
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

6-1-2020

Push-relabel algorithms for computing perfect matchings of Push-relabel algorithms for computing perfect matchings of

regular bipartite multigraphs regular bipartite multigraphs

Benjamin J. Coleman
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Coleman, Benjamin J., "Push-relabel algorithms for computing perfect matchings of regular bipartite
multigraphs" (2020). Dartmouth College Undergraduate Theses. 154.
https://digitalcommons.dartmouth.edu/senior_theses/154

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337600992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/154?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Dartmouth Computer Science Technical
Report TR2020-887

Push-relabel algorithms for computing perfect
matchings of regular bipartite multigraphs

Benjamin Coleman

June 2020

Abstract

We seek to compute perfect matchings of a d-regular bipartite multigraph G = (V,E). If d
is a power of 2, we can perform Euler decomposition, which recursively separates a graph of
even degree into subgraphs of smaller degree. When d is not a power of 2, however, Euler
decomposition eventually returns a subgraph of odd degree. At this point, we can manually re-
move a perfect matching to return the graph to even degree and continue Euler decomposition.

In this paper, we explore push-relabel algorithms as potential solutions to removing a
perfect matching from a regular bipartite multigraph. Empirical analysis shows that these
maximum-flow approaches, augmented by preflow-conditioning heuristics, find a perfect match-
ing in O(E) time. Our experiments also suggest that the relabel-to-front algorithm is optimal
for bipartite maximum-flow networks.

1 Introduction
Given a d-regular bipartite multigraph, we seek an algorithm to compute and isolate a perfect
matching. An undirected graph G = (V,E) is bipartite if V can be partitioned into two disjoint
subsets, L and R, such that each edge in E connects a vertex in L to a vertex in R. Furthermore, G
is d-regular if each vertex in V has d incident edges. It is a multigraph if it allows multiple edges
to be placed between the same two vertices.

Suppose that G = (V,E) is a d-regular bipartite multigraph. A perfect matching of G is a subset
of E that covers V with exactly one incident edge on each vertex. It can otherwise be thought of as
a bijective map L→ R. Perfect matchings have several applications in routing, disk mapping, and
the class-teacher timetable problem.

1

Because G is regular, Hall’s Marriage Theorem [4] implies that the edges of G can be decom-
posed into d disjoint perfect matchings. A general computational problem is then to isolate a set of
these d disjoint perfect matchings. When d is even, we may iteratively identify an Euler orientation
and perform an Euler split of G to separate disjoint perfect matchings into two partitions of d/2-
regularity. An Euler orientation is a directing of edges such that each vertex has an in-degree and
out-degree of d/2. We find one by simply tracing out a set of edge-disjoint cycles. Performing an
Euler split of G then partitions the graph in two based on each edge’s Euler orientation—whether
the edge was traced from a vertex in L to a vertex in R, or vice versa. In this iterative process,
termed Euler decomposition, each of lgd iterations considers all edges in E, which results in a
running time of O(E lgd).

If d is not a power of 2, however, then there will be an iteration where d is odd, and no Euler
orientation is possible. At this point, we may remove a perfect matching to return the graph to even
degree. Doing so in O(E) time maintains the overall O(E lgd) running time of Euler decomposi-
tion.

This paper deals with the case where d is odd and we wish to isolate a perfect matching in O(E)
time. We begin by exploring current approaches and propose a solution based on the push-relabel
method. Experiments show that this method, combined with several heuristics, can compute a
perfect matching in O(E) time. We were, however, unable to analytically bound the running time
to O(E).

2 Background
Previous studies on the perfect-matching problem are well documented. A 2001 paper by Cole,
Ost, and Schirra outlines a theoretical approach to identify a perfect matching in O(E) time [1].
According to one of the authors (Cole), however, there is no known implementation of the algo-
rithm. More recent work by Hannigan [5] led to an algorithm that builds a partial perfect matching
by selecting edges based on vertex neighborhood size. Unfortunately, this greedy approach does
not guarantee a perfect matching, especially in sparse graphs. A paper by Ostrowski [8] proposes
heuristics to find disjoint edge sets—chains—that cover each vertex twice, and so form an Euler
split. Again, however, the heuristics do not meet the O(E) time constraint. In a 2015 paper [7],
Neckowicz explores adding a perfect matching of dummy edges and then performing an Euler
split. But again, separating dummy edges from the resulting partitions was not feasible in O(E)
time.

Approaches to the maximum bipartite matching problem have either failed to prove an O(E)
time bound or lack an implementation. The Hopcroft-Karp algorithm [6] is one of the best-known
algorithms in the field, finding a perfect matching in O(

√
V E) time. In addition, a paper by Goel,

Kapralov, and Khanna [3] discusses an algorithm that finds a perfect matching in O(V lgV) ex-
pected time by tracing random walks of the graph.

2

3 Maximum-flow approach
We can reduce a perfect matching of a regular bipartite multigraph to the maximum flow in a
related directed graph. As described in Introduction to Algorithms [2], given a regular bipartite
multigraph G = (V,E) where V = L∪R is the vertex partition and n = |V |/2 = |L|= |R|, we define
a corresponding flow network G′ = (V ′,E ′). The set V ′ includes each vertex in V and two new ver-
tices, a source s and sink t. The set E ′ comprises directed edges from s to each vertex in L, edges
in E directed from L to R, and edges from each vertex in R to t. More precisely, V ′ = V ∪{s, t}
and E ′ = {(s, l)}∪{(l,r) : (l,r) ∈ E}∪{(r, t)} for each l ∈ L and r ∈ R. As shown in figure 1, we
then assign a unit capacity to each edge, so that the maximum flow from s to t is a perfect matching
of G [2].

A side effect of our definition of E ′ is that there are no multiedges in the corresponding flow
network. This result is intentional: we are guaranteed that there still exists a perfect matching
when we remove duplicate edges by Hall’s Theorem [4]. Removing duplicate edges preserves the
neighborhood, or set of adjacent vertices, of each vertex, which means the size of a maximum
matching is unaltered.

0

1

2

3

4

5

6

7

8

9

ts

0

1

2

3

4

5

6

7

8

9

Figure 1: Example of a 3-regular bipartite multigraph G (left) and its corresponding flow network G′ (right).
Each vertex in L is numbered 0 to n−1, and each vertex in R is numbered n to 2n−1. Each edge in G′ is
assigned unit capacity and initially has no flow. Note the absence of multiedges in G′.

One of the asymptotically fastest ways to solve the maximum-flow problem is the push-relabel
method. This approach governs a class of algorithms that relaxes flow conservation during execu-
tion and instead maintains a preflow. Whereas flow conservation, as defined in algorithms such as
the Ford-Fulkerson method [2], requires the total flow into each vertex (in-flow) to equal the total
flow out of the vertex (out-flow), a preflow allows the in-flow of a vertex to exceed the out-flow
of the vertex [2]. The method first “floods” a flow network with a preflow and then subsequently
restores flow conservation using push and relabel operations. Though the method relaxes conser-
vation of flow, it maintains the capacity constraint for each edge, which means that the flow in an
edge never exceeds the capacity of the edge.

3

Push and relabel operations rely on several definitions. The excess, denoted by u.e, of a vertex u
equals its in-flow minus its out-flow. We also define the residual network of G′ to be a directed
graph with residual capacity c f (u,v) equal to be the amount of flow that can be pushed from ver-
tex u to vertex v.1 We also define the height,2 denoted by u.h, of a vertex u to be a non-negative
integer such that the source height s.h = |V ′|, the sink height t.h = 0, and u.h ≤ v.h+ 1 for every
edge in the residual network (u,v) with non-zero residual capacity.

Push-relabel algorithms may perform a push operation on an edge (u,v) if vertex u has excess,
the residual capacity c f (u,v) > 0, and u.h = v.h+1. This operation reduces the excess of u by ∆

and increases the flow through (u,v) by ∆ such that ∆ is maximized. Furthermore, the operation
may leave (u,v) saturated or unsaturated depending on whether the flow through the edge equals
its capacity after the operation. Push-relabel algorithms perform a relabel operation on a vertex u
with excess if no incident edge meets the criteria for a push operation. The operation sets the height
of u to 1 plus the minimum height of its residual neighbors, or adjacent vertices v for which the
residual capacity c f (u,v)> 0.

The push-relabel method “relabels” the heights of vertices to “push” flow downhill,3 thereby
resolving excess and restoring flow conservation. Indeed, push-relabel algorithms eliminate excess
from each vertex and compute a maximum flow in G′ at termination.

Subject to the capacity constraint, a valid flow in this construction assigns each edge a flow
of 0 or 1. Furthermore, a maximum flow assigns a flow of 1 to one edge in E incident on each
vertex of V . We construct a maximum matching of G by noting the edges (u,v) ∈ E for which
there exists non-zero flow in the computed maximum flow [2]. The maximum matching must be a
perfect matching since G is regular and bipartite.

4 Computing an initial preflow
To run a push-relabel algorithm on G′, we first initialize a preflow. For a generic graph, we set
the flow of each edge from the source to the edge’s capacity, the height of each vertex in V ′−{s}
to 0, and the height of s to |V ′| [2]. We can be more intentional with our initialization of a preflow,
however, because G is regular and bipartite.

1The residual capacity of an edge (u,v) present in the flow network G′ is the amount of additional flow we can push
through (u,v). By contrast, the residual capacity of the reverse edge (v,u) is the amount of flow already in the edge—
the amount of flow we can “cancel” if we push flow from vertex v to vertex u. Under our construction of G′ = (V ′,E ′),
which assigns unit capacity to all edges, the residual capacity of an edge is either 0 or 1. If the edge (u,v) ∈ E ′ has
a unit of flow, then we can push 0 more flow through (u,v), but we can “cancel” the unit of flow by pushing back
through the reverse edge (v,u). Thus, the residual capacity of edge (u,v) is 0, and the residual capacity of (v,u) is 1.

2Here, we stick to naming convention in Introduction to Algorithms, 3rd Edition [2], which discusses “pushing”
flow and “relabeling” vertex “heights.”

3We use the term “downhill” to convey the intuition of water flowing in a river.

4

We begin building the initial preflow as mentioned before: we assign a unit of flow for each
edge out of the source so that every edge (s, l) is saturated for l ∈ L. We then augment this initial
preflow by computing a maximal matching4 of G. We assign a unit of flow from each matched
vertex in L to its matched vertex in R, as well as a unit of flow from the matched vertices in R to the
sink t. We also set the height of each vertex in the matching to 1, add a unit of excess to t for each
pair of matched vertices, and add a unit of excess to each vertex in L not in the matching. Figure 2
shows an example of an initial-preflow computation.

5
0

6
0

7
0

8
0

9
0

0
0

1
0

2
0

3 0

4
0

t 0

5
1

6
1

7
0

8
1

9
0

0
1

1
0

2
1

3 1

4
0

t 0
s
12

s
12

Figure 2: We assign a unit of flow for each edge out of the source (left) and compute an initial preflow (right)
augmented by a maximal matching of edges (0,6), (2,5), and (3,8) (colored in orange). We then assign a
unit of flow through each edge in the matching, as well as a unit of flow through each edge that connects a
matched vertex in R to the sink. Edges drawn in bold are assigned a unit of flow (saturated), and vertices
colored yellow have excess. The height of each vertex is shown below the vertex number label—note that
each vertex incident on an edge in the matching is assigned a height of 1 (right).

This method produces a valid initial preflow by maintaining the capacity constraint for each
edge in E ′ and ensuring that out-flow never exceeds in-flow on any vertex v ∈ V . The process
satisfies the capacity constraint since it assigns unit flow to edges in E ′, which all have unit capac-
ity. The process satisfies in-flow and out-flow conditions since a maximal matching is a bijective
map L→ R. Each matched vertex in L has unit in-flow from the source and unit out-flow to a
vertex in R, and each matched vertex in R has unit in-flow from a vertex in L and unit out-flow to
the sink. The unmatched vertices in L have unit in-flow from the source and no out-flow, and the
unmatched vertices in R have no in-flow or out-flow.

Salting the initial preflow with a maximal matching allows for greater flexibility to decide a
push-relabel algorithm’s first order of operations. Furthermore, it allows us to compare matching
heuristics in terms of matching size and subsequent push-relabel efficiency. The assumption is
that more initially matched vertices means less excess, fewer push operations, and fewer relabel
operations.

4A maximal matching is a matching that is not a subset of another (larger) matching. In particular, a maximum
matching is always maximal, but the reverse does not always hold.

5

To test this idea, we compute the maximal matching in the initial preflow using either a greedy
matching algorithm or the quickmatch algorithm [5]. Let M be a set of edges in the matching,
initially empty, and U be the set of vertices not incident on an edge in M. We call the vertices in U
unmatched. In the greedy matching algorithm, we repeatedly add an edge to M incident on two
random adjacent vertices in U . Each iteration, we thus increase |M| by 1 and reduce |U | by 2. At
termination, no adjacent vertices in U remain, and we call the remaining vertices in U hermits.

The quickmatch algorithm is still a greedy algorithm; however, it adds edges to M more intelli-
gently. In the quickmatch algorithm, we define the unmatched neighborhood of a vertex to be the
set of vertices in U that are adjacent to the vertex. We repeatedly select an unmatched vertex u with
the smallest nonempty unmatched neighborhood. Then, we choose a vertex v from the unmatched
neighborhood of u so that v has a minimum-size unmatched neighborhood. We add (u,v) to M,
increasing |M| by 1 and decreasing |U | by 2 until no such unmatched u and v remain. By priori-
tizing vertices with the smallest unmatched neighborhood, the quickmatch algorithm computes a
near-maximum matching [5], which is typically larger than that computed by the greedy algorithm.

5 Push-relabel variants
As mentioned before, the push-relabel method governs a class of push-relabel algorithms. In this
paper, we experiment with several variants of the push-relabel method to evaluate run-time ef-
ficiency. The relabel-to-front variant is popular because it offers an O(V 3) asymptotic running
time [2]. We also try a relabel-to-back variant and a relabel-to-random variant for comparison.

Each of these methods performs a discharge operation for vertices with excess, removing all
excess at once with repeated push and relabel operations. They differ, however, in the order of
vertex discharges. When a vertex is relabeled, the relabel-to-front algorithm processes the vertex
first, the relabel-to-back algorithm processes it last, and the relabel-to-random algorithm processes
it randomly. At termination, all variants are guaranteed to compute a maximum flow of G′ [2], and
by extension, a perfect matching of G. See figure 3 for a sequence of push and relabel operations
that produce a maximum flow.

Another two variants we test are a min-height and max-height selection method. These methods
do not perform discharge operations, but instead order individual push and relabel operations based
on vertex height. In the min-height variant, we order vertices with excess in a min-priority queue
based on vertex height, performing either a push or relabel operation on a vertex of minimum
height that has excess. By contrast, we choose a vertex with the maximum height to push or
relabel in the max-height variant; correspondingly, we implement a max-priority queue based on
vertex height.

6

5
1

6
1

7
0

8
1

9
0

0
1

1
0

2
1

3 1

4
2

s
12 t 0

(b)

5
1

6
1

7
0

8
2

9
0

0
1

1
0

2
1

3 1

4
2

s
12 t 0

(c)

5
1

6
1

7
0

8
2

9
1

0
1

1
0

2
1

3 1

4
2

s 12 t 0

(d)

5
1

6
1

7
0

8
2

9
1

0
1

1
2

2
1

3 1

4
2

s12 t 0

(e)

5
2

6
1

7
0

8
2

9
1

0
1

1
0

2
1

3 1

4
2

s
12 t 0

(f)

5
2

6
1

7
1

8
2

9
1

0
1

1
2

2
1

3 1

4
2

s 12 t 0

(g)

0

1

2

3

4

5

6

7

8

9

(h)

5
1

6
1

7
0

8
1

9
0

0
1

1
0

2
1

3 1

4
0

t 0

(a)

s 12

Figure 3: A sequence of push and relabel operations computes a perfect matching of a 3-regular bipartite
graph using the relabel-to-front algorithm. As in figure 2, vertices from the original bipartite graph are
numbered 0 to 9, along with the source vertex s and sink vertex t. Vertices with excess are colored yellow,
edges with non-zero flow are drawn in bold, and the height of each vertex is notated under the vertex number.
Part (a) shows the initial preflow as computed in figure 2, with the maximal matching colored in orange.
In subsequent parts (b) through (g), edges through which we push flow are colored in red. In part (b), we
relabel vertex 4 and push a unit of flow through edge (4,8). In part (c), we relabel vertex 8 and push a unit
of flow back through edge (8,3). In part (d), we push a unit of flow through edge (3,9), relabel vertex 9,
and push a unit of flow through edge (9, t). In part (e), we relabel vertex 1 and push a unit of flow through
edge (1,5). In part (f), we relabel vertex 5 and push a unit of flow back through edge (5,2). In part (g), we
push a unit of flow through edge (2,7), relabel vertex 7, and push a unit of flow through edge (7, t). Part (g)
achieves a maximum flow since no vertices besides the sink have excess. We relate the maximal flow to a
perfect matching in figure (h), with the matched edges colored in orange.

7

6 Push-relabel theoretical analysis
The generic push-relabel algorithm performs three operations to produce a maximum flow: rela-
bels, saturating pushes, and nonsaturating pushes [2]. A push operation is deemed saturating if
it sets the residual capacity of an edge to 0 and is deemed unsaturating otherwise. Since all edge
capacities in E ′ are 1 and a push operation decreases the residual capacity of an edge by at least 1,
every push operation on G′ is saturating. It suffices to bound the number of relabel and saturating-
push operations.

We begin with a bound on relabel and saturating-push operations performed by a generic push-
relabel method on a generic flow network G = (V,E). Below, we present a general intuition for the
bound as described in Chapter 26 of Introduction to Algorithms [2].

To bound the number of relabels, we assert that there exists a simple path in the residual net-
work from any vertex with excess to the source (see Lemma 26.19 [2]). By virtue of this simple
path and the fact that relabel operations apply to only vertices with excess, the maximum height
of a vertex is the height |V | of the source plus the maximum height increase over the simple path
from x to s, which is |V |−1. The height of each vertex in V −{s, t} starts at 0 and never decreases,
and a relabel operation increases the height of a vertex by at least 1. Thus, the maximum number of
relabels on a vertex is 2|V |−1, which gives an O(V 2) bound on the number of relabels performed
on all vertices [2]. We perform a relabel operation by iterating through each of a vertex’s O(V)
neighbors, which leads to O(V 3) time spent relabeling vertices.

To bound the number of saturating pushes, we observe that every saturating push over a given
edge is separated by at least one relabel. Thus, each edge may undergo only as many pushes as its
incident vertices can perform relabels. There are two vertices incident on each edge, which implies
that each edge in E undergoes fewer than 2|V | saturating-push operations. This relation bounds the
total number of saturating-push operations by O(V E). We perform a push operation using O(1)
computations, which leads to O(V E) time spent performing saturating pushes.

Assuming that G is a corresponding flow network constructed from a d-regular multigraph,
each vertex in V −{s, t} has O(d) neighbors. We never relabel the source or sink, which means
we spend O(d) time during a relabel operation. We can thus implement a push-relabel algorithm
to run in O(V E) time for these corresponding flow networks. During a relabel operation on a
vertex u, we find the minimum height of the vertex’s residual neighbors, update the height of the
vertex, and then maintain an attribute for each neighbor v indicating whether a push operation can
be performed form v to u. We store this attribute in a way that allows a push operation to check
for a viable adjacent vertex in constant time. Furthermore, we can implement the greedy maximal-
matching or quickmatch algorithm to compute an initial preflow in O(E) time.

Theoretically, our understanding of the push-relabel algorithm is limited to O(V E) running
time for regular bipartite multigraphs. Experimentally, however, we could not reproduce this worst-
case scenario. Instead, by generating random bipartite graphs, computing an initial preflow with
a maximal matching, and running a push-relabel variant, our tests indicate an O(V) bound on the
total number of relabel operations and an O(E) bound on the total number of push operations.

8

7 Experimental results
We tested push-relabel algorithms on randomly generated d-regular bipartite multigraphs for vary-
ing graph size |V | and varying degree d. To generate the graphs, we assign each vertex in L a label
from 0 to n−1 and each vertex in R a label from n to 2n− 1. We then insert edges based on a
random permutation π of the integers 0 to n− 1. For each vertex l ∈ L with a vertex label i, we
add an edge (l,r), where r ∈ R and r has the label π(i)+ n. Given the desired vertex degree d,
we perform d of these permutation-based edge assignments, accumulating the edges to form a d-
regular bipartite multigraph. Since a permutation of vertices in L to vertices in R is equivalent to
a perfect matching, we can otherwise think of this process as constructing the d-regular graph by
superimposing d randomly generated perfect matchings. Our results focus on cases where d is
odd, since Euler decomposition provides an O(E) time bound where d is even.

Our goal is to experimentally bound the number of relabels performed during the computation
of a maximum flow. As we have shown in our theoretical analysis, we only perform relabel opera-
tions and saturating-push operations, and the number of relabel operations also bounds the number
of saturating-push operations. To this end, we randomly generate graphs of varying d and |V | and
perform an experimental amortized analysis on the relabel operations carried out. In the interest of
emulating worst-case performance, we randomly generate and find a maximum flow of 100 graphs;
we show only the maximum of the average number of relabel operations from those 100 tests.

We begin by running the relabel-to-front algorithm on graphs with initial preflows computed
using the greedy maximal matching algorithm. In figure 4, we note that the average number of
relabel operations performed stays relatively constant with increasing graph size. In fact, for five
orders of magnitude of |V |, the average number of relabel operations is under 2. Moreover, the
relabel cost appears inversely proportional to d, with the average number of relabels approach-
ing 0.1 as d increases. This result suggests that highly connected graphs of a fixed size require less
push-relabel computation than their less-connected counterparts.

We can see from figure 5 that computing the initial preflow with a maximal matching produced
by quickmatch greatly increases the fraction of matched vertices over the greedy method. By com-
puting an initial preflow with a maximal matching, we are able to match many of the vertices using
the greedy approach and nearly all of the vertices using the quickmatch algorithm. We also note
that the quickmatch algorithm often computes a maximum matching for small |V | and large d,
leading to the near zero relabel operations on average.

Additionally, the matching performance of both greedy and quickmatch algorithms approaches 1
as d increases. A matching performance of 1 is equivalent to a maximum (perfect) matching, so
as performance approaches 1, we say that the algorithm finds a “near-maximum” matching. From
figure 5, we observe that the quickmatch algorithm always produces a near-maximum matching;
however, the greedy algorithm produces a near-maximum matching only on graphs with high de-
gree. Larger graph size does not appear to change matching performance on average, but does
seem tighten the performance distribution. This phenomenon is likely a result of normalization: a
small variance in maximal matching size is more significant when normalizing by 102 than when
normalizing by 106.

9

Figure 4: For each value of d and |V |, we plot the maximum average number of relabel operations over 100
randomly generated graphs. We compute the initial preflow of each graph with a greedy maximal matching
and then run the relabel-to-front algorithm to find a maximum flow. We average the number of relabel
operations performed over all vertices and plot the maximum of these averages for each value of d and |V |.

10

Figure 5: We compute maximal matchings of randomly generated graphs using the greedy algorithm and the
quickmatch algorithm to view their relative matching performance. We measure matching “performance”
by the fraction of (matched) vertices incident on an edge in the maximal matching. We then plot a dis-
tribution of the performance over 100 randomly generated graphs for each value of d and |V |. Each row
of the figure corresponds to a different graph degree: from top to bottom, we graph matching performance
for d = 3, d = 5, d = 15, and d = 101. Note that the x-axis scales for the greedy algorithm (left column) and
quickmatch algorithm (right column) are different: the worst-case performance for quickmatch matchings
is 0.98, whereas the worst-case performance for greedy matchings is 0.8.

11

We next run the relabel-to-front algorithm on graphs with preflows initialized using the quick-
match algorithm. Again, we vary d and |V | and perform an experimental amortized analysis of
relabel operations. In figure 6, we note similar trends as in figure 4: the worst-case average of
relabel operations is bounded by 1.2. As d increases, however, the quickmatch algorithm improves
push-relabel performance over the greedy algorithm. Notably, for small, highly connected graphs
where |V | ≤ 103 and d ≥ 9, the quickmatch algorithm computes a maximum matching, leading to
no relabel computations after the initial preflow.

Figure 6: For each value of d and |V |, we plot the maximum average number of relabel operations over 100
randomly generated graphs. We compute an initial preflow of each graph with the quickmatch algorithm
and then run the relabel-to-front algorithm to find a maximum flow. We then average the number of relabel
operations performed over all vertices and plot the maximum of these averages for each value of d and |V |.

We perform the same analysis as in figures 4 and 6 with the relabel-to-back and relabel-to-
random variants in figure 7. From this figure, we don’t see significant differences between the
performance of push-relabel variants. The relabel-to-front variant appears to perform slightly bet-
ter than the others; however, each variant performs under 2 relabel operations on average per vertex
across randomly generated graphs of all degrees and sizes.

12

Figure 7: For each value of d and |V |, we plot the maximum average number of relabel operations over 100
randomly generated graphs. We compute an initial preflow of each graph with the greedy (left column) and
quickmatch (right column) maximal matching algorithms and then run the relabel-to-front (top row), relabel-
to-back (middle row), and relabel-to-random (bottom row) algorithms to find a maximum flow. Afterwards,
we average the number of relabel operations performed over all vertices, and we plot the maximum average
over the 100 tests performed for each value of d and |V |. Each data point plotted thus represents the worst-
case performance over 100 push-relabel tests. The entire figure represents these tests for 9 values of d, 5
values of |V |, 3 variants of the push-relabel method, and 2 algorithms for salting the initial preflow—a total
of 27000 randomly generated graphs and maximum-flow networks.

13

Similarly to figure 7, we analyze the worst-case number of relabels for the min-height and
max-height variants in figure 8. As in figure 7, there are no major differences between push-
relabel variants. Each variant performs under 2 relabel operations on average per vertex across
several magnitudes of graph size and vertex degree. The relabel-to-front variant appears to have a
slight edge over these methods as well.

Figure 8: For each value of d and |V |, we plot the maximum average number of relabel operations over 100
randomly generated graphs. We compute an initial preflow of each graph with the greedy (left column)
and quickmatch (right column) maximal matching algorithms and then run the max-height (top row) and
min-height (bottom row) algorithms to find a maximum flow. Afterwards, we average the number of relabel
operations performed over all vertices, and we plot the maximum average over the 100 tests performed
for each value of d and |V |. Each data point plotted thus represents the worst-case performance over 100
push-relabel tests. The entire figure represents these tests for 9 values of d, 5 values of |V |, 2 variants of the
push-relabel method, and 2 algorithms for salting the initial preflow—a total of 18000 randomly generated
graphs and maximum-flow networks.

14

Our tests suggest that the relabel-to-front algorithm can find a maximum flow in a d-regular
graph using O(1) amortized relabel operations per vertex, or O(V) relabel operations in total. By
our theoretical analysis of the push-relabel algorithm, this finding also experimentally bounds the
total number of amortized push operations to O(E). Since we implement push operations to run in
constant time and relabel operations to run in O(d) time, we conclude that the push-relabel algo-
rithm often computes a perfect matching of a regular bipartite multigraph in O(E) time.

8 Conclusions
Our experiments indicate that several variants of the push-relabel method can compute a perfect
matching of a regular bipartite multigraph in O(E) time. We achieve this result with a multi-stage
algorithm that constructs the corresponding flow network of a regular bipartite multigraph, salts
the network’s initial preflow with a maximal matching, finds a maximum flow in the network using
push and relabel operations, and extracts a perfect matching from the maximum flow.

This algorithm has several advantages over a vanilla push-relabel algorithm. In particular, salt-
ing the initial preflow with a maximal matching greatly improves push-relabel efficiency, as we
eliminate a relabel operation for each vertex covered by the maximal matching. For this reason,
we employ the quickmatch algorithm [5] to obtain a larger matching size and further reduce the
number of relabel operations we perform. Moreover, as d increases, we expect larger matchings
that cover nearly all vertices. In the special case that we salt the initial preflow with a maximum
matching, we eliminate push and relabel operations entirely.

Unfortunately, our current understanding of these push-relabel methods is limited to empirical
observations. In the context of finding a perfect matching using the push-relabel method, we are
unsure if these results translate to an O(E) worst-case theoretical bound.

9 Acknowledgements
Most importantly, I’d like to thank Professor Thomas Cormen for his invaluable guidance and un-
wavering support. Professor Cormen is immensely dedicated to his endeavors, and I am grateful
that he added me to his busy schedule. His ideas, time, and wit were necessary for the completion
of this project. Whether they were sufficient, I leave for the reader to decide.

In addition, I’d like to acknowledge several of Professor Cormen’s former thesis students,
whose well written insight into the perfect matching problem was invaluable to the newcomer.
Andrew Hannigan, Stefanie Ostrowski, and Patricia Neckowicz each detailed a unique and com-
pelling approach to the problem. This project stands on the shoulders of giants.

15

References
[1] Richard Cole, Kirstin Ost, and Stefan Schirra. Edge-coloring bipartite multigraphs in

O(E logd) time. Combinatorica, 21(1):5–12, 2001.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. The MIT Press, 2009.

[3] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. Perfect matchings in O(n logn) time
in regular bipartite graphs. STOC’10: Proceedings of the Forty-Second ACM Symposium on
Theory of Computing, pages 39–46, 2010.

[4] Philip Hall. On representatives of subsets. London Mathematical Society, 1935.

[5] Andrew Hannigan. A heuristic algorithm for computing edge colorings on regular bipartite
multigraphs. Technical Report 769, Dartmouth College Computer Science, 2013.

[6] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 2(4):255–231, 1973.

[7] Patricia Neckowicz. Two algorithms for finding edge colorings in regular bipartite multigraphs.
Technical Report 771, Dartmouth College Computer Science, 2015.

[8] Stefanie Ostrowski. Chain match: An algorithm for finding a perfect matching of a regular
bipartite multigraph. Technical Report 753, Dartmouth College Computer Science, 2014.

[9] Douglas B. West. Introduction to Graph Theory, 2nd Edition. Pearson Education, 2001.

10 Appendix: Maximal matching lower bound
Let G = (V,E) be a d-regular bipartite multigraph, and let M ⊆ E and M∗ ⊆ E be a maximal and
maximum matching of G, respectively. In bipartite graphs, the König-Egerváry Theorem [9] im-
plies |M| ≥ |M∗|/2. Since G is d-regular, we know that M∗ is a perfect matching, i.e., that |M∗|= n
where n = |V |/2 is the number of vertices in each partition of G. This property leads to the result
|M| ≥ n/2, and we conclude that any maximal matching must cover at least half of the vertices of G.

A proof of a result mentioned in [5] improves this bound to |M| ≥ nd/(2d − 1). Suppose
that the maximal matching M covers m vertices, so that |M| = m/2. Then, there are h = |V |−m
hermits not covered by the matching. Each vertex has degree d, and since M is maximal, no two
hermits share an edge. Therefore, each of the h hermits has d edges incident on matched vertices.
Correspondingly, each of the m matched vertices has d incident edges, at most d−1 of which may
be incident on hermits. The sum of edges from hermits to matched vertices must equal the sum of
edges leaving matched vertices to hermits, which leads to the following inequality:

m

∑
i=1

(d−1)≥
h

∑
i=1

d⇒ m≥ hd/(d−1) .

Substituting n = (m+h)/2 implies that |M| ≥ nd/(2d−1).

16

	Push-relabel algorithms for computing perfect matchings of regular bipartite multigraphs
	Recommended Citation

	tmp.1596484807.pdf.vdEkE

