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Abstract

Adversarial examples consist of minor perturbations added to a model’s input which

cause the model to output an incorrect prediction. Deep neural networks have been

shown to be highly vulnerable to these attacks, and this vulnerability represents both

a security risk for the use of deep learning models in security-conscious fields and an

opportunity to improve our understanding of how neural networks generalize to unex-

pected inputs. Transfer attacks are an important subcategory of adversarial attacks.

In a transfer attack, the adversary builds an adversarial attack using a surrogate

model, then uses that attack to fool an unseen target model. Recent research in this

subfield has focused on attack generation methods which can improve transferabil-

ity between models and ensemble-based attacks. We show that optimizing a single

surrogate model is a more effective method of improving adversarial transfer, using

the simple example of an undertrained surrogate. This method of attack generation

transfers well across varied architectures and outperforms state-of-the-art methods.

To interpret the effectiveness of undertrained surrogate models, we represent adver-

sarial transferability as a function of surrogate model loss function curvature and

surrogate gradient similarity to target gradient and show that our approach reduces

the presence of local loss maxima which hinder transferability. Our results suggest

that finding good single surrogate models is a highly effective and simple method

for generating transferable adversarial attacks, and that this method represents a

valuable route for future study in this field.
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Chapter 1

Introduction

Previous work has shown that deep learning models are vulnerable to adversarial

perturbations [26]. These are small modifications to an input image which cause the

model to output an incorrect prediction. Adversarial attacks take many forms. The

primary divide is between white box and black-box attacks. In white box attacks, the

attacker has access to the parameters and architecture of the target model, allowing

them to utilize model gradients and losses. In black-box attacks, the adversary has

no access to the parameters of the target model, and may or may not have access to

its architecture or use of the target as an oracle model (which allows the adversary

to submit inputs and receive model predictions on those inputs).

Understanding adversarial examples is an important task. When deep models

are applied in security-conscious domains such as autonomous driving, healthcare,

and fraud detection, their vulnerabilities to attack become vulnerabilities which can

threaten individual health and safety. This takes on special importance with the

advent of work showing that adversarial examples can be engineered to fool models

in the physical world [15, 6]. Understanding adversarial examples may suggest meth-

ods for producing defenses against them. Currently the most consistently successful

method for defending models is adversarial training, which entails training on adver-
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1.1 Adversarial transfer Introduction

sarial examples in addition to (or instead of) clean images [7]. Robust adversarial

training methods are computationally expensive, reduce model accuracy on clean in-

puts, and only provide limited security, suggesting that better methods are needed

[7, 19]. Adversarial examples can also be used to fool malicious neural networks.

[23] shows that adversarial examples can cause generative adversarial networks to

output unrealistic images, a potential defense against deepfake-style malicious image

translation.

Section 1.1

Adversarial transfer

Szegedy et al. showed that adversarial examples also have the ability to transfer

between models, allowing an example generated on one model to fool a different

model [26]. This effect means that keeping a model’s parameters and query access

private is not an effective way to protect a model from adversarial attack. As long as

an adversary has the ability to train a model on a compatible dataset, the adversary

can use their own model as a surrogate to produce adversarial examples which may

then fool the target classifier.

Many methods for producing effective black-box transfer rely on access to the

outputs of the target model [1]. Access to target model outputs allows for a class

of attacks known as gradient estimation attacks, in which the adversary attempts

to estimate the gradients of the target model in order to approximate a white-box

attack in a black-box setting. Required access to the target model can range from the

predicted label for an input to class-conditional probability predictions for all classes.

Recent approaches to gradient-estimation attacks include [3],[13], [27], and [2]. Other

approaches such as [20] use query access to construct adversarial examples without

gradient estimation.
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1.1 Adversarial transfer Introduction

This approach is not always representative of real-world model access. In real-

world settings, models may be secured by restricting access to outputs or limiting the

permitted number of queries. In these settings, an adversary may not have access

to the predictions for any inputs. This led Ilyas et al. to introduce more restrictive

black-box settings in [12].

We use the restrictive zero-knowledge, zero-access setting, in which an adversary

has no knowledge of model architecture or parameters, and has no access to model

outputs. An adversary which can effectively fool a target model in this setting is

extremely strong.

One approach in this setting focuses on building attacks on ensembles of surrogate

classifiers [18]. This approach reduces the overfit of attacks to the surrogate model,

and increases their ability to transfer to the target model. A limitation of this ap-

proach is the computational requirements for an adversary to train multiple diverse

classifiers and build adversarial examples using them.

Recent attempts to produce more successful transfer attacks have focused on cre-

ating stronger attack generation methods. The current state of the art in query-free

adversarial transfer is the Intermediate Level Attack (ILA) introduced by Huang et

al. in [11]. They show that enhancing a previously generated adversarial example

by increasing its perturbation on a certain layer of the surrogate model substantially

improves transfer to target models.

Our work, by contrast, focuses on finding a more effective individual surrogate

model. We show that generating simple attacks on a more effective surrogate pro-

duces stronger transferability than generating more sophisticated attacks on a less

effective surrogate. We suggest that further research into finding highly effective sur-

rogate models may be a promising avenue for producing strong transfer attacks and

accurately assessing the true robustness of existing models to black-box attack.
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Chapter 2

Methodology

Section 2.1

Data

We use the CIFAR-10 dataset for training and testing [14]. This dataset is composed

of 60,000 images divided into ten disjoint classes. There are 6,000 images per class,

and the dataset is divided into 50,000 training images and 10,000 test images. Each

image is a full color 3× 32× 32 image.

Section 2.2

Models

We chose to evaluate our approaches across a wide variety of model architectures

to produce an accurate assessment of transfer between both similar and different

models. We report results using ResNet18 models, SENet18 models, GoogLeNet

models, DenseNet121 models, and MobileNetV2 models as described by [8, 9, 25, 10,

24]. Model architectures are as they is defined in their original papers, with minor

changes given by [17] to accommodate the input size of CIFAR-10 images. All models
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2.2 Models Methodology

are trained and evaluated on an individual NVIDIA Tesla P100 GPU.

2.2.1. Natural training

For naturally trained models, we used the definitions and training scripts provided by

[17] and trained the models for 90 epochs. We used a stepped learning rate schedule

with an initial learning rate of 0.1, decreased by a factor of 10 at epochs 30 and 60.

We achieve final accuracy of 94.29% for the ResNet18 model, 94.44% for the SENet18

model, 94.43% for the GoogLeNet model, 92.23% for the MobileNetV2 model, and

94.99% for the DenseNet121 model. Our trained accuracies are comparable to those

reported by [17].

To ensure that our analysis is comparable to the current state of the art, we use

the pretrained target models released by [11]. These models are a ResNet18 model,

an SENet18 model, a DenseNet121 model, and a GoogLeNet model as described by

[8, 9, 10, 25]. As with our surrogate models, these models are as defined by their

original authors with the exception of minor modifications to support the 32 × 32

input size of CIFAR-10 images. These models are implemented and trained using

code released by [17], consistent with our training. The authors train their models

for 350 total epochs, using a learning rate schedule which starts at 0.1 and reduces by

a factor of 10 at epochs 150 and 250. The ResNet model is trained to 94.76% accuracy

on the CIFAR-10 validation set, the SENet model is trained to 94.58% accuracy, and

the GoogLeNet model is trained to 94.85% accuracy. To introduce a more distinct

model architecture, we also train a MobileNetV2 model for 350 epochs using the same

learning rate schedule. This model achieves final test set accuracy of 94.06%.

2.2.2. Adversarial training

For adversarially trained models, we use fast adversarial training, introduced by [29],

with ε = .05 to train ResNet18 models via adversarial training. Fast adversarial
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2.3 Attacks Methodology

training introduces FGSM adversarial examples with random initializations into each

minibatch while training, controlling for a phenomenon the authors refer to as catas-

trophic overfitting to produce robustness to iterative attack. Following the param-

eters introduced by [29], we train robust models for 45 epochs using cyclic learning

rates. Our first model achieves clean test accuracy of 79.66%, and our second achieves

test accuracy of 79.58%. The first model achieves white box adversarial accuracy of

41.03% against a 20-iteration I-FGSM attack, and the second gets 40.98% accuracy.

These results are comparable to those reported by [29], and show that the adversarial

training method makes these models quite robust to adversarial examples.

Section 2.3

Attacks

We evaluate our models against a variety of attacks, and show them below. Our

results are based on standard implementations of the attacks released by Huang et al.

and the Cleverhans team [11, 22]. Unless otherwise indicated, ε = .05 for all attacks.

The Fast Gradient Sign Method (FGSM) was introduced by Goodfellow et al.

as a simple method for producing adversarial examples efficiently [7]. The adversarial

perturbation is generated by scaling the sign of the model’s gradient by ε, and this

perturbation is added to the original image to form the adversarial example. The

adversarial image, x̂, is defined by 2.1, where ∇`(x) is the gradient of the model loss

with respect to input x.

x̂ = x+ ε · sign(∇`(x)) (2.1)

Iterative FGSM (I-FGSM), also referred to as the Basic Iterative Method, is

a simple extension to the FGSM attack, introduced by [15]. This method applies
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2.3 Attacks Methodology

FGSM repeatedly to produce a more finely targeted adversarial example. The attack

is defined in Equation 2.2, where x̂n indicates the adversarial example produced by n

steps of I-FGSM and α indicates the learning rate. Here the function Clip restricts

the adversarial example to remain within the ε-ball surrounding x.

x̂n = Clipx,ε( ˆxn−1 + α · sign(∇`(xn−1))) (2.2)

We use a learning rate (the epsilon value during each iteration) of .005 and 20

iterations. These values were determined empirically via grid search to produce the

strongest transfer.

Momentum I-FGSM (MI-FGSM) was introduced by [5] to enhance iterative

attack transferability. The authors find that incorporating a momentum term in when

calculating I-FGSM increases the stability of the attack by reducing its susceptibility

to being trapped in a local loss maximum. We use a learning rate of .005 and 20

iterations of attack, with a decay µ = 0.9.

The Transferable Adversarial Perturbation (TAP) attack, introduced by

Zhou et al., uses intermediate feature representations to generate an adversarial ex-

ample [32]. The TAP attack attempts to maximize the distance between the original

image and the adversarial image in the intermediate feature maps of the surrogate

model. The authors also show that applying smooth regularization to the resulting

perturbation improves transfer between models.

The Intermediate Level Attack (ILA) was introduced by Huang et al. in

2019 as the state of the art in query-free transfer attacks [11]. This method takes

a predefined adversarial example, created using another method, and enhances its

perturbation on intermediate layer representations in the surrogate model. The attack

uses the predefined example as a guide towards an adversarial direction in which to

enhance the intermediate layer disturbance.
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2.3 Attacks Methodology

We refer to an ILA attack which enhances an example produced by FGSM as

ILA-enhanced FGSM, and follow the same convention for other ILA attacks. For

ILA-enhanced iterative attacks, we follow the methodology of the original paper and

use ten iterations of the original attack followed by ten iterations of ILA enhancement.

For each surrogate, we evaluated ILA attacks based on each possible layer, and

found that the optimal source layer to enhance perturbations on was consistent for

all epochs of the surrogate model. We find that the optimal layer to target is block

4 for ResNet18 and SENet18, block 0 for MobileNetV2, block 9 for GoogLeNet, and

block 6 for DenseNet121, and we report results for ILA based on these layers. These

parameters are consistent with the optimal target layers shown by [11].
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Chapter 3

Approach

Our approach diverges from previous work focused on developing stronger and more

transferable methods for generating adversarial attacks. These include algorithmic

approaches such as MI-FGSM, which introduced a momentum term to prevent the

attack from being caught in local loss maxima, and vr-IGSM, which introduced local

gradient smoothing for the same reason [5, 30]. They also include novel approaches

such as input diversity, in which the attacker transforms the adversarial image during

the attack to find a more generalizable perturbation [31].

We take a reversed approach, and attempt to develop a surrogate model with a

generalizable yet low complexity decision boundary. The surrogate model must be

generalizable to approximate the decision boundary of the data manifold well (and

thus approximate the decision boundary of the target model well). It must also be

low complexity, to limit the effect of local loss maxima on the generated attack.

To maximize generalization of the surrogate model while minimizing decision

boundary complexity, we aim to minimize overfit of the surrogate model on the train-

ing data. If we avoid the surrogate model overfitting to the training data, we can

in turn ensure that it learns a highly generalizable, low-complexity function. Learn-

ing this type of function maximizes our chance of an attack on the surrogate model
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Approach Approach

generalizing well to the target model, as shown by [4].

These observations give rise to a simple method for minimizing overfit to the train-

ing data: undertraining the surrogate model. We define an undertrained surrogate

model as the condition of the model at an earlier epoch with a lower validation set

accuracy than the final, fully trained model (ie, the model at the point which has the

highest validation set accuracy). Note that we require both conditions, as an epoch

with lower validation set accuracy that comes after the epoch with the best accuracy

is likely to be overtrained rather than undertrained, and by definition of the fully

trained epoch no other epoch can have a higher validation set accuracy.

To evaluate this approach, we train surrogate models fully as described in Sec-

tion 2.2 and save a copy of the model parameters after each epoch of training. This

enables retroactive evaluation of the optimal point for building an adversarial attack.

We

We show an overview of our transfer evaluation methodology in Figure 3.1.

10



Approach Approach

CIFAR-10 Test 
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Figure 3.1: Overview of our methodology for evaluating undertrained adversarial
transfer to a target model.
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Figure 3.2: ResNet18 post-attack accuracy on I-FGSM.
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Chapter 4

Results

Section 4.1

Natural training transfer

To evaluate the effectiveness of this approach, we tested transfer between two sepa-

rately trained ResNet18 models across epochs. Both models were trained using the

surrogate model training procedure described in 2.2. We evaluated transfer by gen-

erating attacks on every third epoch of the first model (ie, the epoch set {1, 4, 7,

..., 88}) and transferred them to the all epochs in the same set of the second model.

Our results are shown in Figure 3.2, where lower accuracy after attack indicates more

effective transfer. Although intuition would suggest that attacks generated on a given

surrogate epoch would transfer best to the same epoch of target model, our results

show that this is not the case. The resulting accuracy landscape instead shows a

distinct valley between surrogate epochs 20 and 40, where the same surrogate models

transfer well to almost all target model epochs. Also significant is that these epochs

outperform later epochs (those which are more fully trained) in transferring to tar-

get models. These results validate the hypothesis that undertraining can produce a

surrogate model which generates significantly more transferable adversarial examples.

12



4.1 Natural training transfer Results

We expand our analysis by evaluating transfer from intermediate epochs of ResNet18,

SENet18, MobileNetV2, GoogLeNet, and DenseNet121 models to separately trained

target models from the same set of architectures. We consider this wide variety of

architectures to evaluate the effectiveness of our approach in a true black-box setting,

where the target model architecture is unknown and thus no guarantees can be made

about the similarity of the target and surrogate model architectures. Note that the

separate training means that attacks between the same architectures are not strictly

white box attacks, as the models have different parameters. We generate attacks on

every other epoch of the surrogate model, and target the epoch of the target model

with the lowest test loss (ie, the fully trained final model). We evaluate transfer for a

variety of attacks: FGSM, I-FGSM, MI-FGSM, ILA-enhanced FGSM, ILA-enhanced

I-FGSM, and Transferable Adversarial Perturbations. For all attacks, we use the

parameters outlined in Section 2.3, and use the attack method to form adversarial

examples based on all 10,000 images in the CIFAR-10 validation set.

We compare our approach of generating adversarial examples on intermediate

epochs to the previous standard approach of generating adversarial examples on the

best loss model. Our findings suggest that the intermediate-epoch approach produces

examples which transfer substantially more successfully than previous approaches

across a variety of attack styles. For all attacks evaluated, the intermediate epoch

attack outperforms the best epoch attack.

Our results for the best intermediate epoch compared to the previous approach

using a ResNet18 surrogate model are given in Table 4.2, and we show results for all

surrogate models and all attacks in Figures 4.1-4.4. We provide the equivalent tables

for other surrogates and the equivalent graphs for other attacks ein the supplementary

material.

We show that an intermediate epoch MI-FGSM attack produces the strongest

13



4.1 Natural training transfer Results

results across most surrogate-target combinations, with the exception of the ResNet18

surrogate. We discuss potential reasons for I-FGSM performing similarly to MI-FGSM

on the ResNet18 surrogate in 5.

We selected the strongest surrogate (ResNet18) by choosing the surrogate which

produced attacks which performed the best on average across all target models. We

choose to focus on the MI-FGSM attack, since it performs the best across the full range

of surrogate models. MI-FGSM attacks based on the ResNet18 surrogate reduced

accuracy on ResNet18 by 97.65%, on GoogLeNet by 94.07%, on MobileNetV2 by

97.02%, on SENet18 by 97.64%, and on DenseNet121 by 97.66%.

These results emphasize the exceptional ability of intermediate attacks to gen-

eralize across a wide variety of target model architectures in a black-box setting.

To the best of our knowledge, this makes an intermediate epoch MI-FGSM attack

(IMI-FGSM) the state of the art in query-free transfer attacks.

Our results also show that the optimal surrogate epoch for transfer is consistent

across target models. This indicates that an adversary can select the strongest surro-

gate by evaluating performance on other models, without requiring any query access

to the target model, fitting our case of the black-box setting with zero query access.

To address the possibility that our final epoch models are overtrained, and do not

represent typical models, we also perform attacks between our target models (i.e.,

we use each target model as a surrogate, and evaluate the effectiveness of attacks

generated on the target model when transfering to other target models). All mod-

els except for the MobileNetV2 architecture were released as pretrained models by

[11], who used these models as their target and surrogate models. All including the

MobileNetV2 architecture were trained using a open-sourced training code and hy-

perparameters provided by [17]. When evaluated as surrogates, these models perform

very similarly to the best loss epochs of our separately trained surrogate models, and
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4.1 Natural training transfer Results

our undertrained models outperform them. This indicates that our best loss models

are representative of typical models trained on the CIFAR-10 dataset. We report full

results of this analysis in Table 4.1.

Table 4.1: Accuracy (%) after attack by given target model (column) for attacks
generated using the given source model. We omit the diagonal, since the diagonal is
a white box attack. ε = .05. Lower accuracy indicates better transfer.

Attack Source Target

ResNet18 SENet MobileNet GoogLeNet DenseNet

MI-FGSM ResNet18 — 17.90 21.87 29.06 19.64

SENet18 12.28 — 16.37 20.10 12.87

MobileNetV2 17.64 18.31 — 21.89 16.78

GoogLeNet 26.80 18.31 27.87 — 22.93

DenseNet121 11.42 10.78 12.13 12.67 —

I-FGSM ResNet18 — 27.35 31.45 42.81 29.34

SENet18 16.06 — 21.00 25.88 17.26

MobileNetV2 23.41 24.60 — 28.33 22.07

GoogLeNet 36.90 35.61 36.73 — 31.29

DenseNet121 21.65 20.72 21.95 24.10 —

ILA ResNet18 — 7.95 9.60 12.96 8.41

MI-FGSM SENet18 7.07 — 8.56 11.29 7.36

MobileNetV2 27.24 29.00 — 33.45 26.60

GoogLeNet 11.47 11.56 12.19 — 8.56

DenseNet121 6.91 6.59 7.01 7.87 —

ILA ResNet18 — 7.67 9.35 13.86 7.74

I-FGSM SENet18 6.66 — 8.14 10.98 6.88
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4.1 Natural training transfer Results

MobileNetV2 28.04 29.66 — 34.17 26.94

GoogLeNet 12.52 12.14 13.05 — 9.05

DenseNet121 6.43 6.16 6.73 7.62 —

TAP ResNet18 — 20.66 21.55 25.70 20.72

SENet18 15.14 — 18.37 21.58 15.81

MobileNetV2 28.92 29.64 — 34.65 27.42

GoogLeNet 17.79 17.82 17.10 — 15.37

DenseNet121 20.37 19.49 20.15 20.46 —

16
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(a) GoogLeNet surrogate model
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(b) ResNet18 surrogate model
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(c) MobileNetV2 surrogate model
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(d) SENet18 surrogate model
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(e) DenseNet121 surrogate model

Figure 4.1: Post-attack accuracy for MI-FGSM transfer attacks from naturally trained
models to target models, (ε = .05). Lower accuracy indicates better transfer. The
dashed lines indicate the surrogate epoch with the best transferability for most at-
tacks.
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(b) ResNet18 surrogate model
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(c) MobileNetV2 surrogate model
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(d) SENet18 surrogate model
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(e) DenseNet121 surrogate model

Figure 4.2: Post-attack accuracy for I-FGSM transfer attacks from naturally trained
models to target models, (ε = .05). Lower accuracy indicates better transfer. The
dashed lines indicate the surrogate epoch with the best transferability for most at-
tacks.
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4.1 Natural training transfer Results
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(a) GoogLeNet surrogate model
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(b) ResNet18 surrogate model
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(c) MobileNetV2 surrogate model
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(d) SENet18 surrogate model
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(e) DenseNet121 surrogate model

Figure 4.3: Post-attack accuracy for FGSM transfer attacks from naturally trained
models to target models, (ε = .05). Lower accuracy indicates better transfer. The
dashed lines indicate the surrogate epoch with the best transferability for most at-
tacks.
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4.1 Natural training transfer Results
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(a) GoogLeNet surrogate model
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(b) ResNet18 surrogate model
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(c) MobileNetV2 surrogate model
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(d) SENet18 surrogate model
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(e) DenseNet121 surrogate model

Figure 4.4: Post-attack accuracy for TAP transfer attacks from naturally trained
models to target models, (ε = .05). Lower accuracy indicates better transfer. The
dashed lines indicate the surrogate epoch with the best transferability for most at-
tacks.

As emphasis of the strength of undertrained transfer, we also compare the trans-

fer of an intermediate attack on ResNet18 to MobileNetV2 to the transfer between

two fully trained MobileNetV2 models. Our results show that the best loss I-FGSM
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4.1 Natural training transfer Results

Table 4.2: Accuracy (%) after attack by target model for attacks generated using an
intermediate surrogate epoch of a ResNet18 model (Undertrained Attack) and the
surrogate epoch with the lowest validation loss (Best Loss Attack). ε = .05. Lower
accuracy indicates better transfer.

Attack Target Undertrained Attack Best Loss Attack

MI-FGSM ResNet18 2.23 15.63
GoogLeNet 5.62 26.64
SENet18 2.23 16.00
MobileNetV2 2.74 18.76
DenseNet121 2.24 15.87

I-FGSM ResNet18 2.20 22.40
GoogLeNet 5.61 35.42
SENet18 2.79 24.43
MobileNetV2 2.79 22.36
DenseNet121 2.13 21.60

ILA MI-FGSM ResNet18 2.41 10.39
GoogLeNet 6.35 17.09
SENet18 2.69 10.87
MobileNetV2 2.82 11.99
DenseNet121 2.57 10.29

ILA I-FGSM ResNet18 2.36 9.98
GoogLeNet 6.04 16.76
SENet18 2.88 11.57
MobileNetV2 2.62 10.24
DenseNet121 2.44 9.42

TAP ResNet18 13.44 22.83
GoogLeNet 17.18 27.96
SENet18 12.92 22.36
MobileNetV2 12.76 22.93
DenseNet121 13.67 21.74
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4.2 Adversarially trained transfer Results

attack generated on MobileNetV2 produces post-attack accuracy of 6.09%, and the

best loss FGSM attack produces post-attack accuracy of 31.25%. Note that inter-

mediate attacks against ResNet18, a model with substantially more parameters and

one which lacks many architectural features of MobileNetV2 (depth-wise convolu-

tions, linear bottlenecks, inverted residual blocks, etc.), transfer more successfully to

the MobileNetV2 model, producing post-attack accuracies of 1.41% and 30.78% for

I-FGSM and FGSM respectively.

These results show that an undertrained surrogate of completely different archi-

tecture can outperform a fully trained surrogate of the same architecture: ie, a purely

black box undertrained approach outperforms a fully trained gray box approach. This

suggests that undertraining a surrogate model is a highly effective strategy for pro-

ducing adversarial examples which can transfer well across varied model architectures,

making them ideal for an adversary in a black-box setting.

Section 4.2

Adversarially trained transfer
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(a) FGSM Trained (Robust)
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Figure 4.5: Accuracy of an adversarially trained ResNet18 model against transferred
I-FGSM examples from a second adversarially trained ResNet18 model by epoch of
the surrogate model, broken out by type of adversarial training. Lower accuracy
indicates better transfer.
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4.2 Adversarially trained transfer Results

We next investigated the impact of adversarial training on this phenomenon, pro-

viding results for transferred attacks between two ResNet18 models adversarially

trained using the Fast-FGSM method introduced by [29], as discussed in Section 2.3.

Some prior work has been done here by Vivek et al., who showed intermediate-epoch

adversarial efficacy for non-robust adversarially trained models trained with FGSM

examples (discussed there in the context of reducing the cost of ensemble adversarial

training) [28]. Our results show that intermediate epoch transferability is restricted

to non-robust models such as naturally trained or non-robust FGSM trained models.

We report full results on adversarially trained models in Figure 4.5. Our results also

call into question their conclusions that this effect is caused by adversarial training

producing models which generate weak adversaries, since we find that this effect is

not present in robust models.
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Chapter 5

Explaining transferability

Here we evaluate potential causes of improved transferability for certain surrogates,

and build an explanatory model for transferability.

Section 5.1

Gradient similarity

Gradient similarity is an important factor in transferability. Models which produce

highly similar gradients on input images will produce highly similar adversarial images

when using gradient-based attacks. We suggest that by undertraining the surrogate

classifier, we retain more universal characteristics in the gradient, ensuring that the

surrogate model gradients will be similar to any target classifier which learns the data

manifold regardless of architecture and training method.

To evaluate this effect, we calculated the cosine similarity of vectorized gradients

for surrogate and target models on clean images. To do so, we calculate gradients

on test set images for surrogate and target models. We then reshape each image

gradient into a vector, and take the l2 normalized dot product of the target and

surrogate model gradients, averaging this value across all images. Here xis represents

the reshaped gradient of image i with respect to surrogate model loss and xit represents
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5.2 Loss function curvature analysis Explaining transferability

the same quantity with respect to target model loss:

Similarity =
1

n

n∑
i=1

(
xisx

i
t

|xis|2|xit|2
) (5.1)

We show results for all surrogate and target models in Figure 5.1. The variance

in these figures shows clear correlations with the variance in transferability shown in

Figure 4.1, as do more general patterns such as the relatively smooth curves for the

MobileNetV2 surrogate model.

However, the results shown in Figure 5.1 raise several questions which suggest

that gradient correlation is not a perfect proxy for transferability. Note that while

the similarity plots for all surrogate/target models exhibit sharp spikes in gradient

similarity after epoch 30, which matches transferability improving at that epoch,

in many cases gradient similarity does not decline appreciably after the epochs of

maximal transferability. Relying on solely gradient direction similarity, we might

expect that later epochs would transfer better for some models.

These results confirm those of Liu et al. in showing that while gradient similarity

between a surrogate and target model clearly has some correlation with adversarial

transferability, other factors appear to be at play [18].

Section 5.2

Loss function curvature analysis

Our secondary goal in undertraining is to reduce decision boundary complexity, lim-

iting the effect of local loss maxima on the surrogate model. While decision boundary

complexity is computationally challenging to directly quantify, the topology of the

decision of a network is closely related to its loss landscape, which we can measure

locally [16]. Some prior work has also suggested that local loss function smooth-
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5.2 Loss function curvature analysis Explaining transferability

1 15 30 45 60 75 90
Surrogate Model Epoch

0.00

0.05

0.10

0.15

0.20

0.25

C
os

in
e 

S
im

ila
rit

y 
to

 T
ar

ge
t M

od
el

MobileNetV2
GoogLeNet
ResNet18
SENet18
DenseNet121

(a) GoogLeNet surrogate model
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(b) ResNet18 surrogate model
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(c) MobileNetV2 surrogate model
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(d) SENet18 surrogate model
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(e) DenseNet surrogate model

Figure 5.1: Cosine similarity of gradients between each surrogate model and the target
models by epoch.
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5.2 Loss function curvature analysis Explaining transferability
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Figure 5.2: Loss curvature approximation for all surrogate models.

ness is related to adversarial transferability, and it also appears to be highly related

with adversarial robustness [30, 21]. We evaluate the hypothesis that intermediate

epochs have lower complexity than fully trained models. We follow [21] in using a

finite difference approximation of the Hessian matrix to quantify local loss curvature.

Our results show a local minimum in local loss curvature at the optimal intermediate

epoch for all models except MobileNetV2. For all models considered, the optimal

intermediate epoch curvature is significantly lower than the final model curvature.

Figure 5.2 shows the local loss curvature by epoch for all surrogate models.

To confirm that the reduced curvature is accurately reflecting a reduction in local

loss maxima, we note that the improved performance of MI-FGSM over I-FGSM is

based on the ability of MI-FGSM to escape local loss maxima. We thus expect that

MI-FGSM will outperform I-FGSM more on models with more local loss maxima
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5.3 Modeling Explaining transferability

(ie, models with a more complex loss landscape). This suggests that if higher cur-

vature indeed implies more local loss maxima and a more complex loss landscape, it

will have strong positive correlation with how much MI-FGSM outperforms I-FGSM.

We calculate the Pearson correlation coefficient between curvature and how strongly

MI-FGSM outperformed I-FGSM (ie, the accuracy of target models on MI-FGSM

examples minus their accuracy on I-FGSM examples) for each surrogate model. We

found highly statistically significant positive correlation between curvature and how

strongly MI-FGSM outperformed I-FGSM (mean coefficient = 0.86, p < .001 for

all surrogate models). This indicates that our approach is successfully producing a

surrogate model with a less complex loss landscape.

These results also suggest a potential explanation for why the ResNet18 surrogate

model outperforms other models in intermediate transfer; despite the relatively high

parameter count, its complexity at all epochs is significantly lower than that of the

other models we consider. This result may also explain why ResNet18 is the only

surrogate model architecture in which an intermediate I-FGSM attack performs as

well or better than the MI-FGSM attack: the lower complexity of the ResNet18 model

loss landscape reduces the impact of local loss maxima, removing the advantage of

the MI-FGSM.

Section 5.3

Modeling

To evaluate the impact of gradient similarity and curvature, we build an ordinary

least squares linear regression model to predict post-attack accuracy. The model

includes gradient similarity, squared gradient similarity, curvature, and a constant

for each source model. We report coefficients and significance measures in Table 5.1.

Our model produces an R2 value of 0.681, and confirms our hypothesis that gradient
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5.3 Modeling Explaining transferability

Table 5.1: Linear Model

Variable Coefficient P-Value

Loss Curvature Magnitude 4.25 p < .001

Gradient Similarity -37.10 p < .001
Gradient Similarity Squared 28.76 p < .001

DenseNet121 Source 19.99 p < .001
GoogLeNet Source 17.50 p < .001
MobileNetV2 Source 13.95 p < .001
ResNet18 Source 27.49 p < .001
SENet18 Source 15.58 p < .001

similarity and curvature are highly statistically significant predictors of transferability.
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Chapter 6

Discussion

We show that a surrogate-focused approach to adversarial transfer outperforms attack-

focused approaches We explain intermediate epoch transferability as the result of two

effects: high gradient similarity and low loss function curvature. We show that gradi-

ent similarity between the surrogate and target classifier and loss function curvature

are highly significant (p < .001) predictors of transferability.

We find that adversarial examples generated on an undertrained surrogate model

transfer significantly more successfully than attacks generated on fully trained models.

Our MI-FGSM attacks generated on undertrained models outperform the current

state of the art in query-free black-box transfer. Our results suggest that a new

focus on finding strong single surrogate models could produce stronger results for

adversarial transfer.

We also note that this result has important implications for the analysis of model

robustness to black-box attack. Prior work has assumed that surrogate models trained

with the same architecture and training procedure are the worst-case for adversarial

transfer [19]. However, our results show that this is not the worst-case. An under-

trained surrogate model—even one with a different architecture—can produce attacks

which transfer more successfully than those based on fully trained models of the same
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Discussion Discussion

architecture. This suggests that prior robustness analyses underestimate the risk of

black-box transfer attacks.

Our work also finds that this effect is not present in robust models, though it

is present to some degree in non-robust adversarially trained models, confirming the

results given by [28]. Further work here may provide insights into how the training

process of robust models differs from that of non-robust models.

Our results also show an interesting contrast between natural transfer and non-

robust adversarially trained transfer. As shown in Figure 4.1, naturally trained models

show a rapid increase in transferability up to a local maximum at epoch 32, followed

by a slow, consistent decline to the final epoch at epoch 90. The maximum epoch for

transferability also appears to be associated with the first learning rate decay step

for our chosen surrogate model and training parameters. Non-robust adversarially

trained models, shown in Figure 4.5b, show a distinctly different pattern of slow,

consistent increase in transferability up to a maximum, followed by an extremely rapid

reduction in transferability. Intriguingly, models trained using FGSM training exhibit

unexpected behavior for iterative attacks. Iterative transfer rates run in lockstep with

FGSM transfer rates up to the epoch of maximum transferability, and follow the same

pattern of a rapid reduction in transferability over one to two epochs. Then, however,

iterative attack transferability slowly increases again, returning to approximately the

same level as in the local maximum by the final training epoch. This rapid divergence

in transferability between FGSM and I-FGSM examples suggests that non-robust

adversarially trained models do not gradually learn resilience to adversarial examples,

but do so rapidly at a sudden transition point. Investigating this effect further may

reveal stronger approaches to adversarial training or stronger methods for evading

adversarially trained models.

31



Chapter 7

Conclusion and Future Work

Our results show that a simple approach focused on surrogate model, rather than

attack method, outperforms standard methods for producing transferable adversar-

ial attacks. We show that this surrogate-focused approach to adversarial example

generation creates attacks which transfer well across architectures and models while

requiring no query access to the target model. The undertrained surrogate attack out-

performs the prior state-of-the-art, ILA-enhanced attacks, by seven to ten percentage

points, reducing target classifier performance to below random chance accuracy.

We note that our findings indicate a gap in existing understanding of both ad-

versarial transferability and intermediate epoch models, and that surrogate model

investigation represents an open area of investigation for improvements in transfer

attacks. Our findings also reveal that the previous known worst-case scenario for

black-box transfer (a surrogate model with the same architecture and training pro-

cedure) is not an accurate representation of the worst-case, and produces misleading

estimates of model robustness to black-box transfer attacks. Evaluation of strate-

gies for producing strong surrogates may provide more insight into the mechanics of

transferability, and a more realistic evaluation of the strength of black-box attacks

and the robustness of target models.

32



7.1 Broader Impact Conclusion and Future Work

Our findings leave open many avenues for future work. First among these is

how other choices of surrogate model architecture, regularization, and hyperparam-

eters can impact adversarial transferability. Of the surrogate models we evaluate,

ResNet18 produces the strongest transfer to the chosen target models. We suggest

in Section 5 that this is due to the model’s low complexity compared to the other

models evaluated. However, it is likely that a more effective surrogate architecture

or training method exists. Work on this front would help to identify architectural at-

tributes which produce better gradient similarity and reduced loss curvature. Finally,

we suggest that extension of this analysis to different datasets and tasks (such as ob-

ject detection or semantic segmentation) may provide context for how widespread

this effect is.

Section 7.1

Broader Impact

Negative implications of this work include the potential for bad actors to use a

surrogate-focused approach to improve their ability to create black-box attacks. Pos-

itive implications include increased awareness of the risks of black box attacks, rein-

forcing the idea that keeping a model’s parameters and architecture secure are not

sufficient for model security. The understanding that surrogate-focused approaches

can outperform other approaches for transfer attacks may lead to increases in under-

standing of how and why adversarial examples transfer between classifiers. To the

best of our knowledge, this method does not leverage any data biases, and we are not

aware of any potential consequences of the failure of this approach.
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