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Abstract

The issue of parking is more at the forefront of urban development

than one might believe. In fact, academic studies have shown that

roughly 30% of city traffic is due to drivers circling city blocks at-

tempting to find an open spot. Due to such congestion people of-

ten avoid urban centers and downtown areas for shopping or dining

because parking is such a hassle and assumed to be unavailable. If

drivers knew where parking was available in real time, they could pro-

ceed directly to open spaces as opposed to their congestion-inducing

attempts to park. A better solution would guide people to available

parking and may help re-vitalize downtown areas. The problem of

knowing whether or not an available spot exists, however, is complex.

This thesis entails an investigation and analysis of the efficacy of mag-

netometers as vehicle sensors for on-street (non-garage) parking.

While many solutions to detecting available parking have been tried,

we focused on magnetometer-based vehicle sensors placed in each

parking spot. We built a sensor comprised of a low-cost magnetome-

ter, a radio, a micro-controller, and a battery on a custom printed

circuit board. Our idea is that such a sensor could be placed in each

parking space and monitor for vehicles. When a vehicle arrives, the

magnetometer detects a change in the magnetic environment, then

radios the presence of the vehicle in a space to a central server that



aggregates and disseminates parking data to drivers and city offi-

cials. City officials could use this data to craft better parking policies

and prices. Drivers could then use GPS coordinates and the aggre-

gated space availability in navigation apps to proceed directly to open

spaces.

Our hope is that this work will provide a foundation for others to

learn from our insights into the reliability, stability, and accuracy of

such parking sensors.

After obtaining permission from Dartmouth Parking and Transporta-

tion Services, we conducted experiments in a surface lot on Dart-

mouth College’s campus, and as such, we limited our data collection

to a single grid-like parking arrangement to gain deeper insight to one

common mode of parking. The analysis of the collected data leverages

machine learning via sci-kit learn to form a robust detection algorithm

for whether or not a vehicle is in a space. We utilized four detection

algorithms in total, one via a simple magnitude threshold, another us-

ing Gaussian Bayes classification, a decision tree classification model,

and finally a random forest model. All of these methods succeeded

in correctly detecting the status of a parking spot with accuracy well

above 90%. Our best classification model, which uses a decision tree,

correctly predicted parking space occupancy with 99% accuracy. In

our experiments we show that these sensors are stable and do not

drift from their initial reading. Our detection algorithms show that

they are an accurate option for vehicle detection. Finally, we show

that the placement of a sensor is not crucial, so long as the sensor is

centrally placed in a parking spot.
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Chapter 1

Introduction

Problem

Parking is a global problem

Solution: Knowing status of 
parking

Our Work

Studied efficacy of magnetometer 
sensors to detect vehicles

Collected substantial field data 
with prototype sensors

Our Analysis

Implemented multiple vehicle 
detection algorithms 

Analyzed best placement for a 
sensor

Our Conclusions

These sensors do work and with 
high accuracy

Placement of sensor not crucial, 
so long as centrally placed in spot

Figure 1.1: Executive Summary.

1.1 Motivations

To help aid the cities of the future with parking issues, we conducted a holistic

study of the effectiveness of magnetometer-based sensors detecting parked vehicles

in a surface lot. Our goal is to provide a rigorous foundation that may help smart

transportation systems of the near future reduce urban congestion and pollution

while increasing downtown utilization of available parking. Such motivation stems

1



1.2 Context of the study

from our desire desire to contribute to a more sustainable future as well as aid in

a current problem facing all major cities across the world.

1.2 Context of the study

Parking is an everyday chore that can be optimized in a variety of ways. One such

area, the area of this study, is the seemingly simple problem of knowing whether

or not a car is physically present in a parking spot. Professor Donald Shoup of

UCLA has shown that in most urban centers about 30% of all traffic is due to

drivers looking for parking [1]. These slow moving drivers, repeatedly circling city

blocks near their destination, create increased traffic congestion and pollution on

already crowded downtown streets. In another study by the Texas Transporta-

tion Institute showed that these inefficiencies cost American drivers alone $78

billion (4.2 billion lost hours and 2.9 billion gallons of wasted gasoline) [2]. If

the location of empty parking spaces were known in real time, drivers (human or

autonomous) could simply input their destination into a parking-aware naviga-

tion system (envision Google maps) and could be guided directly to the nearest

available space, thereby reducing circling-induced congestion and pollution.

Additionally, tracking detailed parking usage data over time can help a city

price parking so that supply meets demand. This data-driven pricing could en-

courage some drivers to select less desirable parking spaces (e.g., around the

corner from Starbucks, not right in front) in exchange for a lower price, freeing

more desirable spaces. Such a strategy was recently successfully piloted in San

Francisco and resulted in improved downtown utilization of parking spaces [3].

To achieve this vision of reduced congestion and pollution with increased

downtown utilization of parking, however, parking space occupancy information

must be available in real time to assist drivers. One approach to providing this

2



1.3 Objectives and Contributions

information that has been tested in San Francisco [3], Los Angeles [4], and Wash-

ington D.C. [5], is to install a magnetometer-based sensor in each parking space.

These sensors detect a change in the Earth’s magnetic field caused by the presence

of a vehicle in the parking space. Several commercial enterprises have developed

these sensors, but data on the sensor’s ability to detect different types of vehicles

(e.g., sedans, sports cars, or trucks), in different parking scenarios (e.g., parallel

parking, head-in, angled), and the detection algorithms used are closely guarded

secrets. Furthermore, there is opportunity to explore and perhaps improve the

existing technology in terms of cost and accuracy.

1.3 Objectives and Contributions

Our efforts were simpler than developing a city-wide system. The primary ob-

jective was to provide a data-driven approach to how these magnetometer-based

sensors perform in real-world scenarios. We hope this data can be used as the

basis of a future smart transportation system.

Our contributions are as follows: first, we conducted an investigation into the

stability and accuracy of magnetometer sensors over time. Second, we conducted

field testing to provide clarity on optimal sensor configuration, which included

a grid-like pattern of sensors to determine the best placement within a parking

space. The third contribution is an analysis of field data with recommendations

on where to place sensors in the parking place, as well as the efficacy of various

detection algorithms. All of the above information may play a part in developing

effective city-wide smart transportation systems.

3



1.4 Overview of the thesis

1.4 Overview of the thesis

We built multiple magnetometer-based sensors to study the optimal placement,

configuration, and detection algorithms of various magnetometer-based solutions.

Our custom-built prototypes permitted controlling the exact placement of the

sensor within a parking space, how often magnetometer readings were collected,

and the data from such collection resulted in machine learning-based detection

algorithms.

After discussing related work, this thesis is organized as follows:

Sensor Communication
• Establish protocol for interfacing with magnetometers

Sensor Selection Process
• Build web server to host collected data
• Post magnetometer readings to web server
• Run experiment for 16-days to evaluate potential for sensors to drift

Prototype Field Sensors
• Fabricate PCB 
• Assemble devices

Field Testing
• Collect data in a surface parking lot
• Gather baseline readings
• Collect field data

Optimizing Detection Algorithms
• Utilize machine learning (scikit-learn) to form a more robust detection algorithm
• Determine optimal sensor placement

Figure 1.2: Thesis outline.
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Chapter 2

Current Parking Technology and

Magnetometer-based Vehicle

Sensors

Summary

This chapter highlights the current state of the field in regards to solving parking

related issues, particularly the problem of solving the issue of whether or not a

vehicle is in a space. First, we broadly explore existing technology, then delve into

fixed vehicle sensors, and finally evaluate other magnetometer-based solutions.

5



2.1 Existing approaches to solving parking problems

2.1 Existing approaches to solving parking prob-

lems

2.1.1 Automated garages

Several approaches to solving parking problems have been implemented around

the world. One of the most costly solutions entails constructing an automated

parking garage shown in Figure 2.1.

Figure 2.1: Automated parking garage with vehicle elevator [6].

These garages are fully automated and serve as a robotic valet service to

users. A car elevator transports a car from street level up into its multi-story

garage and parks the vehicle until the customer is ready to retrieve their vehicle.

Clearly, these systems are space efficient and impressive, although, the cost for

many cities is insurmountable, and constructing these garages is a time-intensive

undertaking [7].

2.1.2 Entry and exit garage counters

A fairly simple means of determining garage space availability is through imple-

menting an entry and exit counter (either for the entire garage, or by garage

6



2.1 Existing approaches to solving parking problems

floor). These systems calculate the total number of spaces available in the garage

by tracking the number of vehicles that have entered and exited. Such systems

work well in garages, however, the counting method is not feasible for on-street

parking, which is a much more fluid process without any sort of entrance or

exit [7; 8].

2.1.3 Image processing to detect vehicles

Another method of detecting vehicles implements modern image recognition soft-

ware via cameras mounted either in garages or on streets [9]. There are several

disadvantages to this solution, including [7]:

• The cost to implement city-wide cameras is high

• There are privacy concerns around placing so many cameras

• Not an energy efficient solution

• Requires large amounts of computational power and data storage

• There are issues around occlusion (e.g. can’t see all the parking spaces due

to other vehicles)

• Weather and lighting conditions are variable factors.

2.1.4 Mobile sensors

Researches created a clever system of mobile sensors and inspired a commercial

enterprise called ParkNet [10]. They observed that there already exist vehicles

which are constantly circling cities such as taxis, city busses, and government

vehicles. With circling vehicles “mapping” a city, they then attached ultrasonic

7



2.1 Existing approaches to solving parking problems

sensors to the sides of these vehicles so that when they drive they can detect the

occupancy of the spaces. This system operation is shown below in Figure 2.2.

Figure 2.2: ParkNet ultrasonic system for vehicle detection, which detects vehicles
using ultrasonic sound [10].

While the researchers demonstrated that their system functions accurately,

there still are several pitfalls to such an implementation. One of which is that

there is a low refresh rate. If one of these sensing vehicles does not drive past a

block for a long period of time (e.g., 30 minutes) then the parking data becomes

stale. Another issue is handling multi-lane roads. If the sensing vehicle is not in

the traffic lane directly adjacent to the parking spaces, then the system is unable

to detect the state of parking one or two lanes over [10].

2.1.5 RFID tags attached to every vehicle

Another solution involves placing an RFID tag on every vehicle. Thus when a

vehicle pulls into a spot, an RFID sensor detects the vehicle’s presence [7]. Again

there are disadvantages to this solution, primarily an issue of privacy. Many users

will likely not want to place such an RFID on their vehicle. These RFID tags could

allow an adversary to track the user or otherwise exploit the system. Another

issue with this technology, is a nation-wide database of RFID tags would need to

8



2.2 Fixed Sensors for detecting vehicles

be implemented to account for visiting vehicles. Implementing such a nation-wide

RFID system is arduous, complicated, and costly [7].

2.2 Fixed Sensors for detecting vehicles

In this section we explore a wide array of fixed place sensing technologies that

have been suggested to detect vehicles.

2.2.1 Infrared (IR) sensors

Such sensors detect changes in energy emitted by surroundings and use the change

in environment to detect vehicles. IR, however, is highly sensitive to environmen-

tal changes (temperature, weather) and does not detect vehicles well outside

parking garages [7; 9].

2.2.2 Microwave radar sensors

Microwave radar sensors (Doppler) create a Radio Frequency (RF) field between a

sensor and a target and use this zone to detect targets. Although this technology

is proven successful in many fields, for parking detection these sensors do not

perform well when a vehicle is stopped. Furthermore, because they target any

moving object, they can falsely alert easily to non-vehicle signals like a person or

other object moving near them [7; 9].

2.2.3 Ultrasonic sensors

Similar to microwave sensors, ultrasonic sensors emit sound waves and calculate

the time for the reflected waves to return from a target. Although, these are

proven successful in testing, they have several shortcomings. One shortcoming

9



2.3 Magnetometers and applications

is that these sensors are best implemented in a garage when they can be placed

directly over parking spaces. Another disadvantage is that these chips are power

hungry. Finally, these sensors have the same risk of falsely alerting to non-vehicle

targets that might be temporarily moving over or around a parking space [7; 9].

2.2.4 Light sensors: using visible light backscsatter com-

munication to tag vehicles

A research group has recently implemented a backscatter communication system

to track parking availability and vehicle location [11]. The system works by

illuminating an area with a light source and backscattering the light with an

LCD shutter on a tag. The light source then reads the backscattered light. When

the tag is placed in a parking space, the system can detect if a space is empty

based on the presence of the reflected light. If the backscattered light is not

received by the sensor (because the sensor is occluded by a vehicle), the system

declares the space occupied. The tag can also be placed on a vehicle to detect the

presence of specific vehicles. This sort of tagging system has the same limitations

as RFID tags as discussed in subsection 2.1.5. It also has limitations where the

backscatter LCD system could be covered in dirt or water and become ineffective.

Additionally, the system has not been shown to work in the presence of bright

sunlight.

2.3 Magnetometers and applications

Now we move into the realm of installing fixed magnetometer sensors in every

parking space. Magnetometers measure change in magnitude and direction of

Earths magnetic field via magnetoresistive technology [12]. Historically, geophys-

ical studies and military applications (detecting submarines) use these sensors.

10



2.3 Magnetometers and applications

Recently, however, magnetometers have been widely used in consumer electronics

such as cell phones. The disadvantages of magnetometers are that they require

close proximity to vehicle to detect a change in the magnetic field [9], and while

they are relatively cheap, they are intrusive to implement as they require physical

installation in the pavement.

While magnetometers have some limitations, they have been proven viable

as vehicle sensors [7]. Our proposed solution centers around placing one such

magnetometer-based vehicle sensor in every parking space.

2.3.1 SF Park

We evaluated one Department of Transportation (DOT) project, SF Park, that

used this technology to prototype and pilot test a system in the city of San

Francisco. That project placed over 8,000 magnetometer sensors over the city

and tracked parking availability using their proprietary algorithms. One of SF

park’s objectives was also to adjust the price of parking to better reflect demand,

which we touched on in our introduction. They too saw the advantages of pricing

parking elastically so that more coveted spots are priced higher. Drivers then

self-select into spaces that meet their needs and spaces that see lower utilization

are priced less expensively. SF Park successfully piloted their system in 2013

and in many ways their work served as a launching pad for our investigation and

evaluation of this technology [3; 13].

11



Chapter 3

Sensor Selection

Summary

The primary objective in the initial phases of investigation entailed picking a

specific magnetometer sensor for the field tests. To do so, we evaluated the

stability of three different magnetometer sensors over time. We want to assess

whether these sensors drift from their initial readings or if their readings prove

stable over time. Stability is essential for long-term placement of these sensors in

the field. For instance, if a large number of sensors were placed in the field, only

to later discover that normal readings drifted from their initial magnetic readings,

then the sensors would not be stable and future magnetic measurements could

be unreliable. If sensor readings drift, constant recalibration would be required

to maintain system accuracy. Sensor recalibration is difficult. To recalibrate a

sensor, the designated spot must be vacant to get a baseline reading without the

presence of a vehicle, which soon becomes costly in terms of time and resources.

Therefore, we set out to test the magnetometer’s tendency to drift from an initial

reading over the span of our field tests, we created a controlled environment free

from any variable magnetic influences and measured the sensor’s readings every

12



3.1 Experiment design and methodology

five minutes for 16 days.

3.1 Experiment design and methodology

3.1.1 Magnetometers evaluated

We considered three different magnetometer chips on breakout boards as can-

didates for the field sensor. These breakout boards measure the X, Y, and Z

components of the magnetic environment, as shown in Figure 3.1.

Figure 3.1: magnetometer direction of detectable magnetic fields [14].

The specific breakout boards we used were:

1. HMC5883L magnetometer by Honeywell [15] shown in Figure 3.2

13



3.1 Experiment design and methodology

Figure 3.2: HMC5883 magnetometer on a breakout board [15].
.

2. 3-axis magnetometer, gyroscope, accelerometer LSM303DLHC by ST [14]

shown in Figure 3.3

14



3.1 Experiment design and methodology

Figure 3.3: LSM303 magnetometer on a breakout board [14].

3. 3-axis magnetometer, gyroscope, accelerometer MPU9250 by Invensense [12]

shown in Figure 3.4.

Figure 3.4: MPU92350 magnetometer on a breakout board [12].

3.1.2 Interfacing with the magnetometer chips

The initial system we built was an program (.ino sketch) on an Arduino Uno

board [16] that communicated with each of the three magnetometers above. The

Uno read each axis of the magnetometer and relayed the magnetometer data

directly to the host computer over a USB type 2.0 connection.

15



3.1 Experiment design and methodology

3.1.3 Stability test environment

Once we had established communications with each type of magnetometer, we

tested them in a location free from variable magnetic influences such as:

1. Moving objects

2. Nearby electromagnetic devices

3. Any chance these sensors might get physically moved

4. High voltage electrical lines.

We placed these sensors underground in a basement where there were no

moving objects that would influence the magnetometer readings, with the goal

to minimize interference from external variables.

3.1.4 WiFi communications and web server database for

stability experiment

To begin our stability experiment, we needed to establish a protocol for interfacing

with these sensors remotely. Accordingly, we transitioned from using an Arduino

Uno board [16] to using an ESP8266 by Node MCU [17]. The ESP8266 chip

has integrated WiFi and runs the code we developed in Section 3.1.2. Using

the WiFi component, the sketch we designed connects to a router and pushes the

magnetometer readings every five minutes to a web server hosted on a Dartmouth

server. An example of the data collected is shown in Figure 3.5.

16



3.1 Experiment design and methodology

Figure 3.5: Server side magnetometer data. We collected magnetometer readings
from each breakout board every five minutes for 16 days.

3.1.5 Testing methodology

We designed the architecture for the Arduino devices to collect data for the

stability experiment as follows:

1. Connect the ESP8266 to a local WiFi router

2. Take readings from the hard-wired magnetometer

3. Push data every five minutes via the WiFi connection to the web server

using a HTTP: PUT function

4. Store that pushed data to our cloud-based Maria database.

3.1.6 Experiment implementation

We tested multiple boards of each sensor type to obtain a clear picture of the

stability for each type of magnetometer. We assembled the following seven pro-

totypes using three magnetometer breakout boards as follows:

• LSM303DLHC by ST(three sensors) [14]

17



3.2 Sensor selection: results

• MPU9250 by Invensense (two sensors) [12]

• HMC5883 by Honeywell (two sensors) [15].

Once all seven prototypes were soldered and assembled, we placed them in

the test location and ran the experiment for 16 days, sampling the magnetome-

ters every five minutes. For the entire 16-day duration of the experiment, the

magnetometers were undisturbed and we collected over 31,000 total readings or

roughly 4,500 readings per sensor.

3.2 Sensor selection: results

3.2.1 Stability of sensors over time

We then parsed the data for each sensor reading in the database and calculated

the magnitude for each reading via the following formula:

M =
√
x2 + y2 + z2. (3.1)

In Figure 3.6 we a plot the magnitude over time; the x-axis is the timestamp,

while the y-axis is the magnitude.
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Figure 3.6: Sensor stability results. We plot the magnitude over time to analyze
drift, and see that magnitude over time shows slight variations but no drift.

3.2.2 Analysis of drift

The ideal slope for each of these magnetometers would be zero (indicating the

sensors do not drift over time). The data exhibits an ideal trend – the slopes of

all the regressions are near zero, suggesting that these sensors do not drift away

from the initial fixed measurement over time. Table 3.2.2 shows the slopes of a

linear regression on the magnitude data.

LSM303(1) LSM303(2) LSM303(3) HMC5883(1) HMC5883(2) MPU9250(1) MPU9250(2)

5.00E-15 5.00E-15 -3.00E-15 -4.00E-05 -9.00E-06 8.00E-05 3.00E-05

Table 3.1: Table: Linear Regression of Magnitude over time shows slopes near
zero, indicating little to no drift over duration of experiment.

The data suggests these magnetometers do not drift over the 16 days. In

future work, we might examine the stability of the sensors over a longer time

period. Although, the 16 days covers the duration of our planned field testing.

As the test period is longer than the duration of our planned field testing, this

strongly suggests the prototypes will not drift during our collection period.

19
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3.2.3 Standard deviation of sensors

We also calculated the magnitude standard deviation, which we present in Fig-

ure 3.7 and Table 3.2.3 .
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Figure 3.7: Standard deviation of magnitudes. Each sensor appears to have
consistent readings.

LSM303(1) LSM303(2) LSM303(3) HMC5883(1) HMC5883(2) MPU9250(1) MPU9250(2)

Standard Deviation 4.02212E-12 4.00791E-12 2.25978E-12 0.180901458 0.161712436 0.738006401 0.721888628

Table 3.2: Standard deviation of magnitudes over 16 days appears to show con-
sistent magnetometer readings.

3.2.4 Closer analysis shows irregularities

In addition to Figure 3.6 we also plotted the magnitude of each sensor individually.

Doing so revealed some concerns with the LSM303 magnetometer. We observe

three spikes over the data collection period shown in Figure 3.8 below.
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Figure 3.8: LSM303 magnitude over time. The LSM303 magnitude has several
spikes in readings.

These irregularities in magnitude concerned us and taking a closer look among

the other two magnetometers (the HMC5883 and the MPU9250), and we did not

observe these irregularities. We show the same data representation as Figure 3.8

for the MPU9250 in Figure 3.9 and HMC5883 in Figure 3.10.
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Figure 3.9: MPU9250 magnitude over time. The MPU9250 magnitude did not
have the spikes exhibited by the LSM303.
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Figure 3.10: HMC5883 magnitude over time. The HMC5833 magnitude did not
have the spikes exhibited by the LSM303.

In Figures 3.9 and 3.10, the MPU9250 and HMC5883 magnetometers do

not exhibit the same irregularities as the LSM303. While the MPU09250 and

HMC5883, do have a higher standard deviation than the LSM303 from Table 3.2.3

the lack of spikes suggests they are more promising candidates for field testing.

3.3 Conclusions

After this portion of the work, we needed to select a sensor to use in the field. We

sought a sensor that would not drift and furthermore would not have variability

in its readings. From the analysis of each magnetometer’s sensitivity and drift

behavior, we chose the MPU9250 to serve as the sensor for our prototype going

forward. The reasons for this choice are:

• The spikes from the LSM303 concerned us enough to eliminate it as a po-

tential magnetometer for field testing as such spikes would result in instant

errors in detection

• We were only ever able to communicate with two HMC5883 magnetometers

(we attempted to do so with ten different breakout boards). While the
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3.3 Conclusions

data for this magnetometer was promising (in terms of lack of drift and

low standard deviation), the inability to get 80% of the chips to function

eliminated it from our field testing candidates

• The MPU9250 had the highest standard deviation, however, it never demon-

strated any of the spikes observed in the LSM303 denoted in Figure 3.8. In

addition, all of the MPU9250 chips that we worked with integrated seam-

lessly with the Arduino programs. Finally, the MPU9250 still had a stan-

dard deviation of less than 1 µT and the slopes of the linear regression

indicate that it should not drift during field testing (see Table 3.2.2).
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Chapter 4

Field sensor prototype and

experimental design

Summary

Now we delve into the heart of this thesis work: the field testing and evaluation

of this magnetometer-based technology. This chapter discusses the methodology,

assembly, and data collection procedures for the magnetometer-based vehicle sen-

sors. The overall objectives for this phase included (1) creating a system to cap-

ture the optimal location to place a sensor under a vehicle as well as (2) gathering

data to use for training machine learning classification models that we use for de-

tection. Our prototypes were put on a mobile board that we could place under

a vehicle. This option was less intrusive than permanently embedding sensors in

each space.
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4.1 Prototype design and fabrication

4.1 Prototype design and fabrication

4.1.1 NRF24L01 radio communications for field testing

sensors

After assessing the stability of the magnetometer sensors (described in section 3.1.1)

and choosing the MPU9250 as the designated magnetometer, we designed the ve-

hicle sensors to be used in the field. As WiFi would not be available in the surface

lot site, we opted to use radio communication via the NRF24L01 chip [18] be-

tween the sensors transmitting and a receiver hosted on a laptop computer. We

assembled a two-way channel communication that allowed us to send data over

distances up to 200ft, from a sensor placed under a vehicle to the receiver module

on the laptop. At this point in the development, we also opted to use a new

Arduino board: the Nano [19]. The Nano has much lower power requirements

and is a more compact microcontroller than any of the previous models which we

used.

This set-up proved more than adequate for field testing as no WiFi routers

were required and radio transmission was a simple and power efficient means of

running this system.

The radio communication process is shown in Figure 4.1 below.
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4.1 Prototype design and fabrication

(Start)
Place Sensor 

in Parking 
Spot

Collect 
reading 

from sensor

Transmit 
Data to 
Laptop

Process 
Signal and 
store data

Figure 4.1: Radio communications. Sensors placed in parking spot measure mag-
netic data and transmit the data over an NRF24L01 radio to a laptop for analysis.

4.1.2 Radio communications

For our implementation, the transmitters are constantly transmitting their data,

however, the receiver only records data when the user specifies. This enabled us

to precisely set up the system for measurement before taking any readings (see

Section 4.3 for more details).

4.1.3 PCB fabrication using JLCPCB and Fritzing

We built the full system on breadboards to ensure functionality, however, bread-

boards would not be suitable for the field as there is the potential for connections

to come loose, the magnetometer to move, and overall it is not as durable as

a printed circuit board (PCB). Therefore, we fabricated custom printed circuit

boards. Each PCB had three electrical components, the Arduino Nano micro-

controller, the NRF24L01 radio, and finally the MPU9250 magnetometer. Using

JLCPCB [20], a PCB board fabricator, we designed the desired board using Fritz-

ing [21] then sent JLCPCB a .gbr (gerber) file, which JLCPCB fabricated. The
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4.1 Prototype design and fabrication

images of the pre-fabricated board and an assembled prototype are shown in

Figures 4.2 and 4.3. We soldered all the components ourselves.

Figure 4.2: We used Fritzing, a CAD software, to design our system. This image
is the output of that design for the pre-fabricated PCB.
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4.1 Prototype design and fabrication

Figure 4.3: An assembled prototype that we used for field testing.

4.1.4 Prototype sensor board fabrication

One objective in the field testing phase is to determine the best location under

a vehicle to place a sensor. i.e., directly under the engine bay, under the vehicle

chassis, or more centrally located under the vehicle. To capture this data, we

chose to implement nine sensors in a grid-array mounted on a board covering

a 2’ by 4’ area. Such a spread permitted gathering data across a wider surface

area under the vehicle than if we were to simply use one sensor. Furthermore,

using nine sensors also led us to collect nine times as many data points to later

use for training our machine learning models. We used a laser cutter to cut out

the places for the sensors to ensure the sensors would be equally spaced and to

eliminate human error in fabricating the placement on the sensor board. After

cutting out the designated spots for the sensors, we soldered and assembled the

PCB boards and components.
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4.1 Prototype design and fabrication

We assembled nine field prototypes (with a few spares in the event of sensor

failure) and secured them to the cut out board. An issue we foresaw in powering

these devices is changing out the batteries that would provide power. If the

batteries were within the sensor box, then replacing a battery might shift the

sensors and skew later readings. Therefore we opted to wire a “power box” of 9V

batteries externally from the central box. We then used corrugated plastic over

insulated wiring (all under the sensors) which then feed up through the board and

connect to the Vin and Ground pins. The wires lead out to the external power

batteries eight feet away. The fabrication and assembly process is documented in

Figures 4.4-4.6 below.

Figure 4.4: Here we are securing the laser cut board and sensors to the corrugated
plastic.
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4.1 Prototype design and fabrication

Figure 4.5: We run all the wiring for powering the sensors outside of the sensor
box to the batteries.

Figure 4.6: The finished product, fully assembled and insulated.
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4.2 Surface lot selection and preparation

4.2 Surface lot selection and preparation

Our next task to begin data collection was to choose the site at which we would

collect data. We sought to choose a site that met the following characteristics:

• Free from potential interfering signals (electrical lines or construction)

• Representative of a real-world parking site

• High turnover rate to collect a variety of different vehicle arrangements

(both in the space and in neighboring spaces).

After compiling these desired features and receiving permission from Dart-

mouth’s Parking and Transportation services, we settled upon Dewey Parking

lot: G Lot as the best site for the data collection. We chose 10 spots from this

particular lot that formed a grid pattern represented in Figure 4.7 below.

Figure 4.7: Surface lot parking arrangement; in this arrangement vehicles parked
head-to-head.
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We sought out this particular arrangement, as this grid is clearly a highly

used real-world parking lot (examples include surface lots everywhere i.e., grocery

stores, airports, shopping malls, etc.). Another advantage of this grid is the

simplicity, we did not choose to handle edge cases like parallel parking or garage

parking that might be more complex; alternative parking scenarios were out of

the scope of our evaluation.

Our procedure was to place a board with nine sensors under a vehicle, take

readings, then move the sensor board. We then spray painted and marked the

designated spot for the sensors to be placed. We sought to avoid variability in

placing the sensors so the spray painted marks served as a means of placing the

sensors in the same position. Finally, we numbered the spots as depicted in

the Figure 4.7, so we could track the spot during our data collection, (for later

subtraction of initial baseline readings).

4.3 Data collection suite procedures and func-

tionality

Using Python, we built both a GUI and a software collection program to interpret

serial data from transmitters and store data into a .csv file. The program collects

readings from all 9 sensors then appends a data object to the .csv file.

We track key features about the parking environment. For example, we cap-

ture the type of vehicle occupying a space (e.g. vacant, sedan, truck, SUV,

motorcycle). As well as:

• Spot number

• Timestamp

• Parking arrangement of neighboring spots (including vehicle type)
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4.3 Data collection suite procedures and functionality

• x, y, and z values for sensors 1-9.

We sought to capture as many data points as possible when in the field, to

ensure that the later machine learning and data analysis would have as much

data as possible. The surrounding spots are shown in Figure 4.8.

Figure 4.8: Data capture. We collected occupancy data on the spot in question
as well as the surrounding spaces.

The software side implementation GUI appears in Figure 4.9.
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4.4 Baseline data collection and cross check

Figure 4.9: The GUI view for our data collection suite, which we used to capture
all of our field data and baseline readings.

Whenever we press “collect,” a data object is created that parses the x,y and z

magnetometer readings as strings, iterates through each of the 9 sensors in order,

then stores all the data as a row of a .csv file name labeled for that day of data

collection i.e. “data 05 04.csv”.

4.4 Baseline data collection and cross check

Another necessary component is the initial calibration or collection of baseline

readings for each parking space. This step is essential to subtract out the initial

readings of an empty spot to “equalize” each data collection for a spot; the mag-

netic readings for empty spaces will be different by space. We went to the surface

lot site on a day during which no cars whatsoever were present and gathered

these baseline readings for spots 1-10. See Figure 4.10.
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4.5 Data collection procedures

Figure 4.10: Collection of baseline readings. The sensor board can be seen on
the left side of the picture as well as the spray painted marks denoting the space
number and the sensor board placement.

4.5 Data collection procedures

To limit variability and maximize consistency, we followed a checklist each time

we collected data:

1. Label date of data collection

2. Turn on power to sensors 1-9

3. Run Data Collection.py

4. Place prototype board in the spray painted outline (under a vehicle or if

spot is empty)

5. Select the accurate parking arrangement in the software GUI
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4.5 Data collection procedures

6. Press collect and wait for Sensors 1-9 to relay their readings

7. Move board to next designated spot and repeat steps 4-6

8. Terminate data collection.py and turn off power to all sensors.

Over the course of the field testing, we collected approximately 1,100 data

points (for each sensor thus totalling approximately 9,900 total readings). In-

cluded below are Figures 4.11 – 4.14 documenting field testing.

Figure 4.11: Here we are collecting field data, observe the laptop and receiver
module (green PCB).
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4.5 Data collection procedures

Figure 4.12: Close up of spot #3. We marked four corners to designate the
placement of the sensor board. This ensured the sensor board was placed in the
same location for each reading.

Figure 4.13: We placed the sensor board under vehicles, lining up the board with
the spray painted markings.
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4.5 Data collection procedures

Figure 4.14: We collected all the baseline readings when no vehicles were present.
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Chapter 5

Experimental results field

testing: detection algorithms and

optimal sensor placement

Summary

This chapter is the culmination of the thesis work; the analysis of all the field

data collected over several weeks. The analysis provides clarity on the method in

which the data is initially processed, elucidates the functionality of the machine

learning and detection algorithms, and finally shows the success of this honors

thesis work. Each section delves in to some particular component of the final

data analysis.
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5.1 Baseline readings and field data processing

5.1 Baseline readings and field data processing

5.1.1 Baseline readings

To make parking space occupancy predictions, we took a crucial first step: the

calculation of initial baseline value averages and then subtraction of those averages

from the actual sensor readings. This step accounts for the magnetic variability

between parking spaces (e.g., one space may be near an underground power line,

while other spaces have no major permanent magnetic influences). By subtracting

out the baseline, we “equalize” or calibrate the field readings against the baseline

(in which no cars are present). In this baseline phase of data collection we visited

the surface lot site twice. We took the differences of these two baseline data

collections (expecting them to be zero). The results of those two visits and their

differences are in the Table 5.1.

Differences in Magnitude
Spot Number Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor 9

1 N/A 2.24 3.32 3.44 1.66 3.24 5.26 4.27 2.58
2 N/A 2.81 3.98 4.23 2.15 4.23 6.07 3.93 4.03
3 N/A 3.41 5.13 4.50 2.48 4.24 5.11 3.67 4.52
4 N/A 1.66 4.56 6.69 2.31 6.05 6.48 1.53 2.89
5 N/A 4.47 6.81 7.94 1.65 6.64 8.25 3.47 5.85
6 N/A 5.61 8.28 8.84 2.26 6.97 10.14 3.16 6.54
7 N/A 3.36 5.07 5.99 1.97 3.69 5.58 3.49 3.42
8 N/A 2.99 4.82 4.99 2.03 3.77 4.34 3.58 4.75
9 N/A 3.24 4.69 4.63 1.95 3.52 5.01 3.51 3.53
10 N/A 3.63 4.29 4.39 2.75 3.73 4.95 3.13 3.64

Figure 5.1: Differences in two baseline data collections. This table shows the
difference in magnetometer readings in each parking space from two samples
taken when no vehicles were present. We see the differences are near zero.

In Table 5.1 we observe the greatest difference in any axis is 10.14µT, although

most readings are near zero. When a vehicle is present, each axis normally differs

by more than 40µT – 100µT from its baseline reading. Future work would explore

fixing sensors permanently to avoid variable change between baseline readings1.

1Note that sensor 1 is not included in these differences as sensor 1 required replacement
due to hardware failure before actual field data collection began.
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5.2 Detection algorithm: magnitude

5.1.2 Field data processing

After baseline collection, we then began field data collection, following the outline

from Section 4.5. For processing field data, we averaged the baselines we collected

from two visits (although excluding sensor 1 as it only had one baseline session)

and then subtracted these average baselines from the magnetometer data collected

by the sensors. We separated the data out by sensor (1-9) and began the modeling

of detection algorithms. We collected 9,882 readings for the model training and

evaluation.

5.2 Detection algorithm: magnitude

First we evaluated using the magnitude of the X, Y,and Z readings to detect

vehicles. This simple magnitude-based vehicle detection algorithm uses a pre-

defined threshold. If the magnitude of the magnetometer’s readings exceeds the

threshold, then the algorithm indicates a vehicle is present in the parking space. If

the magnitude of the reading is below the threshold, then the algorithm indicates

the space in empty. We used the following formula to calculate magnitude:

M =
√

(X)2 + (Y )2 + (Z)2.

We used a data table to plot the different accuracy achieved by changing the

threshold value e.g., if magnitude exceeds 13.0 µT then indicate this space is

occupied, otherwise indicate the space is vacant. The accuracy plot using this

formula is shown in Figure 5.2 and the numeric outputs are shown in Figure 5.3.

In Figure 5.3 we observe that the optimal magnitude threshold is 13.0 µT with

an accuracy of approximately 92.5%.
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Figure 5.2: Accuracy at different magnitude thresholds. We see the highest
accuracy between 12 and 14 µT.

42



5.3 Machine learning and detection algorithms

Accuracy
Magnitude Threshold 0.90649666

10 0.90649666
10.25 0.90912771
10.5 0.91287189
10.75 0.91600891

11 0.91833637
11.25 0.91853876
11.5 0.92177697
11.75 0.92278891

12 0.92380085
12.25 0.92390204
12.5 0.92359846
12.75 0.92400324

13 0.9246104
13.25 0.92440801
13.5 0.92359846
13.75 0.92349727

14 0.92339607
14.25 0.92349727
14.5 0.92309249
14.75 0.92197936

15 0.92086622
15.25 0.91995547
15.5 0.91833637
15.75 0.91722323

16 0.91590771
16.25 0.91368144
16.5 0.91165756
16.75 0.90943129

17 0.90791338
17.25 0.90558591
17.5 0.90487756
17.75 0.9023477

18 0.90002024

Figure 5.3: Accuracy at different magnitude thresholds. Red values indicate high
accuracy, while green values indicate lower accuracy. The highest accuracy of
approximately 92.5% was with a threshold of 13.0 µT.

5.3 Machine learning and detection algorithms

We used scikit-learn [22] machine learning classifiers to improve upon the accuracy

of the magnitude-based threshold algorithm discussed in Section 5.2. We sought

to use simple machine learning models to improve the prediction scores for the
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5.3 Machine learning and detection algorithms

following reasons:

• Using simple algorithms allows us to put the parking space occupancy de-

cision logic on a computationally constrained sensor

• Sensors can then relay “vacant” or “occupied” to a central server, circum-

venting the necessity for the central server to constantly make occupancy

decisions for each space

• We are only working with four features (X, Y, Z, and spot number), and

more complex models like deep learning neural networks might “learn”

noise.

We recognize that there are trade offs to making the occupancy decision on the

remote device vs. on a server. The advantage to server-side processing is that

more data can be compiled, more complex modeling algorithms are possible, and

re-training the whole system can be done on the server. The disadvantages to this

approach are that there exists a potential for the server to get flooded with input

data; processing city-wide parking data would require significant computational

power and storage. Putting the occupancy decision on the device simplifies the

server-side functions; the server is just a database that stores the available and

current parking availability of those spots.

Moving back to our work, to train and test these models, we used the processed

data (with baselines subtracted). For our features, we input the X, Y, Z, and

spot number values for each reading; our target was just vacant or occupied

which we set to a binary value (0 or 1 respectively). For the training data, we

used 70% of the total corpus, and for the testing data we used 30% of the total

corpus. Finally, we ran each model with a 10-fold cross validation (i.e. 10 different

subsets of training and testing data).

We then tested three different classification models:
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5.3 Machine learning and detection algorithms

1. Gaussian Naive Bayes

2. Decision tree

3. Random forest.

5.3.1 Detection algorithm: Gaussian Bayes (naive)

We trained a naive Gaussian Bayes (GB) detection algorithm [23]. This algorithm

assumes a strong naive independence between features. The model also assumes

a Gaussian distribution of continuous data and classifies by minimizing the sum

of squared errors.

We observe Gaussian Bayes 10-fold cross validation results consistent at roughly

95% accuracy. For assessing each of these models, we examined the confusion

matrix (which plots the true positives, false positives, true negatives, and false

negatives). We also examine the precision, recall, f-1 score, and support for each

of these models. We show the confusion matrix for the Gaussian Bayes model in

Figure 5.4.
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5.3 Machine learning and detection algorithms

Figure 5.4: Confusion matrix plotting TP, FP, TN, FN for the GB model.

The classification performance is shown in Figure 5.5.

Precision Recall F-1 Score Support

Vacant 0.95 0.96 0.95 1545

Occupied 0.95 0.94 0.95 1420

Figure 5.5: Precision, recall, f-1 score, and support for GB model.

Naive Bayes Classifier accuracy results of 10-fold validation [0.95075885, 0.9477234,

0.94772344, 0.94637437, 0.95042159, 0.95514334, 0.94198988, 0.95042159, 0.94940978,

0.94974705]. Average accuracy score 0.9489713322091063.

This first model leveraging a simple machine learning algorithm could eas-

ily be run on a computationally constrained sensor and improves on the simple
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5.3 Machine learning and detection algorithms

magnitude threshold algorithm by 2.43%.

5.3.2 Detection algorithm: decision trees

The next classification model we implemented is a decision tree. This model,

as its name suggests, takes the form of a tree with weights/consequences for

each branch. In our modeling, we maintained caution with the model potentially

fitting to “noise” in the data. Therefore we tuned the parameters through several

iterations to provide a more rigorous approach to this particular model. The

parameters we ultimately tuned include:

• max depth

• min samples split

• max leaf nodes.

Although, our first model of a decision tree we left with the default scikit-learn

parameters, thus allowing the tree to make the highest fit possible to the data.

Below we present the outcomes in Figures 5.6 and 5.7
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5.3 Machine learning and detection algorithms

Figure 5.6: Confusion matrix plotting TP, FP, TN, FN for the decision tree
optimal fit model.

Precision Recall F-1 Score Support

Vacant 0.99 0.99 0.99 1550

Occupied 0.99 0.99 0.99 1415

Figure 5.7: Precision, recall, f-1 score, and support for decision tree model with
default parameters.

Decision tree classifier accuracy results of 10-fold validation [0.99224283, 0.98718381,

0.99359191, 0.98954469, 0.99123103, 0.99021922, 0.99460371, 0.99359191, 0.99392917,

0.99325464]. Average accuracy score 0.9919392917369307.

From the modeling results, we observe that this fit yields a very high accu-

racy of 99.2%, with only 9 false positives and 13 false negatives. While this fit
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is certainly highly precise and accurate, we recognize that there is the potential

for the model to fit to the noise; it also yields a huge tree that a computation-

ally constrained device might have trouble running. Therefore we analyze the

resulting tree with the default model parameters shown in Figure 5.8.

Figure 5.8: Tree graph for the “default parameters” decision tree shows high
complexity and deep maximum depth.

We observe that the decision tree with maximum depth and fit, predicts the

test data with 99% accuracy, and because we use 10-fold cross validation we gather

this accuracy from the average of 10 different subsets of training and testing data.

We also adjusted the test size (i.e. how much of our data we save for testing)

to be 0.6 of the total corpus, and we still observe 99% accuracy. This suggests

that the model is able to accurately determine the true vehicle occupancy of a

space. Our concern, however, is that the model may not generalize well enough

(the cross-fold validation suggests otherwise), and the complex tree may not run

well on a computationally constrained sensor.

We then adjust the parameters to tune our decision tree model, with the goal

of simplifying the tree complexity. Below we present the Figure 5.9 and 5.10 for a
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5.3 Machine learning and detection algorithms

decision tree with with max depth = 8, min samples split = 50, and max leaf nodes=10.

Figure 5.9: Confusion matrix plotting TP, FP, TN, FN for the decision tree tuned
fit model.

Precision Recall F-1 Score Support

Vacant 0.97 0.98 0.98 1533

Occupied 0.98 0.97 0.97 1432

Figure 5.10: Precision, recall, F-1, and support for decision tree tuned fit model
still shows better performance than the naive GB algorithm and the magnitude-
method for detecting vehicles.

Decision tree classifier accuracy results of 10-fold validation [0.97133221, 0.97065767,

0.97200675, 0.9682968, 0.96492411, 0.97369309, 0.96526138, 0.9682968, 0.97234401,
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5.3 Machine learning and detection algorithms

0.96593592]. Average accuracy score 0.969274873524452.

The decision tree model with adjusted parameters still maintains a high ac-

curacy of prediction at 96.9%. We also present a much simpler tree output in

Figure 5.11.

Figure 5.11: Tree graph for the tuned fit decision tree shows lower complexity
and smaller max depth.

With tuned parameters we observe a much less complex tree that gives us

more reassurance we could both run this particular model on a computationally

constrained device, and we still maintain high accuracy at approximately 97%.

This score improves upon both the magnitude-based algorithm and the Gaussian

Naive Bayes algorithm.

5.3.3 Detection algorithm: Random Forest

The last classification model we implemented is a Random Forest classification

model which builds multiple decision trees then aggregates predictions (i.e. sim-
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ilar to a panel of judges as opposed to one judge). As in the simpler deci-

sion tree model in Section 5.3.2 above, we adjusted maximum depth=8, num-

ber of estimators=100 (trees), and min samples split=50 of the forest of less

complex trees. This model presents 10-fold cross validation results consistent

at roughly 98% accuracy. We present the Figures 5.12 and 5.13 below.

Figure 5.12: Confusion matrix plotting TP, FP, TN, FN for the Random Forest
tuned fit model shows slightly better performance than one decision tree with the
same parameters.
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Precision Recall F-1 Score Support

Vacant 0.97 0.99 0.98 1518

Occupied 0.99 0.97 0.98 1447

Figure 5.13: Precision, recall, f-1 score, and support for Random Forest tuned fit
model

Random Forest classifier accuracy results of 10-fold validation [0.97875211,

0.97841484, 0.97976391, 0.9767285, 0.98077572l, 0.98043845, 0.98010118, 0.98313659,

0.97942664, 0.97234401]. Average accuracy score 0.9789881956155142.

The Random Forest model data again shows that these particular classifi-

cation models perform with a high degree of prediction accuracy. While the

individual trees were limited in depth and number of trees was kept somewhat

small, the more complex forest of trees only outperformed a single simple tree by

a small amount (98% vs. 97%). Our key take way message is that the models are

hitting diminishing returns – the extra complexity of many trees only results in

a small increase in accuracy compared with a single simple tree.

5.3.4 Machine learning classification model conclusions

When examining all of the approaches, we see that the models using trees to

classify (decision tree and Random Forest) perform at high accuracy. If the mi-

crocontroller has limited computational power, then we would recommend using

the simple decision tree model, while if the controller is powerful, we would recom-

mend the training and use of a Random Forest (or possibly a large single decision

tree). Our models train for specific spots in specific lots; these are not generic

models that someone can plug in anywhere (although the magnitude model is gen-

eral and can be used anywhere). In the real world, we would still need to gather

training data for each space. Gathering training data would involve placing a
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sensor in each space, watching each spot manually, recording data, and then run-

ning classification models. See Section 6.2 for more discussion surrounding these

factors.

5.4 Optimal sensor placement

Recall our objective to determine the optimal sensor placement within a parking

space. We thus sought a means of evaluating this placement. To do so, we ran a

decision tree model for each individual sensor and plotted a heat map of accuracy

as shown in Figure 5.14.

S1 S4 S7

S2 S5 S8

S3 S6 S9

Figure 5.14: Heat map of prediction accuracy by sensor location within a parking
space. All locations performed nearly identically.

We observe that there is a marginal improvement in accuracy by placing the
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sensor either directly in the center of the parking space, or slightly offset to the

right. The improvements are roughly 0.6%. Furthermore, we note that these

differences vary; if we run this model again, we could observe a slightly different

heat map. Accordingly, our conclusion is that so long as the sensor is placed

centrally in the parking space we will observe an accuracy of roughly 97%. We

consider that perhaps the surface area of the sensor board was not large enough

to capture differences in sensor location. Another factor is the actual variance of

vehicles’ parking; every time we placed the sensor board in its designated spot the

vehicle above it could be anywhere between the white lines. In other words, the

cars were not perfectly parked in the exact same positioning in the parking space

for every data reading. We used real parking data from real people and as such

there is the potential that this variance in parking limited the degree to which

sensor placement is important, which is why we observe that each sensor predicts

with about the same accuracy. Finally, we conclude that central placement of the

sensor in the parking space is essential, but past that more data collection and

controlled parking scenarios are required.
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Chapter 6

Future Work, Limitations, and
Conclusions

6.1 Future work

In future work using these magnetometer-based vehicle sensors, we would under-

take an assortment of tasks. One of which would be to collect data from more

parking arrangements (e.g. parallel, street parking, etc.). In this stage, we would

ideally physically install sensors across campus and aggregate more data. We

would also architect a full system for end-to-end functionality, which would ne-

cessitate both evaluating power constraints and prototyping a “long-term” sensor.

In this implementation we would consider different technology to relay data (e.g.,

Bluetooth, radio, WiFi, LoRa). Finally, the system would aggregate sensor data

on a central server for applications to integrate with navigation apps.

6.2 Limitations

The primary limitation in our work is that we only analyzed one surface lot.

If we were to have more time, we would collect across every possible parking

arrangement (parallel parking, garage parking, street parking, etc.). Furthermore,

testing across multiple lots and locations would further show the efficacy of such
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a solution.

We also collected our data using the mobile sensor board. There is the chance

we introduced error if the board was not placed in the exact same space. Phys-

ically installing these sensors (so they could not move at all) would reduce the

chance of such error.

Another limitation is that we currently model using the space number as a

feature. If we were able to exclude this from our modeling, we may be able to

generalize the detection algorithms to all surface lots. Developing a universal

algorithm would reduce the overhead required for the installation and training

of a system. The only initial data to collect would be a baseline reading for a

parking space.

We would seek to prove the viability of this technology in an end-to-end

system as mentioned in Section 6.1. If we could succeed in implementing such

a system that would provide an even better foundation to go out and actually

implement these sensors in the real-world for smart-city applications like using

parking availability to integrate with a navigation map service (i.e. Google maps).

Finally, a disadvantage of magnetometer-sensors is the requisite for close prox-

imity to the target. As distance from the sensor increases, the magnetic dipole

decreases with an inverse cube [24]. Therefore, proximity to the vehicle is key for

accurate detection.

6.3 Conclusions

The algorithms and sensor placements that we tested in a surface lot predict pre-

dict the data with a high degree of accuracy. Table 6.1 below shows a summarized

performance for each of these models.
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Model Avg. accuracy
Magnitude 92.5%
Gaussian NB 94.9%
Decision Tree (simple) 96.9%
Random Forest 97.9%
Decision Tree (default parameters) 99.2%

Table 6.1: Accuracy of each detection model. All models performed well into the
90th percentiles. More complex models show diminishing accuracy improvements
over simpler models.

We observe that the decision tree using the default parameters performs the

best of all models. Figure 5.7, however, shows this tree is highly complex. All

models, however, perform well with accuracies well into the 90th percentile. This

result suggests these low cost magnetometer-based sensors are effective for de-

tecting vehicles. We also note that with simple detection algorithms we can put

the decision logic of whether the parking space is occupied on the sensor, whereas

complex models such as deep neural networks may quickly surpass the comput-

ing capabilities of a small microcontroller. We show through our testing that

magnetometer-based technology is a cost effective solution for vehicle detection.

With magnetometer sensors available for $1.09 [25] when purchased wholesale

(quantity of 2,500), the overall cost is not significant when compared to some of

the other technologies like detection cameras. Magnetometer-based technology

offers advantages over several other of the fixed sensors. Primarily, a magnetome-

ter is not sensitive to ambient changes in the environment such as temperature,

rain, or snow. Since magnetometers are not sensitive to such environmental fac-

tors they offer advantages over other fixed sensor technologies for the following

reasons:

• Cameras infrared sensors, microwave Sensors, ultrasonic sensors, and light

sensors all face challenges with environmental variables and occlusion

• Magnetometers only alert to changes in the magnetic field from metal ob-
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jects, while other sensors can falsely alert to non-vehicle signals

• Magnetometers are cheaper than other solutions like camera recognition.

We note that different levels of accuracy are required for certain implementations.

For simple availability of parking spaces on city blocks used to direct motorists

to blocks where parking is likely to be found, 90% accuracy is sufficient [13]. For

example, if there are anywhere from 10-20 spaces on a city block, then if a system

can correctly predict the status of 9/10 or 18/20 of those spaces, it would suffice

for directing drivers to open parking.

Another application is the use of such detection technology for ticketing pur-

poses. A problem facing parking meters worldwide is that a user can simply

“feed” the meter (e.g., add more money) allowing them to stay in a single spot

far past the legal limit. Were this technology used to determine if a violator

has stayed past their permitted allotment of time, then 99.99%+ accuracy is a

requisite, else the parking enforcement officers would quickly be issuing a large

number of potentially invalid tickets.

We also set out to determine the best placement for a sensor in a parking

space. As discussed in Section 5.4, placing the sensor centrally in the parking

space is key, beyond that, marginal improvements are observed by placing the

sensor more specifically under the vehicle. We note that a limitation of our data

collection is that we did not control for how a vehicle parks in a space (lots of

variability for a driver parking in a space). If we had more time and resources,

perhaps we could control for every data collection, but we did capture real-world

parking data and succeed in showing that this technology works well.
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6.4 Closing remarks

Here I close my culminating experience. The past six or so months have been

incredibly reformative, and the work on this project has been both an incredible

challenge as well as an extremely rewarding experience. I’ve learned more than

I ever imagined I would about parking. I also used nearly every aspect of my

computer science knowledge, and I learned a tremendous amount of other skills

along the way. We proved that these low cost sensors work, and it doesn’t matter

exactly where you place them. My hope is that all this work will serve to help

make our cities smarter and solve some aspect of the great conundrum surround-

ing parking sensors. Finally, another thank you to Tim Pierson for all of your

time and energy helping make this project into such a successful undertaking. So

long, Dartmouth.

Luke Hudspeth
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