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Abstract

We present a novel brain-computer interface
that allows users to control virtual reality us-
ing only their brain waves and eye gazes. The
interface allows users to control multiple ob-
jects with two dimensions of control. The
system is portable, non-invasive, and runs on
commercial-grade hardware. It thus provides a
high-transmission and user-adaptive interface for
users to engage in virtual reality. In addition,
we present a training procedure that allows the
user to increase control over the brain-computer
interface by engaging with the program in an in-
tuitive manner. We explain this procedure and
demonstrate its effectiveness in formulating more
readily interpreted commands.

1 Introduction

A brain-computer interface (BCI) is a device
that directly reads the activity of the brain in or-
der to control an electronic device. For example,
while a keyboard requires manual input, the BCI
equivalent would attempt to decode keystrokes
from patterns of neuronal activity. The possi-
ble utility of BCIs is constantly growing. Such
devices have medical applications, enabling com-
munication for those who have no other ability
to communicate with the outside world [3], but
they can be useful in other ways: such as when
one wishes to communicate silently with the out-
side world or the BCI is less cumbersome than
the equivalent manual interface. [7], for exam-

ple, studied the prospects of a BCI that decoded
brain activity into speech sequences.

While BCIs offer a powerful framework for
augmenting user control, they suffer from sev-
eral limitations that hamper their functionality.
First, a large number of BCIs require either in-
vasive procedures or professional medical setup
in order for the device to properly work. This
process limits the accessibility of the device as a
widespread tool. Second, many BCI implemen-
tations rely on passive, rather than active pro-
cesses. For example, some BCIs, which focus on
decoding the visual stimulus a user attends to,
thus end up limiting user options to the type of
stimuli that are presented. Finally, BCI controls
have often only allowed control of one single ob-
ject, also limiting the range of options that a user
may have available to her.

A main contribution of this paper is to
present a BCI system that jointly addresses these
issues. The system utilizes the Emotiv EPOC
(Figure 1), a commercial-grade electroencephalo-
gram (EEG) that is non-invasive and does not
require medical attention to set up. The pro-
gram affords the user active control over direc-
tional movement, which allows for active, rather
than passive gameplay. Finally, the system is
integrated with the Fove headset which allows
for gaze-tracking, creating an immersive gam-
ing experience in virtual reality. To the best of
our knowledge, this is the first demonstration of
multiple-object control in a brain-computer in-
terface with gaze-tracking

The other main contribution of this paper
is to present a training algorithm such that the
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user can learn to control the brain-computer in-
terface. The convenience and portability of the
Emotiv EPOC come along with the drawbacks
of being less powerful than medical-grade com-
mitment. Therefore, the success of the proposed
BCI is augmented by a training procedure that
boosts a user’s ability to control her brain waves.
While previous studies have developed similar
training procedures, the application to this head-
set and implementation for this headset are new.

Figure 1: The Emotiv EPOC Device.

2 Background and Theory

Relevance of EEG to Virtual Reality. The
primary BCI used for achieving control in vir-
tual reality is an electroencephalogram (EEG), a
standard device in neuroimaging. An electroen-
cephalogram detects the electrical activity off of
the surface of the brain at designated sensors,
which allows the procedure to be non-invasive.
The EEG has the advantage of high tempo-
ral resolution but has relatively poor spatio-
temporal resolution, since it is constrained by the
number of sensors placed on the scalp and only
sums up large sums of electrical activity [2]. The
Emotiv EPOC is an EEG with 14 sensors and
2 reference sensors (Figure 2) compared to the
64 sensors that a standard medical-grade EEG
would have.

Figure 2: locations of EEG sensors for Emotiv
EPOC.

Despite some of the difficulties involved in
the EPOC, such as its lower spatial/temporal
resolution compared to clinical devices, past
demonstrations have shown promise with the de-
vice. [19] showed that the EPOC can be used to
detect motor imagery, and Emotiv introduced a
Cognitiv suite that uses training data. Unfor-
tunately, the algorithms behind this suite are
proprietary, and one study found that users
were only able to achieve 36% accuracy (for 1-
dimensional control, with a neutral option) af-
ter training [9]. My algorithm, by contrast, at-
tempts to achieve a higher degree of accuracy for
2-dimensional control.

The EPOC is a promising candidate for im-
plementing a BCI that works with virtual real-
ity. Some benefits that a BCI can offer to virtual
reality include a higher capacity for rapid trans-
mission of information, ability to monitor user
engagement via monitoring brain waves, and en-
abling control for users who cannot interact with
ordinary gaming controls. By virtue of being a
portable, non-invasive EEG that has relatively
simple setup instructions, the EPOC could make
these benefits more easily realizable for more
users.

Methods of EEG Systems. The type of
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EEG system exploits differences in the sensori-
motor rhythms in different movements in order
to classify between different signals. The current
neuroscientific explanation for the signal that
these interfaces detect is that when movement
is imagined or actualized, the motor cortex sig-
nals synchronize, usually meaning resulting in a
decrease in power per a Fast Fourier Transform.
This change in pattern can then be detected and
measured.

Previous studies, such as [12], have shown
that imagined movements, rather than actual
movements, are sufficient to generate activity.
This means that the user need not actually move
a muscle in order for the signal to change. [22]
found that some users initially initiated move-
ment when initially using the BCI, but were
able to gain control of the device without mov-
ing muscles during later runs, as demonstrated
by the lack of electromyographic (EMG) activity
which occurs during muscle activity.

These differ from algorithms which attempt
to determine what the user is looking at. Steady
State Visual Evoked Potential (SSVEP) based
BCIs determine whether a user is looking at a
stimulus based on the frequency of firing pat-
terns in the BCI [20]. P300 algorithms detect a
spike in activity for around 300ms after a user
views a significant stimulus [5]. However, since
gaze tracking already yields information about
what the user is looking at, we opt to instead
track motor commands which can augment in-
formation based off of gaze tracking.

3 Problems with Robustness

One difficulty in working with EEG is the low
signal-to-noise ratio. On one hand, the spatial
resolution of a typical EEG is low: compared to
a fMRI scan which can record brain activity at a
resolution of 2mm, medical applications of EEG
only have 64 sensors, placed on the scalp, which
makes it difficult to localize different sources of
activity. Second, due to the time-varying signal
of the EEG, the dimensionality of the EEG data
is relatively high. (If there are 14 channels pro-
cessed for 1 second at 128 Hz, there are 1728

dimensions.) Although recent methods in ”deep
learning” [10] have made it easier to extract high-
level patterns from the data, they require a large
training set to achieve good performance, which
might be a daunting ask for a dedicated user.

While good algorithm design and feature se-
lection, described in the next section, may make
it easier to extract the helpful signal from a BCI,
a second difficulty arises from non-cognitive ar-
tifacts that disrupt the EEG signal. The most
conspicuous disruption is blinking. Personal ex-
periments found that it disrupts 10 of 14 EPOC
channels by registering a short spike hundreds of
µV higher than the typical range of activity (-
100 to 100 µV ). While this disturbs the integrity
of the signal, blinks are relatively easy to detect
and classify. Although methods have been de-
veloped in order to eliminate blinking altogether
from datasets, we recognize that blinking is a
natural and likely occurrence in actual game-
play; thus training data should be able to operate
without blinking being taken into account. The
algorithm section below utilizes gaze tracking to
detect blinks and prevent them from interfering
in gaze control.

4 Algorithm Design

4.1 Overview

Figure 4 summarizes the control flow of the pro-
gram at any given time-step. At each interval
(currently set to 336 ms), the program takes as
input data from both the Fove and Emotiv head-
sets. The program uses the EEG data in order
to determine which command (or lack thereof)
to send to an object in the virtual reality sys-
tem. Meanwhile, the Fove data is used for two
purposes: to determine if there was a blink de-
tected by the system, and to determine which
object the user is looking at, if any. If 1) it is
detected that a user is looking at an object, 2)
the user did not blink during the time period of
the study, and 3) the user sent a command to an
object, the program sends the appropriate com-
mand to the virtual reality system. A command
is operationally defined as a direction and a mag-
nitude for the user to move. Due to the current
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Figure 3: Control flow of the program.

cycles of the program, the user can send up to 3
commands per second.

4.2 Motion Command Detection

Preprocessing At each sample, we subtract the
raw data (in µV) by 4200 to offset the values in
the EEG. In order to refine the data and poten-
tially remove the effect of other EEG activity, we
then use common average referencing (CAR) as
a preprocessing step. CAR subtracts the average
value of sensors at a given point in a time series,
thus effectively yielding the voltages relative to
other sensors. Since we only focus on one region,
the

Feature Extraction We consider the activ-
ity over 4 sensors: F3, F4, FC5, and FC6. The
activity of these sensors in particular is helpful
as they are the ones placed closest to the mo-
tor cortex, in order to determine the accessibil-
ity and ease of use in the headset. It is worth
noting that these sensors are not at the optimal
location, since studies such as [22] with 64 EEG
instead evaluated C3/C4, which are directly over
the motor cortex. [4] went as far as to rewire the
headset and build a new shell in order to place
these electrodes in a better location. While this
is certainly a valid approach, we attempted to
maintain the Emotiv EPOC as-is and instead
learn a statistical relation between other features
and the sensorimotor rhythm.

In order to get the activity of the features, we
convert the information from the time domain
to the frequency domain using a Fast Fourier
transform. The Fast Fourier Transform decom-
poses the time series from the previous 43 sam-

ples into a set of frequency bands. Since it eval-
uates the last third of a second, the resolution of
the Fourier transform is approximately 3 Hz. We
use the mu and beta rhythms (approximately 12
and 24 Hz, respectively) as features in the clas-
sification algorithm. These are the common uses
in the literature and relate to effects observed in
sensorimotor rhythms [22]. Studies have shown
that users are able to adaptively control these
parameters over time.

Classification Algorithm At this stage,
we have eight total features: the beta and mu
rhythms for four channels: F3, F4, FC5, and
FC6.

We use two simple linear regression algo-
rithms in order to determine the direction to
move. Each algorithm controls one dimension of
movement. That is, the first algorithm outputs
a classification value of up or down, while the
second algorithm outputs a classification value
of left or right. Therefore, it is possible for the
user to move in two directions in one step.

Similar to [22], we use the difference in mu
rhythms between the two channels on the left
hemisphere of the brain (F3, FC5) and the right
hemisphere of the brain (F4, FC6) to determine
horizontal movement. This wiring allows the
user to intuitively gain control of the brain com-
puter interface by thinking different commands.
In order to move left, the user can think of mov-
ing the left side of their body. Imagination of
activity on the left side of the body leads to
a temporary decrease in the mu rhythm in the
contralateral side, that is, the right hemisphere.
Since this decrease is more strongly detected by
F4 and FC6, the difference in commands is de-
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tected by the algorithm. A similar explanation
can be given for controlling the right hand side,
with an increase in right hand activity resulting
in a decrease in left hemisphere activity.

We use the sum of the beta rhythm power of
the four channels in order to determine vertical
movement. This wiring also yields a potentially
intuitive interpretation: higher levels of imag-
ined activity are connected to upward movement,
whereas lower levels of activity are connected to
downward movement. Note the use of mu, rather
than beta, power in order to establish indepen-
dence of vertical from horizontal movement.

Therefore, the horizontal and vertical classifi-
cation algorithms can be described by equations
1 and 2, respectively:

Mh = wF3,µPF3,µ + wFC5,µPFC5,µ

+wF4,µPF4,µ + wFC6,µPFC6,µ + bh
(1)

Mv = wF3,βPF3,β + wFC5,βPFC5,β

+wF4,βPF4,β + wFC6,βPvFC6,β + bv
(2)

All weights are initialized to 1 except wF4,µ

and wFC6,µ, which are initialized to -1. bh and bv
are bias terms, initialized according to the first
step of the training procedure, described below.
For positive values of Mh and Mv, the system
moves left and down respectively; otherwise, the
system registers the command as right and up.

Training Procedure In order to adapt the
weights of each channel to the individual user
and set biases, we develop a set of training pro-
grams so that the user can learn to control the
user’s activity.

First, the user attempts to train each indi-
vidual command: left, right, up, and down. The
program prompts the user to think one of the
four commands and logs the EEG data for 3 sec-
onds. This information is used to set the bias
terms. bh and bv are set to the average value of
the weighted sums of the horizontal and vertical
power features, respectively.

Second, the user plays a training game, which
is simplified to allow the user to practice control
over parameters. The game is simplified in two

senses: the user only controls one object (no gaze
tracking is involved yet), and the user focuses
on controlling the object in only one dimension.
During each trial, the goal of the user is to move
the object from the center of the screen to an
edge of the screen, set at random. Since the op-
timal strategy is to only make moves in the ap-
propriate direction, the recorded gameplay can
be taken as ground-truth attempts to move in
the selected direction. The gameplay terminates
when the user either reaches an edge (correct or
incorrect) or if the user fails to reach an edge
within 60 seconds. For each trial, the program
records whether the user was successful or unsuc-
cessful, in addition to the EEG power features at
each step.

After the user plays several trials, we uti-
lize a linear regression algorithm to readjust the
weights for each of the features. That is, we at-
tempt to find weights for power features that dis-
tinguish attempts to move in one direction or an-
other. It is then possible to either continue play
of the training game and update weights again
(this time over all trials encountered thus far),
or to continue to the third stage of training.

Third and finally, the user plays a training
game where the user attempts to move the object
to the corner of the screen, rather than the edge.
These attempts can be interpreted as ground-
truth intent to move in two directions; for exam-
ple, movements when the goal is the northwest
corner can be interpreted as attempts to move
up and left simultaneously. The purpose of this
stage of the procedure is to give the user prac-
tice in controlling multiple dimensions simulta-
neously. Once again, we record the result and
data from the EEG signal, and we update the
weights of the algorithm periodically using lin-
ear regression.

4.3 Gaze Tracking

Blink Detection One function of the gaze
tracking system is to detect whether a blink has
occurred. Since a blink renders the EEG data
unreliable, gaze tracking can cancel any poten-
tial movement that may have been classified by
the gaze tracking system. The Fove API has a

5



function that checks whether or not a user’s eye
is closed. In case the user’s eye was closed at
any point during the previous third of a second,
a blink is detected, and any motor commands are
ignored. A script in Unity consistently monitors
whether an eye is closed in order to make this
decision.

Object Localization The second, and per-
haps more central function of the gaze tracking
system is to determine whether the user is look-
ing at an object. If the user is not presently gaz-
ing at an object (as defined by whether or not
the location gazed at coincides with the pixel dis-
play, then no updates to the virtual reality game
will commence. However, if the user is looking
at an object, and no blink has been detected in
the past 1/3 second, then the object moves ac-
cording to the command. For some objects, a
Fove plugin allows some objects to determine if
the user is looking at them. This calculation is
made by taking into account both the user’s head
position and gaze vector. A second script, which
monitors if any objects are looked at, moves the
selected object in the direction specified by the
EEG.

5 Implementation

Figure 4 describes the implementation of the fi-
nal, trained application. The core functions are
implemented with Node.js and Unity, since these
languages support API calls to the EPOC and
Fove headsets, respectively. Unity scripts are re-
sponsible for receiving gaze tracking information
from the headset, as well as processing if an ob-
ject is being viewed and is commanded to move.
However, the code that calculates the Fourier
transform from the raw EEG time series data is
an exception; here, Node.js calls a Python func-
tion and uses its results to perform classification.

This project conducted relatively less pro-
gramming in Unity than in Node.js. However,
one tweak in Unity for the sake of object local-
ization is worth mentioning. The original object
in Unity that moved when gazed at moved in
only one dimension, depending on whether the
left eye or right eye (or both) were looking at

it. For the purposes of this project, we modi-
fied this section of the code to allow the object
to move in two dimensions and according to the
detected command for direction. Retrieving this
command in Unity required communication from
the Node.js program.

However, communication between these lan-
guages raises a problem, since it is not currently
possible to call functions of one language from
the other. To amend this issue, we implement
a simple file buffer that contains the most re-
cent instructions to move: the Node.js program
constantly re-writes the file, and the Unity pro-
gram reads the file whenever it is necessary to
move. While there may be a more elegant way to
transmit this information, this file buffer system
communicates the necessary bits of information
while minimizing the amount of information that
relies on this communication.

Experiments concerning both gaze-tracking
and EEG data were conducted on a Dell Lati-
tude laptop with operating system Windows 10.
As of writing, Windows is the only operating sys-
tem that the Fove headset supports. The Fove
headset itself required two USB connections and
a HDMI port. A position camera, included with
the Fove headset, tracked head movements (in
order to adjust the display to mimic visualizing
a 3D environment) and required an additional
USB port.

The Emotiv EPOC communicated with the
Dell laptop via a wireless connection to a USB
dongle. The Cortex API, which allowed Node.js
to access data from the EEG, required a sub-
scription to an Emotiv service in order to enable
retrieval of raw data. Therefore, it was required
that the user provide credentials for a subscrib-
ing account both in the Node.js code retrieving
data and in CortexUI, an Emotiv application
running in the background. While initial ex-
periments with the EPOC, including some ini-
tial training of one and two-dimensional control,
were run on a Macbook Pro laptop, later ex-
periments shifted to the Dell laptop in order to
accommodate gaze tracking.

The elastic bands of the Fove device were
worn on top of the EPOC, which utilized a rigid
plastic structure to place sensors. Wearing the
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Figure 4: Implementation flow of the program.

Fove device did not result in a need to adjust
the position of EPOC sensors. CortexUI pro-
vided instructions on how to properly wear the
EPOC so that the sensors are in their standard
position. The felt sensors required dampening
via a saline solution in order to achieve opti-
mal recording quality. CortexUI also provided a
color-coded map of sensors indicating the quality
of each sensor’s contact with the scalp. Experi-
ments were only conducted after each sensor was
colored green, indicating a good quality connec-
tion.

6 Results

We have presented a framework for how the
user can learn to improve her proficiency in con-
trolling the BCI via a procedure of automatic
weight adjustment and tuning. It remains to
show whether this training procedure actually
is capable of improving system control. While
this is difficult to analyze during online game-
play, since we lack a way of defining the ”ground
truth” movement a user intends at every step,
we can still evaluate the reliability of the system
based on recordings of earlier training sessions.
The data from these sessions can yield insight
into how much the user’s ability to control mu
and beta rhythms has developed.

To evaluate the effectiveness of training, we
evaluate the ability of a linear regression model
to accurately predict either vertical or horizon-
tal commands from the mu and beta rhythm fea-
tures collected during a prior training session. If

the linear regression model performs better, then
arguably the user has learned to create better
features via more proficient command of the mu
or beta rhythm. Since the user was given the ex-
plicit goal of attempting to move in a certain di-
rection, we have ground truth knowledge of what
they were aiming for, allowing us to train a su-
pervised learning algorithm to model the data.

Therefore, we evaluate two datasets: ”Early
EEG” and ”Late EEG.” These datasets in turn
have two components: vertical movements and
horizontal ones. The mu and beta features col-
lected during Early EEG occurred without prior
training with the Emotiv EPOC or the training
program. That is, the user was told by a script
to think of a certain command without receiving
feedback on whether it was recognized as suc-
cessful. By contrast, Late EEG features were
collected after training with the one-dimensional
and two-dimensional training interfaces imple-
mented in Node.js. Each dataset contains a bal-
anced number of vertical and horizontal move-
ments; there are 408 sets of features for up/down
movement and 424 sets of features for left/right
movement. (Each set of features is a vector of 4
beta or mu features, depending on the dimension
evaluated.)

Both datasets were the result of recordings
for a single user. The ”Early EEG” dataset uti-
lized a shell script that asked the user to imagine
moving left, right, up, or down via a text prompt
on the console display. A round consists of ask-
ing the user to perform each of these imagina-
tion tasks once. After each prompt, the user is
given 3 seconds to prepare before the program
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starts recording raw EEG data.Raw EEG sig-
nal is saved to a CSV file, though for purposes
of comparison, we convert these signals into the
beta/mu features used later on. The program
ends after 3 seconds, from which we can collect
8 sets of beta/mu features. In total, we con-
ducted 60 rounds, although due to a connection
error with the online connection to the Emotiv
service, some of these rounds resulted in a cor-
rupted recording. We therefore had to remove
the corrupted recordings, which slightly reduced
the total amount of data available. (If no data
were corrupted, we would have 480 sets of fea-
tures.)

The ”Late EEG” dataset was collected from
user data in playing a one-dimensional training
game. The program directly saves the mu/beta
features at each time step to a CSV file. The
training game in the horizontal dimension lasted
for approximately 12 seconds, and the training
game in the vertical dimension lasted for approx-
imately 6 seconds. The difference in the duration
of the games is an artifact of the oblong size of
the terminal the training game is played in: the
user’s goal is to make it to the edge of the screen
within a limited amount of time, and the default
terminal size has greater width than height. For
this reason, we collected a higher number of ver-
tical trials than horizontal trials. In total, we
recorded 16 trials of moving left, 16 trials of mov-
ing right, 27 trials of moving down, and 28 trials
of moving up. Horizontal trials produced 35 sets
of beta/mu features each, and vertical trials pro-
duced 16 sets of beta/mu features each. Since
these produce more sets of features than in the
earlier dataset, we limit the dataset to only more
recently recorded trials in order to make sure the
size of the datasets are the same. This limita-
tion ensures a fair comparison of the quality of
the data, since quantity of data available would
likely affect the performance of the classifier.

To evaluate the quality of the linear re-
gression model, we partition the dataset into
two components: training (80%) and validation
(20%). Since the model is trained only on the
training data, the validation error is a helpful
indicator of how well the model generalizes to
previously unseen data. For each data set, we

perform 50 random partitions and compute the
average validation and training accuracy across
the partitions. Performing multiple random par-
titions allows us to compute a confidence interval
for each accuracy. The following table lists the
results, with the higher percentages for each type
of set in bold.

Dataset type Early EEG Late EEG

Horizontal
(training)

52.10 ± 2.05 58.75 ± 0.92

Horizontal
(validation)

47.99 ± 3.12 57.76 ± 3.47

Vertical
(training)

53.56 ± 1.06 58.54 ± 1.14

Vertical
(validation)

51.28 ± 3.29 57.01 ± 3.60

Two notable results arise from this table.
First, and perhaps most notably, the validation
accuracy for both horizontal and vertical move-
ments in the Late EEG is significantly better
than chance (50 percent). Since the validation
accuracy is not better than chance in the Early
EEG data, it is reasonable to suggest that the
training protocol helped contribute to the per-
formance increase. Second, the mean accuracy
values for the Late EEG are higher than those
of the Early EEG for every comparable category,
also pointing to an increased ability of the user
to generate helpful features. In particular, the
mean validation accuracy increases by almost 10
percent and almost 6 percent in the horizontal
and vertical cases, respectively.

We claim that in context, this increase in val-
idation accuracy demonstrates the promise of the
training procedure previously outlined. While it
is unclear how well a user could possibly control
the Emotiv EPOC, we have already seen how
the device fares its disadvantages due to its rela-
tively lower sampling rate and sub-optimal sen-
sor locations for this task. In spite of these dis-
advantages, however, we have shown that these
disadvantages are not insurmountable, since it is
possible for the user to improve performance.

There may be other optimizations to achieve
even greater accuracy independent of requiring
the user to undergo training, such as increasing
the quantity of data trained on or by using a
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more sophisticated classification algorithm. The
purpose of this comparison with linear regression
is to show that it is possible for a user to improve
performance even with a very simple learning al-
gorithm. This is presumably done by the user
learning to generate better brain wave signals
that a program can decode. Thus, the training
procedure developed here can be seen as comple-
mentary to other tactics to improve performance.

7 Related Work

Sensorimotor BCI. [15] demonstrated proof
of concept that users could control a sensori-
motor BCI with control in one dimension after
several hours of training. Research in the lab
since then, as described in findings such as [14],
[16], [13], [17], [21], and [22], have improved on
expanding the functionality of the interface, in-
creasing the number of dimensions users could
control and developing techniques to automati-
cally, rather than manually, set the parameters
for the interface. This thesis utilizes methods
in sensorimotor BCIs developed in these papers,
including using machine learning to learn good
parameters for user control and using the power
of frequencies as features. The additional contri-
bution of this thesis lies in first, adapting these
techniques to work for a commercial-grade head-
set with significantly lower spatial resolution (14
vs. 64 electrodes) and second, in augmenting the
sensorimotor BCI with gaze tracking to allow for
control of multiple objects.

BCIs using Emotiv EPOC. Several stud-
ies have attempted to decode signals from the
Emotiv EPOC, for various tasks such as color
imagination [23], cognitive workload [18], and
motor imagery [19]. Although [19] showed that
motor imagery detection was possible on the
Emotiv EPOC, they merely analyzed classifica-
tion results on a recorded dataset, rather than
during live game play. Other studies, such as
[20], focused on using the Emotiv EPOC to con-
trol a simple Bloons tower defense game. [20]
used a SSVEP-based BCI, which used the BCI
to determine what a user was looking at. While
this example is one of the earliest to demon-

strate a workable BCI on the Emotiv EPOC, the
rate of user control was determined by the rate
the visual stimuli corresponding to the SSVEP
changed, making it difficult for the user to
rapidly transmit commands.

Gaze tracking and BCI. While no previ-
ous projects have used a BCI and gaze tracking
for multi-object control, a few have combined
the technology for different purposes. [6] com-
bine a SSVEP-based BCI and gaze tracking to
reach greater precision for a BCI enabling typ-
ing. [11] presented an early example of a sys-
tem that combined EEG and gaze tracking for
the purposes of object selection in three dimen-
sions. Gaze tracking data determined where on
the 2D screen the user was looking, and imag-
ined arm movements determined where in the
depth dimension to select. While this result was
not implemented as a brain-computer interface,
it served to show that integration of this infor-
mation is possible. [8] is perhaps the most simi-
lar project to our approach, combining an Emo-
tiv EPOC device with eye tracking in order to
control a quadcopter. However, the approach al-
lowed for only control of one object, since the
BCI was used to determine user concentration
and the eye tracking selected a direction to move.
By contrast, this project investigates control of
multiple objects, each of which can move in two
dimensions.

8 Conclusion

We have presented a portable, non-invasive
brain-computer interface that runs on
commercial-grade hardware, allows for control
of multiple objects in virtual reality and is sup-
ported by a training framework. Results indi-
cate the training framework does indeed allow
for better control of the interface. The program
performs online decoding of EEG signals and
maintains checks against possible sources of in-
terference, such as blinking. To our knowledge,
this is the first non-invasive brain-computer in-
terface to allow control of multiple objects in
multiple dimensions. Nevertheless, the project
may benefit from the following extensions:

9



• Addition of a neutral command. This
could be done in multiple ways, for exam-
ple by developing a three-way classification
procedure when training the user with a
brain-computer interface or by detecting
the level of user concentration alongside
command detection and failing to move if
levels of concentration are not high enough.

• Comparison to alternate brain-computer
interfaces with the same equipment. A
reviewer pointed out that the same hard-
ware could be mobilized to accomplish the
same task of multi-object control in a very
different way. Perhaps gaze motion, ex-
tracted from gaze positions, could be used
to signal object motion and SSVEP-based
BCI could be used to determine the ob-
ject. It may then be possible to com-
pare which system is preferred by users for
multi-object control.

• Building practical learning applications to
apply the system toward. One particular
approach that seems promising is to de-
velop a game that requires multitasking
and proficient control of at least 2 objects
in a given scene. [1] found that repeated
play of a clinically designed multitasking
game improved cognitive control and even
attention, especially for aging populations.
Since BCIs have the potential for transmit-
ting a high amount of information each sec-
ond, they could enable novel multitasking
games that could also reap cognitive bene-
fits.

References

[1] Joaquin A Anguera, Jacqueline Boccan-
fuso, James L Rintoul, Omar Al-Hashimi,
Farhoud Faraji, Jacqueline Janowich, Eric
Kong, Yudy Larraburo, Christine Rolle,
Eric Johnston, et al. Video game training
enhances cognitive control in older adults.
Nature, 501(7465):97, 2013.

[2] Mark F. Bear, Barry W. Connors, and
Michael A. Paradiso. Neuroscience: explor-
ing the brain. Wolters Kluwer, 2015.

[3] Ujwal Chaudhary, Bin Xia, Stefano Silvoni,
Leonardo G Cohen, and Niels Birbaumer.
Brain–computer interface–based communi-
cation in the completely locked-in state.
PLoS biology, 15(1):e1002593, 2017.

[4] Stefan Ehrlich, Ana Alves-Pinto, Renée
Lampe, and Gordon Cheng. A simple and
practical sensorimotor eeg device for record-
ing in patients with special needs. In Neu-
rotechnix2017, CogNeuroEng 2017, 2017.

[5] Reza Fazel-Rezai, Brendan Z Allison,
Christoph Guger, Eric W Sellers, Sonja C
Kleih, and Andrea Kübler. P300 brain
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