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Abstract

Ordinary graph coloring algorithms are nothing without their calculations, memorizations, and
inter-vertex communications. We investigate a class of ultra simple algorithms which can find
(∆+1)-colorings despite drastic restrictions. For each procedure, conflicted vertices randomly re-
color one at a time until the graph coloring is valid. We provide an array of run time bounds for
these processes, including an O (n log ∆) bound for a variant we propose, and an O (n∆) bound
which applies to even the most adversarial scenarios.



1 Introduction

Even among timeless problems, graph coloring stands out as a gem. Not only is it beautiful, it is a
natural model for applications from taxi scheduling to compiler register allocation [12]. Formally,
a k-coloring of an undirected graph G = (V,E) is a function χ : V → [k], where [k] = {1, 2, . . . , k}.
We call χ valid iff there is no edge {u, v} ∈ E such that χ(u) = χ(v).

Traditionally, graph coloring has been viewed from the point of view of a centralized entity. For
such an entity, finding valid (∆+1)-colorings is trivial, where ∆ is the maximum number of edges
attached to any single vertex. In particular, this entity could simply iterate through the vertices
and validly color them one by one, because there must always be at least one color not used by a
vertex’s neighbors.

Instead, suppose we abandon these centralized, sequential means of finding a (∆+1)-coloring,
and think of the vertices themselves as the acting entities. Additionally, suppose that the vertices
cannot communicate, cannot perform any calculations, have no memory, and only know whether
they are conflicted (but not their neighbors’ actual colors). These constraints restrict us to only
the most stringently and purely decentralized methods which, if fast, could be ideal for systems
with dynamic structure, constrained resources, or lack of coordination. For example, Bhartia et
al. studied an application to Wi-Fi channel selection, in which nearby routers need to operate on
different channels, otherwise suffer interference [4].

Without the usual means of finding a valid (∆+1)-coloring, one recourse would be to randomly
recolor random vertices (whether on not they are conflicted) until the coloring is valid. However,
this algorithm takes exponential time in even the simplest graphs.

A better approach, the one proposed by Bhartia et al., would be to randomly recolor random
conflicted vertices until the coloring is valid. We call this procedure non-persistent coloring,
because a different vertex could recolor at each timestep.

Algorithm 1 Non-persistent coloring, in general form

Input: A graph G = (V,E)
Output: A valid (∆+1)-coloring of G

1: procedure NonPersistentColor(G)
2: Initialize χ← χ0 . Could be random or adversarial
3: while χ is not valid do
4: v ← a conflicted vertex . Could be random or adversarial
5: Randomly set χ(v) ∈ [∆ + 1] . Always random
6: end while
7: return χ . We use τ(G) to denote the total number of recolorings
8: end procedure

This algorithm can be faithfully implemented by having each vertex wait for a random amount
of time before each recolor, and hence is truly decentralized [4]. (In particular, the distribution of
times needs to be continuous and memoryless.)

As both an example and a powerful theorem, we begin by analyzing the run time of non-
persistent coloring in the special case of cliques, graphs such that every two vertices share an
edge.
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Theorem 1.1. Let Kn be the clique containing n vertices, and let Hn =
∑n

i=1
1
i , the nth harmonic

number. Then, no matter the initial coloring or the choices of conflicted vertices, E [τ(Kn)] ≤ nHn.
If the initial coloring is random, then E [τ(Kn)] = nHn − n = Θ (n log ∆).

Proof: Observe that NonPersistentColor(Kn) terminates exactly when each color has been
chosen at least once. This is because

1. The coloring is valid if all n colors are present in the graph.

2. The coloring is not valid if fewer than n distinct colors are present in the graph.

3. Colors never disappear from the graph once they are present.

Hence, we can couple NonPersistentColor(Kn) with the classic coupon-collector problem,
in which a collector randomly chooses one of n coupons with replacement until he has at least
one of each coupon. To do so, we simply recolor the next vertex to the color c whenever the
collector draws the coupon c, for c ∈ [n]. Under this coupling, the above facts guarantee that
NonPersistentColor(Kn) never takes longer than the coupon-collector. Furthermore, when
χ0 is random, we can use the first n coupon draws as the initial colors, and then proceed with
the coupling as before. In that case, NonPersistentColor(Kn) and the coupon-collector finish
simultaneously.

Simple calculation shows that the collector is expected to draw exactly nHn coupons be-
fore completing his collection. Hence, E [τ(Kn)] ≤ nHn. In the random start case, we have
E [τ(Kn)] = nHn − n, because we only count recolorings. It is well-known that Hn = Θ (log n). �

So, pleasantly, non-persistent coloring is a generalization of the coupon-collector problem, and
we will later explore relationships to the birthday and Monty Hall paradoxes. This motivates the
following conjecture.

Conjecture 1.2. The worst case expected run time of random start, random order non-persistent
coloring is O (n log ∆). Specifically, for any graph G = (V,E), we have E [τ(G)] ≤ nH∆+1.

Despite its simplicity, non-persistent coloring has proven difficult for us to analyze, so we propose
a tweaked version called persistent coloring, which we now understand well. Persistent coloring
is identical to non-persistent coloring, but the chosen vertex recolors until it is not conflicted.
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Algorithm 2 Persistent coloring, in general form

Input: A graph G = (V,E)
Output: A valid (∆+1)-coloring of G

1: procedure PersistentColor(G)
2: Initialize χ← χ0 . Could be random or adversarial
3: while χ is not valid do
4: v ← a conflicted vertex . Could be random or adversarial
5: while v is conflicted do
6: Randomly set χ(v) ∈ [∆ + 1] . Always random
7: end while
8: end while
9: return χ . We use τ(G) to denote the total number of recolorings

10: end procedure

We generally think of PersistentColor as using a permutation of the vertices σ : [n] → V ,
such that the vertices recolor (if necessary) in the ascending σ order during line 4 of Algorithm 2.
This will be important in subsequent sections.

We subdivide non-persistent coloring and persistent coloring into four variants each. If χ0 is
random (line 2), then we say they use a random start. Otherwise, we say they use an adversarial
start. If the algorithms select conflicted vertices randomly (line 4), then we say they use a random
order. Otherwise, we say they use an adversarial order, and we allow the adversary to make his
choices as the algorithm proceeds.

The focus of this thesis is bounding the worst case expected run times of non-persistent coloring
and persistent coloring on graphs with n vertices and max degree ∆. Specifically, if G (n,∆) is the
set of all graphs with n vertices and max degree ∆, we seek to asymptotically bound

max
G∈G(n,∆)

E [τ(G)]

for each variant.
Most importantly, in order of appearance, we

1. Propose the persistent coloring algorithm

2. Bound the worst case expected run time of adversarial start, adversarial order non-persistent
coloring to Θ (n∆)

3. Bound the worst case expected run time of random start, random order persistent coloring
to Θ (n log ∆)

4. Bound the worst case expected run time of adversarial start persistent coloring to Θ (n∆)

Although there is some prior understanding of slightly less restrictive algorithms ([4, 6, 7, 11]), we
believe these results are novel.
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2 Warmup (Blank Persistent)

We begin by analyzing persistent coloring for a case slightly outside the rules—when χ0 starts out
blank. That is, we start with χ0(v) = 0 for all v ∈ V , where the “color” 0 represents blankness.
We then update our definition such that a vertex is conflicted iff it has the same color as one of its
neighbors or it is blank. In effect, the algorithm becomes the following: while there is some blank
vertex, pick a random one and recolor it until it is not conflicted (and never make vertices blank
again).

As a warmup, we prove following theorem, which has obvious similarity to Conjecture 1.2.

Theorem 2.1. The worst case expected run time of blank start, random order persistent coloring
is O (n log ∆). Specifically, for any graph G = (V,E), we have E [τ(G)] ≤ nH∆+1.

2.1 Notation

We take this opportunity to introduce notation which we will utilize throughout our analysis of
persistent coloring.

We use D as shorthand for ∆ + 1, and Γ(v) to denote the neighborhood of v, not including
v. Recall that we generally think of persistent coloring as using a permutation of the vertices
σ : [n] → V , such that the vertices recolor (if necessary) in the ascending σ order during line 4 of
Algorithm 2. We can then define a vertex’s local rank such that

rank(v) := D −
∣∣{u ∈ Γ(v) | σ−1(u) < σ−1(v)

}∣∣ .
For example, if v is the kth vertex to recolor in its neighborhood, then rank(v) = D − k + 1. Note
that rank is flipped from σ, but this will tend to simplify our calculations.

We use recolors(v) to denote the total number of times v eventually recolors, and free(v) to
denote the number of colors not used by Γ(v) when v begins recoloring. Finally, we say that a
vertex becomes fixed when its turn to recolor finishes.

2.2 Upper Bound

We now prove our theorem.

Proof of Theorem 2.1: Let G = (V,E) be an arbitrary graph with n vertices and max degree ∆,
and v ∈ V . Let d = deg(v). Observe that rank(v) is uniformly random in {D − d,D − d+ 1, . . . , D}.
Hence, we have

E [recolors(v)] =
1

d+ 1

D∑
r=D−d

E [recolors(v) | rank(v) = r] . (1)

Notice that recolors(v) is a geometric random variable with probability free(v)/D. But free(v) ≥
rank(v), because the worst case is that each of v’s fixed neighbors has a distinct color, and the
remaining neighbors are blank. Hence, we have E [recolors(v) | rank(v) = r] ≤ D/r. Now, we
manipulate eq. (1):
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1

d+ 1

D∑
r=D−d

E [recolors(v) | rank(v) = r] ≤ 1

d+ 1

D∑
r=D−d

D

r
(2)

=
D

d+ 1

D∑
r=D−d

1

r
(3)

≤ D

d+ 1

D∑
r=D−d

1

r
(4)

Notice that eq. (4) maximizes when d = ∆. This is because we can think of eq. (4) as D times

the average of
{

1
D−d ,

1
D−d+1 , . . . ,

1
D

}
. Hence, because 1

D−(d+1) is greater than the max of that set,

increasing d by one increases the average. In total, we have

E [recolors(v)] ≤ D

d+ 1

D∑
r=D−d

1

r
≤ D

∆ + 1

D∑
r=1

1

r
= HD.

So E [recolors(v)] = O (log ∆). Because v was arbitrary, by linearity of expectation, E [τ(G)] =
O (n log ∆). �

The ease of this warmup should make our other O (n log ∆) conjectures and theorems signifi-
cantly more believable. However, this approach of bounding E [D/free(v) | rank(v) = r] cannot be
used to show that any of the main variants takes O (n log ∆) time. This is due to the birthday
paradox.

Analysis of the birthday paradox shows that there is an Ω(1) chance that there are no duplicates
among the first

√
n random selections with replacement from a group of n items [13]. In the random

start persistent coloring case, this means that if rank(v) ≤
√
n in a clique, then there is an Ω(1)

chance that free(v) = 1 and so we would expect to recolor v a total of n times, if it ever does
recolor. In other words, whereas the unfixed neighbors of v are all blank in our warmup, in the
random start case, the unfixed neighbors can also use up valuable colors. This analysis would seem

to make the worst case Ω
(
n
√

∆
)

, but we are disregarding the probability that a vertex may not

even need to recolor.
That is, there is a proof similar to the warmup’s which shows that random start, random order

persistent coloring takes O
(
n
√

∆
)

time, but achieving the tight O (n log ∆) bound requires a better

technique.

3 Non-persistent Coloring

Before we return to persistent coloring, we provide general bounds which apply to all non-persistent
coloring variants.

3.1 General Upper Bound

As suggested by Table 1, our primary contribution to the analysis of non-persistent coloring is an
all-purpose upper bound of O (n∆):
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Theorem 3.1. The worst case expected run time of adversarial start, adversarial order non-
persistent coloring is O (n∆). Specifically, for any graph G with n vertices and max degree ∆,
we have E [τ(G)] ≤ (n− 1)(∆+1).

This bound is fairly trivial for persistent coloring, because there is always at least a 1/D chance
that the next recolor permanently satisfies the chosen vertex. However, in non-persistent coloring,
there is no similar concept of vertices becoming fixed. Instead, we analyze the rate at which
non-persistent coloring drifts toward convergence. We will need the following theorem.

Lemma 3.2 (Infinite linearity of expectation [14]). Let Z1, Z2, . . . be random variables. If
∑∞

t=1 E [|Zt|]
converges, then

E

[ ∞∑
t=1

Zt

]
=

∞∑
t=1

E [Zt] .

This will enable us to prove the following theorem, which bears similarity to Wald’s Equa-
tion. With some assumptions, Wald’s Equation says that for a counting random variable T ,

E
[∑T

t=1 Zt

]
= E

[∑T
t=1 E [Zt]

]
[17]. However, Wald’s Equation requires that each Zt be inde-

pendent of the event T ≥ t, a condition our Zt’s will not satisfy. Instead we prove a suitably
adjusted version of Wald’s Equation:

Theorem 3.3. Let ϕ be a real-valued function of colorings for a graph G such that χ is valid iff
ϕ (χ) = λ, for some constant λ. Let χt be the state of χ after t recolorings. If

E
[
|λ− ϕ (χt−1)| − |λ− ϕ (χt)|

∣∣∣∣ χt−1 invalid

]
≥ C

for some positive constant C, then E [τ (G)] ≤ E [|λ− ϕ (χ0)|] /C.

Proof: For each t ∈ Z+, let

Zt :=

{
|λ− ϕ (χt−1)| − |λ− ϕ (χt)| τ(G) ≥ t
0 otherwise.

By assumption, ϕ
(
χ
τ(G)

)
= λ. Hence,

∑τ(G)
t=1 Zt = |λ− ϕ (χ0)|. This gives us

E [|λ− ϕ (χ0)|] = E

τ(G)∑
t=1

Zt

 = E

[ ∞∑
t=1

Zt · 1{τ(G)≥t}

]
. (5)

To apply Lemma 3.2, we need
∑∞

t=1 E
[∣∣Zt · 1{τ(G)≥t}

∣∣] to converge. Observe that ϕ must be
bounded, because it is real-valued and there are only finitely many possible colorings of G. Thus,
because λ and C are just constants, |Zt| ≤ ρ for some constant ρ. Hence,

∞∑
t=1

E
[∣∣Zt · 1{τ(G)≥t}

∣∣] =

∞∑
t=1

E
[
|Zt| · 1{τ(G)≥t}

]
(6)

≤ ρ
∞∑
t=1

E
[
1{τ(G)≥t}

]
(7)

= ρ · E [τ(G)] (8)
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Trivially, we can upper-bound E [τ(G)] by nDn, because at worst we need to select the lone satisfying
color for n consecutive vertices, which can be cast as a geometric random variable with probability(

1
D

)n
that uses at most n recolors per trial. So our sum indeed converges. Thus, we have

E

[ ∞∑
t=1

Zt · 1{τ(G)≥t}

]
=

∞∑
t=1

E
[
Zt · 1{τ(G)≥t}

]
Lemma 3.2 (9)

=
∞∑
t=1

E [Zt | τ(G) ≥ t] · Pr [τ(G) ≥ t] (10)

≥ C
∞∑
t=1

Pr [τ(G) ≥ t] (11)

= C · E [τ(G)] (12)

With eq. (5), we have E [τ(G)] ≤ E [|λ− ϕ (χ0)|] /C. �

Examples clarify this seemingly opaque theorem. A natural choice would be for ϕ (χ) to be
the number of conflicted edges in G under χ. In that case λ = 0, because χ is valid iff there
are no conflicted edges. This was the approach Bhartia et al. took, because one can easily show
that the expected number of conflicted edges decreases by 1/D with each recoloring. Because,
with a random initial coloring, the expected number of initial conflicted edges is O(n), this yields
an O (n∆) bound (although they did not make explicit use of Theorem 3.3). Unfortunately, this
particular ϕ only produces an O

(
n∆2

)
bound in the adversarial start case, where there could be

Ω (n∆) conflicted edges initially.
The other obvious choice is for ϕ (χ) to be the number of conflicted vertices in G under χ. Again,

λ = 0. However, we can concoct examples where we would actually expect ϕ (χt) to increase, given
an adversarial selection. For example, if we recolor v in Figure 1, the number of conflicted vertices
increases (additively) by 1/4, on average.

v

Figure 1: An example of a graph in which the number of conflicted vertices would be expected to
increase, given an adversarial selection.

So the two natural choices of ϕ will not work for proving the desired O (n∆) bound when non-
persistent coloring uses an adversarial start and an adversarial order. Instead, we introduce a new
notion, where ϕ (χ) is the number of color components of G. To do so, we define an equivalence
relation ∼χ, such that v ∼χ u iff there is some path (v = v0, v1, . . . , vl = u) such that χ (vi) = χ (vj)
for all 0 ≤ i, j ≤ l. Then the color component of v is its equivalence class [v]χ. For example, in
Figure 1, there are three color components.

Observe that χ is valid iff [v]χ = {v} for all v ∈ V , i.e. when ϕ(χ) = n. This helps us prove our
O(n∆) bound.
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Proof of Theorem 3.1: Let G = (V,E) be an arbitrary graph with n vertices and max degree
∆. For each coloring χ of G, let ϕ(χ) = |{[v]χ | v ∈ V }|, the number of color components of G
under χ.

Suppose we recolor an arbitrary conflicted vertex v at time t (so that χt−1(v) is the old color
and χt(v) is the new color). It may not be obvious that ϕ(χt) even could be less than ϕ(χt−1).
However, if v has two neighbors u and w such that χt−1(u) = χt−1(w) 6= χt−1(v) and u 6∼χt−1 w,
then v could conjoin the color components of u and w and hence reduce ϕ. Nevertheless, we can
show that the expected drift is sufficiently positive.

Clearly, the color components which do not contain vertices in Γ(v)∪{v} cannot immediately be
affected by v’s recoloring. So, let mt(c) := |{[u]χt | u ∈ Γ(v) ∪ {v} and χt(u) = c}|, the number of
separate color components of color c connected to v at time t. Observe that mt (χt(v)) = 1, because
all adjacent components of v’s color are connected through v. For each other c ∈ [D], we have
mt−1(c) ≤ mt(c), because there are no new paths of color c. Finally, observe that

∑
c∈[D]mt−1(c) ≤

∆, because v has the same color as at least one of its neighbors. Hence, we have

E [ϕ(χt)− ϕ(χt−1)] = E

∑
c∈[D]

mt(c)−mt−1(c)

 ≥ ∑
c∈[D]

1−mt−1(c)

D
≥ 1− ∆

D
=

1

D
.

We now apply Theorem 3.3. We have that χ is valid iff ϕ(χ) = n, and

E
[
|n− ϕ (χt−1)| − |n− ϕ (χt)|

∣∣∣∣ χt−1 invalid

]
= E

[
ϕ (χt)− ϕ (χt−1)

∣∣∣∣ χt−1 invalid

]
≥ 1

D
.

Because 1 ≤ ϕ(χ) ≤ n, we have E [|n− ϕ (χ0)|] ≤ n− 1. Hence, E [τ(G)] ≤ (n− 1)D. �

This theorem finally gives us a general bound for undirected variants of non-persistent coloring
and persistent coloring (because persistent coloring can be seen a specific case of non-persistent
coloring).

3.2 General Lower Bound

As mentioned, we can refer back to the coupon-collector coupling in Theorem 1.1 to lower-bound
the worst case for any variant of non-persistent coloring, including persistent coloring:

Theorem 3.4. The worst case expected run time of non-persistent coloring is Ω (n log ∆). That
is, given any n,∆ ∈ Z≥0 such that ∆ < n, there is a graph with n vertices and max degree ∆ such
that E [τ(G)] = Ω (n log ∆).

Proof: Let n,∆ ∈ Z≥0 such that ∆ < n be given. Let G be the graph consisting of bn/Dc copies
of the clique KD, with the remaining vertices disconnected. By comparison to the coupon-collector
problem with D coupons, the total run time is Ω(n log ∆). �

4 Persistent Coloring

4.1 Monty Hall

We include Section 4.1 simply as an interesting observation.
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Let n ∈ Z+ such that n > 2. Suppose we run random start, random order persistent coloring
on Kn, and are informed of the colors of the first n− 2 vertices, just before recoloring the final two
vertices, u and v. Clearly, we can deduce the only two colors which u and v could have, because
we can eliminate the colors of the first n − 2 fixed vertices. Furthermore, by symmetry, χ(u) and
χ(v) are equally likely to be either color. So, what is the probability that χ(u) = χ(v) currently?

u

Kn−2

v

Figure 2: The graph in Section 4.1

A natural guess would be 1
2 . However, u and v still have their original colors, so, without

conditioning on the known fixed colors, Pr [χ0(u) = χ(u) = χ(v) = χ0(v)] = 1
n . But, by symmetry,

Pr [χ(u) = χ(v) | χ(V − u− v) = S] = Pr
[
χ(u) = χ(v) | χ(V − u− v) = S′

]
,

for all S, S′ ⊆ [n] such that |S| = |S′| = n−2. Therefore, all of these conditional probabilities must
equal 1

n . That is, the answer is 1
n , not 1

2 . In some sense, informing us of the first n−2 colors is akin
to Monty Hall’s deliberately opening doors with goats behind them, in the Monty Hall problem.
As we further discuss in Section 5, this paradox prevents us from using an approach which relies
on the misconception that vertices’ colors are independently uniformly random among the colors
not used by their neighbors.

4.2 Random Start, Random Order

As explained in the warmup, bounding random start, random order persistent coloring’s run time
requires a method surprisingly dissimilar to the one used to bound the blank start version’s. Here,
we implicitly utilize the fact that some vertices may even never need to recolor.

Although a cursory estimate may suggest that considering this probability should only affect
the run time by a constant factor, the chance that a vertex needs to recolor is not simply the
probability that one of its neighbors initially uses its color. Rather, for a vertex to ever recolor,
its initial color must be initially present in the subset of its neighborhood which recolors after it,
because the other adjacent vertices have already been fixed to non-conflicting colors.

We now begin the proof, which uses coupling.

Theorem 4.1. Let v be an arbitrary vertex in an arbitrary graph G. Let d = deg(v). Then
E [recolors(v)] ≤ Hd+1 = O (log d).

Proof: We couple Γ(v) ∪ {v} and Kd+1. To begin, denote v by v1 and arbitrarily order the rest
of Γ(v) as v2, v3, . . . , vd+1. Similarly, arbitrarily order Kd+1’s vertices by w1, w2, . . . , wd+1, and
denote w1 by w. Suppose we use the ordering σ and initial coloring χ0 on G. For each i ∈ [d+ 1],
let π(vi) =

∣∣{k ∈ [d+ 1] | σ−1(vk) ≤ σ−1(vi)
}∣∣, roughly the σ ordering but restricted to our d + 1

vertices. Then we will use σ′ and χ′
0 on Kd+1, such that σ′(π(vi)) = wi and χ′

0(wi) = χ0(vi).
Assume that we use D colors on both G and Kd+1, although d itself may be less than ∆.
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Observe that v has to recolor iff χ0(v) ∈ χ0 (A(v)), where A(v) is the subset of v’s neighborhood
which recolors after v. Identically, w has to recolor iff χ′

0(w) ∈ χ′
0 (A(w)). But χ0 (A(v)) =

χ′
0 (A(w)) and χ0(v) = χ′

0(w), under our coupling. Hence, recolors(v) > 0 iff recolors(w1) > 0.
Similarly, we have free(v) ≥ free(w), because χ0 (A(v)) = χ′

0 (A(w)), and w’s fixed neighbors must
have completely distinct colors, which is the worst case. Using the fact that recolors(v) is either 0
or the geometric random variable with probability free(v)/D, we have

E [recolors(v)] = E
[
1{recolors(v)>0} ·

D

free(v)

]
(13)

≤ E
[
1{recolors(w)>0} ·

D

free(w)

]
(14)

= E
[
1{recolors(w)>0} ·

D

free(w)

]
(15)

= E [recolors(w)] (16)

Hence, E [recolors(v)] ≤ E [recolors(w)]. By symmetry, we can divide E [τ(Kd+1)] by d + 1 to get
E [recolors(w)] . But E [τ(Kd+1)] is the the expected time to get the first d + 1 out of D coupons,
which is certainly less than the expected time to get all d+ 1 coupons if there are only d+ 1 total.
That is,

E [recolors(v)] ≤ E [recolors(w)] ≤ 1

d+ 1
((d+ 1)Hd+1) = Hd+1 = O (log d) ,

which completes the proof. �

Our main theorem now easily follows.

Theorem 4.2. The worst case expected run time of random start, random order persistent coloring
is O(n log ∆). Specifically, for any graph G = (V,E) be with n vertices and max degree ∆, we have
E [τ(G)] ≤

∑
v∈V Hdeg(v)+1.

Proof: Using Theorem 4.1, we have that

E [τ(G)] =
∑
v∈V

E [recolors(v)] ≤
∑
v∈V

Hdeg(v)+1 = O (n log ∆) ,

which completes the proof. �

4.3 Adversarial Start, Random Order

The original version of Conjecture 1.2 was actually that no variant of non-persistent coloring or
persistent coloring could be expected to take more than nHD time. However we realized that we
could concoct a graph G with Ω(n) vertices that have the worst possible rank, which leads to the
following theorem:

Theorem 4.3. The worst case expected run time of persistent coloring is Ω (n∆). That is, given
any ∆ ∈ Z≥0, there is a graph G with n vertices and max degree ∆ such that E [τ(G)] = Ω (n∆).
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Proof: Let ∆ ∈ Z≥0 be given. Let G be the complete bipartite graph of degree ∆, which we will
think of as a left half and a right half. Suppose we initially color every left side vertex green, and
use ∆ colors on the right half, including one vertex with color green. In this configuration, every
left side vertex is conflicted, and there is only one conflicted right side vertex. Moreover, the left
side vertices have only one free color, and hence expect to recolor D times each if selected. On
average, we recolor half of the left side vertices before fixing right side vertex (at which point the
process terminates). Hence, the total expected run time is at least D · ∆

2 = D · n4 = O(n∆). �

Δ vertices Δ vertices

Figure 3: Graph with maximum degree ∆ and n = 2∆ vertices from Theorem 4.3

5 Related Work

For general graph coloring references, see [12,16].
This work, specifically the non-persistent coloring algorithm, derives from the IQ-Hopping al-

gorithm in the paper by Bhartia et al.. Their paper provides a real-world application for these
algorithms, proof that they can be implemented in a decentralized fashion, and empirical evidence
of their speed [4]. Independently, there appears to be at least one other paper concerned with
applying decentralized graph coloring to wireless networks [11].

In terms of prior work on decentralized run time analysis, most notably, Checco et al., analyze
a similar algorithm in great detail. Their algorithms are slightly more complex and less restrictive,
but provably obey an O (n log n) bound. Specifically, to overcome some of the issues outlined in
Section 3.1, they use a periodic fixing mechanic, in which vertices can, oxymoronically, become
fixed and then unfixed [6].

Before Checco et al., there were several papers which also mathematically analyzed decentralized
graph coloring algorithms, although “decentalized” may have varying definitions [7–10].

As mentioned, we once attempted to prove our random start, random order persistent coloring
bound based on the misconception that each unfixed vertex’s color was independently random out
of the set of colors not used by its fixed neighbors. Although we disproved this for persistent
coloring in Section 4.1, a paper by Johansson investigates a similar but round-based algorithm for
which our misconception actually is true, and indeed achieved an O (log n) bound on the expected
number of rounds [15].

Recently, there have been interesting graph coloring results in the field of streaming algorithms,
where information about graphs comes in pieces which we may not be able to memorize. In
particular, Assadi et al. have found randomized algorithms for finding valid (∆+1)-colorings which
counterintuitively take time sublinear in the number of edges [1]. Bera et al. have extended some
of their results to (κ+O(κ))-colorings, where κ is the graph’s degeneracy [3]. We are especially
interested in Assadi et al.’s Palette Sparsification Theorem, which says that if each vertex picks a

11



Table 1: Non-persistent Coloring

Start →
Order ↓

Random Adversarial

Random O (n∆)∗ O (n∆)

Adversarial O(n∆) Θ (n∆)

† Previously known [4]

Table 2: Persistent Coloring

Start →
Order ↓

Random Adversarial

Random Θ (n log ∆) Θ (n∆)

Adversarial O(n∆) Θ (n∆)

Table 3: A summary of our contributions, with the most important results bolded

random log n sized subset of the ∆ + 1 colors, then with high probability there is a valid (∆+1)-
coloring of the graph where each vertex uses a color from its subset. A conjecture of ours related to
Conjecture 1.2 is that E [maxv∈V recolors(v)] = O(log n). If this is true, we believe it may provide
an alternate proof of their wonderful theorem.

Additionally, there has been much work on the problem of distributed graph coloring, in which
vertices can communicate [2]. For example, Bhattacharya et al. have found an algorithm which
repairs graph colorings in O(log ∆) amortized time in response to changes to the graph’s structure
[5].

6 Conclusion

We have thoroughly investigated the decentralized graph coloring algorithms we call non-persistent
coloring and persistent coloring, and an array of their variants. Refer to Table 3 for a graphical
summary of the current state of this problem and our contributions. Most importantly, in order of
appearance, we have

1. Proposed the persistent coloring algorithm

2. Bounded the worst case expected run time of adversarial start, adversarial order non-persistent
coloring to Θ (n∆)

3. Bounded the worst case expected run time of random start, random order persistent coloring
to Θ (n log ∆)

4. Bounded the worst case expected run time of adversarial start persistent coloring to Θ (n∆)

We used three primary approaches to achieve bounds:

1. Comparison to the clique case via coupling

2. Analyzing drift toward convergence

3. Bounding E
[

D
free(v) | rank(v) = r

]
with concentration inequalities.

The conjecture that inspired this work, that the worst case expected run time of fully randomized
non-persistent coloring is Θ (n log ∆), remains both not proven and not disproven. However, we
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have successfully applied the same bound to fully randomized persistent coloring, whose run time
can be neatly segmented into one geometric random process per vertex. In short, we reiterate the
question of whether P = NP , but where the P is for persistent and the NP is for non-persistent.
And in keeping with tradition, we fail to answer it.

Nevertheless, we have significantly increased our knowledge of the speed of decentralized graph
coloring algorithms.
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