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Abstract

The memory system is often the weakest link in the performance of today’s

computers. Cache design has received increasing attention in recent years as

increases in CPU performance continues to outpace decreases in memory la-

tency.

Bershad et al. proposed a hardware modification called the Cache Miss

Lookaside buffer which attempts to dynamically identify data that is conflicting

in the cache and remap to pages to avoid future conflicts. In a follow-up paper,

Bershad et al. tried to modify this idea to work with standard hardware but

had less success than with their dedicated hardware.

In this thesis, we focus on a modification of these ideas, using less compli-

cated hardware and focusing more on sampling policies. The hardware support

is reduced to a buffer of recent cache misses and a cache miss counter. Be-

cause determination of remapping candidates is moved to software, sampling

policies are studied to reduce overhead which will most likely fall on the OS.

Our results show that sampling can be highly effective in identifying conflicts

that should be remapped. Finally, we show that the theoretical performance

of such a system can compare favorably with more costly higher-associativity

caches.

1 Introduction

This paper evaluates the potential effectiveness of dynamically remapping pages in

a large direct-mapped cache memory hierarchy in order to simulate associativity.

Bershad et al. have investigated this technique both in hardware simulation and as a

software implementation on standard hardware. While both these implementations

showed reasonable success, the focus was on structure of the system, rathoer than

the optimal parameters. In this paper, we offer a critique of this earlier work, and

we extend the work to better identify the sampling tradeoffs of accuracy and cost.
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Finally, using the results of our sampling study, we show that a recoloring policy with

a direct-mapped cache should be able to perform significantly better than an equally

sized 2-way associative cache.

1.1 Motivation

As computational speed continues to increase faster than memory access time, much

focus is being placed on cache design. Caches are being built faster, bigger, and

with greater associativity in attempts to reduce memory latency. However, there are

inherent tradeoffs in cache design.

direct-mapped caches can be built faster and cheaper than n-way associative

caches built with the same technology. The reason is that as associativity increases,

more cache blocks have to be checked to see if the requested data is in the cache.

This additional work requires additional hardware and lengthens the critical timing

path, thereby increasing cost and hit times. In practice, direct-mapped caches tend to

run between 2 and 12% faster than comparable 2-way associative caches. The major

disadvantages of direct-mapped caches are that they tend to have much higher miss

ratios, they are much more likely to exhibit terrible worst-case behavior, and they do

not easily allow for parallel address translation. The advantages of parallel address

translation are not significant when cache size gets large (straightforward parallel

address translation requires cache size not to exceed page size times associativity).

Additionally, in many modern cache architectures, virtual addressing is used, making

parallel address translation unnecessary. [H88] The former two disadvantages create

the most compelling case against direct-mapped cache architecture.

Many solutions to these problems have been investigated recently. One of the

most interesting is dynamic page recoloring, where the goal is to identify pages that

are contributing to a high quantity of misses in the cache and remap one of the pages

in main memory. Remapping the page simulates associativity in the direct-mapped

cache. The new page will be recolored, assigned to a different cache location, and
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the data will no longer be contending for the same cache block thus eliminating

future conflicts. [BCL1] For such a recoloring strategy to be effective, pages must be

recolored only when the cost of recoloring is less than the cost of the averted future

cache misses. To identify good recoloring candidates, a distinction must be made

between various kinds of cache misses.

In a fully associative cache of size n (that is with n cache blocks), cache misses

can classified as either compulsory or capacity misses. Compulsory misses are defined

as the requisite, first miss on any address. Obviously if a piece of data has not

been used before, then it will not be found in the cache, and the cache miss which

results from the request will be compulsory. Any other miss in a fully associative

cache can be considered a capacity miss. Because any piece of data can go into any

cache block, for a piece of data, x, to be kicked out of the cache (assuming a least-

recently replacement policy), n distinct cache blocks not containing x must have been

referenced since the last reference to x. This access pattern implies that the pool of

active data is greater than the capacity of the cache, and so the cache miss results

directly from this insufficient capacity.

For any associativity less than full associativity, a third kind of cache miss may

occur. If the same program is run on a fully associative cache of size n and also on

an m-way associative cache of size n where m is less than n, any miss in the m-way

associative cache that does not miss in the fully associative cache is a conflict miss. To

see this behavior, the associativity set of the data item must be considered. Define the

index of item x as the one of m sets in the cache to which x is mapped. A reasonable

and common indexing scheme is ((Block address in main memory) modulo (cache

size in blocks / m). The associativity set of an item x is the set of all data items

which have the same index as x. After x has been loaded into the cache, a conflict

miss occurs if m or more distinct references to cache blocks in x’s associativity set

not containing x have occurred since the last reference to x. [H96]

Using this distinction, the pathological case of the direct-mapped cache can be
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discussed. In a direct-mapped cache, the associativity is 1; that is, each piece of data

can be mapped to exactly one cache block. Since main memory tends to be many

times larger than the cache, there will be many main memory blocks that map to the

same cache block. Assume that a program alternately addresses two blocks in main

memory that map to the same cache block. Each reference will result in a cache miss,

and so the total memory latency will actually be worse than if there was no cache

at all since all the cache overhead is wasted. In this case, a 2-way associative cache

will perform perfectly. Even if the two pieces of data are in the same associativity

set, they can both be in the cache at the same time. However, if we changed the

program slightly so that it alternated between three addresses in three blocks in the

same associativity set, then the 2-way associative cache performs as poorly as the

direct-mapped cache in the previous example. Indeed there is a pathological case for

any cache, but as the associativity increases, the likelihood of such a case actually

occurring becomes increasingly unlikely.

Similarly, it is situations much like these pathological cases that cause the in-

creased miss rates of lower associativity caches. Assume the program often finds

itself toggling between references to pairs of pages that share the same cache block.

Such a situation would create many conflicts in the direct-mapped cache, overus-

ing some portions of the cache and under utilizing other parts. Without a dynamic

remapping policy, the program has no way to recover from these poor page allocation

situations.

In this thesis, we focus on the software sampling policies to identify pages that

need remapping. The aim is to improve on the work of Bershad et al. by using less

specialized hardware and reducing software overhead by employing effective sampling

techniques.
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1.2 The rest of the paper

In Section 2, we describe the related work on which our work builds. In Section 3,

we describe the hardware on which our proposed system would run. In Section 4, we

overview our sampling techniques and experiments. Section 5 presents the results of

our sampling experiments. In Section 6, we look at some performance estimates of

our system. Section 7 concludes with a brief discussion.

2 Related Work

As mentioned earlier, the original work in the area of dynamically identifying and

recoloring cache conflicts was done by Bershad et al. The original work proposed

the addition of hardware in order to monitor the cache at a very low cost. After

this initial the work, the authors looked at ways to monitor the cache without the

addition of costly dedicated hardware.

2.1 The CML

The Cache Miss Lookaside (CML) buffer attempted to provide a low overhead solution

to identifying candidate pages for remapping. [BCL1] The device exploits the extra

time available on a cache miss. On every cache miss, the address of the page that

missed is sent to the CML. The CML has two sections of register pairs: HOT and

LRU. Each register pair contains a page address and a miss count. When a page

misses, the address is sent to the CML, and the buffer is searched. If the page is

already in the buffer, its miss counter is incremented. If the page is not in the cache,

then the least-recently used page in the LRU section (the register pair in the LRU

section that has been accessed least recently) is replaced and its miss counter is reset

to 1. Note that there is both a LRU section and a notion of an LRU entry, which

must be in the LRU section. As soon as one of the LRU pairs exceeds the misses of
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one of the members of HOT, then the pairs are swapped. In this way, pages that are

likely to need remapping are prevented from being replaced. Finally, when a certain

interrupt threshold has been met by any of the pages in the CML, an interrupt is

sent to the operating system which then scans the CML remapping any pages above

a recolor threshold, which is strictly less than the interrupt threshold.

Obviously, the performance of the CML is very dependent on the choice of HOT

size, LRU size, the interrupt threshold, and the recolor threshold. The results of the

paper suggest a maximum LRU size of 16 and a maximum HOT size of 8. Even with

these sizes, the CML is a complicated hardware device. It is not clear that it will cost

less to include a CML than it would to make the cache 2-way associative.

Additionally, this hardware solution has many disadvantages over a software so-

lution. For one thing, the CML has no notion of context switching. Not preserving

information across context switches could cause valuable information on the yielding

process’s cache misses to lost and prevent rapid identification of conflicts in the new

running program.

There are many situations that could cause degradation of the performance of the

CML. As an example, consider a CML with a LRU section of size of 8. Now consider

a program that is doing repetitive array manipulation. Such a program might easily

create misses in 9 or more pages that seem to almost cycle. So page 1 misses, followed

by page 2, followed by page 3... followed by page 9, followed by page 1, followed by

page 2... This cycling could continue for a very long time, but no entry in the LRU

section would ever get more than one conflict. Therefore, no page would ever be

identified as needing recoloring. Many such situations can be created, and because of

the inflexibility of the hardware design, they will certainly create significant problems

for the CML.

The performance of the CML offers much hope for this approach. Memory Cy-

cles Per Instruction is used to compare a direct-mapped cache, a 2-way associative

cache, and a direct-mapped cache with a CML. It most cases, the CML improves the
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performance of the direct-mapped cache. In a few cases, the overhead of the CML

actually decreases the performance of the CML. In no case does the CML perform

any better than the 2-way associative cache.

2.2 Identify Cache Conflicts on Standard Hardware

In later work, the ideas of the CML were applied to standard hardware by using

the system’s TLB. [BCL2] By monitoring the TLB, either through page protection

mechanisms or through the system’s software-controlled TLB, the operating system

attempts to locate pages that should be recolored. Many different software policies,

divided into active and periodic policies, were tested. Active policies try to main-

tain the invariant that each page in the TLB must map to a different cache block.

Periodic policies sample the TLB intermittently and remap pages according to some

predetermined policy.

An example of a periodic policy is the “Snapshot-Delay” policy. This policy

periodically invalidates the TLB and then waits for some amount of time, recording

the TLB misses. Then to confirm that the pages that were suspected of conflicting

should really be remapped, another snapshot is taken after a little while. Only those

pages still conflicting are remapped.

None of these programs showed promise in simulation. The active policies exhib-

ited too much TLB monitoring overhead, while the periodic policies did not detect

the misses quickly enough to reduce the MCPI significantly. The problem that these

approaches suffered from is that they used the TLB to predict cache misses. Merely

seeing two pages in the TLB that map to the same cache block is not sufficient to

determine that the pages are conflicting. The TLB is a cache itself and holds infor-

mation about pages used long before. Another important factor in the unimpressive

results of this technique is the high overhead involved in monitoring the TLB.

One policy tested in this paper showed noticeably better results than these other

algorithms. The algorithm assumed the presence of a cache miss counter register on
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the hardware. The register was used to identify periods of high cache miss activity,

and during these surges, the TLB was sampled. While still not performing nearly as

well as the CML, this hardware/software hybrid outperformed all the other software-

only policies.

3 System Design

Looking to combine the lower overhead of the CML’s dedicated hardware approach,

with the decreased cost and informational benefits of compiling statistics in the OS,

we felt that a system that allowed the operating system direct access to cache miss

information would be ideal. The simplest implementation would be a latch that saved

the conflicting page numbers on every cache miss. Such a system was patented and

eventually implemented by DEC. [S95] The critical timing of such an approach is

well within the time available during a cache miss. Also, the cost of such a device is

insignificant when compared to the CML or the associativity hardware on a higher

associativity cache. Ideally, this idea would be expanded to include a buffer of the last

n cache misses, where n is the optimal sampling length. With such a buffer, the OS

can stop at any time and quickly view the last n cache misses. With the simple one

latch approach, to sample n misses, the operating system would have to be interrupted

n times, a possibly prohibitive overhead. Additionally, a cache miss counter would be

present that could be set to interrupt the OS after a certain number of cache misses.

These two minor and inexpensive hardware modifications are sufficient for efficient

sampling of the cache.

4 Sampling Techniques and Methodology

The work on sampling is divided into two sets of experiments. The first set of experi-

ments, the topic of Section 5, tries to determine how well sampling does at identifying
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pages whose conflicts are contributing to the largest portion of the program’s cache

misses. For example, how well can different sampling techniques identify the smallest

set of conflicting pages that together account 90% of the program’s cache misses?

The effects of different sampling variables were monitored over the course of these

experiments. The second set of experiments uses the results from the first set and

tries to estimate the theoretical limits of improvement that are possible by employing

these techniques.

4.1 Terms and Definitions

Before looking at these experiments, we need to define some terms. The standard met-

rics used in most of the experiments are “Prediction Rate” and “Misprediction Rate.”

In any cache sampling experiment, there are three critical numbers. The first is Re-

alConflictsDetected, the number of correctly identified conflicts. RealConflictsMissed

are conflicts that should have been identified but were missed. SpuriousConflictsDe-

tected are conflicts that were identified as targeted conflicts but should not have been.

The Prediction Rate is simply (RealConflictsDetected) / (RealConflictsDetected +

RealConflictsMissed). The “Misprediction Rate” is (SpuriousConflictsDetected) /

(RealConflictsDetected).

Many of the earlier experiments are run in relative terms. An experiment might

attempt to predict misses “at the 80% level”. To find the conflicts at the 80% level,

one could run the program and collect the set of all conflicting pages paired with

their total number of misses. These (conflict, frequency) pairs could then be sorted

in decreasing order by their miss frequencies. Let totalMisses be the total number of

conflicts in the run (the sum of each pair’s frequency), and let targetMisses be 80% of

totalMisses. To find the conflicts at the 80% level, one steps through the sorted list

until the sum of all the frequencies seen to that point equals or exceeds targetMisses.

The conflicts at the 80% level is the set of misses with at least a frequency of that

last conflict pair. As the percentage level increases, the conflict cutoffs monotonically
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Benchmark

Relative Cutoff Tomcatv Swim Fpppp

95% 565,500 100,356 10,381

90% 565,500 101,263 10,381

85% 565,500 102,098 10,381

80% 565,500 102,200 10,381

75% 574,500 102,500 10,381

70% 574,500 151,828 10,381

60% 574,500 153,500 10,381

50% 574,500 204,300 18,262

Table 1: Absolute level of conflicts that correspond to the relative levels for each

benchmark. This means, for example, that if all data conflicting at least 101263 times

were eliminated from Swim, then there would be a 90% reduction of direct-mapped

conflict misses for that program.

decrease. Obviously, the 100% level, requires all conflicts, so the conflict cutoff will

be 1. The conflict miss cutoffs for various benchmark and percentage levels are shown

in Table 1.

At this point it is necessary to discuss the “Prediction Cache.” The Prediction

Cache is the simulated cache that is the result of the sampled conflicts. The sampled

conflicts are inserted into a simulated direct-mapped cache, which is cleared after

every sampling period. The simulated cache has the same parameters as the hardware

cache. The OS keeps track of conflicts between pages, and it makes decisions about

which conflicts need remapping. This information about the sampled conflicts will

be referred to as the Prediction Cache.

The “Prediction Cache Cutoff” is the number of conflicts that are necessary in
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the Prediction Cache before the conflicting pages are considered to be conflicts falling

into the desired category. This cutoff can be either an absolute number or a relative

level, described above, as is the case in the earlier experiments. The “Sample Length”

is the number of consecuctive conflicts recorded by the OS. This quantity is closely

related to the “Sampling Ratio,” which is the rate at which samples are taken. The

two numbers together define the sampling pattern. For example a Sampling Length

of 10 at a 50:1 Sampling Rate would mean that the OS records 10 cache conflicts

then ignores the next 500 misses then records the next 10 cache conflicts and so on.

4.2 Methods

All experiments are run on three SPEC95 floating-point benchmark programs. All

the benchmarks were written in fortran and are described in detail by SPEC. Tom-

catv is a vectorized mesh generation program. Swim solves a system of shallow water

equations using finite difference approximation on a 512 by 512 grid. Fpppp performs

two electron integral derivations which occur in GausianXX series of programs. The

runs are of varying lengths with Tomcatv running nearly 10 times as long as the

other two benchmarks. Fpppp has no capacity misses whereas the other two bench-

marks have significant capacity misses. Tomcatv performs much better on a 2-way

associative cache than on a direct-mapped coche, but Fpppp and Swim have very

similar direct-mapped cache and 2-way associative cache performance but perform

much better on fully associative caches. Table 2 presents summary statistics for the

various benchmarks.

It is now possible to describe the sampling experiments in greater detail. In the

first set of experiments, three factors are investigated: the correlation between the

actual cache misses and the Prediction Cache, the effect of Sample Length on accuracy,

and the effect of Sampling Rate on accuracy. Experiment 1 attempts to predict the

actual conflicts at the 80% level. Different relative Prediction Cache Cutoffs and

Sample Lengths are tested and Prediction and Misprediction Rates are recorded.
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Non-Conflict Misses Fully Associative Cache

Benchmark Total References Cumpulsory Capacity Total Misses Miss Rate

Tomcatv 66,830,110,156 14,455 32,068,821 32,083,276 0.048007%

Swim 8,557,192,275 14,485 4,112,278 4,126,763 0.048226%

Fpppp 7,460,196,512 213 0 213 0.0%

2-way Associative Cache Direct-Mapped Cache

Benchmark Total Misses Miss Rate Conflict Misses Total Misses Miss Rate Conflict Misses

Tomcatv 72,235,279 0.108088% 40,152,003 1,434,342,851 2.146252% 1,402,259,575

Swim 36,644,270 0.428228% 32,517,507 41,719,487 0.487537% 37,592,724

Fpppp 1,530,548 0.020516% 1,530,335 1,798,451 0.024107% 1,798,238

Table 2: Summary statistics for the three benchmarks used in the experiments.

The goal is to see hom well the actual cache at the 80% level is predicted by the

prediction cache at relative cutoffs of about 80%. If good correlation is found between

the prediction cache and the actual cache at the 80% levels than the prediction cache

is doing a good job at finding high frequency misses. This experiment is repeated at

the 90% prediction level. Experiment 2 investigates the effects on accuracy of different

sampling ratios. The Sample Length is fixed at 100 and three different sampling ratios

are tested (50 to 1, 100 to 1, and 500 to 1).

In the second set of experiments, the focus turns away from testing the predictive

ability of sampling and toward identifying conflicts for remapping. In experiment

3, various sampling patterns are tested in identifying absolute thresholds. Absolute

thresholds are conflicts that conflict more than some fixed number of times. The

accuracy using absolute thresholds is important to remapping schemes because it is

necessary to make decisions based on absolute levels sinces relative levels are not

known till execution completes. In experiment 4,this information is used to pick

an effective sampling strategy and a remapping simulation is run. An upper limit

for the performance of our system is found and compared to the conventional cache

architectures.

All simulations were done on DEC Alpha workstations. The object code was

instrumented with ATOM. Every memory reference was instrumented by ATOM,

12



System Cache Assumptions

Cache Size 256K

Block Size 1K

Indexing Virtual

Table 3: Parameters of simulated system cache.

resulting in a call to a user-defined function. [S94] [DEC93] [DEC95] This function

both traced the actual system cache and performed the appropriate sampling routine.

Table 3 shows the parameters of the simulated system cache. These parameters follow

the earlier work of [BCL1]. After the trace completed, the predicted cache results

were compared to the targeted conflicts in the simulated system cache.

5 Testing Sampling Accuracy

5.1 Experiment 1

The first set of experiments attempts to correlate the Prediction Cache with the actual

simulated system cache. Relative cutoffs are used in order to test the consistency of

the Prediction Cache relative the actual cache. By comparing the accuracy of the

various relative Prediction Cache Cutoffs against the relative cutoffs in the simulated

system cache, it is possible to see how closely the simulation mirrors reality and make

generalizations about the under or over-representation of the most significant cache

conflicts in the prediction cache. Also the relative effectiveness of the various Sample

Lengths can be compared.

Figures 1 - 3 show the accuracy of predicting at the 80% level. For both Tomcatv

and Swim, the Prediction Cache Cutoffs of between 70 and 80% do the best job

of estimating. Fpppp has perfect performance between the 65 and 90% Prediction
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Figure 1: Experiment 1 - Prediction and Misprediction Rates for various Sample

Lengths and Relative Prediction Cache Cutoffs for conflicts at the 80% Level in

Tomcatv with Sampling Ratio of 50 to 1
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Figure 2: Experiment 1 - Prediction and Misprediction Rates for various Sample

Lengths and Relative Prediction Cache Cutoffs for conflicts at the 80% Level in Swim

with Sampling Ratio of 50 to 1
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Figure 3: Experiment 1 - Prediction and Misprediction Rates for various Sample

Lengths and Relative Prediction Cache Cutoffs for conflicts at the 80% Level in

Fpppp with Sampling Ratio of 50 to 1
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Figure 4: Experiment 1 - Prediction and Misprediction Rates for various Sample

Lengths and Relative Prediction Cache Cutoffs for conflicts at the 90% Level in

Tomcatv with Sampling Ratio of 50 to 1
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Figure 5: Experiment 1 - Prediction and Misprediction Rates for various Sample

Lengths and Relative Prediction Cache Cutoffs for conflicts at the 90% Level in Swim

with Sampling Ratio of 50 to 1
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Figure 6: Experiment 1 - Prediction and Misprediction Rates for various Sample

Lengths and Relative Prediction Cache Cutoffs for conflicts at the 90% Level in

Fpppp with Sampling Ratio of 50 to 1
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Cache Cutoff levels. These early results show that the Prediction Cache is doing a

very good job of paralleling the system cache with very high frequency cache misses.

As seen in Figures 4 - 6, the results at the 90% level are less comprehensive. For

the Tomcatv benchmark, the 65-80% Prediction Cache Cutoff levels seem to be the

best fit. Swim at the 90% level is estimated very closely in the 85-95% level. Finally,

Fpppp is once again fit perfectly with all cutoffs between 70% and 90%. These results

still show good fits, but there is more volatility at this higher level. Fortunately, it is

unlikely that we would want to estimate at the 90% because we will want to remap

at much lower thresholds.

Except for the spikes in the Misprediction Rate at the 95% level in Figures 2 and

5, the longer sample lengths of 50 and 100 tend to show higher Prediction Rates and

lower Misprediction Rates across the board.

5.2 Experiment 2

The second set of experiments locks the sampling length in at 100 and varies the

sampling rate. See Figures 7 - 12. The results are mixed. While Tomcatv performs

almost identically at all three sampling rates, Swim’s Misprediction rates are very

responsive to changes in the sampling rate at the 95% level. It is also interesting to

note that both the Prediction Rate and especially the Misprediction Rates are much

more responsive to changes in the Prediction Cache Cutoff at the 50 to 1 sampling

rate than at the other rates.

This first set of experiments shows that relatively infrequent sampling can yield

highly accurate results. Also, longer sample lengths performed almost universally

better in both higher Prediction Rates and lower Misprediction Rates. Finally, some

programs appear to be very responsive to changes in sampling rates while others do

not. This behavior is likely the result of differences in data-access patterns, but it

merits closer inspection.
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Figure 7: Experiment 2 - Prediction and Misprediction Rates for various Sampling

Ratios and Relative Prediction Cache Cutoffs for conflicts at the 80% Level in Tom-

catv and fixed Sample Length of 100
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Figure 8: Experiment 2 - Prediction and Misprediction Rates for various Sampling

Ratios and Relative Prediction Cache Cutoffs for conflicts at the 80% Level in Swim

and fixed Sample Length of 100
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Figure 9: Experiment 2 - Prediction and Misprediction Rates for various Sampling

Ratios and Relative Prediction Cache Cutoffs for conflicts at the 80% Level in Fpppp

and fixed Sample Length of 100
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Figure 10: Experiment 2 - Prediction and Misprediction Rates for various Sampling

Ratios and Relative Prediction Cache Cutoffs for conflicts at the 90% Level in Tom-

catv and fixed Sample Length of 100
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Figure 11: Experiment 2 - Prediction and Misprediction Rates for various Sampling

Ratios and Relative Prediction Cache Cutoffs for conflicts at the 90% Level in Swim

and fixed Sample Length of 100
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Figure 12: Experiment 2 - Prediction and Misprediction Rates for various Sampling

Ratios and Relative Prediction Cache Cutoffs for conflicts at the 90% Level in Fpppp

and fixed Sample Length of 100
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6 Performance Estimates

6.1 Experiment 3

In order to estimate potential speedups, our attention must first be turned to finding

good absolute prediction results. Relative results do little good until a program has

completed running, too late for page remapping to make a difference. The first exper-

iment shows the effectiveness of different Prediction Cache Cutoffs, Sample Lengths,

and Sampling Rates to Prediction and Misprediction Rates for actual conflict cutoff

levels of 100, 500, 1000, 5000, and 10000. See Figures 13 - 27. Each chart is useful

by itself, but when used with the other charts it provides additional insight into the

Prediction and Misprediction Rates of the other thresholds.

Prediction Cache Cutoffs of 10 almost always lead to a strong possibility of very

high Misprediction Rates even at the 100 miss threshold. This relationship implies

that such a low cutoff may cause us to remap many conflicts that do not even con-

flict 100 times. On the other hand, the difference in Prediction and Misprediction

rates for cutoffs of 50 and 100 are marginal at best. So choosing a threshold of 100

might cause us to wait too long to remap, thereby lessening the possible gains. The

longer 100 sample length once again yields significantly higher Prediction Rates at

the expense of only marginally higher Misprediction Rates at the higher thresholds.

This is particularly true with the 50 to 1 Sampling Ratio. The combination of these

factors led us to choose a Sample Length of 100, a Sampling Ratio of 50 to 1, and a

Prediction Cache Cutoff of 50 as the parameters for the final experiment.

6.2 Experiment 4

The final part of this thesis, by tracing each of the programs one additional time, uses

the above parameters to estimate a maximum speedup that can be realized. This time,

as soon as the Prediction Cache finds two addresses to conflict more than 50 times, the
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Figure 13: Experiment 3 - Prediction and Misprediction Rates for various Sampling

Ratios and (Absolute Prediction Cache Cutoff, Sample Length) pairs for conflicts of

100 or more in Tomcatv
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Figure 14: Experiment 3 - Prediction and Misprediction Rates for various Sampling

Ratios and (Absolute Prediction Cache Cutoff, Sample Length) pairs for conflicts of

100 or more in Swim
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Figure 15: Experiment 3 - Prediction and Misprediction Rates for various Sampling

Ratios and (Absolute Prediction Cache Cutoff, Sample Length) pairs for conflicts of

100 or more in Fpppp
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Figure 16: Experiment 3 - Prediction and Misprediction Rates for various Sampling

Ratios and (Absolute Prediction Cache Cutoff, Sample Length) pairs for conflicts of

500 or more in Tomcatv
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Figure 17: Experiment 3 - Prediction and Misprediction Rates for various Sampling

Ratios and (Absolute Prediction Cache Cutoff, Sample Length) pairs for conflicts of

500 or more in Swim
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Figure 18: Experiment 3 - Prediction and Misprediction Rates for various Sampling

Ratios and (Absolute Prediction Cache Cutoff, Sample Length) pairs for conflicts of

500 or more in Fpppp
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Figure 19: Experiment 3 - Prediction and Misprediction Rates for various Sampling

Ratios and (Absolute Prediction Cache Cutoff, Sample Length) pairs for conflicts of

1000 or more in Tomcatv
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Figure 20: Experiment 3 - Prediction and Misprediction Rates for various Sampling

Ratios and (Absolute Prediction Cache Cutoff, Sample Length) pairs for conflicts of

1000 or more in Swim
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Figure 21: Experiment 3 - Prediction and Misprediction Rates for various Sampling

Ratios and (Absolute Prediction Cache Cutoff, Sample Length) pairs for conflicts of

1000 or more in Fpppp
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Figure 22: Experiment 3 - Prediction and Misprediction Rates for various Sampling

Ratios and (Absolute Prediction Cache Cutoff, Sample Length) pairs for conflicts of

5000 or more in Tomcatv
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Figure 23: Experiment 3 - Prediction and Misprediction Rates for various Sampling

Ratios and (Absolute Prediction Cache Cutoff, Sample Length) pairs for conflicts of

5000 or more in Swim
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Figure 24: Experiment 3 - Prediction and Misprediction Rates for various Sampling

Ratios and (Absolute Prediction Cache Cutoff, Sample Length) pairs for conflicts of

5000 or more in Fpppp
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Figure 25: Experiment 3 - Prediction and Misprediction Rates for various Sampling

Ratios and (Absolute Prediction Cache Cutoff, Sample Length) pairs for conflicts of

10000 or more in Tomcatv
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Figure 26: Experiment 3 - Prediction and Misprediction Rates for various Sampling

Ratios and (Absolute Prediction Cache Cutoff, Sample Length) pairs for conflicts of

10000 or more in Swim
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Figure 27: Experiment 3 - Prediction and Misprediction Rates for various Sampling

Ratios and (Absolute Prediction Cache Cutoff, Sample Length) pairs for conflicts of

10000 or more in Fpppp
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page is “recolored.” No attention is given to the recoloring algorithms, as it is beyond

the scope of this paper. Instead, once a remapping occurs, it is assumed that it will

no longer conflict with the page it previously conflicted with, and, additionally, it will

not conflict with other pages after remapping. This assumption is quite unrealistic,

especially with the benchmarks that have high rates of capacity misses, but serves to

give us a good notion of an upper bound on performance.

At the end of the trace a new statistic is generated, conflictMissesAvoided. This

number, as well as data from Table 2, experimental results from Table 5 and some

empirical evidence summarized in Table 4 is used to compute the maximum achiev-

able speed up. For each cache architecture, the total number of cycles lost to cache

overhead is computed. For the Direct-Mapped Cache, the 2-Way Associative Cache

and the Fully Associative Cache, this is simply the total number of cache misses

multiplied by the number of cycles per cache miss. For the new system, total cycles

spent on cache overhead is ((number of direct mapped cache misses - conflictMiss-

esAvoided) * (cycles per cache miss)) + (number of sampling sessions * overhead per

sampling session) + (number of pages remapped * overhead of remapping). These

results are summarized in Figure 28 - 30.

Both Fpppp performed almost as well as a fully associative cache. Swim shows

performance almost as good as the 2-Way Associative cache. This sort of speedup

was never demonstrated with the earlier systems. The Tomcatv performance, while

greatly improved, does not even approach the performance of the 2-Way Associative

cache. This is a surprising result because the CML improved performance on this

same benchmark (on much shortor runs) to levels very close to the 2-Way Associative

cache. This could be attributed to the very close temporal locality of cache misses in

Tomcatv. The CML should perform best under these circumstances, and the CML

has much lower sampling overhead then our approach.

In the Tomcatv and Swim benchmark, the overhead of sampling accounts for sig-

nicant portions of the time spent servicing the modified Direct-Mapped Cache. In
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System Cost Assumptions

Activity Cost in Cycles

Cache Miss 25

Samling Session 11,000

Page Remapping 5,000

Table 4: Various Meterics used to create Figure 28, Figure 29, and Figure 30. The

length of the sampling sessions was estimated empirically. The cost of remapping

pages and of the cache miss were adapted from [BCL1] and [BCL2].

Experimental Results

Benchmark Number of Sampling Sessions Number of Pages Remapped Cache Misses Avoided

Tomcatv 21,406 2,841 1,325,170,360

Swim 2,214 230 30,422,749

Fpppp 3 4 1,785,218

Table 5: Ewpirical results from final experiment.

the Tomcatv benchmark, sampling accounts for about 75% of the total time. These

numbers are surprising and suggest that some adjusttments might be benefitial. First,

the overhead of each sampling session can be reduced. No time was spent optimiz-

ing this routine, and significant improvements might result from hand tuning this

code. Second, a higher Sampling Rate might improve performance. While accuracy

might decrease slightly, as shown in the earlier experiments, the significant savings in

overhead might justify the reduced accuracy.

7 Discussion and Conclusions

Sampling was shown to be a very effective and efficient means of making the necessary

decisions to facilitate dynamic page remapping. While there is a degree of variabil-
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Figure 28: Experiment 4 - This graph shows the total cost of servicing the cache

for the Tomcatv spec with four different cache schemes: Direct-Mapped, 2-Way As-

sociative, Fully Associative, and the lower limit of the Direct-Mapped Cache with

software sampling and page remapping. The cost of the first three caches is simply

the cycles spent servicing misses. The modified Direct-Mapped cache includes the

cost of servicing cache misses, the cost of sampling, and the cost of remapping pages.
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Figure 29: Experiment 4 - This graph shows the total cost of servicing the cache for

the Swim spec with four different cache schemes: Direct-Mapped, 2-Way Associative,

Fully Associative, and the lower limit of the Direct-Mapped Cache with software sam-

pling and page remapping. The cost of the first three caches is simply the cycles spent

servicing misses. The modified Direct-Mapped cache includes the cost of servicing

cache misses, the cost of sampling, and the cost of remapping pages.
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Figure 30: Experiment 4 - This graph shows the total cost of servicing the cache for

the Fpppp spec with four different cache schemes: Direct-Mapped, 2-Way Associa-

tive, Fully Associative, and the lower limit of the Direct-Mapped Cache with software

sampling and page remapping. The cost of the first three caches is simply the cy-

cles spent servicing misses. The modified Direct-Mapped cache includes the cost of

servicing cache misses, the cost of sampling, and the cost of remapping pages.
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ity, our test show that selection of intelligent Sample Lengths, Sampling Rates, and

Prediction Cache Cutoffs can greatly reduce this variability.

We demonstrated that sampling can effectively identify pages for remapping. The

speedups that can be realized easily rival those of the CML. This approach also avoids

the pitfalls identified earlier with the CML. Additionally, our approach is cheaper to

implement in hardware and can be tested in hardware at a much lower cost.

There are also many potential benefits to having cache miss data in the OS.

Eventually, it should be possible to augment this blind sampling with data from the

OS and perhaps even supplement it with hints about data access patterns generated

by compilers. This ability to use both dynamic cache miss information and data from

the OS and compilers is unique to our implementation.

Further research should include expanding experiment 4 to study the effects of

higher Sampling Rates on overall performance. Additionally, a larger suite of bench-

marks should be tested. The sampling code should be optimized. Finally, intelligent

remapping strategies should be tested in conjunction with sampling. If these results

continue to show promise, the system should be implemented on the DEC machines

that have a cache conflict counter and a cache conflict lache. This system will be able

to give really accurate empirical performance results.
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