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Chapter 1

Abstract

Objective

Currently, a major limitation for natural language processing (NLP) analyses in clinical

applications is that a concept can be referenced in various forms across different texts. This

paper introduces Multi-Ontology Refined Embeddings (MORE), a novel hybrid framework

for incorporating domain knowledge from various ontologies into a distributional semantic

model, learned from a corpus of clinical text. This approach generates word embeddings

that are more accurate and extensible for computing the semantic similarity of biomedical

concepts than previous methods.

Materials and Methods

We use the RadCore and MIMIC-III free-text datasets for the corpus-based component of

MORE. For the ontology-based component, we use the Medical Subject Headings (MeSH)

ontology and two state-of-the-art ontology-based similarity measures. In our approach, we

propose a new learning objective, modified from the Sigmoid cross-entropy objective function,

to incorporate domain knowledge into the process for generating the word embeddings.

Results and Discussion

We evaluate the quality of the generated word embeddings using an established dataset [6]

of semantic similarities among biomedical concept pairs. We show that the similarity scores

produced by MORE have the highest average correlation (60.2%), with the similarity scores

being established by multiple physicians and domain experts, which is 4.3% higher than

that of the word2vec baseline model and 6.8% higher than that of the best ontology-based

similarity measure.
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Conclusion

MORE incorporates knowledge from biomedical ontologies into an existing distributional

semantics model (i.e. word2vec), improving both the flexibility and accuracy of the learned

word embeddings. We demonstrate that MORE outperforms the baseline word2vec model,

as well as the individual UMLS-Similarity ontology similarity measures.
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Chapter 2

Introduction

2.1 Problem Statement

With the increasing availability of health-related textual data, such as Electronic Health

Records (EHR), novel applications of Natural Language Processing (NLP) in the field of

medical informatics is a growing topic of interest [7, 8, 9]. Currently, a major limitation of

NLP analysis techniques for clinical text is that due to the free-text format of these records

and notes, the same concept can be referenced in various forms across different texts (e.g.

“kidney failure” and “renal failure”). Particularly, different physicians and institutions may

use unique terminologies for the same concepts for reporting in EHRs. In order to address this

issue, researchers use semantic similarity measures to identify similar biomedical concepts in

these free-text records and notes. A semantic similarity measure takes as input two concepts

and returns a numeric score that quantifies how alike they are in meaning [6].

A hybrid biomedical semantic similarity measure would allow for more accurate cluster-

ing of concepts across a wider range of domains. Being able to accurately cluster groups of

semantically similar biomedical concepts can improve patient-care and clinical outcomes. For

example, patient health records can be analyzed to identify subjects with similar conditions

or pathologies. With this information, data-mining techniques can be used to extract useful

information about previous care processes, evolution of certain diseases, social trends, etc

[10]. Semantic similarity measures can also assist in identifying patients for clinical studies

and clustering “symptoms and disorders found in the text of clinical reports for postmarket-

ing medication safety surveillance” [5]. Furthermore, semantic similarity measures can be

used to integrate heterogeneous clinical data, which can improve interoperability between

medical sources and allow hospitals to share patient health information more effectively

[10]. Finally, in the fields of medical information retrieval and literature mining, where large
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amounts of electronic text data are available, keyword-based search engines “can be improved

by extending user’s queries to conceptually equivalent formulations using semantically sim-

ilar terms” [10]. All in all, semantic similarity measures can improve the statistical power

of NLP analyses, making it easier to identify associations between conditions and clinical

outcomes in health records and improve information retrieval from scientific journals and

clinical reports [5].

2.2 Overview of Existing Methods

A variety of semantic similarity measures have been developed to describe the strength of the

relationships between concepts in biomedicine. These existing semantic similarity measures

mostly fall into two common categories: ontology-based or corpus-based semantic similar-

ities. Ontology-based semantic similarities typically rely on different graph-based features

[11, 10], such as the shortest path length between concepts, the depth of the concepts in a

hierarchy, and the position of their lowest common ancestors, to capture semantic similarity.

As these ontology-based approaches are sensitive to the completeness and quality of the un-

derlying ontologies [11], curating and maintaining domain ontologies is critical to guarantee

the accuracy and robustness of ontology-based semantic similarities. Although there have

been major efforts, such as the ongoing support by National Library of Medicine (NLM),

to curate and maintain biomedical ontologies as valuable sources of domain knowledge, it is

a labor-intensive and elaborate task. Furthermore, due to the heterogeneity of biomedical

domains and their corresponding concepts, there is no single top-performing ontology-based

similarity measure across all domains and applications [11, 12].

As an alternative to ontology-based semantic similarity, corpus-based semantic similari-

ties are based on distributional semantics and co-occurrences of terms in free text [13, 14].

These corpus-based models rely on the linguistic principle that the meaning of a word (i.e.

semantics) can be inferred based on its surrounding words (i.e. context). With recent ad-

vances in deep learning and the widespread use of distributional semantics to construct word

embeddings for word representation in deep-neural networks, these corpus-based models have

gained vast popularity. The word2vec [15] distributional semantics model is the most com-

mon method for generating such word embeddings. Intuitively, the word2vec model is a

neural network that maps words with similar context to nearby points in a vector space.

The cosine similarity between resulting word representations is commonly considered to be

a corpus-based semantic similarity in various settings [16, 17, 18]. Although corpus-based

semantic similarities are generated by unsupervised models, the lack of human curation and

the availability of large, relevant biomedical corpora limit their accuracy and usability in
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biomedical applications [18, 10].

2.3 Proposed Solution

In this paper, we propose Multi-Ontology Refined Embeddings (MORE) semantic similarity

to effectively integrate ontological knowledge and corpus-based context into a novel seman-

tic similarity measure. MORE uses existing ontology-based semantic similarity measures

from the Unified Medical Language System (UMLS) to modify the objective function of

the word2vec skip-gram model, a popular distributional semantic model. In our approach,

we propose a mathematical framework for vector representation refinement that relies on a

collection of the most established and reliable ontology-based measures, rather than a single

ontology-based similarity, to maximize the utility of our measure in a broad domain. In

other words, MORE uses multiple ontology-based semantic similarities as the overall indi-

cator of ontological similarity to refine the distributional semantic representations. Of note,

our implementation is based on the official TensorFlow implementation of word2vec and we

have made it available for public use 1.

Our model is benchmarked against existing state-of-the-art semantic similarities using

an established evaluation dataset for semantic similarity between biomedical concepts. We

find that MORE outperforms the baseline corpus-based semantic similarity model, as well

as the individual ontology-based semantic similarities, in terms of correlation with Physician

and Expert similarity scores in the evaluation dataset. The main contributions of this pa-

per are two-fold: 1) we present a generalizable and extensible framework for incorporating

domain-specific knowledge into a distributional semantic model and 2) we show that this

hybrid framework outperforms the baseline word2vec model and ontology similarity mea-

sures on an established benchmark. In the remainder of this paper, we provide context for

corpus-based, ontology-based, and hybrid semantic similarity measures in the biomedical do-

main. We also discuss the following components: the corpora used to train the corpus-based

component of the model (i.e. RadCore and MIMIC-III), the UMLS-Similarity ontology mea-

sures used to modify the objective function, the mathematical framework for modifying the

cross-entropy objective function, and the benchmark dataset against which the proposed

method is evaluated. We also discuss the results from evaluating the proposed measure

against state-of-the-art benchmarks, present a conclusion, and propose a direction for future

research.

1https://github.com/BMIRDS/MORE
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Chapter 3

Literature Review

3.1 Corpus-Based Methods

With recent advances in deep learning and the widespread use of distributional semantics to

construct word embeddings for word representation, corpus-based models have become more

useful for a variety of language modeling tasks. For instance, distributed representations

of words in a vector space help learning algorithms to achieve better performance in natu-

ral language processing tasks by grouping similar words together [15]. These corpus-based

methods are based on cooccurrences of terms in free text and rely on the linguistic principle

that a word’s meaning can be inferred from its surrounding words. The generated word

embeddings are able to capture relationships between the words; for example, Mikolov et.

al. found that “vec(“Madrid”) - vec(“Spain”) + vec(“France”) is closer to vec(“Paris”) than

to any other word vector” [15]. This section of the paper discusses word2vec and GloVe, two

state-of-the-art methods for generating word embeddings.

3.1.1 word2vec

Intuitively, the word2vec model is a neural network that maps words with similar context

to nearby points in a vector space. It was initially developed as a way to learn high-quality

word vectors from extremely large corpora, billions of words in length and millions of words

in vocabulary size [1]. The original word2vec paper presented two model architectures for

learning distributed representations of words that try to minimize computational complexity

[1]. The first of these model architectures is the Continuous Bag-of-Words model (CBOW).

As shown in Figure 1, the model uses both previous and future words as the input to correctly

classify the current word. More specifically, the context words are used as input to a log-linear

classifier and the goal is to correctly classify the current word. The model uses a continuous
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distributed representation of the context and, similar to standard the bag-of-words model,

the order of the context words does not matter [1]. The second model architecture is the

skip-gram model, which is also shown in Figure 1. The architecture is similar to that of the

CBOW model; however, rather than predicting the current word from the context words, it

predicts context words using the current word. More precisely, each current word is used

as input to a log-linear classifier with continuous projection layer to predict words within a

certain range before and after the current word [1].

Figure 3.1: CBOW predicts the current word based on the context and Skip-gram predicts

surrounding words given the current word [1]

The main benefit of these model architectures is that, unlike global matrix factorization

methods, which rely on term co-occurrence matrices, the training processes for the word2vec

models do not involve dense matrix multiplications. This makes the training extremely

efficient, in that an optimized single-machine implementation can train on more than 100

billion words in one day [15].

3.1.2 GloVe

Introduced in 2014 by a group of researchers at Stanford, GloVe is another model for gen-

erating distributed representations of words in vector space. GloVe attempts to combine

two major model families, global matrix factorization (i.e. latent semantic analysis) and

local context window methods (i.e. word2vec). GloVe achieves this by efficiently incor-
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porating global statistical information by training only on the nonzero elements in a term

co-occurrence matrix, rather than on the entire sparse matrix or on individual context win-

dows in a large corpus [19]. As a result, unlike the word2vec model, GloVe is able to make

use of the global word occurrence statistics in a corpus as the primary source of information

in learning word representations [19].

GloVe relies on a contextual co-occurrence matrix X, whose entries Xij represent the

number of times word j occurs in the context of word i. The overall complexity of the model

depends on the number of nonzero elements in the matrix X. Since this number must be

less than the total number of items in the matrix, the model scales no worse than O(|V |2),
where V is the size of the vocabulary [19]. With certain assumptions about the distributions

of word co-occurrences in corpora, the authors argue that the complexity of the model is

actually far better than O(|V |2). In fact, for the corpora studied in the article, they observed

the complexity of the model was closer to O(|C|0.8), where C is the size of the corpus [19].

3.2 Ontology-Based Methods

Ontology-based methods rely on graph features of ontologies to compute semantic similarity

between concepts. Most ontology-based methods calculate similarity between two concepts

by using the location of the concepts in the ontology and the paths among them. Some

of common methods rely on “edge counting, shortest path, and ontological depth, while

others add the least common subsumer (LCS) to capture the granularity of a concept in the

ontology.” [20]. We are primarily interested in biomedical domain ontologies, which represent

knowledge of medical concepts, such as the Systematized Nomenclature of Medicine-Clinical

Terms (SNOMED-CT) and Medical Subject Headings (MeSH). This project mainly relies on

the UMLS-Similarity Perl package, which contains five semantic similarity measures: Rada,

et. al. [14], Wu & Palmer (wup) [21], Leacock & Chodorow (lch) [22], and Nguyen &

Al-Mubaid (nam) [23], and the Path measure (path).

3.2.1 Rada et al. (cdist)

Rada et al. [14] presented the Conceptual Distance (cdist) measure, which calculates seman-

tic similarity between two concepts by counting the number of edges between them. The

similarity scores outputted by this measure are in the range between zero and twice the

depth of the taxonomy [5].

simcdist(c1, c2) = |shortest path(c1, c2)|
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3.2.2 Wu and Palmer (wup)

Wu and Palmer [21] is a similarity measure that is based on the most specific concept

that subsumes both of the concepts being measured [6]. In other words, it considers the

position of concepts c1 and c2 in the ontology relative to the position of the most specific

common concept c. Since there can be multiple parents for each concept, two concepts can

share parents by multiple paths. The most specific common concept c is the common parent

related with the minimum number of “is-a” links with concepts c1 and c2 [24]. The similarity

between two concepts is calculated as “twice the depth of the two concepts least common

subsumer (LCS) divided by the product of the depths of the individual concepts” [5]. The

similarity scores outputted by this measure fall in the range between zero and one [5].

simwup(c1, c2) =
2 ∗ depth(LCS)

depth(c1) + depth(c2)

3.2.3 Leacock and Chodorow (lch)

Leacock and Chodorow [22] is a path length based measure of semantic similarity. This

measure is based on finding the length of the shortest path between two concepts in an

ontology, dividing it by two times the maximum depth of the hierarchy, and taking the

negative logarithm to get the resulting score. Its range is unbounded [5].

simlch(c1, c2) = −log(
shortest path(c1, c2)

2 ∗ depth(ontology)
)

3.2.4 Al-Mubaid and Nguyen (nam)

Al-Mubaid and Nguyen [23] is a similarity measure that is based on that the depth of

the concept nodes and distance (path length) between them [23]. To compute the semantic

similarity distance between two concepts, this measure takes the depth of their least common

subsumer (LCS), and the distance of shortest path of between them. As a result, the method

is able to assign “higher similarity when the two concepts are in a lower level of the hierarchy”

[23]. The similarity between two concepts is calculated as “the log of two plus the product

of the shortest distance between the two concepts minus one and the depth of the taxonomy

minus the depth of the concepts LCS” [5]. The range of similarity scores outputted by this

measure depends on the depth of the taxonomy [5].

simnam(c1, c2) = log((|shortest path(c1, c2)|− 1) ∗ (depth(ontology)− depth(lcs(c1, c2))) + 2)
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3.2.5 Path measure (path)

The Path measure (path) calculates the similarity between two concepts as the “reciprocal

of the number of nodes between two concepts and its range is between zero and one” [5].

simpath(c1, c2) =
1

|shortest path(c1, c2)|

3.3 Hybrid Methods

As the name suggests, hybrid methods for computing semantic similarity combine elements

from both corpus-based methods and ontology-based methods. There have been previous

efforts to combine ontology-based and corpus-based similarities to better capture semantic

similarities; however, there doesn’t currently exist a framework for incorporating ontologi-

cal knowledge into the process of generating word embeddings for semantic similarity the

biomedical domain.

3.3.1 Yu and Dredze (2014)

Yu and Dredze [25] introduced a general method for learning word embeddings by incorpo-

rating prior information. Their model extends the objective function of word2vec to include

prior knowledge about synonyms from semantic resources. The authors also define a Rela-

tion Constrained Model (RCM) which is trained solely from the semantic resources. Finally,

they define their combined objective function as a linear combination of the word2vec CBOW

objective function and the RCM objective function. They show that the word embeddings,

generated from the combined objective function and trained on a general corpus, outperforms

the baseline word embeddings in three tasks: language modeling, measuring word similarity,

and predicting human judgement on word pairs [25].

3.3.2 Xu et al. (2014)

Xu et al. [26] introduce RC-NET, a general framework for incorporating knowledge into word

embeddings. First, The authors define two models, R-NET and C-NET, which use different

objective functions to capture relational knowledge and categorical knowledge, respectively.

Relational knowledge builds ”the global structure of the learned word representations by

utilizing the relationship between different words” and categorical knowledge improves ”the

local structure of the learned word representations by clustering similar words together” [26].

Relational knowledge and categorical knowledge complement each other because the absence
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relational knowledge can be made up for with the presence of categorical knowledge and vice

versa. As a result, they combine these two separate objective functions with the original

objective function of the skip-gram model to build the objective function used by RC-NET

[26].

J = αEr + βEc − L

where Er is the objective function R-NET, Ec is the objective function of C-NET, and

L is objective function of the skip-gram model. They show that RC-NET, trained on a

general corpus, outperforms R-NET, C-NET, and the baseline skip-gram model in the word

similarity and topic prediction tasks.

3.3.3 Faruqui et al. (2014)

Faruqui et al. [27] propose a method for augmenting vector space representations of words

using relational information from semantic lexicons [27]. The main contribution of their

proposed method, retrofitting, is that it makes no assumptions about how the input vectors

were constructed. In other words, retrofitting is applied as a post-processing step, allowing

it to be used on any pre-trained word vectors [27]. The authors evaluate their proposed

method on word embeddings generated from the five following models: Glove, skip-gram,

Global Context, and Multilingual. Additionally, they use three following semantic ontologies:

PPDB, WordNet, and FrameNet. They show that using retrofitting as a post-processing step

improves performance on a variety of tasks, including word similarity, syntactic relations,

synonym selection, and sentiment analysis [27].

3.3.4 Pivovarov and Elhadad (2012)

Pivovarov and Elhadad [20] present a hybrid score that uses a filtration and weighted aver-

age of ontology-based measures and corpus-based measures to calculate semantic similarity.

Their method consists of three complementary similarity measures; one of the measures is

corpus-based and relies on distributional semantics and the other two are ontology-based and

rely on concept definitions and their relationships in the SNOMED-CT [20]. The pipeline

works as follows. First, the corpus is preprocessed to extract concepts. Next, a filtration

process prunes out the extracted concepts and keeps a homogeneous set of concepts to be ag-

gregated. Then, the corpus-based similarity measure ranks all pairs of concepts. Finally, the

top-k pairs with the highest context-based similarity are reordered using the two ontology-

based similarity measures [20]. However, their proposed hybrid method is limited in that it
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doesn’t incorporate ontological knowledge in the generation process of the word embeddings;

rather, it uses corpus-based and ontology-based measures in a pipeline to produce a final

semantic similarity score.
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Chapter 4

Methods

4.1 Utilized Corpora

In this work, we use the RadCore and MIMIC-III corpora to train the corpus-based com-

ponent of our proposed model. Assembled at Stanford in 2007, RadCore exists an effort to

construct a large multi-institutional radiology report corpus for NLP [28]. The reports in

the RadCore corpus range from 1995 to 2006 and were de-identified by their source organiza-

tions before submission to RadCore. In its entirety, RadCore contains 1,899,482 reports from

three major healthcare organizations: Mayo Clinic (812 reports), MD Anderson Cancer Cen-

ter (5000 reports), and Medical College of Wisconsin (1,893,670 reports) [28]. Additionally,

all of the radiology reports are in free text format and do not contain any metadata about

the type and nature of the imaging exams [28]. Medical Information Mart for Intensive Care

(MIMIC-III) is a database containing information gathered from patients that were admitted

to critical care units at a large hospital [29]. In this study, we use MIMIC-III’s gold stan-

dard corpus of 2,434 ICU nursing notes that were “gathered simultaneously with the signals,

trends, laboratory reports, discharge summaries and other data in the MIMIC-III databases”

[30]. The corpus was thoroughly de-identified; all detected instances of Protected Health In-

formation (PHI) were replaced by realistic surrogate data [30]. The final training corpus,

which is a combination of the RadCore and MIMIC-III corpora, contains 195,101,383 total

words, 145,274 unique words, and 43,232 unique frequent words with at least 5 occurrences

in the corpora.
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4.2 UMLS-Similarity

One of the challenges with having numerous medical domain ontologies is that these on-

tologies are typically developed independently of each other and rely on different standards,

programming languages and interfaces to ontological resources [5]. The UMLS framework

addresses this by creating a standard for medical ontologies. UMLS includes over 100

controlled medical ontologies, such as the Systematized Nomenclature of Medicine-Clinical

Terms (SNOMED-CT) and Medical Subject Headings (MeSH) [5]. It integrates these on-

tologies into the UMLS Metathesaurus by labeling concepts with Concept Unique Identifiers

(CUIs) [5]. A CUI can refer to multiple concepts from the individual ontologies. In order

to distinguish between concepts with the same CUI, each concept is also labeled with an

Atomic Unique Identifier (AUI). For instance, the ”AUI Cold Temperature [A15588749] from

MeSH and the AUI Low Temperature [A3292554] from SNOMED-CT are mapped to the

CUI Cold Temperature [C0009264]” [5]. UMLS contains information about over ”1 million

biomedical concepts and 5 million concept names from more than 100 incorporated controlled

vocabularies and classifications (some in multiple languages) systems” [31].

UMLS-Interface is a Perl package that provides an API to a local installation of the

UMLS in a MySQL database, allowing users to interactively explore the UMLS [5]. The

corresponding Perl package, UMLS-Similarity, is used in conjunction with UMLS-Interface

to provide an API to obtain the semantic similarity between CUIs in the UMLS. UMLS-

Similarity contains five semantic similarity measures proposed by Rada, et. al. [14], Wu &

Palmer [21], Leacock & Chodorow [22], and Nguyen & Al-Mubaid [23], and the Path measure

[5].
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Chapter 5

Proposed Method: MORE

Multi-Ontology Refined Embeddings (MORE) is a hybrid semantic similarity measure that

effectively integrates ontological knowledge and corpus-based context in a novel semantic sim-

ilarity measure. MORE uses a mathematical framework for vector representation refinement

that relies on a collection of the most established and reliable ontology-based measures, rather

than a single ontology-based similarity, to maximize our measure’s utility in a broad domain.

For the ontology-based component, MORE uses the MeSH ontology and various ontology-

based semantic similarities measures within the UMLS-Similarity Perl package. Specifically,

MORE uses two notable UMLS-based semantic similarities within the MORE framework:

(1) Wu and Palmer [21] and (2) Leacock and Chodorow [22]. These ontology-based similar-

ity measures are used to modify the objective function of the word2vec skip-gram model in

order to refine a context-based similarity measure according to the domain ontologies. This

framework is extensible because any number of ontology-based semantic similarly measures

can be incorporated in the proposed semantic similarity framework.

5.1 Corpus Model: Skip-gram

5.1.1 Overview

In 2013, Mikolov et al. introduced the word2vec distributional semantics model, a neural

network that maps words with similar context to nearby points in a vector space. The

article introduced two model architectures: Continuous Bag-of-Words (CBOW) and skip-

gram. While these models are algorithmically similar, CBOW predicts target words from

context words, whereas skip-gram “does the inverse and predicts source context-words from

the target words” [32] (See Figure 5.1). Statistically, CBOW smooths over a lot of the

distributional information because it treats the entire context as one observation, which
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works better for smaller datasets. However, skip-gram treats each “context-target pair as a

new observation, and this tends to do better when we have larger datasets” [32]. As a result,

the skip-gram model is slower to train, but generalizes better to infrequent words [1].

Figure 5.1: The objective of the skip-gram model is to learn word vector representations for

predicting context words

The objective of the skip-gram model is to learn word vector representations for predicting

context words (See Figure 5.2). Given an input word represented as a one-hot vector, the

model looks at the context (i.e. nearby) words within a certain window size and picks one

at random. The output of the network is a single vector containing, for every word in our

vocabulary, “the probability that a randomly selected nearby word is that vocabulary word”

[2]. For example, if the input word is “pancreatic”, we would expect a much higher output

probability for words like “cancer” than other words like “brain” or “fracture.” Figure 5.3

depicts the skip-gram model architecture.

Figure 5.2: Skip-gram training example with context window size of 2 [2].

Intuitively, if two words have similar contexts, then the network should output similar

probability vectors for them. The model accomplishes this by learning similar vectors for
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similar words [2]. Thus, the cosine similarity between resulting word vectors is commonly

considered to be a corpus-based semantic similarity measure.

Figure 5.3: Skip-gram model architecture [2].

5.1.2 Subsampling of Frequent Words

In very large corpora, the most frequent words can occur “hundreds of millions of times

(e.g., ‘in’, ‘the’, and ‘a’)” [15]. Since these words appear so often, they typically provide less

information value than the less frequently occuring words. Intuitively, the skip-gram model

benefits much more from observing co-occurrences of “France” and “Paris” than observing

the frequent co-occurrences of “France” and “the”, since there are far more other words

that co-occur frequently with “the” [15]. As a result, the authors propose a subsampling

method to address this issue. Through subsampling, for each word that is encountered in

our training text, there is a chance that it will effectively be deleted it from the text [2]. The

probability that any given word is deleted is proportional to the word’s frequency. A word

wi is discarded from the training set with the probability computed by the formula:

P (wi) = 1−

√
t

f(wi)

where f(wi) is the frequency of word wi and t is a selected threshold, typically around 10-5

[15]. The authors found that, even though this subsampling formula was chosen heuristically,

“it accelerates learning and even significantly improves the accuracy of the learned vectors

of the rare words” [15].
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5.1.3 Negative Sampling

In the first iteration of the skip-gram model, training the neural network meant taking a

training example backpropogating the loss to adjust all of the weights slightly, so that it

predicts that training sample more accurately [2]. In other words, each training sample will

tweak all of the weights in the neural network. However, with a large enough corpus, the

size of the vocabulary would make the skip-gram neural network have a tremendous number

of weights and, thus, incredibly inefficient to train. In the next iteration of the skip-gram

model, Mikolov et al. [15] introduced negative sampling as a method to address this issue.

Negative sampling addresses this issue by having each training sample only “modify a

small percentage of the weights, rather than all of them” [2]. When training the skip-gram

model on a word pair, the label or target word is a one-hot vector. In other words, given an

input word, the output neuron corresponding to the label word should output a 1. For all of

the other words in the vocabulary, the corresponding output neurons should output a 0. With

negative sampling, we update the weight for the neuron corresponding to the label word;

however, instead of backpropogating the loss on all of the other words in the vocabulary,

we randomly select small number of “negative” words, train the corresponding neurons to

output a 0, and update the weights for only those neurons [2]. The negatively sampled words

are selected using a unigram distribution, meaning more frequent words are more likely to be

selected as negative samples. Through experimentation, Mikolov et al. found the following

equation, for the probability of negatively sampling a word wi, to perform best:

P (wi) =
f(wi)

3
4∑n

j=0(f(wj)
3
4 )

where f(wi) is the frequence of word wi in the corpus [2].

5.2 Ontology Measures

As mention previously, the UMLS-Similarity contains five semantic similarity measures pro-

posed by Rada, et. al. [14], Wu & Palmer (wup) [21], Leacock & Chodorow (lch) [22], and

Nguyen & Al-Mubaid (nam) [23], and the Path measure (path). In this study, we use the Wu

& Palmer (wup) and Leacock & Chodorow (lch) semantic similarity measures on concepts in

the MeSH ontology. In this study, we use the Wu & Palmer (wup) and Leacock & Chodorow

(lch) semantic similarity measures on concepts in the MeSH ontology:

simwup(c1, c2) =
2 ∗ depth(LCS)

depth(c1) + depth(c2)
(5.1)
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simlch(c1, c2) = −log(
shortest path(c1, c2)

2 ∗ depth(ontology)
) (5.2)

In order to use the ontology similarities to modify the objective function of the skip-gram

model, we first identified the set of words that appear the intersection of the set of words

in the corpus vocabulary and the set of words that exist in the MeSH ontology. Using this

intersection set, we generate a similarity matrix containing all pair-wise similarities of the

intersection terms, normalizing each measure to be in the range of 0 to 1. It’s important to

note that, given the relative positions of the words in the ontology, not every pair of words in

the ontology has a similarity score as defined by the ontology similarity measures. For each

word pair, if multiple ontology similarity measures produce scores, we compute the median

of the similarity scores for the final matrix similarity score. If a single ontology measure

produces a score, we use it as the final matrix similarity score. And, if there doesn’t exist a

similarity score as defined by any of the ontology similarity measures, we use a placeholder

value of −1 to denote that only the skip-gram model output will be used in the training

process. The final similarity matrix contains 4,878 unique words and 11,945,574 pair-wise

similarity scores.

5.3 Modifying the Objective Function

We can extend the basic formulation of the word2vec model using knowledge from ontologies

by adjusting the similarities outputted by the neural network. In determining the conditional

probability of context words given the input word, the neural network relies solely on the

co-occurrences of the corresponding terms in the corpus. Given the vocabulary size V, we

are about to learn word embedding vectors of size N. The model learns to predict a context

word using a target word (See Figure 5.4). Both the input word wi and the output word

wj are one-hot encoded into binary vectors x and y of size V . Multiplying the vector x

and the word embedding matrix W gives the embedding vector of the input word wi. This

embedding vector of dimension N becomes part of the hidden layer. Next, multiplying the

hidden layer and the word context matrix W ′ produces the output one-hot encoded vector

y. It’s important to note that the output context matrix W’ encodes the meanings of words

as context, which is different from the embedding matrix W [3].
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Figure 5.4: The input vector x and the output vector y are one-hot encoded word represen-

tations. The hidden layer is the word embedding of size N [3].

Traditionally, the objective function of the skip-gram model is a full softmax function.

However, the specific implementation of the skip-gram model used for this project relies on

a simplified variant of Noise Contrastive Estimation (NCE) [33] for training the skip-gram

model that “results in faster training and better vector representations for frequent words,

compared to more complex hierarchical softmax that was used in the prior work” [1]. The

loss function Lθ is the average sigmoid cross entropy loss, which incorporates both the loss

computed from the context words LPOS and the loss computed from the negatively sampled

words LNEG, over the batch size:

Lθ =

∑
LPOS +

∑
LNEG

BatchSize
(5.3)

LPOS = −log(S(logit(wC |wI))) (5.4)

LNEG = −log(1− S(logit(wNEG|wI))) (5.5)

where S is the Sigmoid function, wI is the input word, wC is a context word, wNEG is a

negatively sampled word, and logit(wi|wI) is the log odds of the conditional probability of

the label word (wC or wNEG) given the input word, as predicted by the model.
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5.3.1 Modified Cross-Entropy Loss

where S is the sigmoid function, wI is the input word, wC is a context word, wNEG is a

negatively sampled word, and logit(wi|wI) is the log odds of the conditional probability of

the label word (wC or wNEG) given the input word, as predicted by the model.

In computing the loss for the context words and negatively sampled words, we modify the

binary labels used in the traditional cross-entropy loss function to incorporate the ontology

similarities. For the context words, rather than multiplying the negative log of the sigmoid of

the model output by one, we multiply it by the average of 1 and the ontology similarity score

(Equation 5.6). Similarly, for the negatively sampled words words, rather than multiplying

the negative log of the sigmoid of the model output by one minus zero, we multiply it by

one minus the average of zero and the ontology similarity score (Equation 5.7).

LPOS∗ =
1 + simont(wC , wI)

2
∗ −log(S(logit(wC |wI))) (5.6)

LNEG∗ = (1− simont(wNEG, wI)

2
) ∗ −log(1− S(logit(wNEG|wI))) (5.7)

By averaging the binary labels (i.e. 1 and 0) with the similarity scores outputted by the

model, the loss function is adjusted to incorporate relational knowledge from the ontologies.

For instance, in the case of the computing the loss for context words (LPOS∗), if the word

pair has high ontology similarity score, the loss will be higher. Conversely, if the word pair

has a low ontology similarity score, the loss will be lower. As a result, in order to minimize

the loss, the neural network will adjust the neurons’ weights in the direction suggested by

the ontological knowledge, encouraging the model to output higher probabilities for word

pairs with high ontology similarity scores and lower probabilities for word pairs with low

ontology similarity scores.
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Figure 5.5: Overview of Multi-Ontology Refined Embeddings (MORE) framework. In train-

ing, the similarity between two concepts (C1, C2) is measured in different ways: by cosine

similarity σ(vC1 , vC2) in a vector space, which gives the skip-gram model’s output for the

word pair ŝ, and through ontology-based similarity scores s̄. s̄ is the median of different

ontology-based similarities. The network optimizes the parameters of the skip-gram model

by minimizing the modified loss function and backpropagating the loss to refine the em-

bedding layer. The semantic similarity scores are computed as the cosine similarity of the

resulting word embeddings.
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Chapter 6

Evaluation and Results

6.1 Evaluation

In 2007, Pedersen et al. [6] introduced a test set of word pairs for the evaluation of measures

of semantic similarity and relatedness in the biomedical domain. The 30 concept pairs of

medical terms (See Table 1) were scored by multiple physicians and domain experts on a

4-point scale, according to their relatedness: “practically synonymous (4.0), related (3.0),

marginally related (2.0) and unrelated (1.0)” [6]. The average correlation between physicians

was 0.68, the average correlation between experts was 0.78, and the correlation across groups

was 0.85 [6]. In this study, term pair 5, “Delusion — Schizophrenia”, has been excluded from

the final evaluation dataset because one of the terms did not appear a minimum of five times

in our combined corpora. As a result, the resulting test set consists of 29 of the 30 original

pairs. To evaluate the different measures, we calculate the correlation between the similarity

scores outputted by the measure and the Physician/Expert similarity scores.
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Concept 1 Concept 2 Phys. Expert

Renal failure Kidney failure 4.0000 4.0000

Heart Myocardium 3.3333 3.0000

Stroke Infarct 3.0000 2.7778

Abortion Miscarriage 3.0000 3.3333

Delusion Schizophrenia 3.0000 2.2222

Congestive heart failure Pulmonary edema 3.0000 1.4444

Metastasis Adenocarcinoma 2.6667 1.7778

Calcification Stenosis 2.6667 2.0000

Diarrhea Stomach cramps 2.3333 1.3333

Mitral stenosis Atrial fibrillation 2.3333 1.3333

Table 6.1: First 10 pairs of evaluation dataset [4]
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6.2 Results

In this section, we compare the proposed model against four established ontology similarity

measures from UMLS-Similarity and the baseline skip-gram model. The correlation values

for the UMLS-Similarity ontology measures are from McInnes et al. [5]. The goal of the

experiments is to demonstrate the value of using the MORE framework to learn semantic

embeddings with information from ontology similarity measures. In each experiment, we

compare the baseline embeddings trained with skip-gram against the embeddings trained

using the MORE framework. We quantify the evaluation task of measuring semantic simi-

larity using the correlation between the similarity scores generated by the embeddings and

the similarity scores produced by the Physicians and Experts.

In training the baseline skip-gram model and the proposed model, we used the following

default parameters of the tensorflow implementation of the skip-gram model: embedding

size of 300, window size of 10, minimum word count of 5, and a subsampling threshold of

0.001. In order to expedite the training process, we used a learning rate of 0.3 and a batch

size of 1024. We trained each model for 10 epochs at a time, warm starting each model with

the previous model as a checkpoint, for a total of 150 epochs. Table 6.3 shows a comparison

of the best results achieved by all of the models and ontology measures. Figures 6.1 and 6.2

show the correlations between the similarity scores outputted by the models and Physician

and Expert similarity scores, respectively, over 150 training epochs.

Measure Phys. Rank Coder Rank Ave. Corr. Rank

path 0.486 3 0.581 1 0.534 3

lch* 0.486 3 0.581 1 0.534 3

wup* 0.453 5 0.535 5 0.494 6

nam 0.448 6 0.551 3 0.500 5

Baseline 0.612 2 0.506 6 0.559 2

MORE 0.662 1 0.542 4 0.602 1

Table 6.3: Similarity correlations of ontology-based measures, baseline model, and MORE.

The asterisk denotes that the ontology-based measure was used in the proposed models
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Figure 6.1: Comparison of Baseline and MORE correlations with Expert similarities

Figure 6.2: Comparison of Baseline and MORE correlations with Physician similarities
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6.3 Discussion

We find that, under identical training conditions, MORE consistently outperforms the base-

line skip-gram model in terms of correlation with Physician similarity scores and correlation

with Expert similarity scores. Figures 6.1 and 6.2 show that, after 90 to 100 training epochs,

the correlations with the Physician and Expert similarity scores begin to plateau and the

differential between the baseline model and MORE remains relatively constant. Table 6.3 il-

lustrates that, after training both models for 150 epochs, MORE has a 5% higher correlation

with the Physician similarity scores and a 3.6% higher correlation with the Expert similarity

scores than the baseline model. Additionally, MORE has a 17.6% higher correlation with

the Physician similarity scores than the best ontology similarity measures (path and lch).

However, we also find that MORE has a 3.9% lower correlation with the Expert similarity

scores than the best ontology measures (path and lch). It’s possible that since our corpora

comprised of physician/nurse notes, the model had a higher correlation with the Physician

similarity scores than with the Expert similarity scores. The fourth column in Table 6.3 dis-

plays the average correlation, which is simply an average of the correlation with Physician

similarity scores and the correlation with the Expert similarity scores. We use the average of

the correlations as a proxy for generalizablilty in our comparison. We show that MORE has

the highest average correlation of 60.2%, which is 4.3% higher than the average correlation

of the baseline model and 6.8% higher than the best ontology measures (path and lch).

As mentioned in the Introduction section, due to the heterogeneity of biomedical con-

cepts, there is no single top-performing corpus-based or ontology-based semantic similarity

measure across all applications and domains. However, by modifying the objective function

of the skip-gram model with knowledge from the MeSH ontology and multiple UMLS sim-

ilarity measures, we can generate embeddings from the RadCore and MIMIC-III corpora

that incorporate knowledge beyond the scope of the corpora and maximize the measure’s

utility in a broad domain. MORE outperforms the baseline skip-gram model in every case,

as well as the ontology similarity measures in most cases. As a result, we have demonstrated

that the embeddings generated using the MORE framework are more effective at captur-

ing semantic similarity for biomedical concepts, in a broader domain, than any of MORE’s

individual components.

Despite MORE’s promising performance in our evaluation, we recognize that this study

has several limitations. First, aside from the increased learning rate and batch size used to

expedite training, we used the default training parameters, as suggested by the TensorFlow

implementation of the skip-gram model, to train both the baseline skip-gram model and

the proposed model. While these parameters have been optimized for training the baseline
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model, we did not experiment with tuning hyperparameters to optimize the training of

the proposed model. However, this suggests that, under equal but potentially sub-optimal

training conditions, MORE outperforms the baseline skip-gram model. Second, we have only

incorporated two ontology similarity measures (lch and wup) from one ontology (MeSH)

into our novel framework. With a broader range of similarity measures and more ontologies,

such as SNOMED-CT, it’s possible that MORE could generate embeddings that are more

generalizable and accurate than those produced by the present work. Finally, in this study,

we only evaluate the quality of the generated word embeddings with a semantic similarity

task on relatively a small dataset.

To address these limitations, in future work, we plan to experiment by tuning different

training parameters (e.g. learning rate, number of training epochs, and batch size). Further-

more, we plan to extend the model by incorporating more ontologies, such as SNOMED-CT,

and other ontology-based similarity measures. Finally, we expect that the proposed frame-

work has further implications beyond semantic similarity. Accordingly, in future work, we

plan to evaluate the quality of the MORE embeddings on other semantic tasks, such as

analogical reasoning, text classification, synonym selection, and topic modeling.
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Chapter 7

Conclusion

Learning high-quality word embeddings for semantic similarity in the biomedical domain is

valuable for improving the statistical power of NLP analyses, thus making it easier to identify

associations between conditions and clinical outcomes in health records and improve infor-

mation retrieval from scientific journals and clinical reports. To address existing limitations

of biomedical semantic similarity measures, we propose a new modified objective function

that incorporates domain knowledge into the process for generating word embeddings. In

this paper, we presented a novel framework for incorporating knowledge from biomedical

ontologies into an existing distributional semantic model (i.e. skip-gram) to improve both

the flexibility and accuracy of the learned word embeddings. Our implementation is based on

the official TensorFlow implementation of word2vec and we have made it available for public

use. We demonstrate that MORE generally outperforms the baseline skip-gram model, as

well as the individual UMLS ontology similarity measures, in computing semantic similarity

scores for biomedical word pairs using a benchmark evaluation dataset.
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