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Figure 1: Trans-axial head section images

Introduction

Magnetic Resonance Imaging, or MRI, is a non-invasive clinical diagnostic tool. The speedier

alternative, X-ray computed tomographic imaging, gains its contrast through measurements based

on changes in density and is thus impractical for the examination of soft tissue which has near-

constant density. MRI, on the other hand, provides excellent contrast when applied to soft tissue

and has become indispensable in clinical medicine. Figure 1 shows two MRI images corresponding

to a particular trans-axial head section.

MRI image acquisition is unfortunately very slow, which can make a routine examination a

costly and inconvenient a�air. For decipherable results, a patient is required to lie still for the

length of the examination which can range from seconds to an uncomfortable number of minutes.

Slow imaging prevents MRI from being a practical tool in the emergency room where a patient

may be unable to lie still. Additionally, MRI is currently unusable in ambitious areas of study

such as heart imaging and joint and muscle motion studies where the focus of study is very mobile.

Reducing MRI imaging time will improve an already prominent medical tool and enable exploration

of its exciting potential. This is the focus of our paper.

1 Problem Formulation

To reduce the e�ects of any bottleneck, one can either make the bottleneck larger or decrease the

amount passing through. In the case of MRI, the bottleneck is the amount of time needed for image

acquisition, a process that involves a series of measurements that pinpoint di�erent areas of the

desired image. The problem is compounded by the fact that numerous images are usually acquired

during an examination. Decreasing the acquisition time has traditionally involved improving the

hardware at great expense or scheduling orthogonal acquisition requests to allow for proton spin

cycle latency. The alternative, decreasing the total number of measurements required, becomes

quite attractive given that scheduling improvements have already been quite thoroughly explored

and that it requires few, if any, modi�cations to existing hardware designs.

The question then becomes, how do we reduce the number of measurements required? Cer-

tainly the well-seasoned practitioner could improve this �gure by reducing the number of requests

for images, taking only as many images as necessary by anticipating which areas of the patient to

examine. If successful, this certainly does reduce the total number of measurements needed. We
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Figure 2: The two-stage process of lossy compression

take a di�erent approach and investigate the possibility of reducing the number of measurements

required for one image. This approach is inspired by the �eld of compression where the central

problem is how to represent data most compactly in order to transport it over some limited band-

width medium. In this case, we can view the MRI device itself as the \limited bandwidth medium."

On �rst glance, the compression problem seems rather unrelated to the MRI problem. After all,

we do not have the data yet in any computer form, so how can we use an algorithm to \package"

it? The solution becomes more easily apparent after closer examination of compression which is

the main emphasis of the next section.

2 Compression Overview

Compression methodology is easily divided into two classes: lossless and lossy. Lossless compression

has the property that the decompressed data is exactly the same as the precompressed specimen.

It trades short representations for more probable datasets against longer representations of less

probable datasets. Lossy compression has the property that the decompressed data is not necessarily

identical to precompressed data due to the omission of some information. This may seem disturbing

on the onset but the essential idea is that the information that is discarded has been determined

to be extraneous. The �nal representation of the data still contains the crucial information. For

instance, suppose we want to pick a card from a poker deck and write a message to someone

telling them what card we picked. We could send the entire image but clearly a more e�cient

representation is simply the text \Queen of Spades" etc. Observe that lossy compression must be

tailored very speci�cally to the input and output data sets in order for the results to be intelligible.

\Queen of Spades" may not be the appropriate representation for your resume, for instance.

In a similar manner, there are many lossy compression methods intended expressly for the

compression of images. Typically, the lossy part of compression is described as a two stage process,

as shown in �gure 2. The �rst stage is called the decorrelating stage, or the transform stage and

the second stage is called the quantization stage. The purpose of the transform stage is to come

up with a new representation of the images such that the relevant information is packed into a

relatively small number of axes. The actual compression comes in the quantization stage. During

this stage, a certain quantity of bits is allocated to each axis, presumably with the objective of

reducing the total bit usage. The idea here is to maximize the signal to noise ratio; in other

words, to minimize the amount of storage allocated to axes which have little overall e�ect on the

appearance of the image. The ideal scenario in light of compression is that the variance of the
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Figure 3: A 2-d illustration of the K-L transform

distribution is only signi�cant in the direction of a small number of basis functions chosen in the

transform stage. In this way, those basis functions whose coe�cients have small contribution can

be truncated without degrading the reconstruction of the images. We will describe in detail below

some common transform methods.

2.1 Finding an Optimal Basis for a Class of Images

A key concept in the transform stage of lossy compression is the idea that an e�cient representation

of the images can be found using the fact that the images in each class are related to each other in

some way. For instance, image transforms typically attempt to take advantage of the smoothness

property of an image{that is, the tendency for adjacent pixels to be similarly valued. One approach

to �nding such a representation is given by the Karhunen-Lo�eve (K-L) decomposition, also known

as the method of principal components.

The K-L decomposition seeks to represent the class of images using a smaller set of features

that takes advantage of the similarity between images of the same class. Mathematically, the K-L

decomposition gives an expansion of a random process with �nite second moments in a special basis

of orthonormal functions. The expansion coe�cients are random variables obtained as inner prod-

ucts of the process with the basis elements. The basis is chosen so that the expansion coe�cients

are uncorrelated random variables. Figure 3 illustrates this process in two-dimensions.

Let us represent the distribution encircled by the ellipse using the coe�cients associated to

the basis f(1; 0); (0; 1)g. Suppose we want a more compact representation and choose to represent

this distribution using only the coe�cient corresponding to one of the basis vectors. The expected

error of truncation would be large since the information contained in each basis function is about

the same. Large expected error of truncation indicates that this representation, although certainly

more compact, is probably not su�cient to adequately distinguish one image in the distribution

from another. Suppose, on the other hand, that we choose to represent the distribution using the

basis f�1; �2g, where �1 and �2 are the eigenvectors of the covariance matrix of the distribution.

The corresponding variances of the distribution along these principal axes are �1 and �2. We can

see that more information is contained in the coe�cient associated to the basis function �1 and if �2
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is small enough, then the distribution might very well be approximated using only the information

in the �1 direction.

The K-L basis is characterized by many attractive properties. The most useful one for the pur-

poses of compression is that the decay rate of the K-L coe�cients is rapid, which in turn corresponds

to small expected error of truncation. For our purposes, this is precisely what we want: having a

representation that concentrates the information in a relatively small number of coe�cients so that

considerable omission of coe�cients can be done without signi�cantly degrading the reconstructed

image. The actual compression comes in omitting the higher order information, which occurs in

the quantization stage. For gaussian distributions, distributions that are characterized completely

by its second moments, the K-L basis is optimal.

The drawback of the K-L decomposition is that it involves the diagonalization of the covariance

matrix whose dimension is that of the initial feature space. In the case of MRI images, the dimension

of the initial feature space is 256� 256. Since diagonalization is an O(N3) operation, this is not a

very practical insertion into an algorithm whose primary consideration is time.

Fortunately, we can use Coifman and Wickerhauser's Best Basis Algorithm that approximates

the K-L transform by restricting the optimization problem to a specially chosen library of bases,

such as Wavelet Packets. The basis that is chosen is tailored for the class of data in mind and

although a sub-optimal solution, gives comparable compression results to the global optimum.

Before we can describe the best basis algorithm, we will supply some detail about the standard

transforms that are the building blocks for this algorithm.

2.2 Fourier and Wavelet Transforms

One transform used extensively in signal processing is the Fourier transform. The Fourier basis is

used frequently in sound analysis to break a signal down into its harmonic frequencies. This is an

e�ective representation except that it does not give any information about when the component

frequencies occurs in the signal. This is akin to having a graphic equalizer on a stereo which updates

once for every song. If we examine each second of the signal, then we can e�ectively build a map to

describe which frequencies occur at what time. This is essentially what is called a time-frequency

map, which presents a way of representing both signal content and local signal features. In an

image, such a map is useful because we are often concerned with the variation in spatial harmonic

content throughout the image. [1] Note however that higher frequencies can be divided into much

thinner slices of time while lower frequencies require more time to determine. Thus an enhanced

dynamic tiling of space and frequency can be arranged which gives better support and de�nition for

high frequency content. Figure 4 juxtaposes the time frequency constant tiling for the windowed

Fourier decomposition and the dynamic tiling in wavelet transform. A large collection of such

tilings is provided by Wavelet Packets bases, which provide us with a library of bases with which

we can represent an image. This library enables us to customize the set of bases to the individual

image or class of images. Clearly, there are as many possibilities of bases as possible tilings of

the time-frequency plane. Although large, this fairly comprehensive library o�ers a manageable

collection of bases. The best basis algorithm of Coifman and Wickerhauser �nds the best basis of

this form with respect to an appropriate cost function from such a library of bases. [4]
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Figure 4: Time-frequency tiling for windowed Fourier and Wavelet Packet transforms

2.3 Best Basis Algorithm

Before we can begin to discuss an e�cient manner to �nd the best basis, we need to to de�ne what

is meant by 'best'. Recall that the K-L basis is optimal because it concentrates most of the relevant

information about a signal into a relatively small number of features. An appropriate cost function

for this algorithm should similarly measure a signal's concentration of information in a given basis.

A natural choice for this is the Shannon entropy function. Let p = fpig
n
i=1 be a sequence which

can be viewed as the normalized energy distribution of the signal. The entropy cost of this signal

is given by

E(p)
4
= �

nX

i=1

pi log2 pi:

For a library of bases, the best basis for a signal is the one for which this information cost is

minimized.

The �rst step in this algorithm is to create a wavelet packet table for a given signal, which can

be seen as the decomposition of the signal into low and high frequency components at increasingly

�ner scales. At each step of the decomposition, a signal representation from the previous step

is subdivided into low and high frequency components, by the \scaling" and \wavelet" functions.

The end result is a packet table of depth log2N , where N is the length of the original signal; each

level j contains the 2j subdivisions of the signal. This wavelet packet table is over-complete, and

contains all the possible bases considered in the library. For illustrative purposes, we can view this

packet table as a binary tree where each complete subtree is a complete representation of the signal.

Observe that each node in the tree represents a certain portion of the signal which is exactly the

portion represented by its children. Associated with each node is a value that re
ects the cost of

expanding the signal in a basis that includes the node. To �nd the best basis in such a library, we

start at the bottom of the tree and compute the cost of each node. We also compute the cost of

each node in the level right above. For each of the parent nodes on the level above, we can compare

its cost with the sum of its children's costs. We keep the representation that has the smaller cost

function. This continues until we reach the root of the tree.
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The best basis algorithm can be extended to n-dimensional images very easily. Each node of the

tree instead has 2n children. This algorithm can also be extended to �nd the best basis for a class

of images, rather than for a single image. The wavelet packet table for the entire class is created

by �nding the packet tables for each image in the class and then summing together all the terms

in the same position within the table. Each term in this aggregate table is then normalized by the

sum of the magnitudes of each image in the class. The best basis algorithm can then be applied

to this class wavelet packet table, yielding an overall best basis for the class of images. Note that

there may be a better choice of basis for each individual image.

2.4 MRI and Compression

In the case of MRI, a lossless algorithm is not a reasonable way to reduce the number of measure-

ments for an image acquisition. The only way to gain a complete, lossless representation of the

image would be to acquire the entire image, which is exactly the task that we want to avoid. A

lossy algorithm holds more promise since it allows us to leave out measurements that may not be

so important for a particular diagnosis. MRI has the unique property that images can be acquired

in a variety of bases. [1] Thus, we can perhaps �nd a basis which is tailored to MRI images from

a particular area of the body. Given our recent exploration into the Best Basis algorithm, we can

�nd such a basis. For future acquisitions in that area of the body, we can acquire the image in

this basis, omitting any basis functions with little or no information content. In this way, we have

eliminated a signi�cant number of measurements while also retaining image quality.

3 Classi�cation To Improve Compression

Up to now, we have focused primarily on �nding an optimal basis for images on the assumption

that the images within a group have a gaussian distribution. After all, it is for gaussian distribu-

tions that the approximate K-L decomposition, or best basis, has proven to be an e�cient means

to compactly represent a distribution of images. Unfortunately, for non-gaussian distributions{

distributions which fail to be adequately characterized by second moments{the e�ectiveness of K-L

is also weakened. What we really want is to expand the notion of optimality across an arbitrary

collection of images, rather than rely on the oversimplistic assumption that the space of possible

images falls in a gaussian distribution.

Speci�c to our application of MRI imaging, we would like to take advantage of the similarities

between images without losing the important information unique to each image. The MRI images

that we work with are typically arrays of 256 � 256 pixels whose grayscale values represent a

weighted density of the hydrogen in water and fats of tissues in a planar slice of the subject. [1] We

can imagine that in 256� 256-dimensional space, each image is represented by a point. In a very

simpli�ed example, we can observe that given a set of trans-axial head section images, some images

might have eyes and others without. This might translate into two distinct clouds in 256 � 256-

dimensional space. If we separate the set of images into these two classes, then the bases that we

come up with to represent the images in each class are more speci�c to the image itself and of

smaller dimension. The gain in predicting the possible classes that an image might fall in is that

the representation of that image within the speci�c class that it is assigned to is both e�cient and

more representative of the image itself.
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This motivates the use of classi�cation to improve compression over many images. We introduce

the idea of a gaussian mixture model which is a partitioning of the estimated distribution of all

possible images into classes. The construction of the classes is done to minimize the expected error

of truncation which in turn determines how e�ectively the images can be compressed. Classi�cation

is a two pronged process:

1. Finding a good way to choose the classes for a set of images

2. Deciding on a classi�er that assigns a given image to a class

3.1 Determining Classes

An important concept in data analysis is the notion of using past experience to model the space

of possible images. In this �rst step of classi�cation, we begin with a set of images that we have

already acquired which will be called a training set. The goal is to �nd the best partitioning of the

training set into classes in the hopes that the behavior of the training set is a just representation

of the entire image space.

To quantify what is meant by the best partitioning, we must come up with an adequate estimate

of coder performance. For a given class, a rough estimate of coder performance is the volume of the

class, which is given by the product of the variances of the distribution along the basis functions

used to represent the class. This volume has shown to be a good predictor of coder performance,

with small volume indicating better performance. In light of the entire space of images, we want

the total volume over all the classes to be minimized. The total volume is given by the sum of the

volumes of each class weighted by the number of images in each class. Suppose we have already

speci�ed the number of classes, k, that we want to split the training set into. Let N represent the

total number of images in the training set and Ni the number of images in class i. The explicit

formula of the total volume of a partitioning is given by

TotalV olume =
1

N

kX

i=1

NiVi;

where Vi is the volume of class i.

The algorithm that we use to create the desired gaussian mixture model is the k-bases algorithm

which is an iterative process that produces a partitioning of the training set into k classes based on

the chosen optimality criterion. The advantages of this algorithm are that it is easily adaptable to

any criterion and that it produces disjoint classes. The algorithm proceeds in the following fashion:

9



Step 1 We begin with an initial partitioning of the training set into k classes. The

k is a predetermined value. To get an initial partition, we can simply choose

k random points as the initial centroids of the classes. We then assign each

image in the training set to the class corresponding to the centroid that is

closest to it.

Step 2 Compute the centroid and the approximate K-L basis for each class.

Step 3 Let x denote an image in one of the classes. We swap x to every other class,

calculating the total volume of the new partition at each swap. The class

that we switch x to is that which will minimize the total volume.

Step 4 Go back to step 2 until we have reached until the total volume no longer

changes upon swapping an image. This is bound to be reached since each

iteration of the k-bases algorithm decreases the total volume. Moreover, the

total volume is bound below by zero, so the algorithm must converge.

3.2 Choosing a Classi�er

A classi�er simply maps an image into a class label. Many classi�ers have been constructed, �ne-

tuned to the speci�c application at hand. Perhaps the �rst question to ask is whether there is one

best classi�er for a known distribution of classes. The best classi�er is characterized by low prob-

ability of error. It turns out that the Bayes classi�er is optimal; for background, see [2]. Although

optimal, this classi�er unfortunately can be very complex to implement and unwieldy especially

for images of high dimension. As a result, the choice of classi�er often boils down to less com-

plex classi�ers such as Linear Discriminant Analysis (LDA) or Classi�cation and Regression Trees

(CART). LDA is an example of a parametric classi�er which assumes that the class distributions

can be expressed in terms of common parameters like covariance matrices and expected vectors.

CART is a nonparametric classi�er which assumes nothing about the distributions at all. For our

application, however, it is not so far fetched to assume a normal distribution for each class since the

classes were constructed to make the distribution of each class as gaussian as possible. Although

the covariance matrices for the classes are probably di�erent which does weaken the e�ectiveness

of LDA, the simplicity of LDA makes it a reasonable choice of classi�er for our purpose.

As in discriminant analysis of statistics, LDA makes use of scatter matrices to represent the

distribution of the images at hand. In particular, a within-class scatter matrix represents the scatter

of samples around the mean of the class. Suppose we have a set of of N images, which has been

partitioned into k classes. Let Ni denote the number of images in class i and Mi the mean vector

of class i. The within class scatter matrix of our distributions then given by

Sw =
1

N

kX

i=1

Ni�i;

where �i =
1
Ni

PNi

j=1(xj �Mi)(xj �Mi)
t. The companion matrix, the between-class scatter matrix,

is also used for LDA to represent the scatter of the means of all the classes around the mixture

mean. Let the mixture mean be given by M = 1
N

Pk
i=1NiMi. This matrix is given by:

10



Sb =
1

N

kX

i=1

Ni(Mi �M)(Mi �M)t:

For a given set of images, LDA tries to �nd a map A : X ! Y ,where X is the image space

and Y the feature space, that simultaneously minimizes the in-class scatter and maximizes the

between-class scatter. We can think of the map that LDA furnishes as one that projects the classes

onto a reduced space in which the classes are as distinct from each other as possible. To formulate a

classi�ability criterion, we need to translate these matrices into a number that re
ects the relative

degrees of scatter. There are several possibility, amongst which the most typical is

J = tr(S�1w Sb):

There are other criteria that are speci�cally �ne-tuned for the cases of abnormal class distribution;

these will not be considered here. What we need now is to �nd the map A that optimizes J in

Y . To do this, we note that Sw is usually of full rank and hence has an inverse. We also note

that Sb has rank k� 1 since only k� 1 of the Mi's are linearly independent, and hence the matrix

S
�1
w Sb does in fact exist with rank k � 1. Associating features with eigenvalues, we know that

k� 1 eigenvalues of S�1w Sb must be nonzero and all the others zero. We can view our feature space

Y , then, as the space spanned by the k � 1 eigenvectors corresponding to the nonzero eigenvalues

found. The value of J in Y is simply the sum of these eigenvalues. This map does in fact preserve

the criterion J since only the zero eigenvalues have been thrown out in the transformation and

these do not contribute to the value of J .

To actually �nd A, we must solve the generalized eigenvalue problem,

SbA = SwAD;

where D is the diagonal matrix containing the eigenvalues to S�1w Sb. We then remove all the rows

in A that correspond to the zero eigenvalues in D. Once this map is found, the classi�cation of an

image is simply a matter of �nding the class whose transformed mean is closest to the transformed

image.

LDA is the optimal classi�er for distinct classes that are gaussian and have equal covariance

matrices. The e�ectiveness of LDA is weakened when these criteria do not hold. For an ample

number of images in the training set, LDA should still be e�ective in our case since k-bases assures

a gaussian mixture model of distinct classes. For too few images, k-bases produces classes that

are very likely too sparse for the distributions of the classes to exhibit \nice" behavior. In this

case, LDA becomes extremely unreliable. The main drawback of LDA is that it manipulates the

entire image. In the case of MRI images, the image space is of very large dimension which makes

classi�cation on the entire image computationally impossible since the diagonalization is an O(N3)

operation. Additionally, directly manipulating images makes classi�cation a very fallible process

due to the presence of unwanted noise and distracting information contained within the images. A

more glaring issue in light of our application is that applying LDA directly on the images requires

the acquisition of the entire image, which is the ordeal that we wanted to circumvent in the �rst

place. In order to make LDA even operational given images of high dimensions, it is imperative

that the dimensionality of the images be reduced.
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3.3 Local Discriminant Basis Algorithm

Our objective is to supply the classi�er with a reduced set of features that contain the relevant

information in the image. Since the relevant information hinges on class separability, we want to

�nd the features that give us the most information about the distinct nature of the classes. The

algorithm that we use to accomplish this is the Local Discriminant Basis algorithm (LDB) which

�nds a basis that most discriminates given classes. The process by which this algorithm selects

the best basis from a library of bases is a modi�cation of the Best Basis Algorithm of Coifman

and Wickerhauser. The di�ering element is the information cost that is used. Rather than using a

cost function that measures the e�ciency of the representation, we want a function that measures

discriminating power. For illustration purposes, let us consider two classes only. Let p = fpig
n
i=1

and q = fqig
n
i=1 denote the normalized energy distributions of images in the two classes. The

sum of the elements in each of the sequences is equal to 1. The discriminant cost function should

measure how di�erently p and q are distributed. A popular discriminant cost function is relative

entropy, or I-divergence:

I(p;q)
4
=

nX

i=1

pilog
pi

qi

:

This is easily modi�able to its symmetric counterpart, J , given by J = I(p;q) + I(q;p).

Let D be the discriminating cost function of choice. Extending this discussion to an arbitrary

number of classes, the di�erence between the distributions of k classes, as represented by the

sequences p(1); :::;p(k) can be measured by

D(fp(c)gkc=1)
4
=

k�1X

i=1

kX

j=i+1

D(p(i);p(j)):

The local discriminant basis algorithm is a fast algorithm that mirrors the Best Basis Algorithm

for two-dimensional images using one of the discriminant cost functions detailed above. After the

basis has been chosen, quantization can begin. To do this, we use Fisher's Class Separability index

to measure the power of each basis function for the training set in order to make an informed

decision concerning the coordinates to discard. For k classes, let Ni denote as usual the number

of images in class i. Let �c = (x1
(c)
; x2

(c)
; :::) be the images in class c where �c(j) is the set of

the coe�cients of all the images associated to the basis function indexed by j. The power of basis

function j for a given training set is given by:

Fj =

Pk
i=1Ni jmed(�i(j))�med([k

l=1med(�l(j))) jPk
i=1Nimad(�i(j))

;

where med(�) is the median function and mad(�) is the median absolute deviation function. In this

manner, we can acquire a list of basis functions ordered by discriminating power, from which we

can choose as many as is necessary for acceptable classi�cation performance.

4 Summary

Figure 5 illustrates the algorithm developed in the discussion above. The algorithm consists of an
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Figure 5: The o�-line and on-line components of our algorithm for MRI images
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o�-line and an on-line process. The o�-line process contains the \behind-the-scene" action; this

provides all the machinery that is needed to acquire an image quickly. The on-line process is the

actual process of acquiring a new image. The inputs to the o�-line process are a training set of

images that has already been acquired, the number of classes that we want, and a compression

ratio that determines how many coe�cients need to be discarded. Having speci�ed these inputs,

the training set is then sent through the k-basis algorithm which assigns each image in the set to

a class. For each class, a basis is found by applying the best basis algorithm on the images in that

class. This list of bases is kept to be used by the on-line process. The training set with the class

assignments is next fed through LDB, which �nds the best discriminant basis for the set. In LDB,

we also compute Fisher's index for each of the new basis coordinates and order them according

to discriminating power. The top M coordinates, which index the basis functions with the most

discriminating capability, are kept for on-line purposes. After LDB, the training images together

with the basis and the M important coordinates are sent through the transform. Each image in

the training set is transformed into the new basis and then only the coe�cients corresponding to

the M most important coordinates are kept. These new and reduced images in the training set

are �nally sent through LDA, which constructs a classi�er for the images of this localized area of

interest.

With the o�-line requirements complete, we can now take advantage of the simplicity and speed

of the on-line mechanism to acquire an image in a similar region of the patient. We need acquire

only the M important coordinates of the image in the discriminant basis to create a \scout image."

This image, which can be acquired very quickly since M is much much smaller than the number

of measurements needed to �ll in the values of the 256� 256 pixels, is then sent through the map

furnished by LDA which in turn assigns a class to the image. Returning to the list of bases that we

kept from the k-bases algorithm, we �nd the optimal basis for the particular class at hand. We then

acquire the image using that optimal basis, omitting the coe�cients with the least truncation error.

The complete image can then be quickly reconstructed using the inverse wavelet packet transform.

The power of our algorithm is that the on-line task is fast and simple, while the computational

complexity lies mostly in the o�-line task that needs to be done only once for images in a certain

region. Additionally, our algorithm has only made use of the 
exibility of existing MRI hardware

so no modi�cations in hardware design are needed.

To demonstrate the capabilities of our algorithm and to isolate the variables that have the

most e�ect on its behavior, we tested the algorithm extensively on synthetic data. The synthetic

data consist of multivariate gaussian distributions containing a speci�ed number of classes with

covariance matrices determined by di�erent low-pass �lters. Because we constructed the data, we

can easily determine the variables that a�ect the behavior of our algorithm. The number of classes,

the separation between the distributions, the size of the image and the number of images in the

training set were the variables that were examined.

5 Results

We initially tested our algorithm on the synthetic images in the hopes of gaining a better under-

standing of the interaction between LDA and LDB. One problem we were immediately faced with

was the limited number of MRI images that we could use as a training set. A primary objective

while testing our algorithm was �nding how much training data is enough for acceptable classi�ca-

tion rates. Saito does not explore this question at all in his work, and uses instead a �xed training
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Figure 6: Unpredictable behavior in LDA as the number of coe�cients exceeds the training set size

(60)

set size that seems unnecessarily large.[3] By using the synthetic images and carefully controlling

the parameters at hand, we found that as soon as the number of coordinates in the training im-

ages exceeded the number of unique training signals that we used, the behavior of LDA became

extremely unpredictable. For well separated classes, the classi�cation rates would go very suddenly

from perfect to an unpredictable and seemingly random behavior, as demonstrated by Figure 6.

Other parameters were varied, such as the relative size of the testing and training sets, the

image size, the separation between the classes, and the number of classes. None of these a�ected

the rates so profoundly. Saito did not report evidence of this behavior in his paper; the obvious

explanation for this is that the results he presented in his paper all used very generously-sized

training sets which sidesteps the problem that we noted.

At this point, we wanted to know whether LDB could help push back this point of randomness

in LDA. Upon extensive testing, we found that LDB had very little e�ect on the position of this

instability point, and that the key parameter was the sheer number of training signals. Since

LDB did not help in this respect, we wanted to determine the instances when LDB could improve

classi�cation rate. Our �nding was that LDB helps when the classes are not well separated, and

most importantly, when there is variation in the discriminating power of the coordinates.

The general trend to be expected as the number of coe�cients increases is a steadily decreasing

misclassi�cation rate until the instability point is hit during which time the \random" behavior

begins. Empirically, this instability point is the point at which the number of coe�cients kept

is equal to the number of images in the training set. In fact, the misclassi�cation rates decrease
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Figure 7: LDA vs LDB and LDA coe�cient selection in action on image with borders, 45 training

signals

steadily to a minimum, at which point it rebounds a little and hovers at a fairly steady level above

the minimum. This behavior is not as contradictory as it might seem upon �rst glance. The �rst

coordinates LDB picks are the most e�ective discriminant basis functions. As we pick more and

more, the discriminatory power of the picked basis function drops. However, LDA has no way of

weighting these basis functions according to this discriminatory power. It treats the coe�cients

equally. Thus, one might suspect that eventually the addition of more and more coe�cients actually

dilutes the discriminatory power of LDA.

We did not glean signi�cant and consistent improvements over LDA in classi�cation by using

LDB on the synthetic images. We attribute this to the nature of the synthetic data. The basis

that LDB found seldomly boasted signi�cant levels of decomposition; that is, we ended up with

the Dirac basis for the most part. Thus, any gains that LDB might have is directly dependent on

the ability of the Fisher Median Separability Index to rate coe�cients in discriminatory ability.

The images, however, had fairly consistent information in all coe�cients so LDB yielded very little

improvement over LDA alone.

However, LDB was extremely e�ective when �ller data was introduced into the synthetic images.

In the extreme \screw" case in which the �rst couple hundred coe�cients were zeroed out from

each image, LDB was clearly advantageous. See �gure 7. This contrived addition of zero content

data is not a totally unreasonable since most images do in fact have regions (borders) that have

the same color. Estimating the bene�ts of LDB and LDA for MRI images is di�cult. It depends

very much on how well the LDB basis is able to concentrate the discriminatory information into

coordinate space. It is also not clear how an increase in training set size will a�ect the trueness of

the LDB basis.

In order to gain insight into what LDB does to a group of images, we found the Local Dis-
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Figure 8: Sample training set of images with and without eyes

criminant Basis for subsets of size 10, 18 and 36, of our 36-image training set. We then ran the

inverse wavelet packet transform repeatedly on a test image, using the LDB for each given set

and increasing quantities of signi�cant coe�cients. The resulting images{located in Appendix B{

provide us with an idea of what features LDB selected as important, and thus how well LDB was

trained. See �gure 8 for a subset of the training set images. As can be seen, with 10 training

images, between 5000 and 20000 coordinates (out of 65536) are needed before the basis functions

reveal a feature that the human eye might recognize as a feature. In this case, the eyes seem to be

the primary focus. On the other hand, the 18 image training set has regions that can clearly be

identi�ed as eyes starting from between 100 and 500 coordinates. It appears, then, that the size

of the training has an enormous e�ect on the validity of the LDB basis. In fact, we might even

make the conjecture that even with LDB trained on 18 images, the top 500 coordinates might be

enough to classify quite well. That is, forgetting that LDA itself will require at least 500 training

images to accompany those coordinates if we want to avoid instability. With 500 training images,

however, LDB is likely to be even more e�ective.

The question then remains: how feasible are the calculations on a large training set? The answer

is that they are quite feasible, just not quick. At present, creating a packet table for an image takes

about six minutes on a 133 MHz Dec Alpha. With 500 or so images, it would take two or three days

to complete. However, the packet table code could very easily be rewritten in C, for an estimated

running time of roughly twenty seconds. Furthermore, multiple computers could be used to do this

operation, so the time could be reduced to a fairly negligible amount. The other time consuming

operations are the k-bases algorithm and the algorithm to implement LDA. The k-bases algorithm

could be accelerated best by choosing good starting means. The algorithm for LDA is bound by

the simultaneous diagonalization process, which executes in O(N3). It takes approximately �ve

seconds for sixty coe�cients. For ten times as many coe�cients, we can estimate that it would
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take about 1000 times longer. 5000 seconds is also a fairly reasonable quantity of time. Since the

o�-line algorithm is a one time cost, it does not seem to be terribly restricting. However, it would

probably be useful to have accelerated versions of the algorithm for further exploration.

5.1 Future Work

The results should be extended for actual MRI images, using a large training set. LDA seems to be

problematic because of its running time, and its general instability. The main culprit regarding the

slow running time of LDA is the packaged function that we used for simultaneous diagonalization.

Further exploration concerning this function as well as the approximate versions might be useful.

It might also be interesting to retain LDB but to use another classi�er. As mentioned before, a

nonparametric classi�er such as CART has no assumptions about the nature of the class distri-

butions which might be useful since the covariance matrices of the classes are very likely to vary.

Another approach that bypasses the need for a classi�er altogether is to convert the k-bases means

into the new basis representation and then to classify the transformed signals according to closest

mean. That is, we can classify by �nding the distance from the transformed means in the same

way that the k-bases algorithm originally classi�es the signal. This would presumably be very near

optimal, since it is after all k-bases' classi�cation that we want to mimic in order to get the optimal

basis. To make life easier for any classi�er as well as for the clustering in the k-bases algorithm,

it might be worthwhile to investigate the possibility of positioning and scaling the images in the

training set so that they are self-consistent. For example, the features for class separability should

not be the margin size of the frame around the actual image. Finally, we could use the symmetric

J-divergence instead of the asymmetric I-divergence for the LDB selection algorithm. Better local

discriminant bases might be found in this way.
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A Code Placement

The code is loosely organized into several directories, according to the algorithms each function

is related to. Most of the code has been written in MATLAB. The principle bottleneck functions

have been rewritten in C.

/

lda/ Linear Discriminant Analysis source

ldb/ 2 dimensional Local Discriminant Bases source

pita/ K Bases source

testing/ LDA and LDB glue source

WaveAlt/ WaveLab and Matlab Replacement Functions (MEX treasure pile)

kitsch/ Tex and EPS source for this document

results/ Results of testing runs

/lda

ldaMap.m O�ine part of LDA. Given a training set (each signal, pre�xed by a

class), produces the linear discriminant mapping matrix. The means

of the classes are also produced. Given a new signal, one can classify

it by multiplying it with this matrix, and �nding the class whose

mean is closest.

ldaProper.m Online part of LDA. Given the map, the means (both generated in

ldaMap), and the signal to classify, returns the class.

classCovarTwo.m �nds the \between" and \within" class scatter matrices required for

ldaMap

sampleCovariance.m used to created \within class scatter matrices" for classCovarTwo

/ldb

ldbTwo.m Given, the signals and their class assignments, determines the best

discriminant basis. Calls MultiClassDis and Best2dBasis (from

Wavelet library), which basically do a modi�ed BestBasis on the

packet table sum generated by TFEMTwo.

ldbProperTwo.m Takes class members and some optional parameters (which allow

caching of values), returns the local discriminant basis, the trans-

formed signals in the new basis, the array of the discrimination power

of each basis function, a list of the most discriminating coordinates

in decreasing order, and the original signals, transformed into the

new basis, and rearranged with most signi�cant coordinates �rst.

In other words, this hydra like function is just about as heinous as

realloc or fcntl.
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TFEMTwo.m Calculates the spatial-frequency energy map for the class; eg the

sum of all the packet tables for a class of signals. If called with

three parameters, it calls Calc2dPktTable from the Wavelet library.

Otherwise, it loads the packet table o� disk, which usually takes less

time. The variable name of the saved packet table in the �le is 't'.

fastFisherMed.m Given all signals and their class assignments, calculates the discrim-

inant power of each individual basis function. Outputs a vector that

is the size of the signals of ClassMembers where the ith entry in the

vector corresponds the the discriminating power of the ith coordi-

nate. Used by ldbProperTwo.

MultiClassDis Driver stub which calls megaCalc2dTree, which is a modi�ed version

of Calc2dStatTree which implements the LDB cost function instead

of the usual Best Basis cost function.

/pita

KBases Code Slightly modi�ed from the version by Sumit Chawla. Uses

FastFPT2 WP (and thus cached packet tables) to quickly obtain-

ing the representation of a signals in a basis.

/testing

runldbP2.m Script that handles most of the processing LDB is involved with (ie

mostly processing that would be done o�-line in practice). Creates

x classes of synthetic images, each with y signals, selecting z percent

of each class as a training set. The distances between the means of

the images are set in generatedata. Packet tables for the training set

are create en masse. This is the major bottleneck at current time. If

Calc2dPktTable (from the Wavelet library) could be rewritten, this

whole LDA/LDB algorithm would run quite much more quickly. The

calculation of the packet tables for the training set is a parallelizable

operation. k bases is run to determine the training set classes. con-

vertAssignments is called to arrange the signals sequentially by class

and then to set up links to the cached packettable �les according to

the new positions of the �les. ldbTwo and ldbProperTwo are then

called. Finally all of the signals designated as test signals are FPTd

(another time intensive operation), for preparation for runldaP2.
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runldaP2.m For a given range of number of coe�cients, calculates the training and

testing set misclassi�cation rates for LDA on the �rst k coe�cients of

the image, and for LDB on the �rst k most signi�cant basis functions.

These rates are then graphed. Note that the most dangerous function

(time wise) is called here { ldaMap, which calls the eig function

(which runs in O(N3) where N is the number of coe�cients being

used.)

ldaldbProper.m Takes the LDB basis, a list of the most important basis function

indexs, the LDA "map" matrix, the classMeans, and the signal to

classify. transforms it into the new basis, extracts the most important

coe�cients, and feeds them into the LDA algorithm for classi�cation.

convertAssignments.m Given a list of assignments and signals, arrange the signals sequen-

tially by class and then to set up links to the cached packet table

�les according to the new positions of the �les.

sic.m Small test signal set, 2 classes.

sic2.m Another small test signal set, 2 classes.

smallimageclass.m Another small test signal set, 2 classes.

transformSignalsTwo.m Transforms a group of signals into a basis. Provides optional pa-

rameters so that cached packet tables can be used instead of calling

WaveLab's FPT2 WP.

CreateTrainingSet.m Makes links to all of the �les in \sourceDir." A certain percentages

of these links will be located in \trainDir," the rest in \testDir."

generatedata.m Creates X clusters of size Y synthetic 2d images.

imgldbP2.m Version of runldaP2 which uses precreated images (for instance, mri

data) instead of generating synthetic images.

WPDirectory.m Creates packettables for all of the �les in a given directory.

eyesNoeyes.m Tool which cycles through images in a directory and saves them in a

new directory according the user speci�ed class. The �les are saved

such the image data is stored in the variable t, instead of the �lename.

(This is important because the names of the �les change.) This is

also a shunt between the data format of the MRI images and our

own internal �le representation.

createLdbFI.m Script that creates postscript images of a signal in the LDB basis

using the most important x coordinates where x is a variety of values.

Uses ldbVisualize. Used to see what features LDB is picking.

pitcw.m Pretty picture viewer. Takes two dimensional image. Performs au-

tomatic scaling of values for palette.

createSynthFiles.m Calls generateData to create synthetic images. Saves them with a

�lename that indicates the class they belong to.

ldbVisualize.m Takes the rearranged transformed signal, and de-arranges it accord-

ing to the mapping that the list of importantCoordinates provides.

Performs the inverse wavelet packet transform and displays the image

using pitcw.

/WaveAlt
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FastFPT2 WP.c Fast version of FPT2 WP. Uses a Packet Table to compute the rep-

resentation of a signal in a given basis. Very fast in comparison to

the function it replaces.

megaCalc2dTree.c Fast version of Calc2dStatTree, but for the LDB cost function only.

refinedMed.c Fast version of MATLAB median function. Uses O(N) algorithm

instead of O(NlgN) algorithm. Rocks.

FPT2 WPN.m Internal version of FPT2 WP.m { now identical.

Best2dBasis.mex Automatically generated MEX version of WaveLab function.

Unpack2dBasisCoeff.mex Automatically generated MEX version of the WaveLab function. Still

really horribly slow. Used to verify the correctness of FastFPT2 WP.
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B Images Reconstructed with LDB Features

Here are the reconstructed images using successively more features. Three di�erent bases are used

to qualitatively ascertain the e�ects of larger training sets on LDB. The training sets used were

of size 34, 18, and 10. Reconstructed images which highlight the detail of the brain image (in

particular the eyes) most closely with the fewest coordinates are presumably better. The two

classes used were \images with eyes" and \images with no eyes."
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C LDA and LDB/LDA Misclassi�cation Rates
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LDB misclassi�cation rates with respect to training set of various sizes, 3 classes, 32x32 image,

150 test signals, class separation of 3. Note the apparent randomness that occurs when the

number of coe�cients reaches the number of training signals.
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