irvine, CA 1996.

[25] Paredis and P. Khosla. Kinematic Design of Serial Link Manipulators from Task
Specifications. In International Journal of Robotic Research, Vol. 12, No. 3, pp 274--
287, 1993.

[26] Paredis and P. Khosla. Design of Modular Fault Tolerant Manipulators. In The First
Workshop on the Algorithmic Foundations of Robotics, eds. K. Goldberg, D. Halperin,
J.-C. Latombe, and R. Wilson, pp 371-383, 1995.

109

[27] Rus. Self-Reconfiguring Robots. IEEE Intelligent Systems, 13(4), 2-5, July/August
1998

[28] K. Tanie and H. Maekawa. Self-reconfigurable cellular robotic system. US Patent
5361186, 1993.

[29] K. Tomita, S. Murata, E. Yoshida, H. Kurokawa, and S. Kokaji. Reconfiguration
method for a distributed mechanical system. In Distributed Autonomous Robotic Systems
2, pp 17--25, Springer Verlag 1996.

[30] M. Yim. A reconfigurable modular robot with multiple modes of locomotion. In
Proceedings of the 1993 JSME Conference on Advanced Mechatronics, Tokyo, Japan
1993.

[31] Yoshida, S. Murata, K. Tomita, H. Kurokawa, and S. Kokaji. Distributed Formation
Control of a Modular Mechanical System. In Proceedings of the 1997 International
Conference on Intelligent Robots and Systems, 1997.

[32] D. Rus, M. Vona. Self-reconfiguration Planning with Compressible Unit Modules. In
Proceedings of the 1999 International Conference on Robotics and Automation, Detroit,
MI 1999.

[CLR] Cormen, Leiserson, Rivest. Introduction to Algorithms. McGraw-Hill 1990.

110

A2 Lego Mini-Motor Measurements

In this Appendix we describe the Lego toy Mini-Motor which is used as the actuator

for both the expansion and the connection mechanism in the Atom. We then present the

results of an experiment to measure the performance of the motor.

A2.1 The Lego Mini-Motor

The Mini-Motor is a component of the Lego “Technics” system. The Mini-Motor is

available from Lego's shop at home service as part number 5119 for $11. The Mini Motor,

depicted in Figure A2.1, is roughly a 5/8 inch cube and weighs about 0.3 ounces.

Figure A2.1: The Lego Mini-Motor and attached output shaft adapter.

Electrical connections are made to the bottom surface of the motor. The motor rotary

output is through a pancake-style disk with a central nipple on the top surface. The motor is

supplied with an adapter that friction mounts onto the output disk and accepts a standard

Lego shaft on the other side. A 1/8 inch diameter steel shaft will fit into the orifice meant for

the Lego shaft if it is glued in place. The friction fit of the adapter onto the motor is not very

tight and can be glued as well.

Disassembly reveals that the motor consists of a low mass rotor, a strong field magnet

(likely rare-earth), and two stages of gear reduction. The reducers, which are similar to

111

harmonic drives, consist of eccentrically driven circular gears inside slightly larger internal

gears.

While the motor is surprisingly strong for its size, it does have one major drawback.

If the friction fit of the output adapter is bypassed, as described above, mechanical binding

becomes a problem. If the motor is driven to a hard mechanical stall it becomes very difficult

to re-activate it, even in reverse, until the mechanical stop is physically removed. This was an

important consideration in the design of the Atom.

A2.2 Experimental Procedure

No detailed performance data is available for the Lego Mini-Motor. Thus, in order to

determine its torque and current characteristics, an experiment was performed. The motor

was coupled to a spindle to which various weights were attached. A tachometer was also

connected to the spindle to monitor the motor's speed.

The stall torque was determined by gradually reducing the applied weight until the

motor began to spin. After that, the weight was reduced in constant decrements. For each

weight, the motor speed and current draw were recorded.

The motor was operated at 12V DC, regulated. When used in the Lego toy, the motor

is normally operated at 9V DC, unregulated.

A2.3 Experimental Results

The motor stall torque was measured at about 2.0 oz-in, at which it drew about 110

mA. Below that, the torque speed curve was measured as shown in figure A2.2.

112

Lego Mini-Motor (12V):
Torque (oz-in) vs Speed (rpm)

0.00

0.50

1.00

1.50

2.00

2.50

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00

Speed (rpm)

To
rq

ue
 (

oz
-in

)

Figure A2.2: Lego Mini-Motor torque-speed performance data.

For each tested weight, the current draw was also recorded, as shown in figure A2.3.

Lego Mini-Motor (12V):
Current Draw (mA) vs Speed (rpm)

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00

Speed (rpm)

C
u

rr
e

n
t

D
ra

w

(m
A

)

Figure A2.3: Lego Mini-Motor current-speed performance data.

113

The motor efficiency was calculated as the ratio of mechanical output power (torque ·

speed) to electrical input power (voltage · current), as shown in Figure A2.4.

Lego Mini-Motor (12V):
Efficiency (%) vs Speed (rpm)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00

Speed (rpm)

E
ff

ic
ie

n
c

y

(%
)

Figure A2.4: Lego Mini-Motor efficiency performance data.

114

A3 Schematic Diagrams

In this Appendix we present two schematic diagrams: one for the Atom on-board

electronics and one for the Atom host electronics. The diagrams follow on the next two

pages.

115

A3.1 On-Board Electronics

116

A3.2 Host Electronics

117

A4 Listings

This Appendix includes three listings: the dogcouch relative deformation, the Atom

hardware state sequences used for experiments, and the Melt-Grow planner input for the

table-to-chair reconfiguration.

A4.1 Dogcouch Relative Deformation
In this section we present the xtalsim source code for the dog-couch simulation

illustrated in Chapter 2. This code is included here to demonstrate how the simulator input

language is used. The code is contained in two files: dogcouch.dfm is the main simulation

file with the initial Crystal specification (the dog) and the list of updates which change the

dog into a couch. dfmcommon.h is an auxiliary file that defines some routines used in

dogcouch.dfm.

/* File: dogcouch.dfm
 * Created: 7/18/98
 * Author: Marty Vona
 *
 * Abracadabra!
 *
 */

#include "dfmcommon.h"

(
 (
 /* the initial Crystal (dog) */

 /* body */
 (atom (-4 0 0) fbb eee)
 (atom (0 0 0) bbf eee)
 (atom (4 0 0) bbb eee)
 (atom (8 0 0) bbb eee)
 (atom (12 0 0) bbb eee)

 (atom (-4 4 0) fbf eee)
 (atom (0 4 0) bbf eee)
 (atom (4 4 0) bbf eee)
 (atom (8 4 0) bbf eee)
 (atom (12 4 0) bbf eee)

 /* rear paws */
 (atom (4 0 4) fbb eee)
 (atom (8 0 4) bbb eee)

118
 (atom (12 0 4) bbb eee)

 (atom (4 0 -4) fbf eee)
 (atom (8 0 -4) bbf eee)
 (atom (12 0 -4) bbf eee)

 /* front paws */
 (atom (-12 0 4) fbf eee)
 (atom (-8 0 4) bbf eee)
 (atom (-4 0 4) bbb eee)

 (atom (-12 0 -4) fbf eee)
 (atom (-8 0 -4) bbf eee)
 (atom (-4 0 -4) bbf eee)

 /* neck */
 (atom (-4 8 0) fbf eee)

 /* head */
 (atom (-8 12 0) fff eee)
 (atom (-4 12 0) bbb eee)

 /* ears */
 (atom (-4 12 4) ffb eee)
 (atom (-4 12 -4) fff eee)

 /* tail */
 (atom (12 8 0) fbf eee)

)

 (
 /* the updates (dog->couch) */

 /* move tail up */
 SCRUNCH_COLN(<12 8 0>, y)
 ((bond <12 4 0> x))
 SCRUNCH_COLP(<0 4 0>, x)
 ((expand <12 * 0> y))
 ((bond <12 * 0> x))
 ((free <[3 4] * 0> x))
 ((free <0 * 0> x))
 ((contract <0 * 0> y))
 RELAXN(<8 4 0>, x)
 ((free <[0 4] 4 0> x))
 ((expand <0 [-1 3] 0> y))
 ((bond<0 * 0> x) (bond <4 * 0> x))

 /* pull paws back */
 ((free <[inf 0] 0 *> y) (free <[4 8] 0 0> y) (free <[4 8] 0 * ??b> z))
 ((contract <[4 8] * 0> x))
 ((bond <* 0 [-4,8 8] ?f?> y))
 ((free <0 0 * ??b> z))
 ((expand <[7 9] * 0> x))
 ((bond <* 0 * f??> x) (bond <* 0 * ?f?> y) (bond <* 0 * ??f> z))

 /* pull head in */
 SCRUNCH_COLN(<12 0 0>, x)
 ((free <[0 4] [0 4] 0 b??> x) (free <0 0 [0 4] ??b> z))
 ((contract <0 [0 4] 0> y))
 ((bond <-4 0 0> y))

119
 ((free <0 4 0> x))
 ((expand <0 [-1 3] 0> y))
 ((bond <* * * f??> x) (bond <* * * ?f?> y) (bond <* * * ??f> z))
 RELAX_COLN(<12 0 0>, x)
 ((free <-4 0 0> x) (free <4 * 0> x) (free <[-4 0] 0 * ??b> z))
 ((contract <[-4 0] [0 4] 0> y))
 ((bond <* * * f??> x) (bond <* * * ?f?> y) (bond <* * * ??f> z))

 /* move ears to either end to make armrests */
 SCRUNCH_COLN(<12 4 0>, x)
 ((free <-4 4 0> z) (free <-4 4 4> y) (free <[inf 4] 4 0> y))
 ((expand <[7 9] 4 0> x))
 ((bond <* * * f??> x) (bond <* * * ?f?> y) (bond <* * * ??f> z))
 ((free <-4 4 0> x) (free <[-4 8] 4 *> y))
 ((contract <[4 8] 4 0> x))
 ((bond <* * * f??> x) (bond <* * * ?f?> y) (bond <* * * ??f> z))
 ((free <[0 4] 4 0> y) (free <0 4 0> z))
 ((expand <[7 9] 4 0> x))
 ((bond <* * * f??> x) (bond <* * * ?f?> y) (bond <* * * ??f> z))
 ((free <0 4 0> x) (free <[0 8] 4 *> y))
 ((contract <[4 8] 4 0> x))
 ((bond <* * * f??> x) (bond <* * * ?f?> y) (bond <* * * ??f> z))
 ((free <4 4 0> y) (free <4 4 0> z))
 ((expand <[7 9] 4 0> x))
 ((bond <* * * f??> x) (bond <* * * ?f?> y) (bond <* * * ??f> z))
 ((free <[-4 8] 4 0> y) (free <4 4 0> z) (free <-4 4 0> x))
 ((contract <[-4 8] 4 0> x))
 ((expand <[-4 0] [-1 1] 0> y))
 ((bond <* * * f??> x) (bond <* * * ?f?> y) (bond <* * * ??f> z))
 ((free <[-4 0] 4 0> y))
 ((contract <[-4 0] 4 0> x) (expand <[7 9] 4 0> x))
 ((bond <4 4 0> z) (free <4 4 -4> y) (free <12 4 0> y))
 ((expand <[-5 1] 4 0> x))
 ((bond <12 4 -4> y) (free <12 4 0> z))
 ((contract <[0 12] 4 0> x))
 ((bond <* * * f??> x) (bond <* * * ?f?> y) (bond <* * * ??f> z))
 ((free <12 4 0> x) (free <12 0 [-4 0]> x) (free <12 0 [-4 0]> y)
 (free <12 4 0> y))
 ((contract <12 0 [-4 0]> z))
 ((free <8 0 4> z) (free <8 0 0> y) (free <8 [0 4] 0> x))
 ((contract <8 0 0> z))
 ((bond <12 4 -1> x) (free <12 4 -1> y))
 ((expand <[8 12] 0 [-1 1]> z))
 ((bond <* * * f??> x) (bond <* * * ?f?> y) (bond <* * * ??f> z))

 /* pull in rear underside of couch */
 ((free <[-8 12] [0 4] [-4 0] ?b?> y))
 ((contract <[-8 12] 0 [-4 0]> z))
)
)

/* File: dfmcommon.h
 * Created: 7/17/98
 * Author: Marty Vona
 *
 * the C preprocessor: LOVE IT
 */

#ifndef DFMCOMMON_H

120
#define DFMCOMMON_H

#define ODIMx0 y
#define ODIMx1 z
#define ODIMy0 x
#define ODIMy1 z
#define ODIMz0 x
#define ODIMz1 y

/* return one of the dimensions orthogonal to dim */
#define ODIM(dim, which) ODIM ## dim ## which

#define DTOx(in_dim, in_odim0, in_odim1) in_dim in_odim0 in_odim1
#define DTOy(in_dim, in_odim0, in_odim1) in_odim0 in_dim in_odim1
#define DTOz(in_dim, in_odim0, in_odim1) in_odim0 in_odim1 in_dim

/* order a dimension triple */
#define DTO(dim, in_dim, in_odim0, in_odim1) \
 DTO ## dim (in_dim, in_odim0, in_odim1)

#define AINxb b??
#define AINyb ?b?
#define AINzb ??b

#define AINxf f??
#define AINyf ?f?
#define AINzf ??f

#define AINxc c??
#define AINyc ?c?
#define AINzc ??c

#define AINxe e??
#define AINye ?e?
#define AINze ??e

/* build an active-in wildcard */
#define AIN(dim, action) AIN ## dim ## action

/* create a two-atom scrunch behind a in dim */
#define SCRUNCHN(a, dim) \
 _SCRUNCHN(a, dim, ODIM(dim, 0), ODIM(dim, 1))

#define _SCRUNCHN(a, dim, od0, od1) \
 (\
 (free <@ a <DTO(dim, [-8 -1], [0 4], 0) AIN(od0, b)>> od0) \
 (free <@ a <DTO(dim, [-8 -1], 0, [0 4]) AIN(od1, b)>> od1) \
 (free <@ a <DTO(dim, -8, 0, 0) AIN(dim, b)>> dim) \
) \
 ((contract <@ a <DTO(dim, [-8 -1], 0, 0) AIN(dim, e)>> dim))

#define SCRUNCHP(a, dim) \
 _SCRUNCHP(a, dim, ODIM(dim, 0), ODIM(dim, 1))

#define _SCRUNCHP(a, dim, od0, od1) \
 (\
 (free <@ a <DTO(dim, [1 8], [0 4], 0) AIN(od0, b)>> od0) \
 (free <@ a <DTO(dim, [1 8], 0, [0 4]) AIN(od1, b)>> od1) \
 (free <@ a <DTO(dim, 12, 0, 0) AIN(dim, b)>> dim) \
) \
 /* shrink */ \

121
 ((contract <@ a <DTO(dim, [1 8], 0, 0) AIN(dim, e)>> dim))

/* relax a two-atom scrunch behind a in dim */
#define RELAXN(a, dim) \
 _RELAXN(a, dim, ODIM(dim, 0), ODIM(dim, 1))

#define _RELAXN(a, dim, od0, od1) \
 ((expand <@ a <DTO(dim, [-5 -1], 0, 0) AIN(dim, c)>> dim)) \
 (\
 (bond <@ a <DTO(dim, [-8 -1], [0 4], 0) AIN(od0, f)>> od0) \
 (bond <@ a <DTO(dim, [-8 -1], 0, [0 4]) AIN(od1, f)>> od1) \
 (bond <@ a <DTO(dim, -8, 0, 0) AIN(dim, f)>> dim) \
)

#define RELAXP(a, dim) \
 _RELAXP(a, dim, ODIM(dim, 0), ODIM(dim, 1))

#define _RELAXP(a, dim, od0, od1) \
 ((expand <@ a <DTO(dim, [1 5], 0, 0) AIN(dim, c)>> dim)) \
 (\
 (bond <@ a <DTO(dim, [1 8], [0 4], 0) AIN(od0, f)>> od0) \
 (bond <@ a <DTO(dim, [1 8], 0, [0 4]) AIN(od1, f)>> od1) \
 (bond <@ a <DTO(dim, 12, 0, 0) AIN(dim, f)>> dim) \
)

/* create a two-atom scrunch behind a in dim pulling along the whole
trailer */
#define SCRUNCH_COLN(a, dim) \
 _SCRUNCH_COLN(a, dim, ODIM(dim, 0), ODIM(dim, 1))

#define _SCRUNCH_COLN(a, dim, od0, od1) \
 (\
 (free <@ a <DTO(dim, [inf -1], [0 4], 0) AIN(od0, b)>> od0) \
 (free <@ a <DTO(dim, [inf -1], 0, [0 4]) AIN(od1, b)>> od1) \
) \
 ((contract <@ a <DTO(dim, [-8 -1], 0, 0) AIN(dim, e)>> dim)) \
 (\
 (bond <@ a <DTO(dim, [inf -6], [0 4], 0) AIN(od0, f)>> od0) \
 (bond <@ a <DTO(dim, [inf -6], 0, [0 4]) AIN(od1, f)>> od1) \
)

#define SCRUNCH_COLP(a, dim) \
 _SCRUNCH_COLP(a, dim, ODIM(dim, 0), ODIM(dim, 1))

#define _SCRUNCH_COLP(a, dim, od0, od1) \
 (\
 (free <@ a <DTO(dim, [1 inf], [0 4], 0) AIN(od0, b)>> od0) \
 (free <@ a <DTO(dim, [1 inf], 0, [0 4]) AIN(od1, b)>> od1) \
) \
 ((contract <@ a <DTO(dim, [1 8], 0, 0) AIN(dim, e)>> dim)) \
 (\
 (bond <@ a <DTO(dim, [6 inf], [0 4], 0) AIN(od0, f)>> od0) \
 (bond <@ a <DTO(dim, [6 inf], 0, [0 4]) AIN(od1, f)>> od1) \
)

/* relax a two-atom scrunch behind a in dim pushing along the whole
trailer */
#define RELAX_COLN(a, dim) \
 _RELAX_COLN(a, dim, ODIM(dim, 0), ODIM(dim, 1))

#define _RELAX_COLN(a, dim, od0, od1) \

122
 (\
 (free <@ a <DTO(dim, [inf -6], [0 4], 0) AIN(od0, b)>> od0) \
 (free <@ a <DTO(dim, [inf -6], 0, [0 4]) AIN(od1, b)>> od1) \
) \
 ((expand <@ a <DTO(dim, [-5 -1], 0, 0) AIN(dim, c)>> dim)) \
 (\
 (bond <@ a <DTO(dim, [inf -1], [0 4], 0) AIN(od0, f)>> od0) \
 (bond <@ a <DTO(dim, [inf -1], 0, [0 4]) AIN(od1, f)>> od1) \
)

#define RELAX_COLP(a, dim) \
 _RELAX_COLP(a, dim, ODIM(dim, 0), ODIM(dim, 1))

#define _RELAX_COLP(a, dim, od0, od1) \
 (\
 (free <@ a <DTO(dim, [6 inf], [0 4], 0) AIN(od0, b)>> od0) \
 (free <@ a <DTO(dim, [6 inf], 0, [0 4]) AIN(od1, b)>> od1) \
) \
 ((expand <@ a <DTO(dim, [1 5], 0, 0) AIN(dim, c)>> dim)) \
 (\
 (bond <@ a <DTO(dim, [1 inf], [0 4], 0) AIN(od0, f)>> od0) \
 (bond <@ a <DTO(dim, [1 inf], 0, [0 4]) AIN(od1, f)>> od1) \
)

/* relax a two-atom scrunch behind a and simultaneously create a two atom
 * scrunch in front of a */
#define SCRUNCH_SWAPN(a, dim) \
 _SCRUNCH_SWAPN(a, dim, ODIM(dim, 0), ODIM(dim, 1))

#define _SCRUNCH_SWAPN(a, dim, od0, od1) \
 (\
 (free <@ a <DTO(dim, [0 8], [0 4], 0) AIN(od0, b)>> od0) \
 (free <@ a <DTO(dim, [0 8], 0, [0 4]) AIN(od1, b)>> od1) \
) \
 (\
 (contract <@ a <DTO(dim, [1 8], 0, 0) AIN(dim, e)>> dim) \
 (expand <@ a <DTO(dim, [-5 -1], 0, 0) AIN(dim, c)>> dim) \
) \
 (\
 (bond <@ a <DTO(dim, [-4 4], [0 4], 0) AIN(od0, f)>> od0) \
 (bond <@ a <DTO(dim, [-4 4], 0, [0 4]) AIN(od1, f)>> od1) \
)

#endif

A4.2 Atom Hardware Experiment State Sequences

Here we present the state sequences used for the two Atom hardware experiments. The

code for these sequences is as follows:

Even states are connection updates:
0 : Free North, Free West
1: Bond North, Free West
2: Free North, Bond West
3: Bond North, Bond West

123

Odd states are expansion updates:
0: Contracted
1: Expanded

A4.2.1 Experiment 1
Atom a:111111
Atom b:113110

A4.2.2 Experiment 2
Atom a:10111111001
Atom b:30202131303

A4.3 Table-To-Chair Melt-Grow Planner Input

The Melt-Grow planner input for the table-to-chair reconfiguration consists of two lists of

Grain centroid coordinates. The first list defines the table, and the second defines the chair:

(
 (-1 -2)
 (0 -2)
 (1 -2)
 (2 -2)
 (3 -2)
 (4 -2)
 (5 -2)
 (0 -1)
 (0 0)
 (4 -1)
 (4 0)
)
(
 (0 -2)
 (1 -2)
 (2 -2)
 (3 -2)
 (0 -1)
 (0 0)
 (3 -1)
 (3 0)
 (3 -3)
 (3 -4)
 (3 -5)
)

	A Two Dimensional Crystalline Atomic Unit Modular Self-reconfigurable Robot
	Recommended Citation

	Microsoft Word - flat.doc

