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Abstract

Invalid input often leads to unexpected behavior in a program and is behind a

plethora of known and unknown vulnerabilities. To prevent improper input from

being processed, the input needs to be validated before the rest of the program

executes. Formal language theory facilitates the definition and recognition of

proper inputs.

We focus on the problem of defining valid input after the program has already

been written. We construct a parser that infers the structure of inputs which avoid

vulnerabilities while existing work focuses on inferring the structure of input the

program anticipates. We present a tool that constructs an input language, given the

program as input, using symbolic execution on symbolic arguments. This differs

from existing work which tracks the execution of concrete inputs to infer a grammar.

We test our tool on programs with known vulnerabilities, including programs in

the GNU Coreutils library, and we demonstrate how the parser catches known

invalid inputs.

We conclude that the synthesis of the complete parser cannot be entirely auto-

mated due to limitations of symbolic execution tools and issues of computability.

A more comprehensive parser must additionally be informed by examples and

counterexamples of the input language.
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Chapter 1

Introduction

Section 1.1

Problem

Every computer program accepts a set of inputs and then returns a set of outputs.

However, not every program has specified exactly what format of inputs it expects.

Maliciously crafted input can cause the program to execute unexpectedly and lead

to unintended consequences. It may cause the application to perform unautho-

rized actions like expose sensitive information or execute system commands. One

such example is the Heartbleed attack, a bug in the OpenSSL implementation of the

Transport Layer Security (TLS) and Secure Sockets Layer (SSL) protocols, designed

to secure communications on a computer network [14]. It consists of a crafted

heartbeat message, or a message to demonstrate responsiveness between two con-

nected computers. In a heartbeat message exchange as intended, one computer

sends a signal to the other, indicating the size of the message and expects the other

computer to simply send the message back. Without verification of the contents

of this message, specifically that the message actually consists of the number of

bits that it claims, one computer can trick the computer into divulging additional

1



1.1 Problem Introduction

(a) The program receives expected input (b) The program receives unexpected input

Figure 1.1: The program will exhibit unpredictable behavior if it is given input it
does not expect

information, like recently entered usernames and passwords.

The Heartbleed attack is only one example. The issue of input validation is

rampant. A simple search for “input validation” on Common Vulnerabilities and

Exposures (CVE), on May 16, 2020, reveals 1379 results, and “buffer overflow”, a

common form of improper input, reveals over ten thousand entries. Cyberattacks

exploit vulnerabilities in programs that fail to parse and validate input, necessitat-

ing a stringent form of input validation.

As shown in Figure 1.1, the universe of possible input may differ from the input

that program is designed to accept and operate on. Proper input validation relies

on defining the accepted set of inputs and then developing a parser that accepts

only this exact set.

1.1.1. Thesis Summary

This thesis aims to automatically generate a grammar that defends against de-

tected vulnerabilities by only consuming the program as input. The grammar will

be implemented as a parser modeling the same structure. The parser will then be

prepended to the program to only allow valid input to execute through the pro-

gram. Valid input is defined as strings within the formal language specified by the

2



1.2 Background Introduction

grammar, and these inputs should not trigger known or detected vulnerabilities.

The details of what a grammar entails first calls for a discussion of the underlying

approach to handling input as a formal language in language-theoretic security.

Section 1.2

Background

1.2.1. Language-theoretic Security (LangSec)

Programmers are advised not to trust input data, but these terms are ambiguous.

Parsers are the first line of defense with validating input to ensure that precondi-

tions are met before executing the code. Parsers break the input into conveniently

packaged elements, which the rest of the code processes. However, they often fall

victim to improperly checking preconditions assumed by the rest of the code and

receiving unexpected input, leading to unpredictable behavior like buffer over-

flows or memory corruption. Often times a series of if statements check the input

and fail to completely validate a program’s assumptions about the input. In addi-

tion, it is difficult to verify whether the input handling correctly accepts or rejects

valid and invalid input. For complex enough input formats, this is computationally

undecidable. Without strict guidelines of what a valid input entails, developers are

more likely to skimp on checking whether or not the data conforms to expectation.

Language-theoretic security is based on applying formal language theory to

define input to secure communication with a program. A formal language is

defined as the set of strings over a finite alphabet. A grammar characterizes a

language with a set of rules that decides which strings, formed by elements in the

alphabet, are part of the language and which are not. The size of a language can

be, and often is, infinite.

The premise of language-theoretic security states that input handling should

3



1.2 Background Introduction

treat the set of all valid inputs as a formal language and construct a parser that

recognizes this language [25]. A proper program must recognize input correctly,

so each program implicitly has a set of expected inputs. LangSec declares that this

set of inputs needs to be made explicit in a computational-theoretic and formal

language-theoretic approach by detailing a grammar to describe it. In addition, the

grammar needs to be as simple as possible with simplicity described by its position

in the Chomsky hierarchy [17, 26]. The complexity of languages ranges from

regular expressions to Turing-recognizable languages, each requiring increasingly

complicated machines to recognize strings in the language.

Momot et. al [23] details the standard process to input processing and protocol

design. First, define the set of acceptable inputs to a program via a grammar or for-

mal language, ensuring the grammar is as simple as possible on the Chomsky scale

of syntactic complexity. Second, construct a parser plainly following this grammar.

Finally, establish a clear boundary between input validation and processing by

only processing the input after it is validated by the parser. Invalid input should

be rejected immediately and never processed in the first place. This will protect

against shotgun parser bugs like Heartbleed and Android Master Keys bug, where

input validation is mixed with processing code.

The implementation of the grammar must derive and resemble the grammar

itself. Parser combinator toolkits, like Hammer [23], facilitate the design of this

parser. Parser combinators combine individual parsers to output a new parser.

Parser combinators consist of primitives and combinators. Primitives specify the

basic unit of a token to be parsed like end of line tokens, strings, integers and

individual character tokens in a range, as shown in Table 1.1. Combinators combine

these tokens to compose parsers like in sequence or repetition, as shown in Table

1.2. Hammer’s combinators resemble grammar combinators like concatenation and

4



1.2 Background Introduction

Syntax Usage Description

h ch h ch(‘a’) Matches a single specified character
token

h ch range h ch range(‘a’, ‘z’) Matches a single token in the specified
character range

h token h token("hello", 5) Matches the specified string of given
length

h int64 h int64() Matches a signed 8-byte integer

h end p h end p() Matches the end of the parser input

Table 1.1: Hammer parser primitives

Kleene star, so the grammar is easily recognizable from the parser implementation.

The syntax of Hammer parsers is also easy to interpret.

Figure 1.2 depicts the series of events involved in validating input with LangSec.

The construction of a LangSec parser first requires defining the grammar. Ideally

the definition of this grammar occurs in the writing of the program, but existing

legacy code would also benefit from proper input handling. The grammar is then

implemented via a parser combinator library like Hammer. Every input must first

go through the parser and only valid, accepted input continues to be executed by

the program. Invalid input should be immediately rejected by the parser and never

be processed by the program.

The parsing of input currently requires manual intervention to construct the

grammar. Unless the developer has a formal and written out a grammar a priori,

extracting the formal language of a data format from a written program or data

examples is a very hands-on process. Programs often do not have a detailed spec-

ification of expected input and rely on parsing scattered throughout the program.

5



1.2 Background Introduction

Syntax Usage Description

h choice h choice(h ch(‘a’),

h ch(‘b’), NULL)

Performs the Boolean “or” operation

h sequence h sequence(h ch(‘a’),

h ch(‘b’), NULL)

Performs the concatenation operation

h repeat n h repeat n(h ch(‘a’,

5))

Repeats given parser n times

h many h many(h ch(‘a’)) Performs the Kleene star operation for
0 or more repetitions

h many1 h many1(h ch(‘a’)) Performs the + operation for 1 or more
repetitions

h optional h optional(h ch(‘a’)) Performs the ? operation to match 0
or 1 occurrences

Table 1.2: Hammer parser combinators

6



1.2 Background Introduction

(a) The parser accepts expected input

(b) The parser rejects unexpected input

Figure 1.2: The parser implements the grammar. The language the parser accepts
should be equivalent to the language the program expects. If the parser rejects an
input, the program never processes it.

7



1.2 Background Introduction

The goal of this thesis is to computationally automate this process by taking a

program as input and outputting a grammar.

Language-theoretic security establishes validating input as central to any design

process. By restricting the complexity of the input language, it is possible to design

parsers with formally verifiable properties. However, many existing programs,

especially those designed without security in mind, lack a robust input handling

procedure. LangSec starts with defining a grammar of the input language, but for

such legacy programs, the grammar is neither explicit nor clearly extractable. I set

out to automatically derive a formal language parser for the input by just looking at

the program and employing the tool of symbolic execution to follow its execution

pattern.

1.2.2. Symbolic Execution

The ultimate goal of a testing technique is to detect or rule out vulnerabilities in

a program. One approach would be to test the program using distinct, random

inputs, but there is no guarantee these inputs will trigger a vulnerability if one

exists. Symbolic execution provides a more comprehensive approach that explores

many execution paths at the same time and checks if each path is exploitable.

Symbolic execution is a software testing technique that executes a program on

symbolic input, which is input that’s allowed to be anything [9]. Static analysis

tools attempt to find problems before they happen without running the code, but

they often require an expert in static analysis to distinguish false positives and real

bugs. On top of that, executing a piece of code helps identify certain classes of

errors such as functional correctness. Symbolic execution is easy to use as a bug

finding tool. It evaluates the program on symbolic input values, as opposed to

concrete values. When the program reaches a branch in execution, it first checks

the feasibility of each of the branches, then duplicates the state and traverses each

8



1.2 Background Introduction

of the branches separately. It accumulates constraints for the input that follows

the specified path. Once the path terminates or finds a bug, it uses an automated

theorem prover to provide a concrete value that satisfies these constraints. The

concept can be clarified with an example, shown in Figures 1.3 and 1.4.

Figure 1.3: Symbolic Execution Sample Program

1 int foofum(int x, int y) {

2 int z = x + y;

3 assert(z != 0);

4 if (z <= 10) {

5 return z / y;

6 }

7 return z;

8 }

Figure 1.4: Execution tree for example in Figure 1.3 formed by branching the path
at each dangerous operation. The constraints generated and the order of traversal
may differ based on the symbolic execution tool used.

We walk through the code and tree step by step. The program is executed with

two symbolic values, x and y, meaning their values can be anything. π maintains

9



1.2 Background Introduction

the constraints that lead up the state. In the beginning, there are no constraints, soπ

evaluates to true. The code branches at any potentially dangerous operation. Line

2 forms z by adding the two symbolic values. For the assert statement on Line 3, the

symbolic executor will solve the current constraints to see if there exists a value that

evaluates the assert expression to false. If there is, it terminates with an error and

details both the path condition and an example of an input that triggers it. It also

branches for when the assert statement returns true. Similarly, the path branches

for the if statement in Line 4. If this statement evaluates to false, the program

immediately ends. Otherwise, the division of z and y in Line 5 is a dangerous

operation because at this point, the path condition has not forbidden y from being

zero. The path branches and every path terminates. When a path terminates, a

solver solves the constraints to produce a concrete example that followed the path.

We use the open source symbolic execution library klee, an industrial-grade

symbolic execution library for C code that runs on LLVM bitcode [5]. klee has been

used to detect bugs in version 6.10 of the gnu coreutils library as well as busybox

and minix [9].

Although symbolic execution intelligently executes code to perform an exhaus-

tive search of possible input, it falls victim to a few limitations. Introduced in

the 70s [19], symbolic execution has become more feasible due to better theorem

provers (SAT/SMT solvers), more computational power, and heuristics to control

the exponential explosion of paths. Symbolic execution shows promising coverage

in research, but in practice, it is difficult to consistently achieve high coverage.

Common concerns include the exponential explosion of the number of paths, the

limitations of constraint solvers, and the difficulty with modeling the environment

in which the code is run like system or library calls. However, symbolic execution

is still a useful testing tool for many programs.

10



1.2 Background Introduction

As shown by Cadar et al [9], klee achieves high code coverage on a diverse

set of real, complicated programs. The ability to create symbolic files models the

file system of the environment. While these results may be difficult to generalize

to all programs, the experiments of klee demonstrate the potential of symbolic

execution.

klee’s goals are to (a) Reach every line of executable code and (b) Detect at

each dangerous operation (e.g., deference, assertion) if any input value exists that

could cause an error [9]. It makes this feasible through several optimizations like

compact state representation, query optimization and state scheduling. Assuming

these two goals are met, we aim to achieve complete coverage of inputs that may

trigger vulnerabilities.

The klee constraint language is KQuery, described in the KQuery documenta-

tion. The constraints capture the meaning of theπ or path condition, as exemplified

in Figure 1.4. Running klee on the simple example gave four paths, with constraints

exactly as described. For the constraints in Line 5, we observe that we can perform

several optimizations, which klee enacts. For example, it simplifies the path of the

left box in Line 5 with the knowledge that β = 0:

((α + β) , 0) ∧ ((α + β) ≤ 10) ∧ (β = 0)

becomes

(α , 0) ∧ (β = 0) ∧ (α ≤ 10)

This is an example of the query optimization that klee performs.

We will use symbolic execution to generate constraints that lead to vulnerabili-

ties. We will then construct a parser out of these constraints. In the simple example,

this parser would reject all input where β = 0 and when α + β = 0. Naturally, the

11
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1.3 Proposed Solution Introduction

parser is predicated on the symbolic executor’s ability to detect dangerous oper-

ations. If it is unable to detect a vulnerability that we are aware of, we can add

an assert statement that evaluates to false for the given vulnerability so that klee

generate those constraints.

Section 1.3

Proposed Solution

LangSec asserts that security is only guaranteed when input is validated as a for-

mal language. LangSec highlights the importance of designing a simple input

language for protocols and programs in general, which leads to a parser imple-

mentation of this grammar. However, while these principles facilitate the design of

new applications and protocols, we want to apply LangSec’s principles to existing

programs.

We set out to automatically construct this grammar from the program itself by

using symbolic execution. The grammar defines inputs that do not trigger certain

vulnerabilities. We are limited to the bugs that symbolic execution can find or that

has already been reported, so we focus on constructing a grammar that rejects input

that triggers those specific vulnerabilities. The goal is to take a program as input,

and output a parser that protects against detected or known vulnerabilities. This

parser then gets prepended to the program and rejects any invalid input, which is

then never executed in the program.

12



1.4 RelatedWork Introduction

Section 1.4

Related Work

I examine other works related to extracting an input format from the program itself

and point out their shortcomings.

1.4.1. Reverse Engineering Protocols

Most of the literature around inferring an input format centers around reversing

message formats for protocols. To the best of our knowledge, no previous work

integrates formal language theory and symbolic execution. A section of literature

focuses on the automatic extraction of the protocol message format without access

to the protocol specification [7,8,11,12]. The message format consists of sequences

of fields organized with certain rules of what values each field can take within a

fixed domain. Caballero et. al [8] looks at program binaries. Cui et. al and Caballero

et. al observe execution and network traces to extract the message format and

field semantics [7, 11, 12]. These papers focus on a subset of the general problem

for extracting the input format for a protocol rather than an arbitrary program.

Protocols introduce a different challenge because depending on its position in the

protocol state machine, different message formats will be expected. None of the

aforementioned papers address how they would extract this protocol state machine.

To be able to extract the protocol message format, we need two languages: one for

the protocol messages and another for the protocol state machine. Antunes et. al

attempts to reconstruct both languages from the network traces [4]. We focus on

a different problem, not specific to protocol design, so there implicitly is a single

state for the program.

13



1.4 RelatedWork Introduction

1.4.2. Learning Languages from Examples

The more theoretical side of related work focuses on deriving a formal grammar.

In [15], Gold established the limitations of learning a language from examples

in the language. By simply presenting positive examples, Gold concluded that

infinite regular languages are not learnable. This result can be extended to more

complex languages. Angluin demonstrated that an infinite regular language can

be constructed from examples and counterexamples [3]. A counterexample is a

string that belongs in the conjectured set but not in the correct set. This result

depends on having a teacher that can answer membership queries of whether or

not a string belongs in the language. The teacher must also say yes if the conjectured

language is equal to the desired language and provide a counterexample otherwise.

The method of learning based on examples and counterexamples is difficult to

implement in practice because such a teacher/oracle does not exist that can assert

when the conjectured language is equal to the desired language.

1.4.3. Synthesize Input Grammar from Execution

Finally, we look at more recent work to engineer an input grammar based on the

principles of LangSec. In [13], Curley uses machine learning on a dataset of URIs

from an Apache HTTP access log to extract a context free grammar. Curley demon-

strates where theory differs from practice by using a recurrent neural network to

both predict the response codes and generate strings in the language. Curley con-

cludes that while it may be impossible to prove that all context free languages can

be learned from examples and counterexamples, certain languages in this set can be

learned with high accuracy. However, most programs lack an elaborate database

of tagged strings, and it is unreasonable to train a deep learning model for every

input language. Although the model implicitly recognizes the grammar, there is

14



1.4 RelatedWork Introduction

no way to extract the grammar out to prove its accuracy.

Bastani et. al designed GLADE, which [6] builds a context free grammar from

a set of input examples and blackbox access to the program. Starting with inputs,

GLADE constructs an increasingly general language based on repetition, alterna-

tion and recursive constructs to the language. However, it does not take advantage

of the program’s structure and does not detail how to recover the readable gram-

mar.

Autogram [18] mines context free input grammars by observing how an input is

processed in a program and tags each piece of stored data with the input fragment

it comes from. It then outputs the grammar in Backus normal form. It achieves

100% coverage of the language in many cases like with Apache Commons CSV

and JSON Objects by analyzing the Minimal JSON library. To perform dynamic

analysis, Autogram begins with a set of inputs that belong to the grammar, which

may or may not be feasible depending on whether a training set or reference

grammar exists. On top of that, it runs on parsers for commonly used file formats

rather than an arbitrary piece of code. Its goal is to capture and formally define

the parser’s grammar while our goal is to output a grammar that protects against

certain vulnerabilities.

Autogram and mimid [16,18] form the literature of constructing a human read-

able context free grammar from input. mimid improves upon Autogram’s dy-

namic analysis by inserting trackers in the source program at conditions, loops,

and method entries and exits. These trackers follow input character accesses being

made to determine which method calls should be associated with the particular

character index, regardless of whether these characters are stored. In contrast,

Autogram operates on the data flow of stored variables. mimid constructs a parser

tree, which generalizes to grammars, from methods accessing some part of the in-

15



1.5 Overview Introduction

put. Mera also uses taint analysis to further refine automatically generated context

free grammars to express semantic relationships between grammar elements [22].

For example a context free grammar can specify that the field maxsum is an integer,

but the value of maxsum may restrict the values of other fields of integers.

Among these different tools to infer input grammars, this thesis addresses the

dissimilar but related problem of inferring a grammar that protects against detected

vulnerabilities. Our work also analyzes inputs to all programs, not just programs

that are parsers. While further analysis of their outputted grammar may lead to

insight about possible exploits, we focus directly on the problem of preventing

these exploits. Instead of returning just the grammar, we return a parser which

implements the grammar.

Section 1.5

Overview

I set out to automatically infer an input grammar from a program. The gram-

mar and its parser implementation only accept inputs that do not trigger certain

vulnerabilities.

I will first detail the method of deriving the grammar and parser from the

symbolic execution constraints in Chapter 2. Then, I apply these methods on a

collection of code samples, including the heavily tested GNU Coreutils library in

which klee detected undiscovered bugs in Chapter 3. Our tool generates parsers

for each symbolic input. Chapter 4 discuses the limitations of our tool and future

work to address these limitations as well as other directions to take to advance the

tool. Finally, in Chapter 5, we summarize contributions made and the practicality

of our tool.
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Chapter 2

Methods

In this section, we first provide an overview of the architecture, then describe the

main steps in more detail.

The goal of this paper is to automatically generate a parser combinator imple-

mentation of the input grammar that protects against certain vulnerabilities. To do

this, we use symbolic execution.

Figure 2.1 provides a visual overview of the steps used to generate the parser.

The sections highlighted in orange denote my own contributions. klee takes the

LLVM bitcode of the program and symbolically executes the file with the symbolic

arguments provided. The user must specify the size, number, and type of symbolic

inputs. If the user knows of an input that triggers the vulnerability, they can model

the symbolic arguments based on this input. The klee-stats tool provides the line

coverage of an execution of klee on provided symbolic inputs. If the line coverage

is not satisfactory, the user can allocate more symbolic arguments, increase their

sizes or allocate different types of arguments. Then, they run klee with these

new parameters, and repeat the process of checking line coverage and rerunning

if necessary. Finding the proper allocation of symbolic arguments is an iterative

process that can be sped up with knowledge of what inputs can trigger different

17



Methods Methods

Figure 2.1: The envisioned overview of how we automatically generate the gram-
mar. The bold arrows represent necessary inputs or libraries. The standard arrows
represent conditional splits.

behaviors in the program.

klee detects errors such as pointer, free, abort, assert or division errors at dan-

gerous operations. For every error that klee detects, it generates the constraints

that led to the error. We use klee’s constraint parser to parse the constraint writ-

ten in the .kquery file into an Abstract Syntax Tree. The KQuery documentation

elaborates the KQuery format, as noted in Section 1.2.2. We then traverse this tree

to generate a parser that invokes the Hammer library parser combinators. If klee

does not detect a known vulnerability, we place an assert statement that evaluates

to false in the path that triggered the error, so that klee identifies it as an assert error.

We then run klee on the updated program with the additional assert statement.

An assert false statement can be inserted in a section of code that should not run,

and klee will determine the constraints that lead to that section. We traverse the

constraints to generate a parser. The final output is a .c file with the implementation

of the parser for each symbolic argument.
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2.1 Running KLEE Methods

Figure 2.2: Sample buffer overflow vulnerability

1 int main(void) {

2 char buff[4];

3
4 printf("\n Enter the password : \n");

5 gets(buff);

6
7 ...

8 return 0;

9 }

Throughout this section, we demonstrate the architecture with a simple example

of a buffer overflow in the gets C function, shown in Figure 2.2. The C file consists

of this main function and is called password.c. The ... represents code that

compares the inputted string with the actual password and grants access if it is

correct. The gets function is known to be unsafe because it does not verify if

the input can fit inside the buffer. A buffer overflow will affect the later code

that validates the input and lead to unexpected behavior like potentially granting

disallowed access.

Section 2.1

Running KLEE

To runkleeon a program, we must first extract its LLVM bitcode by either compiling

it to emit LLVM or extract-bc from the executable.

Then, we run klee with symbolic inputs. klee allows specifying symbolic

arguments, files, stdin and stdout as well as their size. We illustrate examples with

different types of symbolic arguments later. For the gets example, we first extract

the bitcode from the file with

clang -emit-llvm -g -c password.c -o password.bc
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We then run klee on this bitcode file with a symbolic stdin, meaning the stdin

can take any value. We make the stdin symbolic because our code takes input from

standard input, and we limit it to an arbitrary 100 characters.

klee --libc=uclibc --posix-runtime password.bc -sym-stdin 100

uclibc provides definitions for all the external functions the program may call,

and the command tells klee to load that library and link it with the application

before it starts execution. posix-runtime works with klee and the uclibc library

to provide the majority of the operating system facilities used by command line

applications like write. Without these libraries, klee is unaware of what the gets

function does.

For other programs, we similarly specify the symbolic arguments for which we

want to generate parsers when running klee.

If klee detects an error while running, it creates a test file for that error and

continues running on other constraints. For programs with known vulnerabilities

that klee does not detect as an error, add an assert statement that evaluates to false

at the known error and run klee again. Running klee on a known invalid input

without any symbolic arguments generates an error file that reveals the line the

error is thrown. To make sure this error is not a false positive, we may replay the

input that triggered the error with klee-replay. False positives are theoretically

impossible because the input follows the same path as klee in the unmodified

program. However, non-determinism, bugs and heuristics used in klee may lead

to such errors [9]. The syntax of klee-replay operates on the generated .ktest file.

The ktest file contains the result of applying a constraint solver to output an input

that satisfies these constraints. Here is an example of running klee-replay:

klee-replay ./password ./klee-out-1/test000011.ktest
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2.2 Parsing Constraints Methods

Figure 2.3: Constraint for pointer error in gets

1 array stdin[100] : w32 -> w8 = symbolic

2 (query [(Eq false

3 (Eq 10

4 (Extract w8 0 (ZExt w32 (Read w8 0 stdin)))))

5 (Eq false

6 (Eq 10

7 (Extract w8 0 (ZExt w32 (Read w8 1 stdin)))))

8 (Eq false

9 (Eq 10

10 (Extract w8 0 (ZExt w32 (Read w8 2 stdin)))))

11 (Eq false

12 (Eq 10

13 (Extract w8 0 (ZExt w32 (Read w8 3 stdin)))))]

14 false [] [stdin])

For our example, klee generates 11 paths and tests, the last of which led to a

pointer error. In the next section, we look at the constraints for this path.

Section 2.2

Parsing Constraints

After running klee, we look at the constraints that trigger certain errors. klee

generally solves these constraints to identify an example for every possible path,

but we want to capture the complete language of the constraints, not just one

example. These constraints are textually represented in KQuery format, designed

to be compact and easy to read and write. We walk through the constraint that

generated the pointer error in our example as shown in Figure 2.3. We removed

parts of the constraint that are not relevant to the stdin symbolic argument.

Each line in the constraint is either an array declaration (Line 1) or a query

command (other lines). A query command is run by the constraint solver and

is denoted by the keyword “query”. The important parts of this query are the
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constraint list and then the last element. We manually added [] [stdin] after the

last false to specify that we want to generate a parser for this specific symbolic

input (stdin).

The first line in Figure 2.3 declares stdin to be a symbolic buffer of size 100 storing

1 byte elements. The second line denotes a query and the start of a constraint list.

Each line of the constraint is very similar, so we look at one line.

(Eq false (Eq 10 (Extract w8 0 (ZExt w32 (Read w8 0 stdin)))))

We start with the most interior layer of Read w8 0 stdin. This reads the 0th

index of the symbolic array of size 8 bits. ZExt evaluates the lowest 32 bits of this

value. Extract extracts 8 bits from this value starting from bit 0. After ZExt and

Extract, the value is the same as the original 8 bits read. Then, the constraint

declares that this values should not be equal to 10. This is repeated for each indices

1, 2 and 3.

The vulnerability was that we only allocated a buffer of size 4, but allowed

arrays larger than size 4 to be written to it which may lead to a buffer overflow.

gets stops reading at a newline character or when the end-of-file (EOF) is reached.

If none of the first 4 characters are newline characters or EOF, we get a buffer

overflow. This is indicated by our constraints. Index 0 to 3 must exist, so they are

not EOF, and they are not the newline character, leading to an error.

Since klee’s constraint solver operates on this KQuery language, the klee toolset

already has a parser that consumes the constraint language and outputs an Abstract

Syntax Tree (AST). Our tool then parses this tree to construct a Hammer parser that

accepts the constraint language. Although we write the parser to accept inputs

that give us an error, we can flip the logic to reject input that it parses successfully

and accept input that it fails to parse. This flip is only provably computationally

feasible if the language is within deterministic context free languages, so our parser
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is limited to these languages.

We observe that klee operates on its symbolic input as an array of characters,

and we take advantage of this format in designing the parser. We introduce a data

structure that we call SetCombinator to store an intermediate representation of the

constraints that then gets translated to Hammer invocations.

We set up the parser character by character and restrict the values each character

can be. A SetCombinator is organized as an array of sets where each set represents

the set of allowed characters from 0 to 127, the range of ASCII values. The unit

size of an element of klee’s arrays is always 8 bits. Representations of more

bits are formed by concatenating multiple elements in the array. The size of the

SetCombinator depends on the size of the symbolic input. Every time an index is

Read from the symbolic array and certain constraints are applied, the respective

index in the SetCombinator also updates its set to accommodate these constraints.

The final set left at each index represents the intersection of every constraint applied

to the index.

Going back to our gets example, we first initialize each set in our SetCombi-

nator of size 100 with a complete set of {0, 127}. The process of constructing the

SetCombinator is depicted in Figure 2.4. As we parse each constraint in the AST,

we exclude 10 from the sets at index 0 to 3. We use U = {0, 1, ..., 127} to denote the

universe of values for each element in the array. The resulting SetCombinator looks

like Table 2.1. Each index of our SetCombinator corresponds with the index in the

symbolic array. We have restricted the first 4 indices to not included the newline

character, encoded with ASCII value 10, and there are no restrictions on the other

indices.
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Figure 2.4: Steps to construct the SetCombinator for the gets example constraints.
The SetCombinator representation is then turned into a parser implementation.

0 1 2 3 4 5 ... 100

{0,9} ∪{11, 127} {0,9} ∪{11, 127} {0,9} ∪{11, 127} {0,9} ∪{11, 127} U U ... U

Table 2.1: SetCombinator Example

Section 2.3

Outputting Hammer Invocations

Once we have the SetCombinator filled out from the constraints, we can translate

it to Hammer invocations. The Hammer parser will ultimately be a sequence of

24



2.3 Outputting Hammer Invocations Methods

elements where each element will represent the range of values the character is

allowed to take. The parser will take strings as input, or sequences of characters.

Each index in the SetCombinator represents a range of possible ASCII character

values. This can be captured with the h option and h ch range or h ch Hammer

invocations, as described in Figures 1.1 and 1.2. These characters are then concate-

nated in an h sequence or left as is if there is only one element in the sequence.

Running our algorithm on the KQuery file from the example, we get the parser

h repeat n(h choice(h ch range(0,9), h ch range(11,127), NULL), 4)

Note that our algorithm will simplify repetitive indices by employingh repeat n

and cut off the rest of the SetCombinator if there are no further restrictions on the

later indices. If there are restrictions for every index, we end our parser with

h end p to indicate that the parsed string should end there and makes sure that

there is no input left to parse. Our parser stops at index 4 because the first 4 indices

are the only characters whose values lead to the buffer overflow. The first 4 indices

either belong in the character range 0 to 9 or 11 to 127, only excluding 10 from its

range.

The actual output of this parser is a .c file which implements this parser in the

main function. It parses stdin, but this can be modified to parse passed arguments

as well. We chose to output the parser textually rather than by reference to allow

the user to identify what makes up the parser and customize it as necessary.

The final step comes with compiling this Hammer implementation and attach-

ing the parser to the start of the program as shown in Figure 2.5. The logic is a

little reversed because the parser accepts inputs that would throw an error, so we

negate the results. Inputs that trigger the error are blocked by the parser and never

passed to the rest of the program.

We tested our parser on a few examples that would overflow the gets buffer and
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Figure 2.5: Prepending the parser to the program, so that the program never runs
on invalid input

those that would not. It successfully rejects and accepts these inputs. This is not

a complete testing method, but upon observation and knowledge of the behavior

of gets, we can observe that the parser recognizes strings that overflow the finite

buffer.

Section 2.4

Code and Documentation

The code was implemented as an additional option in the klee library, similarly

to its tools like kleaver, which is their constraint solver and klee-replay, which

replays generated test inputs. It currently consists of 921 lines of additional code.

It is available on github.
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Chapter 3

Experiments

Upon running the experiments, we adjust our architecture diagram to reflect limi-

tations in purely generating parsers from the constraints, as indicated in Figure 3.1.

The main difference lies after generating the parser combinator. Due to limitations

in symbolic execution, the grammar often does not provide a notion of all the inputs

that trigger the known errors. The parser needs to be manually configured after

testing a series of examples and counterexamples based on the current grammar

and observing the program’s execution. After updating the parser and grammar,

we repeatedly test examples and counterexamples until reaching a grammar that

logically triggers all known errors. Knowledge of the program behavior would

advise this manual testing process.

The ultimate goal is to reject inputs the trigger certain vulnerabilities. We

first generate our parser to accept the language of invalid inputs, as described

by the constraints. To reject invalid inputs, we negate the results of our parser.

The complement of our languages is computable because our parser implements

deterministic context free languages.
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Figure 3.1: The overview of how we automatically generate the grammar, in prac-
tice. Orange represents our contributions. The bold arrows represent necessary
inputs or libraries. The standard arrows represent conditional splits.
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3.1 GNU Coreutils 6.10 Experiments

Section 3.1

GNU Coreutils 6.10

In its inaugural paper, klee reported detecting 10 errors in the GNU Coreutils

6.10 library. The GNU Coreutils library implements basic tools used in Unix-like

operating systems such as ls and cat [2]. We run the same version on a 64-bit

Ubuntu 18.04.4 Desktop. The paper ran the programs on a 32-bit machine, so

the constraints generated on our machine are often more complex and memory

intensive. We generate constraints for 5 of the 10 errors. Out of the other 5, we

were only able to reproduce the error on the given input for 3 of the programs, but

were unable to generate constraints for these errors. The length of the symbolic

input for two of these three programs were over 26 characters, and running this

exceeded the max run time allocated. For the past program, we were unable to

reproduce an error on klee.

We reproduce in Table 3.1 the inputs that cause program crashes from [9], and

we generate a parser that catches these inputs. Again, we only look at the set of 5

programs for which we were able to 1) reproduce the error by crashing the program

on a known malformed input and 2) run klee to detect an error and thus output

the constraints that triggered the error.

We ran klee with varying numbers and sizes of symbolic arguments. Because

we had the additional insight of an example of an input that triggers the vulnera-

bility, we modeled the symbolic input to follow that format.

We walk through the example of mkdir. Although we used several additional

options like running it in a sandbox directory and maxing out the time the run

took, we highlight the key options used with running klee. First, we run kleewith
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mkdir -Z a b

mkfifo -Z a b

mknod -Z a b p

md5sum -c t1.txt

seq -f %0 1

t1.txt: “\t \tMD5(”

Table 3.1: A subset of the inputs that cause vulnerabilities in GNU Coreutils
6.10 [9]. This subset reflects the programs for which we were able to generate
constraints that triggered errors. When replaying the values from solving the
constraints, the values crashed the program.

klee --optimize --libc=uclibc --posix-runtime ./mkdir.bc

--sym-arg 2 --sym-arg 1 --sym-arg 1

The --libc=uclibc and --posix-runtime tags are the same as described in

Section 2.1. The option --optimize optimizes mkdir program’s code before ex-

ecution. The --sym-arg options create three symbolic arguments, with the first

one being 2 characters long, followed by one character and another character. Af-

ter running klee, the .kquery file only detailed constraints for the 0th arguments

(arg00) and the 2nd argument (arg02), implicitly implying the existence of a 1st

argument with no constraints. We add [] and [arg00 arg01 arg02] to the last line

before the parentheses, just as in Figure 2.2, to denote that we want parsers for our

symbolic inputs arg00, arg01 and arg02. The [] tells us there are no additional

constraints on these arguments. Our tool outputs three different parsers for each

of the symbolic arguments as shown in Table 3.2.

We rewrite the results in Table 3.2 by substituting the ASCII decimal values
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arg00 h sequence(h ch(45), h ch(90), NULL)

arg01 h ch range(0, 127)

arg02 h choice(h ch range(0, 44), h ch range(46, 127), NULL)

Table 3.2: Hammer invocations automatically output by our tool to parse each of the
symbolic arguments. Arguments are numbered from 0 to 2. Table 3.3 captures this
table except it substitutes the ASCII values with ASCII characters, and introduces
additional notation.

arg00 h sequence(h ch(‘-’), h ch(‘Z’), NULL)

arg01 h ch range(0, 127)

arg02 h not ch(‘-’)

Table 3.3: Substituting Table 3.2 parser ASCII character values with actual charac-
ters. The first symbolic argument must be -Z, followed by a nonempty argument,
followed by an argument that is not -.

with their respective characters to facilitate our interpretation in Table 3.3. We

also introduce the notation h not ch(45) to denote h choice(h ch range(0, 44),

h ch range(46, 127), NULL) for ease of interpretation. h not ch(45) is not a

valid Hammer function and is just used for notation. Often, character ranges just

exclude one character, and this representation is more informative. To translate

the parsers to English, we see that the first argument must be -Z followed by a

nonempty argument and a third argument with cannot be -. The input -Z a b that

crashed mkdir shown in Table 3.1 is included in this language.

In general, we play around with different sizes of symbolic arguments until we

reach a minimum size and number of arguments that achieve high line coverage.

This is indicated by the loop from the output of klee to symbolic arguments in

Figure 3.1. With the GNU Coreutils library, we already have an idea of what inputs
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arg00 h sequence(h repeat n(h ch(‘-’), 2), h ch(‘c’), NULL)

arg01 h ch range(0, 127)

arg02 h not ch(‘-’)

Table 3.4: Parser generated from running mkdirwith a variable number of symbolic
arguments, specifically letting there be 0 to 3 symbolic arguments of up to 3 char-
acters. This differs from Table 3.3, which set each of its three symbolic arguments
to fixed sizes of 2, 1 and 1.

trigger the vulnerability. In addition, the experiments in [9] found a framework of

setting symbolic arguments to capture most behavior of the Coreutils applications,

specifically setting 3 symbolic arguments, one long and two short as well as a

symbolic file, stdin and stdout. One of klee’s limitations is that it seeks to find

an input that triggers an error at the line, but not all such input. Different sizes

and numbers of symbolic arguments can trigger the same error. Thus, even after

catching an error and generating a set of constraints, as we did with mkdir, we can

find other inputs that trigger the error with different sizes of symbolic arguments.

klee --optimize --libc=uclibc --posix-runtime ./mkdir.bc

--sym-args 0 3 3

The --sym-args option says to create from 0 to 3 symbolic arguments of up to

3 characters. The difference between this and our first call is before we had fixed 3

arguments of size up to 2, 1 and 1. Now, we have 0 to 3 arguments of size up to 3.

Our tool outputs the parsers in Table 3.4, again with ASCII values substituted for

readability.

The only difference in the constraints between this allocation of symbolic ar-

guments is in the 0th argument. Allocating 3 instead of 1 character for the 1st

and 2nd symbolic argument did not change its constraints, so we assume that the
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current constraints hold for larger symbolic inputs. The 0th symbolic argument

constraints changed from -Z to --c. Upon further inspection, the two different

arguments denote the same command line option.

A symbolic argument of up to 3 characters should have also contained the

2 character input that triggered the error. However, once klee discovered a 3

character input (--c) that triggered the error, it did not describe different inputs

that lead to the same line. klee’s purpose is detecting the error and producing

one input that triggers the error. However, several different types of inputs may

trigger the same error. Testing different sizes of symbolic input to observe different

constraints is still a manual process, but this can be automated. This multiplies the

run time of the constraint generating process with multiple runs and taking the

union of the constraints of errors. This is indicated by the arrow that goes from the

program output back to adjusting symbolic arguments to see if different sizes of

arguments trigger the same or different errors in Figure 3.1.

The constraints aren’t perfect. Due to the nature of symbolic execution, the

halting problem, an undecidable problem, is embedded in ensuring that every path

is explored. We cannot prove or ensure every vulnerability is detected, so kleemay

encounter false negatives. We are unable to consistently discover all vulnerabilities

in programs with klee, so we focus our discussion on defining parsers for detected

vulnerabilities. Even then, klee constraints miss inputs that trigger the detected

error the constraints are meant to capture. The symbolic execution engine does

not generate complete constraints describing all input that trigger the error. For

example in mkdir, the constraint of the 2nd argument not being ‘-’ is still part of the

language that crashes the program. This is not so much a false negative because it

successfully found an error, but its constraints did not describe all inputs that led to

it. The flip side of errors are false positives. We detect false positives by replaying
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the inputs that triggered the generated error with klee-replay and verifying that

the program crashed or otherwise failed.

The issue we address manually involves the true positives detected by klee. We

want to capture all the input that trigger these errors. We begin the iterative process

of running test cases by hand. Strings inside the grammar should crash the program

or trigger the detectable vulnerability and strings outside the grammar should be

correctly processed by the program. Informed by the constraints and knowledge

of expected program behavior, we adjust the grammar and parser accordingly.

Ideally, we also would like to construct parsers for false negatives, as in errors

undetected by klee, but klee does not give us any leads in that process. If we know

of some vulnerability that is not being detected, we can add an assert statement and

see if klee reports it as an assert error when running it on the updated program.

We operate on the assert error constraints the same way as any other error.

We similarly repeat the experiment for the other programs with bugs in GNU

Coreutils and report the outputted parsers in Table 3.5. Sometimes the order isn’t

as sensitive for different arguments and swapping them around will still cause

the program to crash. For mknod, you can swap arg00 and arg01. Because klee

focuses on finding one input that triggers the bug, this swap is not reflected in the

constraints and thus not in our automatically generated parser. The realization

came from comparing the known input that triggered the error and the outputted

grammar. This ability to swap two parameters will be represented by running

arg00 and arg01with both parser orders.

The parsers aren’t complete in describing all input that trigger the errors because

of the constraint generator of the tool klee. The intent of klee is not to generate

constraints for every type of input that trigger the vulnerability, which would be

ideal for our tool to then analyze. Because of this, the constraints are neither
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arg00

[h sequence(h repeat n(h ch(‘-’), 2),
h ch(‘c’), NULL); h sequence(h ch(‘-’),

h ch(‘Z’), NULL)]

arg01 h ch range(0, 127)mkdir, mkfifo

arg02 h ch range(0, 127)

arg00

[h sequence(h repeat n(h ch(‘-’), 2),

h ch(‘c’), NULL); h sequence(h ch(‘-’),

h ch(‘Z’), NULL)]

arg01 h ch range(0, 127)

arg02 h ch range(0, 127)

mknod

arg03 h ch(‘p’)

arg00 h sequence(h ch(‘-’), h ch(‘c’), NULL)

md5sum

stdin
h sequence( h ch(‘M’), h ch(‘D’), h ch(‘5’),

h ch(‘ ’), h ch(‘(’), NULL)

arg00

[h sequence(h repeat n(h ch(‘-’), 2),

h ch(‘f), NULL), h sequence(h ch(‘-’),

h ch(‘f), NULL),]

arg01 h sequence(h ch(‘%’), h ch range(1, 127))seq

arg02 h ch range(1, 127)

Table 3.5: Parsers outputted by other runs on GNU Coreutils programs. If the
parser is stored in a list, it signifies a union of these parsers.
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comprehensive nor entirely accurate. We limit the false positives that affect the

accuracy by replaying an input solved from the constraints, but that doesn’t reflect

all inputs in the constraints are not false positives. False positives may be due to

bugs in klee or nondeterminism of the program. The lack of comprehensiveness is

due to the fact that klee is more concerned that it detected an error than detecting all

such formats that trigger the error. However, examples that trigger the same error

usually follow a similar pattern. We can generalize the constraints for symbolic

arguments restricted to 3 characters to more characters. Also, the constraints

operate on a character by character basis, but this does not model many real world

applications. We discuss limitations further in Chapter 4.

The outputted C file allows for easy customization of the outputted parsers to

accommodate these errors. For example, with seq, we observe that the format

option (-f or --f) throws the bug and the second parameter just needs to be a valid

format string. If it isn’t, the seq parser will throw a syntax error anyways. Then,

we can rerun klee on seq, fixing the second symbolic input, with

klee --optimize --libc=uclibc --posix-runtime ./seq.bc

--sym-arg 3 %0 --sym-arg 2

We also run examples by hand. From the initial run ofklee, we discover the error

arose in the format option, so the first argument is fixed to -f or --f. The second

parameter must consist of %, followed the a valid formatting sequence. Many

improperly formatted arguments are detected by seq’s own parser like invalid

floating point arguments, so to surpass their parser and crash the program, the

input needs to be valid floating points. With these messages, we determine that

the 1st argument should be a floating point format, and the 2nd argument should

be a floating point. We construct the the parser by hand accordingly, as shown

in Table 3.6. We use a few less intuitively named Hammer invocations, which are
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described in Table 1.2.

arg00
[h sequence(h repeat n(h ch(‘-’), 2), h ch(‘f), NULL),

h sequence(h ch(‘-’), h ch(‘f), NULL),]

arg01

h sequence(h ch(‘%’),

h optional(h choice(h ch(‘+’), h ch(‘-’), NULL)),

h optional(h sequence(h many(h ch range(’0’, ’9’)),

h ch(’.’), NULL)),

h many1(h ch range(’0’, ’9’)), NULL)

arg02

h sequence(h optional(h choice(h ch(‘+’), h ch(‘-’), NULL)),

h optional(h sequence(h many(h ch range(’0’, ’9’)),

h ch(’.’), NULL)),

h many1(h ch range(’0’, ’9’)), NULL)

Table 3.6: Modified parser for seq. seq prints a sequence of numbers from first
to last, with first defaulting to 1. With knowledge of seq’s being triggered by the
format option (-f), we implemented by hand arg01 and arg02 that would bypass
seq’s parser for valid formats and crash the program.

Our tool’s output from parsing klee’s constraints gave us the outline of what is

considered invalid input, but klee’s constraints aren’t powerful enough to describe

all invalid input. Our tool successfully generates grammars and parsers from

the constraints specified, but manual intervention is still required to achieve a

more complete grammar. Due to limitations in computability, depending on the

complexity of a language, it may be theoretically impossible to prove that the

grammar we output is equal to the grammar of all inputs that do not trigger a

vulnerability.
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Section 3.2

Busybox 1.10.2

We similarly apply our parser generating tool to errors detected in Busybox 1.10.2

again on the same 64-bit Ubuntu Desktop. The Busybox library provides a smaller

version of common UNIX utilities, including programs in the Coreutils library [1].

Cadar et. al also applied klee to find bugs in this library [9], and although not

explicitly stated, we assume they ran the programs on a 32-bit machine like for

Coreutils. Again, we were only able to reproduce a subset of these errors and even

fewer with running klee within a max time cutoff of 60 minutes. The programs of

Busybox come with a much less exhaustive set of tests, and that is indicated in the

larger number of errors that klee finds per program. This introduced the need to

run our tool on each of the constraints generated by the errors and take the union

across all of them. We show parsers for 3 programs in Busybox in Table 3.7.

We observe how several different inputs trigger errors on different lines in the

program for installwith a single symbolic argument. We take the union of all of

the parsers generated by the various constraints in arg00. We also take the union

between the two parsers listed in separate rows for install.

Upon expanding the number of symbolic arguments, we observe in top that

the same characters, or some combination of them, trigger the error. In particular,

a permutation of characters with ASCII values 0, 9, 10, 98, 100 and 110 for any

number of symbolic arguments will trigger the error.

The constraints for hexdump combined to form any possible input. Running

hexdump confirmed this behavior. However, hexdump behaves as expected if called

on an existing file. This language cannot be expressed because klee does not have

a concept of what files exist in the system.
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install arg00

[h sequence(h repeat n(h ch(‘-’), 2),
h ch(‘m’), NULL);
h sequence(h repeat n(h ch(‘-’), 2),

h ch(‘g’), NULL);
h sequence(h ch(‘-’), h ch(‘g’), h ch range(0,

127), NULL)]

arg00 h ch range(0, 127)

install

arg01
h sequence(h repeat n(h not ch(‘-’), 2),

h not ch(‘d’), NULL)

arg00 h sequence(h ch(‘-’), h ch(‘d’), NULL)
install

arg01 h ch(0)

top

arg00,
arg01,
arg02,

...

h many(h choice(h ch(0), h ch(9), h ch(32),

h ch(‘b’), h ch(‘d’), h ch(‘n’), NULL))

hexdump arg00 h ch range(0, 127)

Table 3.7: Parsers outputted by runs on Busybox programs. If the parser is stored
in a list, it signifies a union of these parsers.

We also looked at the most recent version of busybox, version 1.31.1 to see

what errors still exist in these programs. klee only detected errors in hexdump, but

upon replaying the input returned by the solver of these detected error-triggering

constraints, we found them to be false positives. Although our tool was able to

generate a parser for these constraints, we do not believe the constraints capture an

error in the program. With more time, we would test our tool on other programs

in the most recent busybox version.
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Section 3.3

Generating Grammars from Parsers

We demonstrate another application for this tool with a simple example that serves

as a proof of concept. Given a program that parses an input, we want to output

the grammar for the input in the form of a parser combinator. The difference lies in

the fact we do not want to protect against vulnerabilities, but instead capture the

format of the input the program expects. There are currently limitations with using

our tool to do this, especially regarding the complicated constraints generated by

external function calls like is alpha.

We wrote a function that parses a California license number to validate its

format, specifically that it is 8 characters long, the first character is a letter, and the

last 7 characters are digits between 0 and 9. The function consists of a series of

nested if -statements that check that each character falls within the specified range,

as shown in Figure 3.2. We insert an assert(0) statement in the inside of these

if -statements to force klee to detect an error in this path. klee detects assert errors,

among other errors, and outputs a set of constraints that lead to the error. Our tool

parses these constraints and constructs a parser for these known invalid inputs. By

taking a presumably correct parser, and making its success an error, our tool will

generate a grammar for a successful input. Running klee generates the constraints

that lead to the assert statement, which we then parse to construct the grammar.

If the program itself had a bug that klee detected, klee generates constraints for

both the bug and the assert error. We can distinguish the two by checking which

constraints had type assert error or what line number the error is thrown, both of

which klee provides for every error.

The parser outputs a clean representation of the grammar:
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Figure 3.2: Sample CA license plate parser to generate grammar

1 if ’a’ <= num[0] && num[0] <= ’z’) {

2 if (’0’ <= num[1] && num[1] <= ’9’) {

3 if (’0’ <= num[2] && num[1] <= ’9’) {

4 ...

5 if (’0’ <= num[7] && num[1] <= ’9’) {

6 if (num[8] == ’\0’) {

7 printf("Valid input!\n");

8 assert(0);

9 }

10 }

11 ...

h sequence(h ch range(‘a’, ‘z’), h repeat n(h ch range(‘0’, ‘9’),

7), h ch(0), NULL)

The technique of inserting an assert statement in a parser to extract the grammar

can be applied to other applications. We can also fine tune our tool’s constraint

parser to be able to replicate more advanced grammars. As mentioned in the

Related Work section, there exists prior work in synthesizing grammars from parser

programs [16, 18].

Section 3.4

Contributions

We applied a symbolic execution tool, generally used for exhaustive testing, to

generate grammars for LangSec. The goal of the grammar is to protect against

detected vulnerabilities rather than capture the intent of the developers when

writing the program. It operates on any program, not just parsers. Our tool begins

constructing the grammar without any knowledge of concrete inputs, which none

of the Related Work attempts.
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We expanded the functionality of klee. While klee provides one example of

an input that triggers the vulnerability, we construct a grammar for a set of inputs

captured by the constraints and adjust the set with manual intervention. We output

a parser implementation of the grammar, which can be prepended to the program

to defend against the vulnerabilities detected by klee.

The parser file generated is easy to read and implemented in the Hammer parser

combinator library. Because it is outputted in a compilable C file, it is also easy to

adapt and customize with knowledge of the program or known counterexamples

to the grammar. Recall that the outputted parser represents invalid input. When

prepended to the program, it rejects input that it parses correctly, and allows input

that it failed to parse through to the rest of the program.

We also showed that we can apply this to programs that validate input, with

assert statements, to reconstruct the grammar. This is not to protect against vul-

nerabilities but to define the format of accepted input.
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Chapter 4

Future Work

Section 4.1

Current Limitations

We first begin by considering the limitations of our tool in combination with klee

and then discuss how they may be addressed.

Our tool currently operates on inputs as strings, treating each element in the

symbolic array as a separate character. Our tool can be extended to integers with

additional case analysis in our parsing of the constraint AST to invoke Hammer’s

h int and h int range. We currently treat integers with each digit as a character.

Although the parsers we have generated cover the constraints that lead to

the error, they are not comprehensive in parsing all strings that lead to the error.

Generating more comprehensive parsers requires an iterative process of testing

examples and counterexamples in the grammar and adjusting it accordingly. Based

on results of the papers mentioned in the Related Work, this adaptive process of

generating grammars can be automated for lower level languages [3,6]. For regular

expressions and context free languages, a grammar can be formed and adjusted

with a series of examples and counterexamples. We would alter our already formed
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grammar with this process.

In addition, different sizes and numbers of symbolic inputs lead to different

constraints, so a comprehensive grammar requires integrating the constraints of

variable symbolic argument options. The user can input different symbolic argu-

ments and take the union of all the parsers generated. This multiplies the run time

by the number of different configurations of symbolic arguments.

Although symbolic execution intelligently traverses every path an input can

take, any exhaustive search of all possible paths in a program will explode in

memory and time. Optimizations can be applied, but this reduces the practicality

for larger scale inputs and programs. However, the issue of path explosion is more

a theoretical limit than an engineering problem.

We treat each symbolic input separately and assume that their constraints do not

influence each other. For example, we assume there is no constraint saying that the

first character in each symbolic argument is the same. Although this assumption is

safe for the programs we tested our tool on, it may not be the case for an arbitrary

program.

We discuss how some of these limitations can be addressed in future work.

Section 4.2

Modifying klee

The purpose of klee is to automatically perform tests that achieve high coverage

on a diverse set of programs. While sufficient in detecting errors, klee only cares

about discovering one input that triggers the error rather than the whole set of

inputs. Thus, constraints are not comprehensive of possible input that may trigger

the vulnerability. In order to capture a larger set of invalid input, a natural next

step would be to modify the symbolic execution of klee.
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Many tools are built on top of klee to achieve different purposes [10, 20, 24].

Ramos et. al configured klee to check the equivalence between two arbitrary klee

functions [24]. Corin et. al extended the klee symbolic execution engine with a

tainting mechanism to track information flows of data [10]. klee is a very powerful

tool that we appended to by interpreting its constraints to generate a parser, but

the method of generating these constraints should also be modified to best fit our

needs. Future steps could modify klee to generate constraints which capture more

inputs that lead to the given line rather than a subset of such inputs.

4.2.1. Directed Symbolic Execution

When we look at a program with a known vulnerability to establish a parser

defending against this vulnerability, we usually know which exact line it occurs.

Symbolic execution seeks to perform an exhaustive search of all possible paths, but

in our use case, we only wish to explore the path that leads to the specified line. Ma

et. al modified klee’s search strategy to solve the problem of finding the shortest

path to a certain line in the code [21]. This is relevant for programs with known

buggy lines, so the symbolic execution can be directed to those specific lines. The

vulnerable constraints can be more quickly and reasonably generated.

It will also be useful to tag areas of interest rather treat every line of code

coverage equally. Future work in directed symbolic execution could weigh certain

paths or lines above others in exploration priority. Bugs in lines of code that are

not reached as often can be discovered with the ability to highlight these lines.

In addition, it is infeasible to traverse every path of large programs, so directed

symbolic execution narrows the focus.
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4.2.2. Expanding System Environments

klee just models the file system, but other environments such as sockets or multi-

threading are not supported. However, the inability to model the system environ-

ment is a known handicap for symbolic execution.

Section 4.3

Further Automation

After our tool generates a preliminary grammar, the grammar needs to be updated

based on the knowledge of counterexamples. We can base future automation of

synthesizing a grammar with examples and counterexamples on [3] and [6], which

respectively tackle regular expressions and context free grammars. They rely on

the ability to generate examples and counterexamples for a given grammar and

check if these inputs are actually an example or counterexample of our conjectured

grammar. The conjectured grammar is adapted if it doesn’t contain an example, or

if it fails to exclude a counterexample.

Section 4.4

Other Dynamic Analysis

The methods presented in [18] and [16] infer grammars from executing programs

on a collection of given inputs. They work on programs that are intended to parse

input to construct this grammar. Our task is distinct but related to theirs because

we construct a grammar that protects against vulnerabilities. Perhaps a similar

dynamic tainting process of the data can be applied to generate constraints. We

can apply the tactics of memory tracing to a program whose intent is not to parse

the input but still accesses and manipulates the input in some way.
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These papers generate the grammar in Backus Normal Form. Another direction

of automatically generating parsers is to take a grammar written in BNF and output

a parser implementation of the grammar.

Section 4.5

Optimize Grammar

The current representation of the grammar in Hammer invocations is not the most

readable or optimal form. For example, a sequence of characters can be converted

to a token or a string. Also, after the union operation, the grammar can be further

optimized and simply expressed.

Section 4.6

Testing Grammar

We currently test the grammar by checking whether known inputs that trigger the

error and other inputs in similar formats are caught by the grammar, which is not

a complete way of assessing the grammar. We can test the grammar with random

fuzzing which is not a formal proof but has been a successful testing technique.
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Chapter 5

Conclusion

The ultimate goal is to take a program as input and output a parser that protects

against all vulnerabilities, not only known vulnerabilities. This will require the

ability to detect the existence of any vulnerability, which given complex enough

languages is theoretically impossible. We focus on generating a parser that protects

against detectable vulnerabilities.

Our tool is able to automatically generate a parser combinator that rejects buggy

inputs, as defined by constraints that lead to an error. Due to incompleteness in the

constraints and limitations of symbolic execution in general, getting a satisfactory

parser still requires manual intervention. For some programs, this intervention is

nontrivial. With further efforts detailed in the Future Work chapter, the process can

be further automated.

Using symbolic execution to generate grammars shows promise. Symbolic

execution details what path is traversed to get to the vulnerable line, and the union

of all such paths should inform what is considered valid or invalid input. The tool

can also be used in conjunction with klee to get an idea of the types of inputs that

trigger the error, which is helpful in the debugging process.
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