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ABSTRACT
Existing client-authentication protocols deployed on the World Wide Web today are based on
conventional distributed systems and fail to address the problems specific to the application
domain. Some of the protocols restrict the mobility of the client by equating user identity to a
machine or network address, others depend on sound password management strategies, and yet
others compromise the privacy of the user by transmitting personal information for authentication.
We introduce a new framework for client-authentication by separating two goals that current
protocols achieve simultaneously:
1. Maintain persistent sense of identity across different sessions.
2. Prove facts about the user to the site.
These problems are independent, in the sense that any protocol for solving the first problem  can
be combined with any protocol for solving the second. Separation of the two purposes opens up
the possibility of designing systems which balance two conflicting goals, authentication  and
anonymity. We propose a solution to the first problem, based on the Digital Signature Standard.
The implications of this framework from the point of view of user privacy are examined. The
paper is concluded with suggestions for integrating the proposed scheme into the existing WWW
architecture.

1.1 Introduction

This paper distinguishes between two different goals in authentication protocols:

A: Maintain persistent sense of identity across different session instances
B: Prove facts about the user to another party

Existing authentication protocols perform these functions at the same time. We argue that at least for
client authentication on the World Wide Web, it is beneficial to separate them. In particular, separating
these two goals allows one to build systems which balance two conflicting goals, authentication and
anonymity. We propose strictly independent protocols for solving these two problems. The first
protocol addresses the question of maintaining persistent identity across sessions, while the second
one deals with proving user credentials to the site.  An informal review of the problem is given by
considering the important characteristics of the WWW and arguing that conventional authentication
schemes designed for  distributed systems are inadequate for the web.  Following this is a review and
critique of the authentication protocols in use today. The next two sections introduce the new
protocols, one for each of the problems mentioned above, examining strengths and weakness. By far
the emphasis will be on the first protocol, since there are already existing solutions to the second
problem. After a generic description,  an implementation based on the Digital Signature Standard is
proposed. Attacks against the generic protocol and the particular implementation are considered. A
protocol for solving second problem is introduced in section §3, without undertaking a similar
analysis of weaknesses or considering implementations. The paper is concluded with suggestions for
integrating the first protocol into the existing WWW architecture, paying attention to issues specific to
this domain.

1.2 Definitions relating to the World Wide Web
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In this paper we will be concerned with communication channels operating over a network. For
simplicity assume that all connections are taking place using the Internet Protocol (IP) which is based
on the idea of routing small chunks of data called packets. The task of arranging the data in the
packets into a continuous stream is handled by the Transmission Control Protocol, TCP. A
connection using these two protocols will be referred to as a TCP/IP connection. Without going into
details about the architecture of the network,  we restrict our attention to TCP/IP connections taking
place between two parties. All nodes on the network have definite addresses. To initiate a
communication channel with any other party on the network, it is sufficient to know their address.
The simplest representation of a network address is a string called the hostname. Another
representation more suitable for the network layer is a number called the IP address. Since hostnames
are convenient for humans and numerical addresses are convenient for software, it is frequently
necessary to translate between the two. In the early days of the Internet where the number of hosts
was small, each site maintained a local file of hostnames and IP addresses.  In response to the
increasing number of sites— rendering the original conception  impractical— the Domain Name
System (DNS) was developed. The DNS system is described in [12, 15, 16] and can be used to
execute two types of queries: frequently the IP address is looked up given the hostname; this process
is called hostname resolution. Occasionally the hostname is  looked up given the IP address. The
mapping between hostnames and IP addresses is not unique: a given hostname can have several IP
addresses and multiple hostnames can resolve to the same IP address. There are legitimate reasons for
such  arrangements, such as creating aliases for some hostname.

The standard for specifying the location of resources on the network is the Uniform Resource
Locator (URL) format. An example of a URL is ftp://www.site.com:19/example.txt.
The structure of URLs is formally defined using extended BNF notation in [5]. A URL encodes
several pieces of information about the object in question. The first part is an acronym for the
protocol to be used for retrieving the object, which in this case happens to be the File Transfer
Protocol.  This is followed by the hostname and an optional port number, which is 19 in this case.
When port number is not specified, the default implicit in the protocol definition is assumed. The last
part of a URL is the location of the object on the file system.

The standard type of content on web pages is Hypertext Markup Language, HTML. HTML is an
instance of the Standard Generalized Markup Language and the current version is defined in [17].
All HTML documents are composed of text. An important element of HTML is the notion of
hypertext links, which are pointers to other objects. HTML documents can reference arbitrary types of
content such as images, sounds and executable code. This is achieved by embedding links; the HTML
document describes the object and has a link referencing the URL where the object is located. An
example is shown below, a snippet from an HTML document:

<IMG SRC="http://www.site.com/image.jpg">

The expression in angle-brackets is called a tag and conveys formatting information. In this case the
tag describes an object of type “image” and the source is located at the indicated URL. After the
page has been retrieved, the web-browser software will proceed to download the images and other
objects referenced on the page. . The possibility of linking to objects at arbitrary locations on the
network in an HTML document has important consequences in terms of user privacy, examined in
the next section.

The standard application-level protocol for requesting web pages is the Hypertext Transfer Protocol,
HTTP. This protocol assumes a client-server model where the objects are located on the server and
the client makes requests to retrieve them. In the context of navigating the web, the client is referred
to as the user-agent. This role is commonly played by the web-browser software. A web-server is a
piece of software running on the server side which accepts connections and gives out documents in
response to client requests. The protocol is described comprehensively in [2]. The two important
methods from the point of view of this paper are the GET and POST directives. These are both issued
by the user-agent in the request header. GET issues a request for a document on the server, while
POST allows the client to send information to the server in response to an HTML form, as described
in [1, 2]. HTTP is stateless and there is no concept of a session extending beyond the sense  of a
single TCP/IP connection.
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1.2 Review of cryptographic primitives

Definition:
A one-way hash function H D R: →  is a function with the following properties:
1. One-way: Given  it is difficult to find  with r R d D H d r∈ ∈ ( ) =,
2. Weakly collision-free: Given  it is difficult to find  with  and d D d D d d H d H d∈ ′ ∈ ′ ≠ ′( ) = ( ),
3. Strongly collision-free: It is difficult to find  with  and d d D d d H d H d, ′ ∈ ′ ≠ ′( ) = ( )

These conditions are not independent and it can be proved that 3⇒2 and 3⇒1. [11]
The word “difficult” is used in a computational sense. If  D R>  it must be the case that

∃ ∈d d D1 2,  with d d1 2≠  and H d H d1 2( ) = ( ), because there is no way to map the domain into the
range in a one-to-one fashion. Hash functions are based on the premise that collisions may exist, as
long as it is difficult to find them. Let B = { }0 1,  denote the binary alphabet. We will restrict our
attention to one-way hash functions of the form h B Bn: ∗ →  for some finite value of n, where B∗  is
the Kleene closure of the alphabet; informally it is the set of all finite-length strings over that
alphabet. The significance of this class of functions in cryptography is that they generate relatively
small fingerprints for arbitrarily long messages. The probability that two messages chosen at random
produce the same hash is extremely small and the task of crafting two different messages with the
same hash is computationally difficult.

1.3 Characteristics of the World Wide Web

• Different levels of trust and privacy demands
Because the content on the web is highly diverse, users will have different patterns of interaction with
different sites. A user may be willing to disclose his identity to a bank in order to execute financial
transactions, and even  go to the trouble to obtain a digital certificate from a trusted third-party to
present to the site. For another site the user  may demand that no other party—including the site
owner— be able to find out that he has been viewing pages on the site.

• Conflicting interests: more information to sites vs. more privacy to users
Sites would like to collect information about the users visiting them. There are important commercial
motivations behind this since advertisements posted on web pages generate the bulk of revenue for
popular sites. An important variable which determines whether it is cost-justifiable to place an ad on a
given site is the profile of the users most likely to visit the site. Another motivation for sites to know
more about the user is the notion of customized-content where the same collection of pages looks
different to every user depending on their personal profile. Users on the other hand, want to protect
their privacy by submitting information only as necessary and making sure that the information
disclosed is not used for other purposes. A 1997 survey by Harris-Westin described in [28] found
53% of users are concerned that “information about which sites they visit will be linked to their email
addresses and disclosed to some other person or organization without knowledge or consent.”

• WWW is extremely large and inherently decentralized
The Internet is a heterogeneous collection of systems and there is no central entity. A basic design
principle behind the IP protocol has been to provide alternative routes for all packets. A TCP/IP
connection can be initiated provided that there is some path from the source to the destination; there
is no intermediate node on which the connection ultimately depends. This basic philosophy has been
employed consistently in the design of Internet protocols. A corollary is that authentication systems
requiring all users to coordinate their actions with one distinguished party are infeasible beyond a
small scale implementation. Users have become accustomed to the ability to exercise choices and will
continue to demand systems that provide alternatives. This is one reason why standard authentication
protocols will not scale up to the WWW: they assume the existence of an omnipotent central authority
supervising all transactions and users willing to place unlimited confidence in that authority.

• Network architecture is already strained and congestion is a frequent problem
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The number of hosts capable of taking part in the HTTP protocol as clients is so large that on-line
checks for authentication incur an unacceptable performance penalty. This is another reason why the
standard protocols for distributed systems will not scale up to the requirements of the WWW. These
protocols require interactions with a trusted third-party. When download speeds can be measured in
seconds and users typically browse as many as three pages per minute, a comparable delay to provide
for authentication on each request is unacceptable. Contrast this with the credit card system: A
purchase is relatively rare and the user is willing to wait an additional few seconds for the transaction
to be authorized by the clearing system.

• Users need to be mobile
Access control based on static attributes such as IP address or host name are not useful, even though
web servers can be configured to implement this. Such policies tend to equate user identity with
machine identity, which is problematic for two reasons. First it places too much emphasis on the
physical security of the machine, making it an attractive target for intruders. More importantly it
restricts the mobility of the user, rendering them incapable of accessing the same resources from
another  network address.  Even though this has not become an important concern for contemporary
users, the trend in the  direction of increasing mobility is clear. [15] There is an emerging need to
develop systems enabling authorized users to access resources over HTTP regardless of their location
on the network.

• HTTP is a stateless protocol
The Hypertext Transfer Protocol (HTTP) is a stateless protocol which does not store any information
about the client to correlate different requests. A proposal in [4] has introduced an extension to store
persistent state information on the client machine, but the proposal has not been formally
incorporated into the most recent version of the HTTP protocol. This is particularly problematic
because typical navigation patterns involve requesting several logically related objects in a sequence.
For example, after downloading an HTML page the browser will proceed to download the images on
the page. The first version of the HTTP protocol required a new TCP/IP connection to be initiated for
each request. Since this was extremely inefficient, the next version introduced persistent connections
and the “keep-alive” directive that allowed the user-agent to request multiple objects in one
connection. [2] This solves the problem of efficiently downloading a page and all the associated
resources at once. It does not address the problem of requesting pages which are logically connected
in the navigation context, instead of connected directly by content. It is possible that before viewing
page B, the user has to view page A. Even with HTTP/1.1 the site has no way of matching a request
for page B with the corresponding request for page A.

• Patent issues and export restrictions
Another series of problems with the WWW security architecture are purely legal in nature. Public-key
cryptosystems are covered by patents and require licensing fees for commercial use in North
America.  Garfinkel and Schneier have both pointed out that this has slowed down the integration of
strong public-key cryptography into software products developed in the US. [10, 12] There is still
some debate over whether an algorithm can be patented, and by implication whether patents granted
to date will hold up in court. There are no legal precedents to answer this question. Large software
companies by and large have preferred to avoid litigation and license the necessary algorithms from
Public Key Partners. Adding to this complication is the fact that software implementing strong
encryption is classified as munitions and covered by the International Traffic in Arms Regulations
(ITAR) agreement which imposes strict restrictions on export. Often software vendors release two
different versions of the same software, one for use within the United States, and another one with
reduced cryptographic capabilities for international users.

• Compatibility with existing protocols and software is important.
Even though the growth of the WWW is relatively recent, there is already a wealth of software which
has been written and widely deployed on the Internet. Any changes have to be compatible with the
current state of the web. The utility in adopting a new protocol should be weighed against the cost of
modifying existing systems. In terms of security, there are already different protocols designed for
the WWW which attempt to provide authentication, secrecy and message integrity. By far the
prevailing system in use today is the Secure Sockets Layer (SSL) protocol which will be examined in
the next section.
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1.4 Review of existing client authentication protocols for the WWW

1.4.1 Hostname and IP-Based Authentication

The simplest form of access control is to configure the server such that parts of the document tree are
only accessible to HTTP requests from trusted hosts. These trusted entities can be identified either by
name or by IP address, leading to the hostname and IP-based authentication schemes respectively.
The major advantage of this idea is that existing web server software can be easily configured to
enforce these restrictions. Despite this convenience and ubiquitous availability, there are some serious
short-comings with this approach.

• DNS supports two types of queries. Either the hostname can be looked up given the IP address, or
more commonly the IP address is looked up given the hostname. By design the first function is
easy to tamper with and hostname based authentication is vulnerable to DNS-spoofing attacks
where the adversary temporarily subverts the name-lookup system to return a different hostname
for a given IP address. This is described in [12] and [14]. IP spoofing is harder and requires
exploiting the source-routing feature in version 4 of the IP protocol. [14]

• Both of the schemes authenticate network addresses or machines instead of users or agents. It is
conceivable that the physical security of the network infrastructure has been compromised; either
a different machine has been plugged into the connection previously associated with the trusted
host or the machine with that address has been compromised.

• In terms of usability, there is the added inconvenience to the user of always having to use a small
number of distinguished machines, restricting mobility.

• IP-based restrictions are difficult to apply when there is no definite one-to-one correspondence
between IP addresses and machines. This could happen when IP addresses are assigned
dynamically  so that the same address could be used by different machines over time. It could also
happen because a single IP address is used by several machines; for instance, when a proxy is used
to handle outgoing HTTP requests, all users going through the proxy will appear to have the same
IP address.

In general hostname and IP-address based restrictions are only applicable for internal networks where
the security policy explicitly dictates that resources are to be made available over HTTP only to a
designated group of hosts on the network. It is not adequate for authenticating mobile clients from
arbitrary locations or clients using untrusted machines.

1.4.2 HTTP/1.0 Basic Authentication

Version 1.0 of the HTTP protocol implements a primitive form of password based authentication
called basic authentication. As stated in the protocol definition, [1]

The "basic" authentication scheme is based on the model that the user agent must authenticate
itself with a user-ID and a password for each realm. The realm value should be considered an
opaque string which can only be compared for equality with other realms on that server. The
server will service the request only if it can validate the user-ID and password for the
protection space of the Request-URI.1

A protection realm is a subset of the document tree with access restrictions such that documents in the
realm are transmitted only to authorized users. When the server receives a request for a document in a
protected realm, it will respond with the name of the realm and request authentication. The client then
sends the user name and password in cleartext. Following the example in the protocol specification, a
typical exchange may proceed as follows:

«server ⇒  user-agent» WWW-Authenticate: Basic realm="WallyWorld"
«user-agent ⇒  server» Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

                                                
1 URI: Universal Resource Identifier. This is a generalization of the notion of URL, Uniform Resource Locator.
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The problem with this approach is that user names and passwords are transmitted in the clear. This is
not apparent from the transcript above, because the two strings are encoded after concatenation. The
particular scheme used is base-64 encoding, a straightforward process associated with the
Multipurpose Internet Mail Extensions (MIME) standard as defined in [6]. This encoding is used for
embedding  binary data inside ASCII text, using six-bits of each printable ASCII character, roughly
giving a 33% expansion of the original data. Since base-64 encoding and decoding is very simple,
basic authentication is vulnerable to eavesdropping.

1.4.3 HTTP/1.1 Digest Authentication

To overcome the shortcomings of basic authentication, RFC 2069 defines digest authentication in
conjunction with HTTP/1.1. This document states: [3]

Like Basic Access Authentication, the Digest scheme is based on a simple challenge-response
paradigm. The Digest scheme challenges using a nonce value. A valid response contains a
checksum (by default the MD5 checksum) of the username, the password, the given
noncevalue, the HTTP method, and the requested URI. In this way, the password is never sent
in the clear. 2

When the user-agent requests a document without prior  authorization, the server responds with the
name of the protection realm and the challenge, which is referred to as a nonce. The user agent
obtains the username and password from the user, prompting if necessary.  An intermediate value is
obtained by concatenating the protection realm, username and password, and applying a secure-hash
function to the resulting string. This value is then concatenated to the nonce, and hashed once again
to produce the response to the challenge. The default hash algorithm used in this procedure is MD5,
described in [7]. A sample exchange from the same RFC, where hypothetical user named Mufasa
requests the document http://www.host.com/dir/index.html:

«server ⇒  user-agent»
WWW-Authenticate: Digest realm="testrealm@host.com", 

nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093", 
opaque="5ccc069c403ebaf9f0171e9517f40e41"

«user-agent ⇒  server»
Authorization: Digest username="Mufasa",

realm="testrealm@host.com",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
uri="/dir/index.html",
response="e966c932a9242554e42c8ee200cec7f6", 
opaque="5ccc069c403ebaf9f0171e9517f40e41"

(The opaque string is meant to be passed back to the server exactly as is. The name is derived from
the fact that the user-agent does not attempt to interpret or operate on the string in any way.)

Digest authentication is an improvement over basic authentication, although it paradoxically
introduces a problem of secure storage. With basic authentication the server does not need to keep a
copy of the passwords in the clear. Needham and Guy suggested that a one-way hash of the
passwords should be stored instead. [10] The password transmitted by the client is verified by
computing its hash and comparing against the stored entry. The advantage of this scheme is that the
file containing the one-way hash values is useless to a potential adversary. This list can even be made
publicly accessible, as in the case of the UNIX password system. [10, 12] In the case of digest
authentication, the server does not store usernames and passwords in the clear either. Instead a one-
way hash of the protection realm, username and password is stored. But this is precisely the same

                                                
2 MD5 stands for “Message Digest 5,” a secure hash-algorithm developed by Ronald Rivest. MD5 is a strengthened
version of MD4, which in turn is based on MD2. See Schneier [6] for a decription of these algorithms.
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combination used by the client to respond to the challenge, and as such these values have to be stored
securely.  The authors of RFC 2069 state: [3]

The security implications of this are that if this password file is compromised, then an attacker
gains immediate access to documents on the server using this realm. Unlike, say a standard UNIX
password file, this information need not be decrypted in order to access documents in the server
realm associated with this file. … There are two important security consequences of this. First the
password file must be protected as if it contained unencrypted passwords, because for the purpose
of accessing documents in its realm, it effectively does.

There are a number of generic criticisms which apply to both basic and digest authentication, and in
fact to any protocol based on passwords. The criticism can be summed up by saying that these
schemes are not scaleable beyond a dozen hosts because of their dependence on sound password
management strategies on the part of the end-user. Historically it has been the case that:

1. Users choose bad passwords vulnerable to intelligent guessing and the problem is compounded as
the number of sites increases. This is supported by extensive literature on cracking passwords on
UNIX systems by copying the password file (usually stored in /etc/passwd) and mounting a
dictionary attack off-line. Donald Klein was able to crack up to 40% of passwords in one
experiment described in [21]. It is possible to impose some restrictions on the choice of
passwords; for example by requiring a minimum length or mixed-case characters, or even issuing
random strings as passwords. Good passwords have high information content and, a priori
difficult to remember. In contrast, a natural language such as English has small entropy per
symbol which is why users often find it convenient to choose words from a dictionary. In order to
get around the difficulty of remembering several good passwords, sometimes users decide to
choose the same password on different systems or reuse another password with minor
modifications, both of which are unsound practices. Digest authentication protects against
password sniffing but not against dictionary attacks targeting poor choice of passwords.

2. Users forget their passwords and are denied service until they contact the site administrator to
request that the password be reset to some agreed value.

3. In order to remember a large collection of passwords, users are forced to write down passwords on
paper or otherwise store them in an unsecure location, including cleartext files on the computer.

4. Having to type username and password every time a site is visited makes for an extremely tedious
browsing experience. The current generation of popular web browsers remember the last user
name and password typed and will resubmit these if necessary, without prompting the user. Care is
taken to avoid writing this information to permanent storage, although there is no way to enforce
such a policy on operating systems with virtual memory where the page could be swapped to disk
anytime. For this reason, trying to hold more than a single username/password pair in memory is
not a good idea.

5. It is conceivable that all username/password pairs will be stored encrypted on persistent storage
with a master key required to decrypt the whole collection. This approach suffers from primarily
restricting the mobility of the user. In addition, keeping the passwords on the local machine is
dangerous because it makes the machine an attractive target for vandalism. If the integrity of data
on the persistent storage is compromised through a deliberate attack, software failure or
administrative error, the passwords are permanently lost.

6. Users need to register with the site before either form of authentication can be employed.
Typically there is a registration page where a form is submitted through the HTTP protocol. The
site processes the request and possibly contacts the user to confirm the registration, a potentially
time-consuming exchange. The two parties have to agree on the password— typically determined
unilaterally by one of the parties— which requires an encrypted  connection.

1.4.4 Cookies

A cookie is a piece of data stored by a web-site on the client’s machine. Cookies were proposed in [4]
for storing persistent state information as an extension to version 1.1 of the HTTP protocol. Since
HTTP is a stateless protocol, they are the only way of tracking users across multiple visits. Cookies
were not designed to provide a form of authentication although they are currently used by web sites
to solve a problem similar to the one examined in this paper, so we will give an overview of the
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subject here. A cookie is set by the server in response to an HTTP GET request. RFC 2069 defines a
new response header which the server uses to transmit cookies to the user-agent. An example is given
below:

«server ⇒  user-agent»
Set-Cookie: sessionID=24590812+page=document.html+visits=1;

This is a single cookie, even though the information encoded is logically segmented into several
fields. The data contained in the cookie is a string composed of a subset of the printable ASCII
characters. Spaces and special characters need to be escaped; the rules for encoding arbitrary strings
into cookies are described in [17].  On subsequent requests for the same URL, the cookie will be
returned to the server as part of the request. Access control on cookies is implemented by domain
and pathname. When a cookie is set, the server may optionally specify a domain name and path such
that the cookie will be transmitted to the server whenever the user-agents attempt to retrieve a page on
a host in that domain and located under that path  in the document tree.

This feature is commonly used to track users across different pages on a given site, providing an
unreliable form of authentication. Upon encountering an unknown user, the server generates a new
identifier and send this to the user in a cookie. The user-agent will successfully authenticate itself on
future transactions by producing this identifier. One problem with this approach is that cookies are
transmitted in the clear and easily captured by eavesdroppers. (This will not happen if the connection
uses SSL, where all cookies set by the server or submitted by the client are encrypted.) Because of this
problem, cookies are only used for low-risk authentication needs such as content customization.
Another problem is that they tie down the user identity to the local machine where the cookies are
stored. The underlying assumption in this model is that most people navigate the web from the same
computer, and this argument could even be used to promote cookies since a machine at home
presumably enjoys a degree of physical security. This assumption is true to a large extent today,
although [15] argues that it is rapidly becoming necessary to accommodate mobile users. Writing
cookies to permanent storage attached to the local machine suffers from all the shortcomings
associated with storing passwords and keys. In the case of hardware failure or accidental corruption
of the storage media, the cookies are lost along with the identification functionality on sites requiring
them.

There are equally important privacy implications of cookies. Garfinkel and Spafford in [13]
distinguish between privacy-protecting and privacy-compromising cookies. Because cookies are
specific by domain and path, it is not possible for two unrelated sites to share cookies. This protects
the privacy of the user to some extent, although it is still possible to subvert the restriction as follows.
Suppose Mallory is a malicious site interested in deducing the navigation patterns of users. If two site
administrators Carol and David agree to cooperate with Mallory, they will each place a resource on
their pages which is located on Mallory’s site. This is very easy to do with inline images, described in
section §1.3.  When the user visits such a page on Carol’s machine, the user-agent software will
deduce that an object on the page is located on Mallory’s site and attempt to fetch it. Suppose
Mallory sets a cookie containing a random value at this point, and records this random number.
When the user visits David’s page and is directed to Mallory’s site to grab the remote object, the web
browser will send the cookie as part of the HTTP request and Mallory can now determine that it is the
same user who visited Carol’s page. Stein [14] and Spafford [13] describe a well-known case where
this was done by a company to rotate the advertisements that users saw on different web pages.

1.4.5 Secure Sockets Layer client authentication with certificates

SSL is a transport layer protocol that was first proposed in 1995. An official specification of the
current version can be found at [29], and descriptions are given in [9] and [13]. SSL provides
authentication, secrecy and message integrity. For our purposes, the relevant part of the protocol is
the client-authentication mechanism. SSL makes extensive use of certificates. These are X509.v3
certificates signed by a trusted party known as certification authority and contain the owner’s public
key. The user-agent performs the authentication process on behalf of the client by proving
knowledge of the private key corresponding to the public key embedded in the certificate.
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The X509 certificate format is an ISO standard. Each certificate contains information about the
owner, referred to as the subject, the subject’s public keys, a serial number and information about the
certifying authority. The latest version of the X509 standard is extensible, allowing arbitrary
name/value pairs as attributes, in contrast to the standardized fields in the original specification. The
structure of a certificate is shown below, adapted from [13].

Version
Serial Number
Algorithm Identifier:
- Algorithm
- Parameters
Issuer
Period of Validity:
- Not Before Date
- Not After Date
Subject
Subject’s Public Key:
- Algorithm
- Parameters
- Public Key
Signature of CA

The structure of an X.509v3 certificate

An X509 certificate effectively binds a public-key—and by implication the corresponding private
key— to a set of user credentials. Parties honoring the certificate agree that an entity capable of
demonstrating knowledge of private key is the subject whose distinguished name appears in the
certificate, and that the information provided in the certificate about the subject is believed to be
correct by the certifying authority. Both the server and the user can have certificates. The SSL
protocol requires server certificates for verifying identity of the server, although there is an
anonymous mode with Diffie-Hellman key exchange where neither party is authenticated and the
communication channel provides secrecy but not authentication. Client certificates are optional.
Currently server certificates are common and SSL is a de facto standard for sites dealing with
confidential information, such as credit card numbers. By comparison, very few individual certificates
have been issued although Stein argues in [14] that this trend is likely to change in the future.

The use of certificates to identify the client introduces serious privacy concerns. Disclosure of
sufficient information to uniquely identify an individual is necessary in some circumstances. The
question raised by the SSL protocol is whether there are alternatives to digital certificates for
achieving that goal. There are important drawbacks to the X509 approach: Disclosure is an all-or-
none operation, even if the server is interested in a small fraction of the information embedded in the
certificate. There is no way to selectively disclose some of the fields and keep others hidden from the
server. The amount of information required varies by site and to accommodate all possible modes of
use, certificates have a bias  in the direction of too-much-information, rather than too-little-
information. As a result, the subject field in the certificate is crammed with personal information. SSL
aggravates the situation because all certificates are sent in the clear, before the two parties start
encrypting the communication channel. An eavesdropper  will not succeed in reading the
application-level HTTP data, but he will nevertheless learn the identity of the user involved. Finally,
some  information is too sensitive to be included in a certificate, because certificates are public
documents which can be circulated beyond the control of the user. A good example would be credit
card numbers and medical records. Certificates are useless when it is necessary to convince another
party about the accuracy of this information.

1.5 The framework for authentication protocols

In view of the considerations above, we would like to propose an authentication protocol built around
two independent goals:
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• A: Maintain persistent client identity across sessions.
• B: Prove user credentials to the other parties as necessary.

The two problems are independent in the sense that any scheme which meets the requirements for
problem A can be used in conjunction with any other scheme that is in accord with the requirements
for problem B. The protocols in existence today solve both problems at once. Specifically for the
World Wide Web we argue that making a distinction between the two and defining separate protocols
to handle each one is beneficial. The envisioned mode of operation is that the client proves
credentials only once by executing protocol B, and then protocol A ensures that the site will be able
to relate the client to these credentials on subsequent transactions. By implication, protocol A is light-
weight and can be carried out as many times as necessary. In contrast protocol B could involve
significant amounts of computation or otherwise time-consuming on-line verifications with a
certification authority.

Protocol A provides the minimal functionality required for sites that need to track users across
different sessions without having to learn more about their identity. This protocol combines two
apparently contradictory notions: authentication and anonymity. On the one hand users are
completely anonymous because it is not even possible to determine whether two sessions on different
sites involve the same user. On the other hand, the users are authenticated before accessing resources
and impersonation by malicious parties is reasonably difficult. A client  who does not participate in
the authentication protocol is considered an unknown user. Since  authentication is always with
respect to some reference point, it is natural to raise the question of what one should take to be the
defining feature of “Alice.” At least with respect to this protocol, the answer is that Alice’s identity is
effectively constituted by her history of visits to the web site; authentication proceeds by correlating
her identity with a history of previous exchanges. For lack of a better term, we will refer to this
restricted sense of identity as persona. Ellison argues in [22] that this is a legitimate interpretation of
identity in everyday affairs; individuals are viewed entirely in terms of a history of  interactions. This
is in contrast with the attribute-based notion of identity where entities are identified with a collection
of attributes, more or less unchanging over time.

In most cases when disclosure of personal information is necessary, it is reasonable for the user to
directly provide the information and for the site to assume that the given information is correct. To
avoid manually typing in the same fields repeatedly, the user-agent maintains the personal
information in a secure location and automatically gives out the requested fields when authorized by
the user. There are already two proposals along these lines: one is the Open Profiling Standard
defined in [26] and the other is the World Wide Web Consortium’s Platform for Privacy Preferences
initiative, summarized in [27]. The idea in both cases is that the site publishes a privacy policy. This
policy lists the fields in the user profile that the site would like to learn and states how the site will use
the data gathered. The user agent then determines if there is a match between the user privacy
preferences and the site policy, submitting a subset of the requested information if appropriate.
Presumably the site uses the information to selectively improve the content and since such content
customization is going to benefit the end user, it is plausible to assume that users will have an
incentive to supply correct information. In an increasingly large group of transactions however, this is
not sufficient because there is more than content selection involved. Financial transactions or similar
processes bearing legal implications require higher standards for authentication. In such cases it will
be necessary to prove facts about the user’s identity by enlisting the help of a trusted-third party.
This is the goal of protocol B.
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2.1 Requirements and rationale for Protocol A

Parties involved:
• Alice, user performing transactions with web sites.
• Bob, site owner handling requests for transactions.
• Trent, trusted-third party.

Requirements:
1. The protocol maintains a persistent identity for Alice across multiple sessions.
2. All persistent data storage is on the server side.
3. Weak anonymity: Bob does not gain any information about Alice.
4. Strong anonymity: Suppose that Alice executes the protocol with two different sites, say one

operated by Carol and another one operated by David. Even if Carol and David collude by
sharing transcripts, it is computationally difficult to determine that Alice is involved in both cases.

Bob will be able to determine when Alice visits his site again but he will not be able to learn anything
else about Alice unless she provides more information herself. The term persona was introduced
earlier for this sense of identity. We introduce a final requirement that:
5. Alice can assume an arbitrary number of persona such that Bob cannot correlate any two of these

to the same user-agent.

The requirement labeled strong anonymity logically implies the weaker version, also making it
redundant. This stronger version is introduced because it is not sufficient to ensure that one site by
itself cannot learn personal information about the client. There are trusted sites where  users may
willingly disclose identifying information. Suppose that Alice trusts Carol and has already disclosed
personal attributes on Carol’s site. This information is later compromised, either through malicious
intent on the behalf of Carol or an accidental breach of security on her site.  If requirement #4 were
not satisfied, then this would compromise Alice’s privacy on every other site as well, because each site
would be able to determine that Alice is the same person who visited Carol’s site. From this point of
view, the strong version ensures that a loss of anonymity remains strictly  localized to one site.

Assumptions:
I. Trent’s public key is known by all participants.
II. All sites wishing to take part in this protocol have certificates signed by Trent. A certificate will be

denoted by C. It is assumed that logically distinct sites have different certificates.

Outline of the protocol:
Here we give a brief outline of the protocol. Details will be provided in the next section. We assume
that there are two pieces of information available, one is a secret piece of data U which identifies the
user-agent and the other is a public piece of data C which identifies the site. C is a certificate issued
by Trent and U is the user-identifier. U is generated randomly by Alice and needs to be kept secret
because all authentication is based on U; compromise of U implies the compromise of access to all
sites. To authenticate herself, Alice combines U and C to generate a secret S and a description D of
the secret which can be made public without compromising S. In other words, it will be
computationally difficult to retrieve S from D. Alice sends D to Bob. Bob can identify Alice by D
since she can reliably reproduce this value on subsequent visits. (Alternatively, Alice may directly
generate a user-name by applying a different function on U and C.) Alice authenticates herself  by
proving that she knows S, which Bob can verify using D. This is similar to authentication based on
user-name and password, except that the client never has to transmit a password to the server. Alice
only needs to transmit D which can be done over an unsecure connection since it is computationally
infeasible to derive S from D.

2.2 Protocol A: Generic description

In this section we give a generic description of the protocol. Specific implementations using existing
public-key cryptosystems and secure hash-functions will be considered in the next section.
Let S be the set of secrets, C the set of certificates and U the set of user-identifiers.
0. Bob sends the certificate C and Alice verifies the signature on C.
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1. Alice uses the parameter U and the site certificate C to generate a secret S for the signature
scheme by  computing S = F(C,U) where   F : C U S× →  is a publicly-known function with the
following properties:

•   Given  and ,  it is difficult to find  such that  S C U F C U S∈ ∈ ∈ ( ) =S C U ,

• 
    

Given  and  for   it is 

difficult to determine whether    

S C i k

U i i k F C U S

i i

i i

∈ ∈ =

∃ ∀ ≤ ≤( ) ( ) =
S C 1 2 3

1

, , , ,

,

K

2. Alice computes D = V(S), the corresponding piece of information which could be used to verify
that Alice knows the secret S.

3. Alice sends H(D) to Bob, where H is a one-way hash function. This is can be thought of as a
nickname Alice generates specifically for use with Bob. All relevant information about Alice will
be indexed by H(D). Bob can look up in the site database for an entry that matches H(D).

4. If he does not encounter such an entry, either Alice is visiting this site for the first time or the site
has otherwise decided to discard Alice’s identity. In this case the registration sequence is
executed. Bob requests that Alice transmit the public piece D.

5. In either case, Bob is now in possession of D. Bob sends a challenge N to Alice to verify that
Alice does indeed know the corresponding secret piece S. Alternatively, Bob and Alice jointly
generate the challenge in such a way that neither one has complete control over the outcome.

6. Alice computes the answer R(S, N) to the challenge and sends this to Bob, who verifies that based
on D, N and R(S, N) Alice does indeed know S.

In step #4 a hash of the secret D is transmitted to limit the exposure of the public piece. This forces a
potential eavesdropper to be listening on the connection precisely when the public piece D is being
transmitted, which will happen relatively infrequently. Without this public piece, it is even harder for
an eavesdropper to derive the corresponding private key from subsequent exchanges. This is not an
essential part of the protocol, since the security does not  in any way depend on the secrecy of D. It is
nevertheless more convenient to identify H(D) with the user-name rather than D itself, because H(D)
is usually short and has fixed length, in contrast to D which is longer and has variable length
determining the strength of the cryptosystem. It is possible to convert H(D) into human readable
form if necessary, allowing people to communicate these numbers in a manner similar to credit-card
numbers.

Τhe site can change the certificate without necessarily losing the persistent identity for Alice. Here is
how Alice can maintain her identity when the site represented by Bob switches from C to ′C .
Denoting the new parameters by primes, When Alice visit the site, she will first be asked to execute the
protocol with certificate ′C . She computes ′ = ′( )S F U C,  and ′D . Since Bob does not encounter an
identity matching H D ′( )  in this case, he informs Alice that a new certificate has been deployed
recently and asks Alice for H D( ) . If this entry is encountered in the database, Bob can now update
the information by moving all the fields indexed by H(D) under H D ′( )

2.3 Analysis of the protocol and possible attacks

There are three different levels at which an adversary Eve could attack the protocol:
I. Eve discovers a way to impersonate Alice without knowing S. For simplicity, assume that Eve has

found a way of responding to the challenge which has some non-negligible probability 0 1< ≤p
of fooling Bob.

II. Eve recovers S; she can impersonate Alice every time on Bob’s site.
III. Eve recovers U; she can impersonate Alice successfully on all sites.

To give an example where an adversary is able to accomplish I without knowing S, consider the RSA
cryptosystem. Suppose Alice uses an RSA system with modulus N, signing exponent s and verifying
exponent v satisfying v s N⋅ ≡ ( )1modφ , where φ N( )  is the number of units in the ring Z NZ . Bob

sends Alice a challenge c and Alice responds with r c Ns= mod . Bob verifies that r r Nv ≡ mod .
Now suppose Eve knows the responses   r r rk1 2, , ,K  corresponding to k different challenges
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  c c ck1 2, , ,K . Here is how she can impersonate Alice without knowing the signing exponent s. When

Bob sends the challenge C, Eve looks for a set of numbers   e e ek1 2, , ,K{ } such that

C c Ni
e
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k
i≡

=
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mod

If she can find such a set of numbers, then she can impersonate Alice because the response
corresponding to the challenge C is given by

R r Ni
e

i

k
i≡

=
∏

1

mod

From this example, it is clear that the difficulty of I and II depends on the specific algorithms used
for  implementation. Zero-knowledge proofs have the advantage that I and II does not become any
easier when the protocol is used in interactive mode. Because of the zero-knowledge property, Bob
does not learn anything new about the secret—and by implication, neither does an eavesdropper.

Even if Eve can derive S from D, she will be faced with the problem of recovering U from F(C,U)
which is difficult, by the first requirement imposed on F. The strong anonymity requirement is
satisfied in this case: Suppose Eve has   S S Sk1 2, , ,K{ }  for k different sites and the corresponding site-

certificates   C C Ck1 2, , ,K{ } . By the second requirement imposed on the function F, it is difficult to

determine whether there exists a user-identifier U such that ∀ ≤ ≤( ) ( ) =i i k F C U Si i   1 , . This
guarantees that Eve will not learn whether the same person was involved in each case. Clearly if Eve
cannot determine whether a given set of secrets   S S Sk1 2, , ,K{ }  was generated by the same user, she

cannot determine whether a set of public keys    D D Dk1 2, , ,K{ }  was generated by the same user.
This follows from the fact that an adversary in possession of the secret can compute the
corresponding public key, implying that the first problem reduces to the second one.

It was pointed out in  the last section that the Bob can get a new certificate from Trent and still
maintain a persistent identity for users by verifying knowledge of the secret corresponding to the
previous  certificate.  Private keys derived from old site certificates are not useful provided that the
user associated with the key has already visited the site and replaced the old public key with the newer
one, forcing the site to discard the former. (Recall that a public key can only be replaced by a party
in possession of the corresponding secret.) A potential vulnerability in the system occurs when the
site has changed to a new certificate but still remembers the public keys generated from a previous
certificate. In this case, the adversary could find a user who has not visited since the new certificate
has been installed and successfully impersonate that user by demonstrating knowledge of the private
key derived from the previous certificate.

If the certificates were not signed by a trusted third-party, the protocol would be subject to a man-in-
the-middle attack. Here is how Mallory could proceed: When Alice visits Mallory’s site, Mallory will
send Bob’s certificate CB  instead of her own certificate CM . Then Alice computes a public key D
based on CB , which is Alice’s public key for Bob’s site. Mallory at this point initiates a network
connection to Bob and requests pages from his site, presenting the public key D. When Bob sends
Mallory a challenge to confirm that she knows the secret corresponding to D, Mallory simply
forwards the same challenge to Alice. Alice does not suspect anything unusual and responds to the
challenge with R. Mallory can now present R to Bob, succesfully completing the authentication
process. This situation will be avoided if the certificates are signed. When Mallory substitutes CB  for
her own certificate, Alice will detect this because  CB  has Trent’s signature to the effect that it belongs
to Bob. This is based on the assumption that Alice already knows  something about the person that
she intends to communicate with. For example, if certificates contained the name of the subject, Alice
would have to know the name of the person she intends to communicate with.  Garfinkel [13] points
out—specifically in the case of X509 certificates, although the criticism applies to digital certificates
in general— that there is a potential problem with certificates when there is insufficient information to
identify the other party.
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Since the user-identifiers are generated by Alice herself, she can assume any number of persona,
limited only by the size of the set of secrets and the set of user-identifiers. Each persona corresponds
to a choice of U . For example, Alice can use U1 for business purposes and U2  for personal
navigation. She can  maintain multiple presence on the same site with different persona. Since a
single user appearing under two different persona is indistinguishable from two different users,  Bob
will not be able to determine that U1 and U2  are the same user.

There is one other problem in the protocol which needs to be considered separately for each
implementation. It is conceivable that two different users generate the same secret on the same site.
The protocol will not detect this situation but effectively treat them as the same user. Suppose Alice
has already visited Bob’s site and sent her public key DAlice . When Carol visits the site, she might
generate the same secret S SCarol Alice=  and consequently the same public key D DCarol Alice= , leading
Bob to believe that Alice has returned. Since Carol successfully completes the authentication process,
she will be given access to the site as it would look to Alice. This situation will be referred to as a
collision, in analogy with collisions generated by hash functions. Clearly this is an undesirable
situation and we would like to argue that the chances of encountering a collision are extremely small.
Note that this situation may arise even if Carol has no intention of impersonating Alice. It is still a
problem because this coincidence will prevent Alice and Carol from having different identities on the
site. Another type of collision is possible when S SAlice Carol≠  but H D H DAlice Carol( ) = ( ). This scenario
is not taken into consideration because it is easily resolved by transmitting the public key D instead of
the hash H(D).

When calculating the likelihood of a collision, there are two scenarios to consider. Given the secret S
corresponding to some U, it is highly unlikely that any other user on the same site will have the same
secret. On the other hand, given a large collection of U values, the probability that some pair of users
generate the same secret may be non-negligible. This situation is sometimes referred to as the
birthday paradox. [10, 11] In the abstract, the birthday paradox is concerned with selecting elements
uniformly at random from a set of size N. The expected number of draws until some element

encountered earlier appears again is O N( ) .  We would like to point out that such problems are not
unique to implementations of protocol A. For example, it is conceivable that when generating RSA
keys, a user  accidentally hits upon a prime dividing the modulus generated earlier by  another user.
This is possible in theory but not in practice because of the extremely small probability that two
randomly generated primes with hundreds of digits are equal. In a similar vein, we would like to
argue that the chances of coming across collisions are negligible. Since this probability depends on
the specific algorithms used, the analysis has to be undertaken separately for each implementation.

2.4 Protocol A: Implementation based on the Digital Signature Standard

The description given above is referred to as the generic description since it leaves out the exact
details of the implementation. This provides for flexibility in the choice of algorithms. An
implementation is defined by fixing the value of three parameters:
• The function F, used by Alice to derive the secret S from U and C.
• The function V, used by Alice to derive the public-description of the secret D from S.
• The function R, used by Alice to respond to the challenge and a corresponding function P used

by Bob to verify that the challenge has been answered correctly.
There is also some flexibility if the challenge is to be generated jointly by the two parties, instead of
being determined by the server. This is desirable to prevent chosen-ciphertext attacks against the
public-key cryptography system used to prove knowledge of the secret. For example, if the secret is a
private key used for encryption, it is usually desirable to prevent Bob or a malicious party interfering
with the connection from asking Alice to encrypt  arbitrary strings.

The choice of cryptosystems for an implementation will depend on three factors:
I. The user does not have to exchange any secrets with the site. All communications can take place

in the clear. The protocol requires that Alice compute S by herself, without any help from Bob
and that D can be made public without affecting the security of the protocol.
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II. It is advantageous to have an authentication protocol which can be carried out in non-interactive
mode and converted into a signature scheme. This is useful if the user wants to communicate with
the site asynchronously. That is to say, Alice should be able to send a message to Bob, without
Bob being available at the time to provide challenge values. Bob should be able to read the
message anytime in the future and be convinced that it has originated from Alice. For example, if
the public piece of the secret could be used for verifying digital signatures, Alice can send signed
anonymous email to Bob, with her username H(D) attached, linking the message to her history of
transactions on the site.

III. There should be efficient means of generating the private and public pieces.

I  requires that a public-key cryptosystem be used. II restricts the class of possible systems to digital
signature protocols, and zero-knowledge proofs which can be converted to signature schemes. III
eliminates a subset of the remaining candidates. In particular RSA-based systems are ruled out, since
prime generation takes much longer than signing/verifying and it is not possible for users on the
same site to share the modulus. Suppose all users on the site shared the modulus generated earlier by
Bob, and only each user only gets to choose the signing key. There would be two problems with this
arrangement: First Alice would need help from Bob to compute the corresponding verifying key.
Second, users would be able to impersonate each other, since knowledge of one pair of
encryption/decryption keys allows an adversary to factor the modulus or derive other private keys
without factoring the modulus. [10]  Similarly, Alice can not use the same modulus on different sites
because this would violate the strong anonymity requirement. There are two well-known
cryptosystems remaining which satisfy all the requirements. One is the Digital Signature Standard
(DSS) introduced in 1994 by the National Institute of Standards and Technology. The other is
Schnorr’s zero-knowledge proof-of-identity protocol, first introduced in [24]. These are very similar
in terms of the mathematical constructs used and the secret is a discrete logarithm in each case. We
propose an implementation of Protocol A based on  DSS.

Review of DSS:
DSS is a public-key cryptosystem which can only be used for signatures. The mathematical algorithm
employed by DSS is referred to as  the Digital Signature Algorithm, (DSA). A brief review of DSA is
given here. For details, including a proof that the signature can be verified if and only if the message
hash is the same as the one used in signing, refer to [11] or [18]. DSA is a based on the El-Gamal
cryptosystem, first proposed by Taher El-Gamal in [25]. The ElGamal system can be used to provide
both secrecy and authentication, and relies on the difficulty of computing discrete logarithms in large
finite fields. DSA is based on the assumption that working in a relatively small subgroup embedded
inside the large prime field is also secure. In addition to the modulus p which defines the field,
another prime q is needed to define the subgroup. In contrast to p whose size is variable and
determines the overall strength of the system, the size of q is always 160 bits. The exact value of q
determines the size of the subgroup under consideration.

Digital Signature Algorithm
Public key:
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Summary of DSA

Note that g pmod > 1, since h is a generator of the group and has order p-1; no smaller power of h
can be equal to the identity. In fact the order of g is exactly q. This is a corollary of the following
basic result about groups:

Lemma:

Let  be a finite group and let  denote the order of an element  which is equal to the size of the 

subgroup generated by :  =  # . Then,    

G x x G

x x x i Z m Z x
x

m x
i m

∈

∈{ } ∀ ∈ = ( )

,

:
gcd ,

The private key x is the discrete logarithm of y to base b in the field. This is the motivation for the
conjecture that the security of ElGamal type systems rests on the difficulty of taking discrete
logarithms, although there is no proof of this fact. It is clear that an oracle capable of computing
discrete logarithms in the field Z pZ  can be used to recover the private key and forge signatures.
The converse to this statement has not been proved— namely, that an oracle capable of forging
signatures can be used to efficiently compute discrete logarithms. [10, 11] DSA is based on an

additional assumption, namely that taking discrete logarithms in a subgroup of Z pZ( )×
 of size q is

as difficult as taking discrete logarithms in the field Z pZ . Currently there are no known algorithms
in the literature for taking discrete logarithms in the smaller group more efficiently than solving the
same problem in the whole field. [10]

One major difference between RSA and ElGamal-based systems is that the latter class of algorithms
require reliable  pseudo-random number generators. This follows from the fact that the value of k
used for signing has to be unpredictable and different for each signature. [3] If an adversary
discovers the value of k used to sign the message, the private key will be compromised. This is easily
seen by solving for the private key in the expression for the signature:

x r sk SHA M q≡ − ( )[ ]−1 mod
An adversary who discovers the value of k used for signing the message will have all the values for
the variables appearing on the right hand side and will deduce the private key with a straightforward
calculation. Likewise if two messages are signed with the same k, the adversary can recover the private
key without knowing k. Suppose two different messages with SHA hashes H  and ′ ≠H H  are signed
with the same value of k. Then the adversary has:
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The private key can be recovered by noting that:
k s s H H q≡ − ′( ) − ′( )−1 mod

Since H H s s≠ ′ ⇒ ≠ ′ , the required inverse of s s− ′  exists and k can be recovered.

Assume that each site has generated the values p, q and g in advance, and these are made available to
the client at the time of the connection. (According to [18] these three parameters can be shared
among a group of users.) With this assumption a specific implementation of the protocol is defined
by fixing the parameters as follows:

• Set F U C SHA U C q( , ) ( )mod= + , where plus denotes the concatenation of two strings and SHA
is a function implementing the revised Secure Hash Algorithm, SHA-I as defined in [19]. This
corresponds to the private key x  in the DSS specification.

• Set V S g qS( ) mod= . This corresponds to the public key y  in the DSA specification. Only this
piece of the public-key is different for each user. The other parameters are shared by all users on
the same site.

• Set R S N,( ) to be the DSS signature of N using the private key S. The fact that R(S, N) is the
signature of N can be verified by any party in possession of D, which is the public key
corresponding to the secret S.

There are specific considerations relating to the use of DSS to implement protocol A. It is
conceivable that the site will choose p and q such that the discrete logarithm problem is very easy to
solve in comparison to the same problem in a field of the same size as p. For example, Pohlig and
Hellman proposed an algorithm in [23] which efficiently computes discrete logarithms in the field
Z pZ  provided that p −1 has only small factors; these moduli are said to be “smooth.” In this case
q p − 1 and q is a large prime, so the Pohlig-Hellman algorithm is not going to be efficient in the
field Z pZ . There are other properties of a prime modulus which could make it easy to take discrete
logarithms. We would like to argue that this is not very dangerous. In the first place, the private key
by itself is of no use to the site owner because it is not computationally feasible to derive U from S.
The key for each site is different, so it is not going to help Bob impersonate Alice on any other site.
Bob could presumably give this key to another user who could then go on to impersonate Alice. This
is not a major concern because if Bob is malicious, he could have granted the same person access to
Alice’s account without any authorization. There is nothing Bob can do with the private key that he
could not have accomplished before. Secondly, these moduli are unlikely to be generated randomly,
since they are extremely rare and easy to recognize. More important, NIST recommended a specific
method for generating p and q by starting out with two values called seed and counter. If the site
publishes these two values, anybody can verify that p and q have been generated by following the
same procedure outlined in [19]. (Since this process is time-consuming, it is easier if the trusted-party
performs this check prior to signing the certificate.)  The important point about this proposal is that p
and q are obtained by applying a secure one-way hash function to the seed and counter. A malicious
site could choose cooked moduli but will not be able to produce the corresponding seed and counter.

Since SHA produces a 160-bit hash, each user-identifier should be at least this long and preferably
much longer:   U > H , where   U  is the size of the set of user-identifiers and H is the size of the hash-
space.3 If the user-identifiers are k bits long, an adversary will have to be in possession of at least

                                                
3 The important parameter is the entropy of the distribution used for generating the identifiers, rather than the actual length
of an identifier. For instance, when a 50-bit random seed is used to initialize a pseudo-random number generator which
outputs a 1000 bit user-identifier, the effective length is still 50 bits. We will assume that user-identifiers are chosen from a
uniform probability distribution. In this case the entropy of the distribution is a maximum and equal to the length of a user-
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k 160   different secrets to launch a successful attack to recover the user-identifier U. This is an
information-theoretical argument and completely independent of the question of whether SHA is a
reliable hash function. Under this assumption about   U  we can compute the probability of collisions.
A collision in the sense of section §2.3 directly corresponds to a collision in the hash function. We
can derive a rough estimate of the probability that two users on the same site have the same private
DSA key. Assume  that SHA distributes the hash values uniformly: when a large number of random
strings are hashed and equivalence classes are defined  according to the hash value, there will be
approximately equal numbers of strings in each class. For a site with N different persona, a lower
bound on the probability that there are no collisions is:
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This is the probability that no collisions occur for a given site. If the protocol is implemented by a
billion sites each with a billion different persona, the probability that any site encounters a collision is
less than 2 70− .

This is an efficient scheme because key generation is reasonably fast, requiring only one application
of SHA and one modular exponentiation. Responding to the challenge is also fast, and involves one
application of SHA to hash the challenge, one exponentiation, one addition, two multiplications and
one modular inversion. The random value k can be generated in advance, even before any connection
is made. In fact a common optimization in DSA implementations described in [11] and [19] is to
generate a sequence of k values, along with the corresponding inverses and r values. This optimization
is not applicable here in full, since the values of p, q and g depend on the site.

As of this writing in early 1998, the most efficient way published in the literature for attacking a DSS
signature system is to derive the private key by solving the discrete-logarithm problem. We argued
above that the site will not gain anything by doing this. It follows that the major threat is from
eavesdroppers. The fastest algorithms for the discrete-logarithm all have a very long  precomputation
stage, after which taking individual discrete logarithms in the same field is relatively easy. [11] Since
all users on the site share the same modulus p, if an adversary succeeds in completing the
precomputation for the field Z pZ  he will be able to impersonate any user at will.

2.5 Integrating Protocol A into the existing WWW security architecture

In this section we would like to consider the issues likely to emerge when attempting to integrate the
protocol into the existing WWW architecture. The assumptions listed in section #2.3 are valid to a
large extent: there are already certification authorities issuing signed certificates and the standard
distribution for popular web-browsers include the public-keys of the CAs. This infrastructure was
developed mainly to support the SSL protocol, which has become the standard for electronic
commerce applications. The number of sites carrying signed X509v3 is rapidly increasing. For sites
which do not have certificates, it is possible to substitute an implicit piece of information— such as
the hostname or the complete URL of the object being retrieved— in place of the certificate. The
problem with this is that it opens up an opportunity for man-in-the-middle-attacks if the DNS system
can be subverted, because it is equating the identity of the site with a network address.

Care has to be taken to ensure that the goals envisioned in the protocol are not compromised by other
means. One of the headers transmitted in an HTTP request is the referrer, which is the page the user
had last visited.  This feature was designed for the purpose of discovering broken links. Suppose that
a link on Carol’s page to an object on Bob’s site is invalid; perhaps Bob moved the object somewhere
                                                                                                                                                            
identifiers in bits. Because of this assumption, we can continue to refer to “the length of a user-identifier” to mean the
entropy of the distribution.
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else or deleted it entirely. If Alice tried to follow this link and ended up requesting a non-existent
object from Bob, she would get an error message and Bob would learn that Carol has a broken link
on one of her pages. Unfortunately this violates the privacy of the user by allowing one site to learn
what document the user had been viewing on a different site. This is especially worrisome because
URLs can encode additional information such as search queries. [13, 14] Another way of compiling
information about a user’s browsing history using cookies was summarized earlier. It is not too
dangerous because it requires cooperation between the sites and web browsers today can be
configured to drop all cookies.

The important point here is that protocol A can be exploited in the same way as cookies. This is a
consequence of the structure of HTML documents. In particular, retrieving a URL does not always
mean dowloading the contents of an existing file in the document tree. For example, it is possible to
indicate a script to be executed on the server side and even specify arguments to be passed to the
script. This means that for all practical purposes, a hyperlink can encode arbitrary information. When
a request for such a URL is received, the script is run with the indicated parameters and the output is
sent back to the user as an ordinary web page. A corollary is that it is possible to generate web pages
dynamically and send a different page to every user.  Suppose that Bob and Carol are site owners.
Each one places a different hyperlink link on their page to an object on Mallory’s site; say Bob has
the link LB  and Carol has the link LC . Each link encodes information about Alice’s site-specific
public key. That is to say, LB  contains DAlice

Bob  and LC  contains DAlice
Carol , where superscripts on the

public-key indicate the site and subcripts indicate the user involved. When Alice visits Bob’s page, the
user-agent will retrieve the object at location LB , which happens to be on Mallory’s site; Mallory
makes a note of DAlice

Bob at this point. Similarly, Alice will try to fetch the object at location LC when she
views Carol’s page, unintentionally giving away DAlice

Carol  to Mallory. Since protocol A allows Mallory
to determine that these requests are from the same user, she can inform Bob and Carol that the keys
DAlice

Bob  and DAlice
Carol  belong to the same user. The lesson here is that there are issues specific to the

WWW which could lead to a compromise of the protocol. A general rule for avoiding these situations
is to avoid executing the protocol when downloading an object which is located on a different host
than the page containing the link to the object. (This will not solve the problem completely, because
the link LC  could be an ordinary link on Carol’s page and Alice herself may decide to visit the page
associated with the link.)

A user only needs to generate an identifier U to take part in the protocol. Since this parameter is
meant to be kept secret and there is no correspoding public piece to share, there are no distribution
problems involved. The user-identifier does not have to registered with a trusted party or escrowed.
Generating a user-identifier requires a reliable source of randomness, but this functionality is already
bundled with the current generation of web browsers; they are capable of generating keys for public-
key cryptosystems. Generating user identifiers is easier than generating public-keys because there is
no mathematical structure to the set U; any binary string is an acceptable user-identifier. When Alice
needs a new persona, all she has to do is to generate a new user-identifier. The whole problem is one
of secure storage and management of the identifiers. At any given time Alice will have a collection of
different persona represented by the user-identifiers   U U Uk1 2, , ,K . The challenge is to protect the
collection against unauthorized access, at the same time allowing Alice to use any persona when
necessary, add new identifiers or discard old ones. The problem is identical to managing private keys,
and once again existing software is capable of performing these functions.

In view of these considerations, we conclude that minor modifications to the user-agent software will
make it possible to leverage the existing WWW architecture to implement protocol A.
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3.1 Protocol B: Motivation and assumptions

We first provide an outline of the protocol. Before participating in the protocol, users register with the
trusted-party and disclose as much information as necessary. The structure of the information
accepted by the trusted-party is a set of ordered pairs A V, . The interpretation of each ordered pair
is that the attribute A of the user has value V. Examples of attributes commonly used would include
biographical data such as name, date of birth, address, occupational data such as profession, company
name, position, yearly salary and even personal information such as hobbies.  The envisioned mode
of operation is that the site requests permission to execute queries with the trusted-party.  Since some
of these attributes are considered confidential information, the user gets to choose what type of
queries can be executed by each site. Let    P denote the set of all possible queries. We assume that
there exists a language for encoding queries such that the user, the server and the trusted party all
agree on the semantics of a syntactically valid query string. The site sends a set of queries to the
client. The user-agent consults with the user to determine to determine a subset of the queries that the
user consents to answer. For this subset, the user-agent sends an authorization to the server who
forwards it to the trusted-party. The trusted party verifies that the authorization is valid and for each
authorized query, sends the results back to the site.

Neither the user nor the trusted-party has to do any additional work off-line, since they would have to
go through the same process of verifying credentials before the certificate is digitally signed. The
same arrangements are necessary to convince the trusted party that the user attributes are accurate. All
of this takes place off-line and before any transactions are initiated across the network.  In both cases
a database of user attributes is necessary. The major difference in the mode of operation is that the
trusted party processes queries from sites, providing a real-time interface between the database and
the outside world. On the other hand, when certificates are used the information in the database is
statically encoded once in the certificate and sites refer to this digital document from there on.

Any information that the site infers from a certificate can be retrieved as the result of an authorized
query, assuming that the query-description language admits queries of the form “What is the value of
attribute A?” Similarly, if all user attributes known by the trusted party were disclosed to the site at
once, the site would be able to derive the answers to its own queries via logical deductions. From this
point of view, the information from a certificate is equivalent to the information obtained by
executing queries with a trusted party who is in possession of the same attribute-value pairs contained
in the certificate. Despite this equivalence, there are three important differences.

• In contrast to certificates, it is possible to ask specific questions. For example, it is possible for a
site to verify that the user is not a minor without learning the exact birth-date. This protects the
privacy of the user by revealing information on a “need-to-know” basis.  Such considerations are
important since it is estimated that zip code, date of birth and profession can be used to uniquely
identify an individual.

• The information embedded in a certificate is static. If the value of a single attribute changes, a new
certificate has to be issued by the CA and installed by the client. To complicate the situation
further, the previous certificate has to be revoked. Under certain revocation rules, this means that
the user will lose all access to sites where the previous certificate had been used for authentication.

• In general, it is true that an on-line verification with a trusted party introduces an additional delay
and increases the network load. This is a minor performance penalty since the proof of credentials
has to be done only once in theory. Under the assumption that protocol B is being used in
conjunction with protocol A and that the server maintains a database of user attributes indexed by
the site-specific public key, it will be easy for the server to determine that some  user has already
responded to the queries in subsequent visits.

3.2 Protocol B: Requirements and generic description

Participants:
• Alice user-agent, performing transactions with web sites.
• Bob web-server accepting requests for transactions from clients.
• Trent trusted-third party.
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Requirements:
1. Bob is convinced at the end of the protocol that the answers received from Trent to the queries

reflect accurate information about Alice.
2. Bob cannot find out more facts about Alice other than those implied by the authorized queries.
3. An eavesdropper listening on the connection between Alice and Bob cannot find out any

information about Alice, nor can he use the information to impersonate Alice.
4. Restricted strong anonymity: If Alice performs this protocol with two different sites, say Bob and

Carol, it is not possible for Bob and Carol to determine by colluding whether the same user is
involved, unless this is implied by the answers to the queries.

To clarify the fourth requirement with an example: if Bob and Carol both learn a unique fact about
the user, for example that her name is “Alice J. Random” and her social security number is
738522914, this would imply that they have been dealing with the same person. On the other hand, if
the queries only established whether Alice had a legal driver’s license, then nothing else in the
protocol should allow Carol and David to deduce whether the same user is involved. The problem can
be phrased in terms of the uncertainty about Alice’s identity. When the site has no information about
Alice, the uncertainty about her identity is a maximum; she could be anyone with Internet access. The
uncertainty can be quantified as an entropy. After a query has been answered, the uncertainty is
reduced because the set of all possible users is partitioned into disjoint sets depending on the
outcome. It is helpful to think of the user identity as an independent variable x and the answer to the
query as a function R(x) of the independent variable. Unless R(x) takes on the same value for all
choices of the independent variable—in which case the query would be unnecessary— there is some
information conveyed about x by R(x). The information content of the query is  the difference
between the uncertainty before and after the answer is disclosed. If the uncertainty becomes zero, the
individual is uniquely identified and it is at least theoretically possible for two sites to conclude that
they are dealing with the same person.

 Assumptions:
1. Trent’s public key is known by all participants.
2. Alice has a private key reserved for use in this protocol. Only Alice has the private key and only

Trent has the corresponding public key. (From this point of view, the public-key is a secret
shared by Alice and Trent, rather than being “public” in the usual sense.)

3. There exists a protocol for creating a secure channel between Alice and Trent and a protocol for
creating a secure channel between Bob and Trent. For the purposes of this section, a secure
channel is defined to be one providing authentication with defense against man-in-the-middle
attacks, secrecy and message integrity. The fact that Trent’s public key is known to all
participants is sufficient to  ensure this. No assumptions are made about the connection between
Alice and Bob.

4. Bob has a certificate signed by Trent.

Generic description:

The protocols uses tickets Ti  and ticket series   T T T0 1 2, , ,K . Each ticket Ti  is an integer and the series

is defined by the ordered pair T F0 ,  where F is a function used for generating the next ticket in the

series from a recurrence relation: ∀ > = ( )−i T F Ti i0 1 . We impose the following requirements on the
ticket series, and by implication, on the function used to generate the tickets:
• Given a sequence   T T Tk1 2, , ,K  from the same series, it is computationally difficult to compute

the next ticket Tk+1 without knowing the function F.
• Given a set  A T T Tk= { }1 2, , ,K , it is difficult to determine whether these tickets belong to the same

series. In other words,  it is difficult to determine whether there exists a function F and an initial
ticket s such that  ∀ ∈ ∃ ∈ = ( )t A i N t F si    , where N is the set of natural numbers and F k  is the
function F composed with itself k times.

1. Before visiting any sites, Alice establishes a secure connection with Trent and authenticates
herself. Trent issues Alice a ticket series by sending her T F0 ,  and inserts the same pair into a
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database, along with the fact that it has been issued to Alice. When Alice needs to prove some
facts about her identity by answering queries from the site, she uses one of these tickets. Each
ticket is used exactly once. A ticket series has a lifetime measured either from the time that it is
issued to Alice, or from the time that Alice was last seen performing a transaction with the ticket.

2. Bob sends Alice his certificate and a set of queries,     Q q q q Qa= { } ⊆1 2, , , ,K  where P
3. Alice determines a set S  of queries for which Bob will be granted authorization. It is not

necessary to have S Q⊆ ; Alice can determine a policy for answering queries in advance, applied
independently of the queries received from the site.

4. Alice signs the packet T C Si B, , ,  optional time - stamp , and sends it to Bob.
5. Bob establishes a secure communication channel with Trent and forwards this packet.
6. Trent looks up the ticket in the database. If the ticket does not exist in the database Trent sends an

error message to Bob. If the ticket has expired, Trent sends a message asking Alice obtain a new
ticket series.

7. Otherwise the ticket is in the database and Trent determines that it belongs to the series associated
with Alice. At this point Ti  is removed from the database. Since Trent has access  to Alice’s
public key, he can verify the signature on the packet forwarded. Trent also check  that CB
belongs to Bob.

8. If the signature is valid (and the time-stamp in the bundle, if supplied, is within a tolerance ∆  of
the current time) Trent determines the answers to the queries in the set S Q∩ . He sends the
results back to Bob and inserts T F Ti i+ = ( )1  into the database. Otherwise an error message is sent
to Bob, and the ticket series is now revoked because Ti  had been removed from the database in
step #8.

9. Bob informs Alice of the result. If the exchange has been successful, Alice computes T F Ti i+ = ( )1

to use for the next time that she needs to authorize queries.

No information identifying Alice is ever exchanged in the connection between Alice and Bob. For
this reason, the connection does not have to be encrypted. The query-authorization that Alice sends
to Bob is useless to other sites for two reasons. First Bob’s certificate is included in the signed packet;
if Mallory were to attempt to use it by replacing CB  by CM , Trent would detect this in step #9
because the signature would not verify. Secondly, Bob can only use this authorization once: this is
because the ticket Ti  is only valid for use by Alice once. In case Alice ever happens to hold the same
ticket in the future, an optional time-stamp can be added to the bundle, although this is  unnecessary
if the tickets are selected randomly from a large set.

3.3 Protocol B: Modifications and variants

The protocol as stated has four short-comings:
I. It is not fault-tolerant. In case Bob fails to secure a connection with Trent or communicate the

results to Alice,  Alice may end up with using Ti+1 for the next instance of the protocol when
Trent expect Ti . (The reverse is also possible: if Alice assumes that Bob failed to forward the
packet to Trent, she may believe that Ti  is still valid.) Also note that if the signature on the packet
does not hold for some reason, perhaps because of tampering by a malicious party, the ticket
series is invalidated and Alice has to start from scratch to obtain a new one. Both of these
problems are caused by the fact that at any given instant, Alice has exactly one valid ticket.

II. A corollary to I is that the protocol cannot be executed with different sites in parallel; each
operation must wait for the preceding one to finish so that the next ticket in the series becomes
available.

III. Trent learns about all the web sites that Alice has been visiting, i.e. Alice’s browsing history.
Moreover Trent can deduce additional information about Alice’s relationship to each site because
he has access to the list of queries authorized in each case. From the point of view of Alice’s
privacy, this is worse than simply knowing the browsing history. (After all, given the current
architecture of the Internet a lot of people who could theoretically determine a user’s browsing
history, most prominently the service providers.)  For instance, if Alice authorizes a query about
her credit-card number, this might suggest that she is involved in purchasing goods from the site.
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IV. The protocol allows only one trusted-party and requires all users to be registered with that person.
This is not satisfactory in practice, given the number of people involved. Since there is already an
existing hierarchy of certification authorities, it is likewise necessary to admit multiple Trents,
such that Alice can be registered with any subset of the trusted-parties.

It is easy to modify the protocol to solve I and II. Instead of having a single ticket Ti , Trent will

accept a set 
  
V T T Ti i ir

= { }1 2
, , ,K  of tickets such that V r≤  for some fixed value of r. When the ticket

series is issued for the first time, this set is initialized to   V T T Tr= { }−0 1 1, , ,K . When a ticket t V∈ is
used and the protocol fails— the signature on the packet forwarded by Bob does not verify— set
V V t← −{ } . If the protocol succeeds, set V V t F t← −{ }∪ ( ){ }, where we now assume that F is mostly

collision-free: Given  with  the probability is very high that t t t t F t F t1 2 1 2 1 2, ,≠ ( ) ≠ ( ) This ensures that
for each ticket used successfully and removed from the set, there is a unique ticket taking its place.
This ensures that the size of the set of valid tickets remains constant provided that the tickets are being
used by the authorized party. Each incorrect use of a ticket results in a reduction of the set by one
element. After r  failures the ticket series is invalid because V = ∅ .

Likewise it is address problem IV. Instead of Trent, consider a hierarchy of trusted third-parties, with
a distinguished one labeled the  root. Alice still receives her ticket series from Trent and does not
have to know about the structure of the CA hierarchy. When Trent issues a ticket series to Alice, he

needs to propagate the set of valid tickets 
  
V T T Ti i ir

= { }1 2
, , ,K  up to the root. The root notes that the

tickets in V are associated with Trent. The structure of the hierarchy is also transparent to Bob who
always contacts the root to submit the bundle T C Si B, , . The root CA determines that Ti  was issued
by Trent and forwards the packet down Trent. Trent performs steps #7 through #9 of the protocol
and communicates the results back to the root. The root will then forward the results to Bob.
Assuming that secure communication channels exist between the root and Trent, this will ensure that
the information is accessible to Bob only.

It is possible to further modify the protocol to solve III. Suppose that the signature scheme that Alice
uses is generative. That is to say, given a signature Trent can determine the message (or the
hash of the message, if a one-way hash function is used before signing) that corresponds to the
signature. Schematically we have

Message Hash SignatureSecure Hash Function Signing function →  →
Anybody can determine the hash from the message. Signature algorithms are based on the
assumption that without the private key, it is not possible to derive the signature from the hash. A
proper subset of public-key signature systems are generative, meaning that anybody can derive the
hash from the signature, without knowing the private key. For example, RSA is generative  whereas
DSA is not. Given a generative scheme, here is the modified protocol after step #5:

Let KT  denote Trent’s public key, KR the root’s public key and KB Bob’s public key.
Let   E a a ak n1 2, , ,K( )  denote the result of encrypting the strings   a a an1 2, , ,K  using the key k. This
key could be a public-key or it could be the session-key for a symmetric cipher. We will assume that
the encryption is done in a such a way that each of the strings can be recovered individually.

1. Bob sends to the root: E T C S QK i BR
, , ,( )  and E rKT

( ), where r is a random session-key.

2. Root decrypts E T C S QK i BR
, , ,( )  to extract T C Si B, , . This packet was signed by Alice in step

#5. Root removes  CB  from the packet, invalidating the signature and forwards T Si ,  and

E rKT
( ) to Trent, along with the signature on the original packet.

3. Trent proceeds as before, except that he does not attempt to verify the signature. Instead he
computes the one-way hash value h  which gave rise to the signature.

4. Trent determines the answer A  to the queries S Q∩ , sending h  and E Ar ( ) to the root.
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5. If h H T C Si B= ( ), ,  then the root sends E E AK rB
( )( )  to Bob. Otherwise the authorization is

invalid, and an error message is sent.

This arrangement ensures that Trent does not know the site requesting query authorization but knows
the user involved, while the root knows the site but not the user. The answer to the queries are
encrypted in a session-key generated by Bob, so that only Bob can read the results.

4.1 Conclusion

In this paper we proposed a new framework for WWW client authentication protocols. A distinction
was made between the problem of associating the user with a persistent identity across sessions and
the problem of providing correct information about the user to the site. The baseline for
authentication is to create the sense of persistent  for the user. This allows the user to function in a
completely anonymous mode, not even allowing for a correlation of identity between two sites.
Unlike using digital certificates, this protocol can be used  freely everywhere without compromising
the privacy of the user. It is up to the user to go beyond anonymity and disclose personal
information as necessary. The persistent identity allows the site to collect and index all the
information under a single entry. This paradigm forces the site to revise its definition of sameness
and identity: the attribute-based conception—identity defined by personal characeteristics which are
unique to the user— is abandoned in favor of associating the user with a history of interactions on the
site. The protocol only proves that the user is the same person who visited at some point in the past,
combining two apparently incompatible goals: authentication and anonymity.  The only information
revealed is a site-specific public key, which effectively becomes an alias for the user. The
requirements of this framework are logical consequences of the requirements in the application
domain, the fundamental asymmetry between the user and the server—mobile vs. static, privacy
concerns vs. information needs. Finally we argued that it is possible to integrate the first protocol into
the existing WWW security architecture. Since the two problems are independent, any conventional
authentication system can be executed on top of this layer to prove user credentials.
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Glossary of Acronyms:

BNF: Backus-Naur Form
CA: Certification Authority
DNS: Domain Name System
DSA: Digital Signature Algorithm
DSS: Digital Signature Standard
HTML: Hypertext Markup Language
HTTP: Hypertext Transfer Protocol
IP: Internet Protocol
ITAR: International Trafficking and Arms Regulations
MD5: Message Digest 5 algorithm
MIME: Multipurpose Internet Mail Extensions
RFC: Request For Comments
RSA : Rivest-Shamir-Adleman algorithm
SHA, SHA-I: Secure Hash Algorithm
SSL: Secure Sockets Layer
TCP: Transmission Control Protocol
URI: Universal Resource Identifier
URL: Uniform Resource Locator
W3C: World Wide Web Consortium
WWW: World Wide Web
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