
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

5-26-2020

Regression-based motion planning Regression-based motion planning

Josiah K. Putman
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Putman, Josiah K., "Regression-based motion planning" (2020). Dartmouth College Undergraduate
Theses. 150.
https://digitalcommons.dartmouth.edu/senior_theses/150

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/150?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Dartmouth College

Senior Honors Thesis

Dartmouth Computer Science Technical Report TR2020-882

Regression-based motion planning

Author:
Josiah Putman

Advisor:
Devin Balkcom

May 26, 2020

Contents
1 Introduction 3

1.1 Notation . 4

2 Related work 5

3 Field Search Trees 7
3.1 A simple example . 7
3.2 FST* algorithm . 9
3.3 Experiments . 11

3.3.1 Planar point robot . 12
3.3.2 n-joint revolute arm 14
3.3.3 Reeds-Shepp car . 16

3.4 Limitations and future work 17
3.4.1 Exploration: regressing error functions 17

3.5 Lessons learned . 18

4 Regression complex 20
4.1 A simple example . 20
4.2 Approach . 21

4.2.1 RC construction phase 21
4.3 RC query phase . 23

4.3.1 Boundary graph construction 23
4.3.2 Path refinement . 24

4.4 Experiments . 24
4.4.1 Planar point robot . 25
4.4.2 n-joint revolute arm 26
4.4.3 Reeds-Shepp Car . 27
4.4.4 Comparison to spanner algorithms 28

4.5 Use case: high memory cost cell planners 30
4.6 PLRC* Asymptotic Completeness and Optimality 31
4.7 Limitations and future work 33

4.7.1 Hierarchical all-pairs distance computation 33
4.8 Lessons learned . 34

Appendices 36

1

A Regression techniques 36
A.1 Piecewise linear regression . 37
A.2 Feed-forward neural network 38
A.3 Gaussian process . 39
A.4 XGBoost regression . 40

B Recursive Cell Roadmaps (RCRM) 40
B.1 RCRM Proofs . 41

C Implementations 43
C.1 MetricTools.jl . 43
C.2 MotionPlanning.jl . 43
C.3 MetricSpaces.jl . 44

C.3.1 Planar.jl . 44
C.3.2 Arms.jl . 44
C.3.3 ReedsShepp.jl . 44

C.4 Minimal partition models . 45
C.4.1 Binary partitions . 45
C.4.2 Grid partitions . 45

2

Abstract

This thesis explores two novel approaches to sample-based motion
planning that utilize regressions as continuous function approxima-
tions to reduce the memory cost of planning. The first approach, Field
Search Trees (FST) provides a solution for single-start planning by it-
eratively building local regressions of the cost-to-arrive function. The
second approach, the Regression Complex (RC), constructs a complex
of cells with each cell containing a regression of the distance between
any two points on its boundary, creating a useful data structure for any
start and goal planning query. We provide formal definitions of both
approaches and experimental results of running the algorithms on dif-
ferent simulated robot systems. We conclude that regression-based mo-
tion planning provides key advantages over traditional sample-based
motion planning in certain cases, but more work is required to extend
these approaches into higher dimensional configuration spaces.

1 Introduction
Sample-based motion planners such as PRM* and RRT* provide asymp-
totically optimal paths, but at a significant cost of time and memory. To
approach the optimal solution, sample-based algorithms must place samples
in a tube around the optimal path. Because the location of the optimal
path is unknown, such algorithms must drastically increase their sampling
density over the entire search space to achieve asymptotic optimality. Al-
though much work has been done to improve these algorithms by reducing
redundant sampling and collision detection ([27], [4]), even the most sophisti-
cated approaches still rely on discrete graphs for representing the intrinsically
continuous optimal motion of a system.

We explore replacing discrete graphs with continuous function approx-
imations for general purpose motion planning and provide algorithms for
searching among these regression-based representations. We begin by propos-
ing two approaches to decomposing and regressing the configuration space
into searchable regions, the Field Search Trees (FST*) and the Regression
Complex (RC). The FST* is targeted towards single-goal motion planning,
and is formally presented in section 3. The RC targets motion planning for
any start and goal query, and is presented in section 4. Both approaches are
regression-agnostic, meaning that any regression technique can be used as a

3

module for these approaches. To provide a survey of various regression tech-
niques and their performance in the context of regressing distance metrics,
we provide a comparative study in Appendix A. All algorithms and regres-
sion methods have open-source Julia implementations through our custom
library, MotionPlanning.jl, which is discussed in detail in Appendix C.

The present work demonstrates several advantages of working with con-
tinuous representations of metric spaces. Continuous representations, which
may be more computationally expensive to create than discrete graph struc-
tures like roadmaps, generally have smaller memory footprints and provide
more reliably optimal solutions. With the rise of distributed computing in the
cloud increasing computational capacity, memory often becomes the bottle-
neck in motion planning. Large discrete data structures can be constructed
using offline preprocessing, but to make the information available to robots
locally requires storage or transmission across a network. Distributed com-
puting also benefits greatly from parallelization, which divide-and-conquer
approaches like the RC lend themselves towards.

1.1 Notation

For our discussion and analysis of FST* and RC, we use the following no-
tation for describing motion planning problems. Let Q ∈ RD denote the
D-dimensional configuration space of the robot. Let Qf ⊆ Q denote the free
regions of Q, and ∆ : Q2

f 7→ {0, 1} be a local planner that determines if two
states q1, q2 ∈ Qf are connectable. If the states are connectable, we assume
that the local planner also provides the cost of the optimal path between q1
and q2. Let d : Q2 7→ R≥0 denote the distance metric between pairs of states.
FST* and RC require such a local planner and distance metric, and treats
these modules as a black box.

The runtime and memory cost of both the FST* and RC algorithms
can be significantly improved via calculating certificates in the configuration
space. This involves taking advantage of lower bounds on a given configura-
tion’s distance to the nearest obstacle to reduce the number of local planner
calls. We use the definition of certificate used by [4], which specifies that the
local planner is also able to provide this lower bound, denoted by dmin. We
use dtrue to denote the exact minimum distance to the nearest obstacle. Cer-
tificates are defined on a problem-by-problem basis, and we formally describe
the certificate methods used for each problem in subsection 3.3.

4

2 Related work
Both the FST* and RC follow the same structure as well known sample-based
approaches [17] by decomposing the planning problem into the learning (or
construction) phase and the query phase. During the learning phase, the
algorithm samples the configuration space, checks for collisions, and queries
the local planner to construct a data structure that can be used during the
query phase. In the case of single-goal planning, this data structure is con-
structed assuming that any query will lead to the same goal (as with RRT*
[16]), whereas general purpose planning is goal agnostic (as with PRM* [16]).

Although both PRM* and RRT* have been shown to be asymptotically
optimal, they fail to take advantage of large free regions in the configuration
space and require constructing immensely redundant discrete graphs. Kara-
man shows [16] in figure 11 (a) of his evaluation of PRM* in a planar without
obstacles that the PRM* needs over 50,000 samples to get within 1% of the
optimal path. This is to be expected of asymptotically optimal sample-based
planners, since path improvements require the sampler to randomly choose
configurations close to the optimal path. Similar issues exist for the RRT*.
The Informed RRT* [13] provides a slight improvement on sampling accuracy
by focusing samples on the hyper-ellipsoid around the optimal path, but the
improvement is marginal and the resulting structure still relies on an explicit
discrete graph. Approaches that remove or avoid placing vertices altogether,
such as the Visibility PRM [27] and certificate methods [4, 9], must sacrifice
optimality. Similarly, trees or graphs of controllers (e.g. LQR trees [28]) may
cover large regions of space nicely, but are focused on robust control rather
than optimal path cost.

Work on graph spanners [20, 18, 29] has shown that many of the edges
in such graphs can be deleted without too much harm to the path quality.
Prior work in our lab on metric cells [1] provides formal upper bounds on the
complexity of approximating optimal trajectories through cell decomposition,
but have high memory costs.

Towards finding effective continuous representation of the configuration
space, a modification of the D* algorithm called Field D* [12] explores using
linear interpolation of the cost function in cells for 2D motion planning.
Our FST* algorithm pairs this idea of linear approximations with a tree-
based construction procedure based on the Fast Marching Trees (FMT*)
algorithm [15], which utilizes a dynamic programming approach to grow a
tree of paths outwards in cost-to-arrive space.

5

Beyond linear approximations, more sophisticated smooth approxima-
tions of value functions are being increasingly applied to motion planning.
In [7], a metric for swept volume is learned, and serves as an effective and
admissible heuristic for planning. Work by Rayner, Bowling, and Sturte-
vant [24] remaps a motion problem with obstacles in such a way that Eu-
clidean distance in the warped map serves as a heuristic for the original
problem. Recent work by Faust et al. [11] explores a combined sampling and
reinforcement-learning approach to long-range planning, addressing some of
the same computational issues present in FST* and RC, but with less fo-
cus on optimality. Network embeddings also attempt to find a function that
expresses distance between vertices in a network; [8] provides a recent survey.

Neural networks have been used to learn value functions derived from
optimal control; one of the earliest examples being Munos’s work using neural
networks to approximate solutions of the HJB equation [21]. Distance metric
approximation for RRTs using supervised learning [3] has been used for tasks
such as pendulum swing-up problems, but is limited to one-shot planning.

6

3 Field Search Trees
To begin our exploration of regression-based motion planning, let us simplify
the planning problem to have only one specified starting point. For this
constrained problem, we no longer need to serve any pair of configurations as
queries, which lets us build a much smaller data structure that avoids many
all-pairs. Existing algorithms such as RRT* [16] and FMT* [15] make similar
assumptions. For the sake of our analysis, let us denote this specific starting
point as qs ∈ Qf .

3.1 A simple example

Figure 1: FST* field construction.

Consider a point robot navigating amongst polygonal obstacles shown in
Figure 1. Our object is to find a path from the origin qs = (0, 0) to the
goal qg = (1, 0), but we want to avoid relying on a discrete graph in the
way RRT* and PRM* do. Namely, we want to iteratively build a continuous
representation of how far any given point is from the start, and then use this
representation to find our final path.

7

Approximating the cost-to-arrive function is easy near the start. Take all
nearby points in the neighborhood of qs (within a certain ball radius, shown
in blue in Figure 1), calculate their Euclidean distance to qs, and regress
this function based on those data points. For simplicity, we use a linear
regression. We now have a first-order approximation of the cost-to-arrive
function around the start.

Next, we want to build this regression outwards, using qs’s regression
as a reference point. Pick a point inside of the neighborhood of qs, and
call it q′. To build a regression in the neighborhood of q′, we must first
calculate the cost-to-arrive of all points in its neighborhood that weren’t
already calculated during the regression of qs. Select one such point q′′, which
is in the neighborhood of q′ but not qs. Outside of qs’s neighborhood, we are
not guaranteed that configurations are directly connectable to qs. Instead,
we must find the optimal point in qs’s field that minimizes q′’s cost-to-arrive
but is still connectable. This optimal point is shown by qo in red in Figure 1.
When we find this optimal point, we know the approximate cost-to-arrive of
q′′. Without this operation, we would have to rely on the the distance from q′′

to q′ and the distance form q′ to qs, which is clearly greater than the distance
obtained by passing through qo. Repeatedly applying this procedure to all
neighbors of q′, we can regress the cost-to-arrive around q′.

This step of taking a configuration with a regression of its neighborhood’s
cost-to-arrive and building regressions for each of the points in its neighbor-
hood is the core of the FST* algorithm. For concision, we call the regressed
neighborhood of a configuration q the field of q.

Figure 2 shows the plot of the FST*’s approximation for cost-to-arrive,
along with a path extracted from the sequence of fields used to reach the
goal. The light grey lines represent the structure of the search tree.

8

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Figure 2: FST* path.

3.2 FST* algorithm

The above example provides a flavor of how FST* builds the distance func-
tion approximation using previous regressions as a reference point. In this
section, we formally describe the full FST* algorithm utilizing this iterative
regression. See algorithm 1 for the complete pseudo code.

FST* functions as a hybrid between FMT*’s tree-growth algorithm and
Field D*’s use of linear regressions to generate fields for each sample for
smoothing the resulting path. Similar to FMT*, FST* grows its tree out-
wards from qs using a priority queue in cost-to-arrive order, which allows the
algorithm to take a single pass through the configuration space and never
needs to update previous values. FST* departs from FMT* in two signifi-
cant ways: firstly, it uses certificates to determine if points are neighbors and
reduce local planner calls; secondly, instead of simply generating points, it
generates local regressions of the distance to goal.

The core idea is to build a regression of cost-to-arrive function outwards
from the qs. The immediate regression around qs is trivial: take all neighbors
of qs and directly calculate their distances. Using this distance data as train-
ing data, we can regress a field about qs to approximate the cost-to-arrive.

For the rest of the points, we rely on the regression fields built by pre-
viously calculated points to estimate the cost-to-arrive. To this end, two

9

mappings are maintained: D : Qf 7→ R which stores each point’s cost-to-
arrive, and R : Qf 7→ R where R denotes an arbitrary function regression
for the cost-to-arrive of each point in the corresponding field.

A heap priority queue is initialized to contain only qs and is in order of
D(q) of each contained configuration q. The queue will only contain points
that have their field regressed, i.e. there exists R(q). When a sample q is
popped off, we know that each of its neighbors q′, q′ ∈ D, since D(q′) was
used to train the regression R(q). To make progress, we want to regress the
distance to start function around each neighbor q′. To do this, we must first
calculate the cost-to-arrive of each of q′’s neighbors, denoted by q′′.

Instead of calculating distance based on the parent’s exact distance, the
distance is calculated using the parent’s regression, with an optimally chosen
point in the parent’s range. This optimization step is the key advantage
of this approach, as it maintains approximate optimality and mitigates the
accumulation of error that limits the performance of discrete graphs. Line 7
in algorithm 1 formally defines the optimization.

When a connectable path of cells reaches the goal, we apply an optimizing
approach between each cell’s region to get the final path. Start from qg and its
nearest field Fg and the cost-minimizing point connecting it to its parent field.
Recursively apply this approach until the parent field is the field containing
qs.

Data: Set of sample configurations QS in Qfree

1 F ← {F (q)q ∈ QS};
2 P ← [qs];
3 while |P | > 0 do
4 q ← ExtractMin(P);
5 for q′ ∈ Neighborhood(Qs, q) do
6 for q′′ ∈ Neighborhood(Qs, q

′) do
7 qo ← minqo∈F(q)R(q)(qo) + d(q′′, qo);
8 D(q′′)← R(q)(qo) + d(q′′, qo);

end
9 R(q′)← Regress(q′);

end
end

Algorithm 1: ConstructFST

10

3.3 Experiments

In this section, we run simple evaluations in the planar case against a vis-
ibility graph to check optimality and against RRT* toe valuate practical
performance. We also provide performance evaluations for simple cases in
higher dimensional spaces, including the Reeds-Shepp car and n-joint revo-
lute robot arms. We find that the FST* provides lower cost paths than RRT*
for the same memory cost, and that for spaces with efficient local planners,
finds its solution in shorter amount of time as well.

The memory cost in floating points (FPs) for an FST* with n samples
in d dimensional configuration space is the sum of all numbers required to
represent each field center, regression, and parent, which is calculated as
follows:

FP(FST*) = n(d+ (d+ 1) + 1) = 2n(d+ 1)

To keep the RRT* at the same memory cost for comparison, we terminate
the construction algorithm when the size of its graph exceeds the size of the
FST*.

Environment Algorithm Memory
cost (FP)

Time cost
(sec)

Path cost

world-halfdoor
FST* 2,700 0.138 1.564
RRT* 2,700 0.221 1.629

world-maze
FST* 48,600 4.021 4.180
RRT* 48,600 25.12 -
RRT* 120,000 103.3 4.211

world-split
FST* 3,600 0.216 1.459
RRT* 3,600 0.306 1.488

arms-2d
FST* 3,600 1.125 2.946
RRT* 3,600 4.521 3.328

arms-3d
FST* 97,600 489.3 3.822
RRT* 97,600 502.8 3.911

rscar-1
FST* 97,600 807.1 5.134
RRT* 97,600 527.9 5.527

Table 1: Experimental results for FST* and RRT*.

11

3.3.1 Planar point robot

The example shown in subsection 3.1 used a planar point robot with a single
polygonal obstacle. Here the metric d was defined as Euclidean distance, and
the local planner ∆ was implemented by checking a straight line intersection
with all polygonal obstacles. For computing certificates in the planar space,
the nearest obstacle can be easily detected using the GJK algorithm, as
described in [5]. Because GJK requires convex bodies, we use the ear-clipping
algorithm described in [10].

We ran experiments on the same search space but with more complicated
obstacle configurations to demonstrate statistical and practical advantages
of FST* over RRT*. For all experiments described below, refer to Table 1 for
the experimental results. The results demonstrate a clear memory and time
cost advantage of FST* in this workspace, along with having useful properties
as shown through experiments on world-split and world-maze.

One useful property of FST* is its accuracy in terms of the optimal
path’s homotopy class. In worlds like world-split where an obstacle splits
possible paths into two homotopy classes, the RRT* has a high chance of
choosing the wrong path. Thus even with post-processing optimizations like
CHOMP [23], the RRT* gives the wrong answer. However, because FST*
maintains a relatively accurate approximation of the cost-to-arrive function,
the approach is much more likely to produce paths of the optimal homotopy
class.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) RRT* on world-split

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.18

0.36

0.54

0.72

0.90

1.08

1.26

1.44

(b) FST* on world-split

Figure 3: FST* (path cost 1.459) picking the optimal homotopy class over
RRT* (path cost cost 1.488).

12

The FST* is also better at exploring obstacle-dense regions. Consider the
environment of World-Maze, shown in Figure 4, where the RRT* fails to
find a path even after 10k sample points are placed. With the same memory
cost (about half as many sample points) the FST* finds a near optimal path.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: RRT* over world-maze, path incomplete.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.48

0.96

1.44

1.92

2.40

2.88

3.36

3.84

Figure 5: FST* over world-maze, path cost 4.180.

13

3.3.2 n-joint revolute arm

To test the algorithm in more complicated configuration spaces, we explore
applying FST* to an n-joint revolute arm whose configuration can be de-
scribed by q = (θ1, θ2, . . . , θn). Let L = {l1, . . . , lN} be the lengths of each
section of the arm and O = {O1, . . . , OM} be the set of polygonal obstacles.
For simplicity, we add a constraint θi ∈ [−π, π] ∀i ∈ [n]. We define the dis-
tance metric d(q, q′) = maxi∈[n] |q′i − qi|, where qi denotes the ith parameter
of q. If we assume that each joint has the same bound on its angular velocity,
the above metric represents the time cost of going from configuration q to
q′. To implement the local planner ∆(q, q′), we use linear interpolation of
q and q′ and check all intermediate sample configurations for collisions with
obstacles using inverse kinematics.

Computing the certificate for this space is more involved. Using the
metric of time, we assume a maximum joint angular velocity of ω = 1 rad

sec
.

Considering each length li independently, the maximum velocity of any point
on each joint is vi = ωli = li. Given this maximum velocity per joint, we can
provide a loose upper bound on the maximum velocity as follows:

vmax ≤
∑
i∈[N]

vi =
∑
i∈[N]

li

We can then calculate a lower bound on the cost to the nearest obstacle
by applying the GJK algorithm between all-pairs of lines and obstacles:

minL×OGJK(li, Oi)

vmax

≥ minL×OGJK(li, Oi)∑
i∈[N] li

= dmin

In both 2D and 3D cases, the FST* outperformed RRT* in terms of
memory cost and path quality, with roughly equivalent time cost. See Table 1
for detailed results. Figure 6 and Figure 7 shows the path obtained from the
FST* and RRT* respectively.

14

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 6: FST* over arms-3, path cost 3.822.

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 7: RRT* over arms-3, path cost 3.911.

15

3.3.3 Reeds-Shepp car

We tested the algorithm on a Reeds-Shepp car [25] with obstacles which is
shown in Figure 8. Although it is still a very simple model of a car, the
Reeds-Shepp car differs from the point robot in 2D in that it is nonholo-
nomic, meaning that its motion is constrained by differential constraints. In
this case, the car has a direction θ in addition to its position (x, y), and has a
constant velocity v and a turning radius r. Thus, even if two configurations
are very close to each other, the fact that the car cannot strafe sideways
means that the car may need to perform maneuvers to move back and forth.
Optimal motion for these cars in the absence of obstacles has been imple-
mented in SimpleCarModels.jl [26], which we utilize in our library. The
cost function d(q1, q2) is directly provided by the library and we implement
the local planner ∆(q1, q2) by running a collision check on all waypoints along
the optimal path for a fixed time step. We provide a certificate given by the
Euclidean distance between the car and the nearest point on the nearest
obstacle via GJK divided by the maximum velocity.

Because the local planner requires explicit reconstruction of an optimal
path rather than simple linear interpolation, the local planner cost for the
Reeds-Shepp car is relatively high, which caused both RRT* and FST* to
have longer run times. Because FST* requires more collision checks, this
caused FST*’s runtime to be worse than that of RRT* for this space.

0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8: FST* (blue, cost 5.134) and RRT* (red, cost 5.527) over rscar-1.

16

3.4 Limitations and future work

The FST* provides a useful method for constructing a distance function for
one-shot planning. However, the requirement for dense coverage of the space
via metric balls along with the cost of optimizing over higher dimensional
fields makes the approach infeasible for problems beyond three dimensions.

Unlike Field D*, which is limited to two-dimensional planning problems
with Euclidean metrics, the FST* algorithm is generalized to work in a con-
figuration space of any dimension. However, an increase in dimensionality
exponentially increases the number of fields required, since the fields must
cover the entire space. Since the dimensionality of each field also increases
the the dimension of the space, optimization over the field becomes more
expensive. Optimizations can require up to 20 local planner calls and dis-
tance evaluations per field, so our experiments were limited to two- and
three-dimensional cases.

We also find that as a function approximation, a cloud of regressed fields
kept in a nearest neighbor structure is not a very compact representation. For
FST* to be an memory-efficient approximation of the distance function, we
propose resampling the space and training a more general purpose regressor
such as a neural network or PLR. Instead of keeping the entire tree around
and planning based on the tree, perhaps a more compact representation of the
distance function could be used with a modified gradient descent approach.

Smarter shaped cells, more accurate certificates, and more sophisticated
regression techniques could significantly approve the approach. Finding a
useful way to integrate this technique into an all-pairs planner would also
improve the applicability of the search method.

3.4.1 Exploration: regressing error functions

Another weakness of the FST* in its current implementation is the incompat-
ibility of linear regressions with intrinsically curved metric functions. Even a
workspace without obstacles can have a highly nonlinear configuration space,
which is difficult to regress with simple linear approximations. To focus the
regression on the error in the distance function caused by obstacles, it may
be useful to regress how much the distance has changed due to the obsta-
cles. To this end, define the metric difference of a configuration q to be the
difference, denoted by E(q), between the shortest feasible path to the start
and the metric distance to the start, i.e. E(q) = D(q, qs)− d(q, qs), where D

17

represents the true value function of the distance to goal.
Each field is owned by a center configuration q and has a domain defined

by the metric ball of radius defined by the certificate of q. As defined before,
each configuration has an associated field, denoted by F(q).

Define the origin field to a configuration q, denoted by O(q) to be the field
closest to the start that we can connect directly to. Define the parent field
to a configuration q, denoted by p(q) to be the field that q was discovered
from.

First check connection to origin field of p(q), and if possible, connect. If
not, get the path of all fields connecting p(q) and O(P (q)) in the parent tree.
Find the closest field to O(p(q)) that q can connect to. This field is O(q).

The metric difference is equal to the difference between the direct path
from q to O(p(q)) and the obstacle avoiding path, which must go through
d(O(q)), plus any previously accumulated error getting to O(p(q)). Now that
we have found O(q), we can calculate the cumulative error of q as follows:

E(q) = d(O(p(q)), O(q)) + d(O(q), q)− d(O(p(q)), q) + E(O(p(q)))

.
This error-function-based approach is not yet entirely feasible, as there

are many aspects that remain unclear. In the above formula, the metric d
is being applied on field objects (note that p(q) and O(q) are fields), not
configurations. The distance between two fields requires optimization along
the field boundary, which becomes computationally expensive if it is required
often.

3.5 Lessons learned

As hypothesized, using regressions to maintain a better approximation of the
optimal distance to goal is much more effective than using discrete graphs.
However, this approach is highly susceptible to the curse of dimensionality,
because the optimization between fields is expensive. At least in the case of
single-goal planning, a more optimized discrete approach such as FMT* is
more effective in higher dimensions. Although continuous methods are math-
ematically elegant and intrinsically a better representation of the planning
problem, our current approach is not refined enough to take full advantage of
the representation. However, the advantages of regression based approaches,
particularly the notion of decomposing a space into regressed subregions,

18

may prove useful for the all-pairs problem, which we explore in the following
section.

We also found that when designing a motion planning algorithm, it’s easy
to guarantee nice properties for the worst-case scenario by using a breadth-
first approach. By growing outwards in cost-to-arrive space, we can guarantee
that when the goal is found, simple backtracking finds the nearly optimal
path. This avoids complex rewiring logic like that found in RRT*, which is
both error-prone in implementations and an expensive computation in the
inner loop of the algorithm. Unfortunately, this means that it is difficult to
find heuristics that are admissible for maintaining this property. Any form
of depth-first exploration prioritizing nodes with a minimal heuristic value
may require rewiring later, and in an adversarial case, this rewiring will occur
often. This becomes a design tradeoff: for a better average case, employing
heuristics is useful, but to ensure easy implementations and a good worst-case
runtime, relying purely on breadth-first is the preferred approach.

19

4 Regression complex
In this section, we extend beyond single-start planning solved by FST* to
the all-pairs problem and explore the effectiveness of continuous representa-
tions in this problem space. Current state-of-the-art sample-based algorithms
such as PRM* and its relatives require dense discrete graphs for maintaining
optimality. We show that by using a divide-and-conquer method, the config-
uration space can be decomposed arbitrarily into a complex of cells, where
each cell maintains a regression of the all-pairs distance function between
any two points on the boundary. This framework decomposes the motion
planning problem into a set of smaller, regional planning problems within
each cell, which can be done in parallel. When the regression is complete,
any intermediate planning results (i.e. samples for the regional roadmaps)
can be discarded, providing a useful low-memory data structure summarizing
the configuration space.

4.1 A simple example

(a) 2D environment. (b) Cell distance functions.

Figure 9: Complex with distance calculated from visibility graph.

To illustrate idea of decomposing an all-pairs planning problem into re-
gional planning inside of cells, consider the trivial example of a planar space
for a point robot with polygonal obstacles in Figure 9a. We decompose the
space into a 3× 3 grid of square cells. For visualization purposes, we param-
eterize the boundary B of each cell with a real number in the range [0, 4).

20

To calculate this function, we need a regional planner than can connect any
two points on the boundary. For this example, we use a visibility graph,
although more complicated spaces will require a more general planner such
as a PRM*. Let the cost function between points on the boundary obtained
from the regional planner be fi : B × B 7→ R, where i is the index of the
cell. Figure 9b shows each of the boundary cost functions for the nine cells.
Where the regional planner fails to find a path, fi is undefined. Such unde-
fined regions are shown in gray. We now have have a value function along all
boundaries of the cells, and the motion planning problem has been reduced
to finding the best points along these boundaries to build a path through. In
this case, the best crossing points are those shown in red in Figure 9a, and
the blue path shows the feasible path joining the crossing points. The rest
of our discussion of the regression complex will be focusing on the details of
this procedure: how we represent the all-pairs boundary cost function, how
we can use it to find the optimal crossing points, and how we rebuild the
paths between the crossing points.

4.2 Approach

In this section, we describe an approach to constructing and querying the
regression complex (RC) data structure using a piecewise linear regression to
approximate cell-crossing costs.

4.2.1 RC construction phase

The construction phase decomposes Q into a set of cells C, where each cell
C ∈ C is an n-dimensional hypercube. For each cell, the basic approach is to
sample distances between pairs of points along the boundary of the cell, and
then to use this data to build a regression.

Let B(C) represent the boundary of cell C. We associate with each cell C
a regression RC : B(C)×B(C) 7→ R≥0 that maps pairs of points on its bound-
ary to the distance between them. A classifier KC : B(C) × B(C) 7→ {0, 1}
is also constructed to represent connectivity of pairs of boundary points.

Any pair of points on the boundary of the cell can be categorized into
one of the four cases shown in Figure 10. We handle each of these cases
differently in the representation of the regression complex data structure.

Two points on the boundary of a cell are either connectable by a path that
remains within a cell (Figure 10b, Figure 10d), or they are not. Although

21

(a) Metric given by local planner. (b) One point in collision.

(c) Regression used to approximate
metric.

(d) Boundary points in separate com-
ponents.

Figure 10: Pair-wise relationship classes for boundary points.

one could imagine the path cost between unconnectable points as infinite, the
resulting discontinuities in the value function are problematic for a smooth
regression representation.

We use two approaches to mask out unconnected configurations from the
regression. First, we use the collision detector to find if either boundary point
is itself in collision with an obstacle, in which case the sample is discarded.
Second, if the boundary points themselves are collision-free, but the local
planner fails to find a path connecting the points without leaving the cell,
we record this fact using a classifier, the implementation of which we discuss
below.

A key property of this cell decomposition is that we do not require that the
local planner stays within the cell. As long as the path is free, its distance is
used to build the cell’s regression. Allowing paths to leave the cell separates

22

the problem of determining cell size from the geometry of the obstacles,
allowing much larger cells than those used in typically cell-approximation
methods for motion planning (e.g. [1, 2]). This means that a path can leave
or enter the cell as many times as it needs to in order to connect two boundary
points, and we rely on the query phase procedure to guarantee that paths of
this form are indeed optimal.

We also introduce an implementation-level optimization to exploit the
fact that for paths that do not contact obstacles (Figure 10a), the local
planner already provides an accurate local metric. In other cases, the local
planner provides a useful estimate even if a path gently grazes an obstacle.
To take advantage of this property, we regress the error function between
the cell-crossing distance function and the metric provided by the local plan-
ner. Using this approach, if the local planner is accurate over some region
without obstacles, the regression needs only to store the constant value 0
over that region. This technique is identical to the method suggested in
subsubsection 3.4.1, but applied in the context of the RC.

The training data used for the cost regression and the connectivity clas-
sifier can be found using any all-pairs motion planner. For simplicity of
analysis and comparison, we make use of a regional PRM* inside the cell.

Only RC and KC (if needed) are saved in the regression complex eventu-
ally to be further used in query phase; all data from the regional planner can
be discarded. The algorithm is model-agnostic, and advantages of various
regression models are discussed further in Appendix A. For the purpose of
our proofs, we assume the use of PLR (discussed in subsection A.1) as the
regression technique, which has useful approximation factor bounds based
on the Lipschitz continuity of the value function. For clarity, we denote this
specific implementation of the RC framework as PLRC*.

4.3 RC query phase

Given a start configuration s ∈ Qf and a goal configuration t ∈ Qf , a
query is performed using a simple graph search with discretization along the
boundaries, as described below:

4.3.1 Boundary graph construction

We construct a weighted graph Gb = (Vb, Eb, wb), whose vertices Vb are sam-
ples in Qf along the boundary of every cell C ∈ C. The edges Eb are pairs of

23

points that are in the same cell C and are classified as connectable by KC , i.e.
Eb = {(q1, q2) s.t. q1, q2 ∈ C,KC(q1, q2) = 1 for some C}. The weight map wb
for each edge is calculated using the regressor, namely wb(q1, q2) = RC(q1, q2).
We then run A* search over Gb to return the path P0, the unrefined path
whose waypoints represent the points that the final path P needs to go
through.

4.3.2 Path refinement

One can imagine many ways of reconstructing P from P0. A PRM* could be
constructed within each cell that P0 passes through, and the path between
each waypoint could be calculated using A* search. However, this approach
requires constructing an incredibly dense PRM*, which is costly in terms of
memory and defeats the purpose of using this algorithm. Alternatively, an
optimizer could be used to place intermediate points between each waypoint
such that the path between the added points is collision-free and the cost
is minimized. Our approach uses the optimizer, and incrementally starts by
attempting the connection with a single intermediate point. If the connection
fails, an additional point is added and the procedure continues until the points
are connected. This is guaranteed to terminate because the points on the
graph were classified as connectable by their cell’s classifier KC .

4.4 Experiments

This section and its experimental results and figures were made with the help
of Luyang Zhao.

This section presents the results of several computational experiments
in which PLRC* data structures are constructed and queried. The results
are compared against PRM*, demonstrating the memory cost advantage of
PLRC*.

To measure the memory cost of each approach, we compute the number
of floating points needed to store each data structure; this is a rough but
perhaps useful estimate. For the PLRC, the memory cost includes the cost
of both the regressor and the classifier. The cost of each is the sum of the
number of numbers needed to store the parameters for each linear regression,
the bounds of each cell in the BSP, and the number of cells needed, based
on the depth of the BSP.

FP(plr) = FP(parameters) + FP(bsp) + FP(bounds)

24

where FP(x) denotes the number of floating points used by component x. In
detail, FP(bsp)+FP(bounds) is the floating points of the data structure used
to store the parameters of PLR, where FP(bsp) equals num(leaves)− 1 and
FP (bounds) equals 2 ∗ D and D denote the dimension of the configuration
space. The memory cost of PRM* is just the memory cost of storing the
vertices and graph, which is N ∗D +N ∗ k ∗ 3/2, where N is the number of
sample points used in the construction phase, and k equal to log2N .

Environment Algorithm Memory
cost
(FP)

Unrefined
cost

Query
time
(sec)

Refinement
method

Path cost Refinement
time

world-doors

PRM* 215000 - 0.09644 - 6.14225 -

PLRC*-4 9184 6.04741 0.01806
Optimizer 5.88847 161.16488
PRM* 6.10913 41.43030

PLRC*-16 4620 6.01461 0.00956
Optimizer 5.89986 14.75135
PRM* 6.07112 18.71936

PLRC*-32 3968 6.04388 0.00933
Optimizer 5.94593 12.99612
PRM* 6.10998 12.47269

world-maze

PRM* 215000 - 0.03401 - 4.09641 -

PLRC*-4 21224 3.99711 0.00449
Optimizer 3.97747 1.65003
PRM* 4.07569 19.37482

PLRC*-16 5058 3.99963 0.00288
Optimizer 3.94168 2.61319
PRM* 4.07431 7.29743

PLRC*-32 4874 3.97164 0.00809
Optimizer 3.93096 15.92245
PRM* 4.06221 9.44786

3D Arm in
world2

PRM* 210875 - 0.11388 - 5.44542 -
PLRC*-8 21554 5.23471 0.04129 PRM* 5.40983 22.37812

RS Car in
wld-doors2

PRM* 180000 - 0.083801 - 5.77792 -
PLRC*-8 25122 5.48602 0.035062 PRM* 5.69049 33.10321

Table 2: Comparison of PRM* and PLRC*.

4.4.1 Planar point robot

We performed our first experiments for a planar point robot with q = (x, y) ∈
R2. The robot moves amongst polygonal obstacles from a start configuration
to a goal configuration.

We tested several different environments, and present results (Table 2)
for two of the more interesting, which we name world-doors (Figure 11) and
world-maze (Figure 12). We used different numbers of cells, ranging from 4

25

to 32 (PLRC*-4 to PLRC*-32).
From Table 2, we can see that the memory required to store the PLRC

data structure is about 20 times less than that required for the PRM* for
these examples, and query of the PLRC returns a slightly more accurate
approximation of the path cost. (The optimal path distance of maze-doors
is 5.859918264 and of maze-world is 3.911704702 calculated from visibility
graph[19].)

Surprisingly, when the number of cells increases, PLRC* seems to require
less memory. When we divide the regions into more small cells, the number
of sample points become smaller and the distances of those points has lower
variance; the piecewise linear regression subdivides these simpler smaller cells
less.

The query phase of PLRC returns only the path cost and some points
where the approximation of the optimal path intersects with cell boundaries.
To find a higher-resolution path that avoids obstacles within cells, some re-
finement step is required, as described above.

Figure 11a and Figure 12a show the path after refinement by optimizion
techniques and Figure 11b and Figure 12b show a path after refinement using
a local PRM* built within each cell along the approximately optimal path.
We note that the optimizer returns very good paths indeed, but the compar-
ison to PRM* is not quite fair, since PRM* does not execute a refinement
step. Figure 11d and Figure 12d show the path computed by PRM* di-
rectly. Figure 11c and Figure 12c show the connectivity of boundary points,
as captured by the classifier.

4.4.2 n-joint revolute arm

Our next experiments were performed on an n-joint revolute arm whose con-
figuration can be described by q = (θ1, θ2, . . . , θn). As with the same world
in the FST* experiments, we add a constraint θi ∈ [−π, π] ∀i ∈ [n]. For more
details on the implementation of the distance metric and local planner, see
subsubsection 3.3.2.

Table 2 shows the comparison results of 3R arms from PRM* and PLRC*-
8, where the memory cost of PRM* is 23 times of that of PLRC*-8 while the
path accuracy of PLRC*-8 is much higher than that of PRM*. Figure 13
shows path obtained from PLRC*-8.

26

(a) PLRC*-16 with optimizer for
reconstruction.

(b) PLRC*-16 with PRM* for
reconstruction.

(c) Connection relationship between
boundary points. (d) Path from PRM*.

Figure 11: World-maze: PRM* paths, and PLRC*-16 with different refine-
ment techniques.

4.4.3 Reeds-Shepp Car

We tested the algorithm on a Reeds-Shepp car [25] with obstacles which is
showed in Figure 14. For a detailed description of our implementation of the
distance metric and local planner, see subsubsection 3.3.3. The second row
of Table 2 shows the comparison results of Reeds-Shepp car from PRM* and
PLRC*-8, where the memory cost of PRM* is 7 times of that of PLRC*-8
while the path accuracy of PLRC*-8 is higher than that of PRM*.

27

(a) PLRC*-16 with optimizer for
reconstruction.

(b) PLRC*-16 with PRM* for
reconstruction.

(c) Connection relationship between
boundary points. (d) Path from PRM*.

Figure 12: world-doors: finding path with prm* and PLRC*-16 with
different reconstruction techniques.

4.4.4 Comparison to spanner algorithms

This section’s insights pertaining to graph spanners were provided by Weifu
Wang.

Applications of graph spanner algorithms to roadmaps for motion plan-
ning can also significantly reduce memory costs while returning good quality
paths [20, 18, 29]. Most spanning algorithms first construct the entire PRM
over the entire space, and then prune the roadmap in a post-processing phase.
Streaming spanners [29] that omit edges during construction avoid storing
the entire map, but the end result is still a discrete graph which has a much
higher memory cost that the continuous representation offered by the regres-

28

Figure 13: 3-joint revolute arm path obtained by PLRC* from (0, 0, 0)
(blue) to (π

2
, 0, 0) (red) in world2. Total path cost 5.40983, compared to

5.44542 for PRM*.

Figure 14: Reeds-Shepp Car path obtained from PRM* (blue, path cost
5.77792) and PLRC* (red, path cost 5.69049).

29

sion complex. The spanner algorithm presented in [29] (WSS) on average
retains 20 to 30% of the edges needed by PRM*, in some cases only 10% if
provided with enough stretch. This optimization in memory comes at the
cost of optimality, as the average path quality for the WSS is 10 to 20% worse
than that of PRM*. The main advantage of the WSS is its runtime, which
is 50 to 70% faster compared to PRM∗, as many collision detections are not
needed for the edges discarded by WSS online. However, even with many
edges omitted, the WSS usually requires 10 times the data needed compared
to the regression-based approach, and still outputs paths with worse quality.

4.5 Use case: high memory cost cell planners

One key advantage of using the regression complex approach is its ability
to process the configuration space Q on a cell by cell basis, avoiding the
need to store each cell planner for the entire complex. Once a cell C has its
all-pairs distance information summarized via the regressor RC and classifier
KC , all information specific to that cell planner can be discarded. Consider
an instance of a motion planning problem where a PRM* is used as the cell
planner. If PRM* must be used across the entire space, the entire roadmap
must be maintained and searched across. With a regression complex, a PRM*
is constructed in each cell, which is then summarized and discarded. When
a query is run on the regression complex, cells for which the cell planner is
required (see subsection 4.3) can reconstruct the PRM* in that cell alone.
Figure 15 depicts the regression complex run on a maze with a PRM* cell
planner. Although Figure 15 shows PRM*s for each cell was relevant to
the query, there is no need to keep more than one cell’s cell planner in
memory at any given time – once the path is found, the cell planner may
be discarded. This approach allows motion planning for problems where
planning over the entire configuration space requires too much memory to be
computationally feasible. In the example shown by Figure 15, the regression
complex had a maximum memory usage of 163, 200 floating points, whereas
a PRM* of equivalent path quality required a maximum memory usage of
460, 000 floating points.

The independence of individual cell construction also means this process
can be easily parallelized. This can be useful for systems where memory is
not a constraint, or where many processors with associated local memory are
available. This allows a highly configurable speed-versus-memory tradeoff
that can be tuned on a per-system basis.

30

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 15: Reconstructed cell planners for a regression complex on for a
problem with an intricate configuration space.

4.6 PLRC* Asymptotic Completeness and Optimality

The following proofs refer to a PLRC* used to solve a motion planning prob-
lem (Q, qs, qt) with a robust solution σ∗ : [0, 1] 7→ Qf with strong δ-clearance.

Let C denote the complex of regression cells generated by the PLRC*.
Let Gb = (Vb, Eb, wb) be the query graph described in subsubsection 4.3.1.
Assume that each cell C ∈ C uses PLR with minimum cell edge size ε as
regressor and classifier, and that boundary samples are placed in a grid with
step size εs.

Because the cells in C cover all ofQ, any path between configurations must
trivially cross the boundaries of C. We can define these crossing points as the
values b1, . . . , bn of σ∗ which corresponds to a path πb = (σ∗(b1), . . . , σ

∗(bn))
such that each σ∗(bi) ∈ B(C).

Lemma 1 (Convergence of boundary graph accuracy). Let π∗ denote the
shortest path from qs to qt on boundary graph Gb. As ε→ 0 and εs → 0, the
distance between each configuration π∗[i] and πb[i] approaches 0.

31

Proof. Because the boundary sampling method samples cells with a sampling
width of εs, any configuration q ∈ B(C) is at most dim∗εs away from a sample
qV , where dim is the dimensionality of the C-space Q. Thus as εs → 0, the
distance from q to the nearest configuration qV ∈ V approaches 0. To show
that the nearest qV is on the path π∗, we show that the edge weights wb
match the distance function d at the limit of ε.

Given a value function V (·) with Lipschitz continuity factor κ, we know
from Theorem 2 of [22] that for the approximation L(·) from the PLR,
|V (q)−L(q)| ≤ 5

2
κε
√
n ∀q ∈ Q. Consider the regression RC over the all-pairs

distance function d, which PLRC* uses to calculate the graph weights wb.
By the inequality above, as ε → 0, |RC(q1, q2) − d(q1, q2)| → 0 as long as
q1 and q2 are correctly classified. The accuracy of KC with respect to the
connectivity function converges to 0 by the same argument.

Because wb is a good approximate of d in the limit of ε and π∗ is the
shortest path on G, we know that if configurations are sampled close to
each boundary waypoint q, the nearest configuration qV ∈ V must be on π∗.
Therefore as ε→ 0 and εs → 0, the distance between each configuration π∗[i]
and πb[i] approaches 0.

Theorem 1 (Resolution completeness of LPRC*). LPRC* is resolution com-
plete with respect to ε and εs.

Proof. Let σ denote the path produced by PLRC*. σ is constructed from
the waypoints in π∗ using the cell planner between each consecutive pair of
configurations (qi, qi+1) on the path πb. By lemma 1, as ε→ 0 and εs → 0, a
shortest path πb onGb must exist connecting qs to qt. Because the cell planner
PRM* is guaranteed to return a feasible path at high enough resolution, σ
must be feasible as long as each consecutive pair of configurations (qi, qi+1)
is connectable. The feasibility of the path between each (qi, qi+1) depends on
the error KC , which as argued above, converges to 0 as ε→ 0. Thus as ε and
εs approach 0, PLRC* is guaranteed to return a feasible solution.

Theorem 2 (Asymptotic optimality of PLRC*). RCRM is asymptotically
optimal with respect to ε and εs.

Proof. Again, let σ denote the path produced by PLRC*. By Theorem 1, we
know that the solution σ is feasible, and by lemma 1 the distance between
corresponding boundary configurations π∗[i] and πb[i] approaches 0. Given
a sufficiently dense PRM*, the path returned by the cell planner is the op-
timal path between each waypoint on πb. Since each configuration on πb is

32

arbitrarily close to π∗, the error of total path length converges to 0 with ε
and εs.

4.7 Limitations and future work

Although the main framework is complete, many questions still remain. How
should these regression complexes be constructed efficiently? How should
they best be searched for a path? Once a path is found, how can it be refined
to avoid obstacles within each cell? For each of these phases of construction,
query, and refinement, we have explored only a first approach. For example,
in the construction phase, we use a PRM* to measure the underlying cell-
crossing metric that the regressions approximate, though we are certain that a
PRM* is a bottleneck in the overall approach. We focus on a piecewise linear
regression technique for transparency, but can imagine that other techniques
(such a neural networks) might be as or more effective. Similarly, in the
query phase, we discretize cell-boundaries and search, though the existence
of a smooth approximation of the metric strongly suggests an optimization
approach like that used by Field D* [12] or in our own development of FST*.

This experimental work, though promising, is limited so far to examples
in a few dimensions, due in part to the computational cost of sampling the
value functions exhaustively.

The primary contribution of this work is the notion of using spatial de-
composition and regressions to construct a hybrid representation of a search
space. We compared the performance of the approach against PRM* in
various search spaces and provide a model-agnostic algorithm for regressing
distances in search spaces for motion planning. We have tested alternative
regression teqniques, like xgboost and neural networks, but not deeply.

Computing all-pairs distance using a dense PRM* and repeatedly running
A* search is not an elegant approach. Although the regression complex can
avoid constructing a dense graph for the entire search space since it only
needs roadmaps in local cells, there is still a lot of computation that goes
into constructing these local roadmaps.

4.7.1 Hierarchical all-pairs distance computation

Instead of computing all-pairs distances using PRM*, we suggest exploring
a divide-and-conquer approach as follows. Start with the entire space as the
root cell, and recursively split each cell that is not free up until some maxi-

33

mum depth. Build approximations for all leaf cells using the local planner.
Assuming we have a manner of merging cells’ approximations into their par-
ent cell, we can merge all cells in a bottom-up fashion until the desired cell
resolution is obtained.

The remaining problem for this approach is that we need a feasible merg-
ing technique for combining the all-pairs approximations of the child cells
into their parent cells. One can imagine re-sampling points on the boundary
of the parent cell, using the child cell’s approximations for each pair that
does not cross the boundary between the two. However, pairs of points that
must cross the boundary are problematic, as they would require optimizing
along the boundary between the child cells.

Why should we expect that a divide-and-conquer approach may perform
better than existing algorithms like PRM*? When studying chess AI, Shan-
non’s key observation was that for state-space search, inaccurate but inex-
pensive local information that allows a deeper search is more useful than
accurate but expensive local information. This notion suggests that instead
of trying to build a small number of incredibly accurate cells using a robust
approach such as PRM*, a large number of approximating cells may be more
useful for motion planning.

4.8 Lessons learned

Work on the RC revealed two key lessons on divide-and-conquer approaches,
both for motion planning and in more general computational problems. First
of all, a divide-and-conquer approach is limited by its merge operation. Com-
bining results to return the solution needs to be fast and simple for an
algorithm to be effective, no matter what the gains on paralellizability or
efficiency for the decomposed problems are. The RC does a great job at
reducing the motion planning problem into planning across boundaries of
regions with the regressed cost function, but searching along the boundary
is difficult. Construction of this decomposition can be easily parallelized and
is highly modular, but we are far from satisfied with our current method of
merging these results via re-sampling the boundary and running A* search.
Before beginning work on this approach, it may have been useful to devise
a clever way of planning using the merged results of our decomposition and
designed our data structure around that approach, rather than designing the
decomposition and then trying to come up with a feasible merge strategy.

Secondly, optimizations of primitive operations are crucial for overall per-

34

formance. Constructing each cell in the complex requires running a regional
planner, and in our current implementation, the regional planner is a dense
PRM*. Furthermore, for each regional planner, the local planner must be
called many times, so its performance is crucial for the overall runtime as well.
Even small optimizations in the local and regional planner helped bring com-
putation costs to a feasible range, and we hope that in the future we will be
able to find a better approach for the regional planner altogether.

35

Appendices
A Regression techniques
In this section we explore various techniques on regressing the all-pairs dis-
tance function for regression cells. We demonstrate the performance of linear
regressions, piecewise linear regressions, feed-forward neural networks, Gaus-
sian processes, and XGBoost for regressing Euclidean distance functions in
the presence of simple obstacles. Table 3 shows the results of our experi-
ments.

Regression Memory cost (FP) Time cost (sec) MSE
Linear Regression 3 0.002 0.051

PLR 74 0.021 0.005
Neural Network 152 2.58 0.011
Gaussian Process 4096 0.231 0.004

XGBoost 300 0.102 0.017

Table 3: Experimental results for FST* and RRT*.

In subsection A.1, subsection A.2, subsection A.3 and subsection A.4 we
explore each of the regressions in detail and show plots of their respective
error functions. Overall, we find that PLR is the most efficient solution for
regressing a Euclidean distance function, although more concise tuning and
knowledge of machine learning techniques may make the other approaches
more effective.

36

A.1 Piecewise linear regression

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

Figure 16: Error function of piecewise linear regression.

The Piecewise Linear Regression (PLR) used to approximate cell-crossing
distance functions is discussed in greater detail in a technical report [22],
along with proofs of convergence and use cases. The technique is straight-
forward: we would like to approximate a function from Rn 7→ R using series
of linear regressions. The PLR subdivides the space into cells using a Bi-
nary Space Partition (BSP), sampling the function as it goes, and using the
samples to compute a linear approximation in each cell of the BSP. Error
may then be estimated using further samples; if needed, the BSP is refined
further. Out of our experiments, we find that PLR provides the most consis-
tent accuracy for low memory, and due to its simplicity, it provides us with
upper bounds on the error based on the target metric’s Lipschitz continuity.
For this reason, most experiments in the main paper rely on this technique.
However, a machine learning engineer would likely be able to beat PLR’s
performance by clever tuning of standard regression techniques such as the
neural network or XGBoost.

37

A.2 Feed-forward neural network

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

Figure 17: Error function of feed-forward neural network.

We used the Flux.jl [14] library for building the neural network. We found
that the most cost-effective network for regressing Euclidean distance func-
tions was four layers, each containing 2, 8, 8, and 1 neuron respectively.
We found that the most effective activation function was simple ReLU. Al-
though the neural network provided good accuracy for reasonably low mem-
ory, training the network required over 100 epochs, which increased the time
cost significantly.

38

A.3 Gaussian process

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

Figure 18: Error function of Gaussian process

To attempt a smoother function approximation, we also tried using a Gaus-
sian Process, which Lisa Oh explored in her thesis research on the same topic.
Although this approach gave the lowest mean squared error, its immense
memory cost that scales quadratically with sample size makes it infeasible
problems with larger training datasets.

39

A.4 XGBoost regression

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

Figure 19: Error function of XGBoost regression

We also tested the XGBoost model described by [6]. We used Julia bindings
from XGBoost.jl [30]. XGBoost is largely used for deep learning applica-
tions, but is also useful as a universal function approximator. We avoid using
XGBoost in our formal analysis and experiments due to its lack of provable
bounds on the approximation factor, and the unreliability of tuning its pa-
rameters. In example, accuracy is affected by both tree depth and the count
of trees, both of which have different advantages in different problems, and
studying all permutations of parameters could be a paper in itself.

B Recursive Cell Roadmaps (RCRM)
In the spirit of focusing on boundaries of cells for constructing paths around
obstacles, we developed an alternative roadmap algorithm to be used for
computing all-pairs distances for a given cell in the regression graph. This
algorithm takes advantage of large convex regions of Qf for which samples
are unneeded using a recursive cell decomposition of Q. The cells are formed
by recursive binary division of Q. Let dim(Q) represent the dimensionality
of Q, and depth(C) denote the depth of cell C.

40

Initialize the roadmap to G = (V = ∅, E = ∅, w = d). Starting at root
cell C = Q, sample a set of points XB(C) ⊂ B(C) and set V = V ∪XB(C). C
splits along dimension dim(Q) mod depth(C) + 1 if C ⊆ Qf , i.e. the entire
cell is collision-free. In practice, we can check if C ⊆ Qf using a certificate
based on knowledge of the workspace, or perform brute-force checking using
the local planner by checking ∆(q1, q2) = 1 ∀(q1, q2) ∈ B(C)2. When a cell no
longer needs to split, all-pairs connections are added to the roadmap, setting
E = E ∪ {(q1, q2) : q1, q2 ∈ XB(C)}. This method of recursive cell division
means that samples are focused around obstacles.

Querying the RCRM is simple; given a starting configuration qs and an
ending configuration qt, find the corresponding cells Cs and Ct such that
qs ∈ Cs and qt ∈ Ct. Connect qs to all sample points in XB(Cs). Then
perform A* search to return a path from qs to qt.

B.1 RCRM Proofs

The following proofs refer to an RCRM used to solve a motion planning
problem (Q, qs, qt) with a robust solution σ∗ with strong δ-clearance, optimal
local planner ∆, and a corresponding metric d.

Lemma 2 (Collision-free cells on optimal path). Given a minimum cell size
εcell such that d(~0, ~εcell) ≤ δ, q is in a collision-free cell ∀q ∈ Qδ

f .

by contradiction. Consider any configuration q ∈ Qδ
f . By definition of strong

δ-clearance, d(q, qobst) > δ, where qobst is the nearest configuration in collision.
Let C denote the cell containing q. Assume for contradiction that C is in
collision, i.e. ∃qobst ∈ C such that qobst 6∈ Qf . If q, qobst ∈ C, we know that
d(qobst, q) ≤ d(~0, ~εcell) ≤ δ, where d(~0, ~εcell) denotes the diameter of the cell C
under metric d. This contradicts strong δ-clearance, so q must be a collision
free cell.

Theorem 3 (Resolution completeness of RCRM). RCRM is resolution com-
plete with respect to the minimum cell width εcell and the sample dispersion
width εsample.

Proof. To show the existence of a solution σ, we must prove that there exists
a path of adjacent cells in the PCRM whose boundary sample points can
be connected by ∆ to form a feasible path. To show this, we show that the
optimal solution σ∗ can be expressed as a sequence of configurations on the

41

boundaries of cells in the RCRM, and that for any point in a collision cell,
there exists a nearby boundary point in a free cell.

Because the cells in C cover all of Q, any path between configurations
must trivially cross the boundaries of C. We can define these crossing points
as the values b1, . . . , bn of σ∗ such that σ∗(b1), . . . , σ∗(bn) ∈ B(C).

By lemma 2, each of the cells crossed by σ∗(b1), . . . , σ∗(bn) are collision-
free if εcell is picked small enough such that d(~0, ~εcell) ≤ δ. By the definition
of the boundary sampling method on collision-free cells, for every consecutive
pair of boundary waypoints σ∗(bi), σ∗(bi+1) for i = 1, . . . , n−1, there exists a
pair of nearest sample configurations (qi, qi+1). Because the cell is collision-
free, (qi, qi+1) ∈ E. Since boundaries share sets of samples, the sequence
of configurations q1, q2, . . . , qn forms a contiguous path of edges from q1 to
qn. Because (qs, q1), (qn, qt) ∈ E by definition of the querying procedure,
qs, q1, . . . , qn, qt is a contiguous path from qs to qt, and thus a feasible solution.

Theorem 4 (Asymptotic optimality of RCRM). RCRM is asymptotically
optimal with respect to the minimum cell width εcell and the sample dispersion
width εsample.

Proof. Let σ denote the path produced by the RCRM. Once again, define the
crossing points of σ∗ as the values b1, . . . , bn of σ∗ such that σ∗(b1), . . . , σ∗(bn) ∈
B(C). By lemma 2, each of the crossed cells are collision-free. Because the
boundary sampling method samples cells with a sampling width of εsample,
any configuration q ∈ B(C) is at most d(~0, ~εsample) away from a sample q′.
Thus increasing the sampling density causes the error from the optimal path
to converge to 0.

42

C Implementations
We developed a comprehensive library for motion planning using the Julia
programming language. This section describes the features and design of the
library.

C.1 MetricTools.jl

The MetricTools.jl sub-library provides the supporting frameworks for all
of the other libraries.

This includes MetricGraphs.jl, a wrapper around LightGraphs.jl spe-
cialized for graphs embedded on a metric space. This graph supports auto-
matic calculation of metrics to avoid redundant computation, along with
optionally maintaining a KNN Ball-Tree structure for fast nearest-neighbor
searches. To support all geometric operations required for collision checking,
the library also contains implementations of line-polygon intersections and
wrappers around the GJK algorithm for computing minimum distances to
convex polyhedra.

Source code is available on GitLab:
gitlab.com/dartmouthrobotics/MetricTools.jl

C.2 MotionPlanning.jl

Implementations of PRM*, FST*, Visibility Graphs, RC, and RCRM are
provided in MotionPlanning.jl.

The library is designed for all configuration spaces and planners to be used
on each other by taking advantage of Julia’s multiple dispatch functionality.
This allows for many functions to be generalized for any motion planning
algorithm, on any configuration space. The resulting interface is simple,
consistent, and without any performance overhead:

� �
Setup space and construct planner
space::Space = PlanarSpace() # Use any space here
planner::Planner = FST(space) # Use any planner here

Find path from start to goal
start::Point = [0, 0]
goal::Point = [1, 1]
path::Array{Point} = plan(planner, start, goal)
display(path)� �

43

https://gitlab.com/dartmouthrobotics/MetricTools.jl

As with MetricTools.jl, the package is available on GitLab:
gitlab.com/dartmouthrobotics/MotionPlanning.jl

C.3 MetricSpaces.jl

To test motion planning algorithms, space definitions with their correspond-
ing collision checkers and local planners must be implemented. MetricSpaces.jl
offers these spaces with a common interface usable by the planning algorithms
defined in subsection C.2.

Source code is available on GitLab:
gitlab.com/dartmouthrobotics/MetricSpaces.jl

C.3.1 Planar.jl

For managing planar spaces, the library provides a simple PlanarSpace in-
terface. Obstacles are provided via vertex lists defined in a .json file. In
order to support complex operations such as the GJK algorithm, all obstacles
can be optionally triangulated using the ear-clipping algorithm described in
[10]. We provide a custom Julia implementation of this algorithm through
EarClipping.jl.

C.3.2 Arms.jl

For managing the n-revolute arm example, we have a full implementation of
revolute arms, inverse kinematics, collision checking, and plotting. For the
distance metric, we use Distances.jl’s Chebyshev metric function. The
local planner ∆(q1, q2) uses linear interpolation between q1 and q2 with a
given step size and runs a collision check on each intermediate configuration.

C.3.3 ReedsShepp.jl

For the Reeds-Shepp car, we provide a wrapper around SimpleCarModels.jl
[26] to implement the local planner and distance metric. The local planner
uses the reedsshepp_waypoints to acquire a list of configurations along
the optimal path and check each configuration for collision. We found that
the call to reedsshepp_waypoints is relatively expensive compared to other
local planners.

44

https://gitlab.com/dartmouthrobotics/MotionPlanning.jl
https://gitlab.com/dartmouthrobotics/MetricSpaces.jl

C.4 Minimal partition models

For constructing subspaces in configuration space (i.e. for PLR cells), a sig-
nificant memory cost is associated with explicitly holding the bounds for each
cell. The MotionPlanning.jl library offers minimal partitioning modules for
both binary and grid-based partition schemes.

C.4.1 Binary partitions

Binary partitions can be minimally defined as a tree of partition nodes, where
each node stores a splitting threshold, along with some data. In the case of
the PLR, this data is simply the coefficients for the local linear regression.
The dimension along which the split threshold is applied is inferred by the
depth of the tree modulo the dimension of the space. Searching this tree
to find the correct leaf node given a valid query vector is trivially a log n
operation, where n is the number of nodes.

C.4.2 Grid partitions

For grid partitions, we construct a grid of equally sized cells along the search
space. The grid is stored in aD dimensional matrix, whereD is the dimension
of the search space. Given a query vector x and D-dimensional vector of
lower bounds on the space blow and sizes of each dimension s, indexes into
the matrix are calculated along each dimension d as follows:

id = (v[d]− blow[d] ∗ s[d])

This formula allows for fast calculation of indices, providing elegant constant-
time lookup.

45

References
[1] Devin Balkcom et al. “Metric cells: Towards complete search for op-

timal trajectories”. In: 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2015, pp. 4941–4948.

[2] Jérôme Barraquand and Jean-Claude Latombe. “Nonholonomic multi-
body mobile robots: Controllability and motion planning in the pres-
ence of obstacles”. In: International Conference on Robotics and Au-
tomation. Sacramento, CA, 1991, pp. 2328–2335.

[3] Mukunda Bharatheesha et al. “Distance metric approximation for state-
space RRTs using supervised learning”. In: 2014, pp. 252–257.

[4] Joshua Bialkowski et al. “Efficient Collision Checking in Sampling-
Based Motion Planning”. In: 2012, pp. 365–380.

[5] Stephen Cameron. “Enhancing GJK: Computing minimum and pene-
tration distances between convex polyhedra”. In: Proceedings of inter-
national conference on robotics and automation. Vol. 4. IEEE. 1997,
pp. 3112–3117.

[6] Tianqi Chen and Carlos Guestrin. “Xgboost: A scalable tree boosting
system”. In: Proceedings of the 22nd acm sigkdd international confer-
ence on knowledge discovery and data mining. ACM. 2016, pp. 785–
794.

[7] Hao-Tien Lewis Chiang et al. “RL-RRT: Kinodynamic Motion Plan-
ning via Learning Reachability Estimators from RL Policies”. In: CoRR
abs/1907.04799 (2019).

[8] Peng Cui et al. “A Survey on Network Embedding”. In: CoRR abs/1711.08752
(2017).

[9] Robin Deits and Russ Tedrake. “Computing Large Convex Regions of
Obstacle-Free Space through Semidefinite Programming”. In:Workshop
on the Algorithmic Foundations of Robotics (WAFR). Istanbul, Turkey,
Aug. 2014.

[10] David Eberly. “Triangulation by ear clipping”. In: Geometric Tools
(2008), pp. 2002–2005.

46

[11] Aleksandra Faust et al. “PRM-RL: Long-range Robotic Navigation
Tasks by Combining Reinforcement Learning and Sampling-Based Plan-
ning”. In: 2018 IEEE International Conference on Robotics and Au-
tomation, ICRA 2018, Brisbane, Australia, May 21-25, 2018. IEEE,
2018, pp. 5113–5120.

[12] David Ferguson and Anthony (Tony) Stentz. The Field D* Algorithm
for Improved Path Planning and Replanning in Uniform and Non-
Uniform Cost Environments. Tech. rep. CMU-RI-TR-05-19. Pittsburgh,
PA: Carnegie Mellon University, June 2005.

[13] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Bar-
foot. “Informed RRT*: Optimal sampling-based path planning focused
via direct sampling of an admissible ellipsoidal heuristic”. In: 2014
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems. IEEE. 2014, pp. 2997–3004.

[14] Michael Innes et al. “Fashionable Modelling with Flux”. In: CoRR
abs/1811.01457 (2018). arXiv: 1811.01457.

[15] Lucas Janson and Marco Pavone. “Fast Marching Trees: A fast march-
ing sampling-based method for optimal motion planning in many di-
mensions”. In: Robotics Research. Springer, 2016, pp. 667–684.

[16] Sertac Karaman and Emilio Frazzoli. “Sampling-based Algorithms for
Optimal Motion Planning”. In: The International Journal of Robotics
Research 30(7), 846-894 (2011).

[17] Lydia Kavraki et al. “Probabilistic Roadmaps for Path Planning in
High-Dimensional Configuration Spaces”. In: IEEE International Con-
ference on Robotics and Automation. 1996, pp. 566–580.

[18] Anthanasios Krontiis, Andrew Dobson, and Kostas Bekris. “Sparse
roadmap spanners”. In: Proceedings of the workshop on the algorith-
mic foundations of robotics on Robotics, WAFR 2012 (2012).

[19] Tomás Lozano-Pérez and Michael A. Wesley. “An Algorithm for Plan-
ning Collision-free Paths Among Polyhedral Obstacles”. In: Commun.
ACM 22.10 (Oct. 1979), pp. 560–570.

[20] James D. Marble and Kostas E. Bekris. “Asymptotically Near-Optimal
Planning With Probabilistic Roadmap Spanners”. In: IEEE Transac-
tions on Robotics 29.2 (2013), pp. 432–444.

47

https://arxiv.org/abs/1811.01457

[21] Rémi Munos, Leemon C. Baird, and Andrew W. Moore. “Gradient de-
scent approaches to neural-net-based solutions of the Hamilton-Jacobi-
Bellman equation”. In: IJCNN. 1999.

[22] Josiah Putman et al. “Piecewise linear regressions for approximating
distance metrics”. In: arXiv (2020).

[23] Nathan Ratliff et al. “CHOMP: Gradient optimization techniques for
efficient motion planning”. In: 2009 IEEE International Conference on
Robotics and Automation. IEEE. 2009, pp. 489–494.

[24] D. Chris Rayner, Michael H. Bowling, and Nathan R. Sturtevant. “Eu-
clidean Heuristic Optimization”. In: Proceedings of the Twenty-Fifth
AAAI Conference on Artificial Intelligence, AAAI 2011, San Fran-
cisco, California, USA, August 7-11, 2011. 2011.

[25] J. A. Reeds and L. A. Shepp. “Optimal paths for a car that goes both
forwards and backwards.” In: Pacific J. Math. 145.2 (1990), pp. 367–
393.

[26] Edward Schmerling. SimpleCarModels.jl. https://github.com/schmrlng/
SimpleCarModels.jl.

[27] T. Siméon, J.-P. Laumond, and C. Nissoux. “Visibility-based prob-
abilistic roadmaps for motion planning”. In: Advanced Robotics 14.6
(2000), pp. 477–493.

[28] Russ Tedrake et al. “LQR-trees: Feedback Motion Planning via Sums-
of-Squares Verification”. In: I. J. Robotics Res. 29.8 (2010), pp. 1038–
1052.

[29] Weifu Wang, Devin J. Balkcom, and Amit Chakrabarti. “A fast online
spanner for roadmap construction”. In: I. J. Robotics Res. 34.11 (2015),
pp. 1418–1432.

[30] XGBoost.jl. https://github.com/dmlc/XGBoost.jl.

48

https://github.com/schmrlng/SimpleCarModels.jl
https://github.com/schmrlng/SimpleCarModels.jl
https://github.com/dmlc/XGBoost.jl

	Regression-based motion planning
	Recommended Citation

	Introduction
	Notation

	Related work
	Field Search Trees
	A simple example
	FST* algorithm
	Experiments
	Planar point robot
	n-joint revolute arm
	Reeds-Shepp car

	Limitations and future work
	Exploration: regressing error functions

	Lessons learned

	Regression complex
	A simple example
	Approach
	RC construction phase

	RC query phase
	Boundary graph construction
	Path refinement

	Experiments
	Planar point robot
	n-joint revolute arm
	Reeds-Shepp Car
	Comparison to spanner algorithms

	Use case: high memory cost cell planners
	PLRC* Asymptotic Completeness and Optimality
	Limitations and future work
	Hierarchical all-pairs distance computation

	Lessons learned

	Appendices
	Regression techniques
	Piecewise linear regression
	Feed-forward neural network
	Gaussian process
	XGBoost regression

	Recursive Cell Roadmaps (RCRM)
	RCRM Proofs

	Implementations
	MetricTools.jl
	MotionPlanning.jl
	MetricSpaces.jl
	Planar.jl
	Arms.jl
	ReedsShepp.jl

	Minimal partition models
	Binary partitions
	Grid partitions

