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Abstract

My research focuses on predicting a cartoon caption’s wittiness using multi-modal

deep learning models. Nowadays, deep learning is commonly used in image captioning

tasks, during which the machine has to understand both natural languages and visual

pictures. However, instead of aiming to describe a real-world scene accurately, my

research seeks to train computers to learn humor inside both natural languages and

visual images. Cartoons are the artistic medium that supposes to deliver visual

humor, and their captions are also supposed to be interesting to add to the fun.

Thus, I decided to use research on cartoons’ captions to see if deep learning models

can, in some ways, learn human humor. I ended up using New Yorker’s Cartoon

Captioning Contests as the dataset to train a multi-modal model that can predict a

cartoon’s funniness. The model didn’t beat the benchmark in terms of accuracy of

the classification task, but it eliminated some unsuccessful attempts and set us up for

the future study on this topic.
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Chapter 1

Introduction

In social media, people tend to spend more and more effort writing a good caption

for their pictures. This is evidenced by the many online articles [1] that teach people

how to write better captions for their posts on Instagram, a popular social media

platform initially built for the sharing of mere photos. But competitions of writing

good captions for pictures started way earlier than Instagram. Even back in the late

19th century, there were already magazines publishing caption contests, some even

with rewards up to $1000[2]. Fast forwards to the 21st century, the most popular and

competitive picture caption contests come from The New Yorker magazine. Its weekly

cartoon caption contests first appeared in 1998 and have been published regularly

since 2005[3], have attracted both billionaires and Pulitzer Prize winners[4]. The

contest is extremely competitive, and according to a Wall Street Journal article,

“Michael Bloomberg, self-made billionaire and three-term mayor of New York, has

been heard to complain that no matter how hard he tries, he can’t even come up

with a contender.”[4] What Michael Bloomberg struggled with was to give a title to

a picture like this:
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Introduction Introduction

Figure 1.1: The Most Recent Caption Contest on The New Yorker Magazine
before the submission of this thesis [5]

And what Mr. Bloomberg wanted to achieve is to be featured on The New Yorker’s

website like the winner of the latest contest:

Figure 1.2: The Winner and His Caption for Contest #709[6]

As computer scientists, we are intrigued to think about a way to design an al-

gorithm to solve this problem. The algorithm can be rule-based but can also be
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1.1 What Makes a Good Caption Introduction

machine-learning-based. But before we jump into the issue, let’s take a look at what

people think is the key to win this competitive contest.

Section 1.1

What Makes a Good Caption

Don’t let the section name fool you. In this part, we will discuss what makes a good

caption for The New Yorker’s editors. According to 7-time The New Yorker caption

contest winner Larry Wood, pun is an awful choice, and he didn’t think the good

puns can “redeem the pun’s well-deserved reputation as the easiest and lowest form

of humor.” He also talked about what makes a bad caption for the contests. “They’re

too long, they’re too obvious, they don’t end with the punch line, they don’t recognize

which character in the cartoon is speaking, and they’re just not funny.” But when

it comes to what makes a good caption, Larry Wood is didn’t quite articulate his

point. He claimed that a good caption should “be brief, end with a punchline, and be

funny.” That barely helps us to construct a useful algorithm, since if we already know

concretely what is “funny” we won’t need to research on writing “funny” captions.[7]

On the other hand, scientists provided us a more specific set of criteria to focus

on in order to write better captions for the contest. According to professor Peter

McGraw, “you’d do well to mind these four factors: novelty, length, punctuation,

and ‘abstractness and imaginability.’” [8] McGraw is a professor of marketing and

psychology at University of Colorado Boulder. The conclusion came from research

he has done with Phil Fernbach, a cognitive scientist from Brown University. During

their research on more than 5,000 captions for contest #281, they find that “captions

with uncommon words were more likely to make the shortlist,” and also “captions with

fewer punctuation marks fared better than others, as did captions that were harder

to visualize.” These findings are helpful, but even professor McGraw himself is unsure
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1.1 What Makes a Good Caption Introduction

of the absolute applicability of his discovery. In an interview with Wired, professor

McGraw said, “My guess is that we have to be a little bit careful about the conclusions

we can draw.” He also said: “This is only one contest. As a good scientist I would

want to replicate these effects with many different contests.” Professor McGraw’s

hesitation is valid, not only because he only did his research on one contest, but also

because he only compared the 42 shortlisted titles with the rest 5000 captions. In

other words, his research only helps predict which caption will get shortlisted instead

of predicting which caption will be the finalist or even the winner. Whether his rules

apply to contests winners are still largely unknown.

Apparently, a rule-based algorithm will not lead us to a satisfactory result, since

neither the 7-time winner nor the professors can articulate a set of “rules” that can

help them find the winner or even a list of finalists. So we are forced to look into

the machine-learning-based algorithm. The only requirement is that I need more

data than professor McGraw’s 5000 captions, and fortunately, there is such a dataset

available with more than a million captions. In the next chapter, I will detail its

features and collection so that we can train a machine learning model on it to hopefully

understand humor.
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Chapter 2

Dataset

With the help from The New Yorker magazine itself, we have a public dataset[9]

that collects crowdsourced users’ ratings on over 1 million captions for more than 100

contests.

Section 2.1

Dataset High-Level Description

The dataset is collected using data provided by The New Yorker magazine. Ev-

ery time a cartoon caption contest is held, the magazine sends the cartoon and its

many potential captions to the organizers of this database. Then the organizers used

Next Active Machine Learning System, “a cloud based machine learning system for

applying state-of-the-art adaptive data collection techniques[10],” to get ratings of

captions from users online. And finally, they score the users’ responses and decide

which caption is the best.
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2.2 Data Collection Dataset

Section 2.2

Data Collection

There are two types of questions for online users and also two types of algorithms for

the cloud-based platform to release these captions to the users.

2.2.1. Sample Query

There are two types of queries that are provided to the users. The first type is to rate

“how funny is this caption.” Users are given three choices to choose from: “unfunny,”

“somewhat funny,” and “funny.” The dataset calls this type of query “Cardinal.” The

other type of query is “which caption is funnier?” Two captions for the same cartoon

are given to the users, and they are asked to choose the better one. This type of

question is titled “Dueling” by the dataset.

(a) Cardinal (b) Dueling

Figure 2.1: Sample Query
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2.3 Content of Data Dataset

2.2.2. Collection Algorithms

Since the users have to give responses to a series of captions or caption pairs, the

order of the sequence in which the users receive these questions matters. The queries

are generated by the platform in two different ways. Specifically, there is a random

algorithm that generates the queries randomly, and there is an adaptive algorithm

that generates the queries based on users’ previous responses to decide which query

to ask next.

Section 2.3

Content of Data

There are two types of data. The first type is response, which is a CSV file and

include the following metrics: Participant ID, Response Time (s), Network delay

(s), Timestamp, and algorithm label. Each of them is quite self-explanatory, and

these five measurements are recorded every time a user rate a caption. Depending

on whether the caption is cardinal or dueling, another 2 measurements are recorded

as well. If a caption is cardinal, then the caption the user is asked to rate, and the

rating (funny, unfunny, or somewhat funny) is recorded. If the caption is dueling,

then the whether the caption appears on the left or right side and the funnier caption

are recorded.

The focus of my research is on the other type of data in the dataset called sum-

mary. They are basically the summary of responses from every contest. The header

of summary looks like this. The headers are quite self-explanatory, but the score is

calculated through the following equation:

score =
(#funny ∗ 3 + #somewhat funny ∗ 2 + #unfunny ∗ 1)

(#funny + #somewhat funny + #unfunny)
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2.4 Previous Research Dataset

and the precision is just the standard deviation with all these input of funny levels

and score being the mean.

Figure 2.2: Summary Data

Section 2.4

Previous Research

Besides the general research on The New Yorker cartoon contests mentioned in Chap-

ter1.1, there is one previous research that focuses specifically on this dataset, and

several more quantitative research focuses on a smaller dataset than this one, which

contains only 5000 captions for one contest.

The research done on this larger dataset was delivered on GitHub by a user with

user name RajeshThevar[11]. He purposed to use two neural networks in tandem

to generate captions. Specifically, he claimed to use word2vec[12] to extract embed-

dings from captions and a pretrained VGG network[13] to extract embeddings from

the cartoons. But in his code on GitHub, he only used LSTM[14] model to generate

somewhat less “random” words as his caption and claim that he has solved the cap-

tioning problem. Since he didn’t utilize the images and the ratings from the dataset,

unfortunately, I don’t think his work is satisfactory by any standards.

Other research has been done on a smaller dataset. One research from Yale[15]

created a language model based on the seven-time winner Larry Wood’s advice[7].

In his interview with Cartoon Collections Blog, Larry Wood gave out one practical

tip for writing a good caption. “Most of the drawings used in the contest contain

two frames of reference that you have to connect through the caption,” says the

8



2.5 Our Usage of the Dataset Dataset

7-time caption contest winner. The Yale research, based on the same idea, built a

system where users can input “two parts of the “incongruity” apparent in the image.”

Then the system will generate a group of captions for users to choose from. This is

an interesting research, but it didn’t really automate the process of captioning the

picture. Another research from Yale[16] attempted to predict the “funny score” for

each caption by using linear regression. The model, unfortunately, didn’t work, but

it pointed a good direction for me to move forward - using a more complicated model

to achieve a better prediction of the humor level of the captions. But before we dive

into my research, I would like to first discuss my use of the dataset.

Section 2.5

Our Usage of the Dataset

Since there aren’t enough Dueling contests (there are only less than 10 of them), I

used Cardinal contests exclusively. The range of the data I used is from contest 508 to

contest 689, a total of 182 contests, with more than 1 million captions. I didn’t make

a difference based on the captions’ collection algorithms. That is, I treated users

ratings from both adaptive algorithm and random algorithm in the same manner.

The reason for ignoring the algorithms’ potential impact is that the difference is not

that relevant to the current phase of my research. Finally, I only used the summary

data because the response data are too granular for my research.
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Chapter 3

Captions Side: BERT Model

I intended to build a multi-modal model that put together features from images and

captions and train the joint embedding on the funny score. To do that, I need to first

get the embeddings from captions. The task was given to BERT model.

Section 3.1

What is BERT and Why BERT

BERT is the abbreviation for Bidirectional Encoder Representations from Transfo-

rmers[17]. It is a natural language processing model developed by Google in 2018 that

built on the ideas of Transformers[18] and ELMo[19], among other similar ideas. I

chose BERT instead of other models like word2vec[12] because BERT can understand

the context of a word. For example, in the sentence ”I took money from the bank and

then walked to the river bank,” the word ”bank” has different meanings in its two

appearances. Since a BERT model is pretrained on both directions and is trained in

semi-supervised learning fashion[20] to understand the context of each word, it can

recognize the difference between the meanings of the two ”bank”s, while traditional

NLP models mostly fail to detect the difference. When compared to newer models,

BERT is the most well-established model that has lengthy documentation and a

10



3.2 Choosing the Best Layer Captions Side: BERT Model

sizeable community. Besides, BERT broke records in most downstream NLP tasks

and is regarded as the new benchmark.[17] Thus, BERT is my natural choice for

feature extraction on the captions.

Section 3.2

Choosing the Best Layer

Since a pretrained BERT model comes with many layers, we need to decide which

layer will become our eventual embedding in the final model. Due to constraints of

time and computational power, I decided to use the “BERT-base-uncased” model.[21]

It has 12 layers, 768 hidden units, and 110 million parameters, and is trained on lower-

cased English text. Due to the constraints again, I ran the model on a smaller dataset

that is randomly sampled from over 1 million captions in the original dataset. The

smaller dataset has 10739 captions. I calculated the caption’s embedding by averaging

the embedding on each word in that caption, which is one of the most standard ways

to get sentence embedding.[22] This gives me a 12x768 tensor for each caption. That

tensor represents 12 layers, in which there is a 1x768 vector representing this caption’s

embedding. Now I have to decide which layer is the best layer for my final task of

rating how interesting a picture is. I need to compare each of the layer’s embedding

on a downstream classification task. And random forest algorithm comes handily as

the classifier.

Section 3.3

Random Forest

Random forest[23] is an algorithm based on decision tree algorithm[24]. It adds

bootstrap aggregating to tree learners, and sample from the dataset with replacement

to feed to each of its tree learners. It also randomly select participating features, so in
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3.4 Classification Captions Side: BERT Model

some trees feature A aren’t selected in the training set. This de-correlated the many

tree learners, and together the trees predict values or help classifying a certain input.

By using ensemble learning, random forest has advantage over decision tree as it is

less likely to overfit to the data. Comparing to other classification methods, random

forest has the following advantages -

(a) It is designed for multi-class classification, unlike SVM[25] which is inherently

binary. We don’t need to make any modification on random forest to let it

classify the three classes

(b) It is agnostic to the scale of its data. That is, if a feature in the 768 features

generated by BERT is significantly larger than the rest, we don’t need to scale

it down.

(c) It is not as interpretable as Decision Tree method, but is generally more inter-

pretable than other classification methods.

Hence, I proceed with random forest as the classifier for our task.

Section 3.4

Classification

There are three types of labels in our classification task. A caption is either “funny,”

“unfunny,” or “somewhat funny.” We determine a caption’s funny level by getting

the mode among the responses. If most people think the caption is “funny,” the label

of the caption will be “funny.”

3.4.1. Class Imbalance

However, there is a clear issue with the class imbalance in the dataset. It is not

surprising that most of the data regarded as “unfunny” by most online users. In
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3.4 Classification Captions Side: BERT Model

fact, if we take a look at the distribution of the different funny levels in our sampled

dataset, we can see that the level of imbalance is pretty extreme.

Figure 3.1: Number of Captions on Different Funny Level

Although we can barely see any somewhat funny and funny post, we actually

know that there are some of the posts that fit into these two categories. Specifically,

the composition is shown in the table below:

unfunny 10688 99.53%

somewhat funny 45 0.4%

funny 6 0.06%

To effectively train our dataset, I have to combat the imbalance.

3.4.2. Upsampling

Since there are only 6 funny posts, we would suffer huge information loss if we down-

sample the majority class. Thus, our only way out is to upsample the minority classes.

I attempted two methods here:

13



3.4 Classification Captions Side: BERT Model

Resampling. I first split my data into 75% training and 25% testing. Then in the

training data, I resample the minority classes with replacement to let them equal the

amount of majority classes. Then I trained my random forest model on the training

data and tested it on the testing data.

SMOTE. Instead of copying the data in the minority dataset, I decided to use

SMOTE[26], or Synthetic Minority Over-sampling Technique, to augment my data

in the minority classes. SMOTE augments the minority data in a nearest neigh-

bor fashion. According to its original paper,“the minority class is over-sampled by

taking each minority class sample and introducing synthetic examples along the line

segments joining any/all of the k minority class nearest neighbors. Depending upon

the amount of over-sampling required, neighbors from the k nearest neighbors are

randomly chosen.” As usual, I started with a train-test-split, and then augment the

minorities in the training set using SMOTE. Then, again, I trained my random forest

model on the training data and tested it on the testing data.

3.4.3. Result of Upsampling

Recall and Precision. Unfortunately, the upsampling methods didn’t improve the

performance of the data when the number of estimators is more than 5. And even

though I tried a bunch of hyperparameters, none of them have yielded results of none

zero precision and recall on the minority classes. Remember that recall is the fraction

of true positives over total predicted positives, and precision is the fraction of true

positives over total true positives, so ideally, we would want to have none zero values

for these two metrics so that we at least have some chance of correct classification.

The results (using layer 8 out of 12, which is randomly chosen) are shown in the

following charts:

14



3.4 Classification Captions Side: BERT Model

Figure 3.2: Metrics Report when Train on Original Traning Set

Figure 3.3: Metrics Report when Train on Resampled Traning Set

Figure 3.4: Metrics Report when Train on SMOTE Traning Set

The above figured explained why the accuracy of the prediction didn’t change

regardless of our data augmentation. The tree predicted that all the captions are

“unfunny” in the case of two upsampling training sets, and only 1 “funny” post in

the case of the original dataset. Since in none of the three cases we correctly predicted

any minorities class, we might have to shift our method to something else. But before

we do that, let’s take a look at our tree structures.

15



3.4 Classification Captions Side: BERT Model

Figure 3.5: A Peak at the RF trained on Original Traning Set

Figure 3.6: A Peak at the RF trained on Resampled Traning Set

16



3.5 Regression Captions Side: BERT Model

Figure 3.7: A Peak at the RF trained on SMOTE Traning Set

Trees Structure. According to these three snippets of three structures of the three

situations, I am glad to know that the data upsampling does change the composition

of the trained tree. However, this further indicated that we might have to move away

from this machine prediction approach due to the lack of minority class. But before

we formally say goodbye to our approach, maybe we can do a regression task based

on the score?

Section 3.5

Regression

The reluctance to start our machine learning task on a regression task lies in the

distribution of our predicted value.

17



3.5 Regression Captions Side: BERT Model

Figure 3.8: Distribution of the Humor Score

The distribution of the funny level score is heavily distorted, which is not a surprise

consider this score is an average of people’s categorization of the funny level of the

caption. Since people can only vote 1, 2, or 3, the value of a caption’s score is only

between 1-3, and a majority of them have an average of 1 - everyone thinks the caption

is unfunny. Another problem that we have is the numerical value of the regression

target - it is extremely small, which creates numerical difficulties for us to discern our

final MSE(min square error) result of the regression.

Nevertheless, I conducted a series of regression tasks, and the difficulties turn out

to be true. Here is the result of regression on 32 estimators. There are 12 groups of

data, and each represents a model trained on one of the 12 layers. The third value of

each group is min square error.

18



3.5 Regression Captions Side: BERT Model

Figure 3.9: Regression Result

It is unfortunate that we can’t really choose a better group and nor did mean-

ingfully improved our baseline prediction. It definitely does better on MSE value

compare with taking the average of the labels. But the improvement is not really

convincing to advance further study.
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Chapter 4

BERT Model and VGG19 network

Unfortunately, since the class imbalance problem still hovers around, adding VGG19[13]

network didn’t help. I used the third from last layers of a pretrained VGG network

combine with the BERT layer and conducted a random forest classification. Note

that since VGG is trained on ImageNet, which consists of colored pictures of 3 chan-

nels instead of the black-and-white cartoons that only have one, I populated the one

channel to 3 channels so that VGG19 can be used on my images. The result is still as

disappointing as before, as the classifier classifies everything to the category of “un-

funny.” It seems that before solving the problem of class imbalance, we can hardly

move forward to a multi-modal model that can constructively improve our result.
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Chapter 5

Limitation and Future Work

There are a couple of improvements I can make to potentially come up with more

conclusive results.

(a) According to the original SMOTE paper[26], another technique to boost the

upsampling result is simply downsampling the majority class. Moving forward,

this is something to be attempted.

(b) Although many classifiers and regressors don’t make sense in the current setting,

I should’ve attempted to use them should there be more time. There could be

amazing insights in other models that the random forest models somehow failed

to detect.

(c) With more computational power and time, I would like to train on the whole

dataset that consists of 1 million captions instead of just the 1% of them, even

though the smaller dataset has a similar score distribution with the original

dataset.

(d) Fine-tuning both BERT and VGG could massively help improve the quality of

the embeddings.
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Chapter 6

Summary

In this thesis, I explored the possibility of categorizing a cartoon caption’s level of

fun by leveraging a New Yorker cartoon captions databased that contains more than

100 million ratings and more than one million captions. I attempted to conduct both

classification tasks and regression tasks on the dataset, but neither yielded mean-

ingful results due to the extreme class imbalance. To solve the class imbalance, I

attempted many data augmentation techniques to upsample my minority classes.

Unfortunately, due to the extremely small amount of the minority class, the upsam-

pling method didn’t improve the performance of the classification task. The research

set out to combine both visual embedding and verbal embedding to generate a multi-

modal model, but the class imbalance made the added VGG[13] embedding just as

futile. The research shows that to generate a cartoon caption by building a discrim-

inative machine learning algorithm and turning it into a generational one might not

be practical due to the class imbalance, especially not with my proposed upsampling

technique. But we could potentially leverage other non-supervised or semi-supervised

learning techniques to achieve this final goal of writing captions for cartoons.
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