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Abstract

There is a natural correlation between the visual and auditive elements of a video.
In this work, we use this correlation in order to learn strong and general features via
cross-modal self-supervision with carefully chosen neural network architectures
and calibrated curriculum learning. We suggest that this type of training is an
effective way of pretraining models for further pursuits in video understanding,
as they achieve on average 14.8% improvement over models trained from scratch.
Furthermore, we demonstrate that these general features can be used for audio
classification and perform on par with state-of-the-art results. Lastly, our work
shows that using cross-modal self-supervision for pretraining is a good starting
point for the development of multi-sensory models.

1 Introduction

Image recognition has been at the forefront of deep learning efforts since the breakthrough of AlexNet
[1] and the widespread availability of increasingly large datasets such as Imagenet [2]. Models
pretrained on Imagenet [2] allowed for development of very strong feature extractors that succeed
at every task thrown at them. Similar efforts on video-understanding tasks have been significantly
less successful, as the state-of-the-art models trained on videos [3] barely outperform models trained
on still images. This small margin in performance can be explained by a lack of datasets that are
challenging for video understanding in the same way the Imagenet [2] is challenging for still images.
One could argue that many datasets in the video domain are "easy" in the sense that even humans
could guess the action depicted based on one frame alone — for example, a person holding a baseball
bat on a field is clearly playing baseball or a person on a bicycle is clearly cycling. In other words,
actions tend to be better described by appearance rather than motion. Even though a commendable
effort has been put into developing a new generation of larger and more diverse datasets [4, 5, 6],
they often come with a large cost in terms of time and money.

One way to overcome the lack of challenging video datasets is to extrapolate information learned
from the still images trained on the challenging datasets to a video-understanding setting (e.g. using
inflation as a method of pretraining video models [7]). Another promising approach is to use multi-
sensory aspects of videos in order to increase the amount of information that we can learn and use
from a single video and therefore enrich the existing datasets with information that is already provided
in the video.

In this paper, we take advantage of the multi-sensory aspect of videos to propose a different approach
to pretraining neural networks for tasks of video understanding that is able to leverage additional
information contained in different modalities. We train our networks in a self-supervised fashion that
does not require any manual labelling of the videos, and could theoretically be applied to infinitely
large training sets.

Preprint. Work in progress.



Specifically, we propose a form of co-training where the two modalities provide correlated but
distinct information about the video. We use the audio to supervise the training of video features,
and vice versa to create a balanced co-training scheme. We name this task audio-visual temporal
synchronization (AVTS) and define it as the binary classification problem describing whether a given
audio sample and video clip are synchronised.

Features learned in this way can be used for different video and audio related applications, as a
pretraining for video-understanding tasks, feature extractors for audio related tasks and as a starting
point for further development of multisensory models. Sample applications are illustrated in Figure 1.

1.1 Related work

We are not the first to propose the idea of using the correlation between audio and video as a mean of
developing self-supervised feature extractors. Aytar et al. [8] pioneered the idea of using video as a
form of supervision in order to learn salient sound representations. This idea was taken a step further
by Arandjelovic and Zisserman that devised a way to jointly learn both auditive and visual features
from the same video [9], and later developed and optimised their approach for cross-modal retrieval
and sound localization [10]. Our work differs from these in several important ways. While their
approach used only a single frame of a video and therefore focuses on exploiting the semantic aspect
of the audio-visual correlation, our method uses a video clip as an input, thus taking the temporal
aspect of videos into account as well. Similarly, we argue that our AVTS task is different from their
task of "audio-visual correspondence", as training with AVTS forces the networks to exploit the
correlation of sound and motion within the video in addition to semantics.

In that sense, our work is similar to the problem of synchronization such as the work of Chung
and Zisserman [11], where the correlation of sound and motion was used in order to correlate
movements of the mouth with the words spoken. Here, we expand the scope of that study and show
that applications of this way of training are far greater than just synchronization.

Our work is concurrent with those of Owens and Efros [12] and Zhao et al.[13], however, they differ
in key applications and approach to the problems. The former focuses on the task of audio-localization
within the video domain, while we use the self-supervision for feature learning. The later is similar
in spirit to ours, but we present stronger experimental results on comparable benchmarks, with a
substantially different technical approach.

Figure 1: Sample applications of our system

(a) Pretrained audio
subnetwork as a fea-
ture extractor.

(b) Pretraining for
video-based action
recognition.

(c) Cross-modal ac-
tion recognition

(d) Sound and motion
localization.

2 Technical approach

Our training procedure is the biggest differentiator between our method and those of Arandjelovic
et al. [9], and Owens et al. [12] as we train with a different objective in mind and receive benefit
from curriculum learning. In order to do so, we propose a training task of audio-visual temporal
synchronization (Sec 2.1), contrastive loss as an objective (Sec 2.2), and curriculum learning scheme
[14] with carefully chosen negative examples (Sec 2.3 and 2.4). Finally, we outline the details of our
architecture in Sec 2.5.
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2.1 Audio visual temporal synchronization (AVTS)

Assume a given dataset consisting of N audio-video pairs (a(i), v(i)), where (a(i) is an i-th audio
clip, and v(i) is an i-th video clip. For i-th pair at training time, we have a label y(i) 2 {0, 1} which
indicates if the pair is "in-sync" or not. If y(i) = 0, then pair (a(i), v(i)) is picked either from different
videos, or are misaligned within the video. If y(i) = 1, the pair is in perfect sync.

At a very high level, the goal is to find a classification function that minimizes the error on as many
pairs as possible. We define our function in terms of two processing streams that provide feature
representation for each modality, and the function fuses the representations and perform the final
prediction. The detailed explanation of how we evaluate AVTS task is provided in the experiments
section 3.1.

2.2 Learning objective

Our objective is to make the output of the audio similar to the output of the video for the corresponding
pairs, and different for the mismatched ones. It is still completely self-supervised and no action labels
are seen during training time.

Following procedure in Chung et al [11], originally developed for training of Siamese networks [15],
we attempt to minimize (or maximize) the contrastive loss function. If the distance between the n-th
audio and video vector is dn = ||vn � an||2 then contrastive loss is given by

E =
1

2N

NX

n=1

(yn)d
2
n + (1� yn)max(margin� dn, 0)

2 (1)

where N is the number of examples and yn is the indicator variable which is 0 if n-th video
corresponds to n-th audio and 1 otherwise, and margin is a hyperparameter set to 0.99. In prin-
ciple, another possible approach would be to train the network as a classification problem using
cross-entropy loss function, however, in our set-up, we were unable to achieve convergence. With
higher-dimensional output and architecture modifications (three fully connected layers added after
concatenation), we were able to achieve convergence, but there was no benefit to the performance
on AVTS task (67% in 90 epochs, as opposed to 69% with our system), nor feature quality (71% on
ESC50, compared to 82% of our system).

2.3 Selection of negative examples

For each example, we choose whether it is a positive or a negative example with 50% probability.
We consider positive examples to be those where video frames correspond in time with the audio
example. We divide negative examples in two categories; easy negatives are those where the frames
and sound come from different videos, and hard negatives which are those where the pair is taken
from the same video, but there is at least half-a-second time gap between the two. Additionally, we
have tried extending this idea and using super-hard negatives which we define as audio examples
from the same video that has a fixed overlap with the timing of the image frames, but such negatives
were not beneficial for neither training nor feature quality.
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Figure 2: Example of a positive and a "hard" negative taken from the same video. Positive audio
example is one that corresponds in time to the video frames. A "hard" negative audio sample is
one that is misaligned with the frames by more than half a second, and "super-hard" negative is
misaligned, but has a fixed 0.2s overlap with the positive example.

2.4 Curriculum learning

As a baseline, we trained the system from scratch with easy negatives alone, with hard negatives
alone, as well as with the fixed proportion of hard negatives. We have found that when hard negatives
were introduced from the beginning — either fully or as a proportion — not only was the initial loss
significantly higher (which is to be expected), but the objective was close to impossible to optimize.
Similarly, they produced poor results on AVTS, as well as other downstream tasks. However, if we
introduced the hard negatives after the loss stagnated (in our case between 40th and 50th epoch),
the optimization continued, and resulting features yielded better results on AVTS task and in every
quantitative aspect that we have evaluated them by. Empirically, we have found the best results when
25% of all negatives were hard negatives. Table 1 reflects the difference in performance on AVC task
between curriculum learning and learning with easy or hard negatives from scratch.

Table 1: Impact of curriculum learning on the performance of the AVC task on Kinetics. Performance
is shown next to the benchmark L3 net [9]. Clearly, the model trained sequentially achieves significant
boost in performance.

Method Negative type Epochs AVTS Accuracy

Single learning stage
easy 1 - 90 69%
easy + 25% hard 1 - 90 59%
hard 1-90 52%

Curriculum learning easy + 25% hard 51 - 90 78%
hard 51-90 66%

2.5 Architecture details

Our training architecture is composed of two main parts: audio subnetwork and video subnetwork,
each taking the respective input, and pre-processing. The overview of our architecture can be seen in
Figure 3. The in-depth description of the video and audio subnetwork follows in section 2.5.1 and
2.5.2 respectfully.
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Figure 3: Architecture design and overview can be seen in a), video subnetwork based on MCx
family of architectures in b), and audio subnetwork based on VGG-like model used by Chung et al.
[11] in c).

2.5.1 Video

Our video subnetwork is based on a mixed convolution (MCx) family of architectures [16, 17]. We
chose this particular family of architectures because it allows for a precise learning of "motion"
descriptors in early 3D layers and achieves good performance on video-understanding benchmarks.
We found that within our system MC3 yields the best performance overall and is used whenever not
specified otherwise. In the evaluation of the video features, we also show results for MC2 in order to
asses the importance of that additional 3D layer block. Full details of MC3 architecture are discussed
in Tran et al [17]. Note that our architecture differs from the original in the dimensionality of the
final FC layer and the lack of residual connections.

The input in our video subnetwork are video clips of size (3 ⇥ t ⇥ w ⇥ h), where t is number of
frames, 3 is number of channels (RGB), and h,w are height and width respectfully. In order to keep
pooling sizes and final dimensionality the same, we keep the number of frames t = 25 regardless of
the different sampling rate for different datasets.

2.5.2 Audio

An mp3 audio is extracted from each video, FFT-filterbank features are extracted and normalized, and
then passed through our audio subnetwork. The design of audio subnetwork is based on VGG-like
architecture with batch normalization used for audio-visual synchronisation in Chung and Zisserman
[11].

2.6 Implementation details

Input alignment and pre-processing: The starting frame of each clip is chosen at random within a
video. The length of each clip is set to t = 25 frames. This results in a clip duration of 1 second on
all the datasets considered here except for HMDB51, which uses a frame rate different from 25 fps
(clip duration on HMDB51 is roughly 1.2 seconds). Standard spatial transformations (multi-scale
random crop, random horizontal flip, and Z normalization) are applied to each frame with consistent
parameters across all frames of the clip at training time. FFT- filterbank features are extracted from
the aligned clip, and Z normalization is applied. The filterbank parameters are set as follows: window
length to 0.02, window step to 0.01, FFT size to 1024, and number of filters to 40. Mean and standard
deviation for normalization are extracted over a random 20% subset of the training dataset.
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Training details: We train both video and sound networks using stochastic gradient descent with
initial learning rate determined via grid search, and both networks streams are trained simultaneously.
Training is done on four GPUs with mini-batches of size 64 per GPU. Learning rate is multiplied by
0.1 each time the loss value fails to decrease for more than 5 epochs.

3 Experiments

3.1 Evaluation on Audio-Visual Temporal Synchronization

The first benchmark we look at is how well the system performs on the AVTS task — is the audio
clip "in-sync" with the video clip. We use two methods of evaluation: setting a threshold on dn, and
fine-tuning FC layers on top of the learned feature extractors.

In order to directly compare the results of our training method with the one of Arandjelovic et al [9],
we add two fully connected layers (512, 512; 512, 2) after feature concatenation after training, and
fine-tune the best model for binary classification task of whether the video is synchronized to the
audio. In order to have results completely comparable to those of Arandjelovic et al [9], for final
evaluation, we only consider "easy" negatives. Results on Kinetics dataset can be found in Table 1.

While setting a threshold on dn did get a comparable performance for easy negatives (76% on
Kinetics), we found it to be unreliable and largely inferior when hard negatives were introduced, as
the performance dropped to under 70% accuracy on Kinetics.

3.1.1 Results and discussion

At 78% at Kinetics [4] and 86% on Audioset [5] our model marginally outperforms the L3Net (74%
and 81% respectfully) [9]. The inclusion of hard negatives during training allows us to maintain a
reasonably high performance when hard negatives are included in the testing set (70% on Kinetics),
which outperforms our implementation of L3 Net whose performance drops drastically when hard
negatives are included (57% in our experiments). Performance on the AVTS task is, however, not
our main objective, but only a proxy for learning rich representations. In the following sections, we
present and discuss the results of the evaluation of auditive and visual features and the significance of
our training procedure for each of them.

3.2 Evaluation of AVTS audio features

In this section we evaluate features learned through our approach. Namely, we train our system in a
self-supervised fashion on different datasets, and evaluate results on standard sound classification
datasets: ESC-50 [18] and DCASE2014 [19].

The ESC-50 dataset [18] is a labelled collection of environmental recordings suitable for bench-
marking methods of sound classification. It consists of 2000 sound recordings, each of which being 5
seconds long and organized in 50 semantic classes. Each class consists of approximately 40 examples.
Results on ESC-50 are summarised in Table 2.
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Table 2: Evaluation of our audio features on ESC50 [18] dataset. "VGG-like" is a baseline perfor-
mance of our sound extractor architecture trained on ESC50 without AVTS pretraining.

Method Pretraining
Dataset

# auxiliary
training examples Accuracy

SVM-MFCC [18] none none 39.6%
Random Forest [18] none none 44.3%
VGG-like none none 61.6%
SoundNet [8] Flickr-SoundNet 2M+ 74.2%
L3 Net [9] Flickr-SoundNet 2M+ 79.3%

AVTS features Kinetics 230K 76.7%
AVTS features AudioSet 1.8M 80.6%
AVTS features Flickr-SoundNet 2M+ 82.3%
Human performance [9] n/a n/a 81.3%

State-of-the-art (RBM) [20] none none 86.5%

Commonly used for the evaluation of audio representations, DCASE2014 training dataset consists
of 10 seconds long audio segments from 15 acoustic scenes; each acoustic scene has 312 segments
totalling 52 minutes of audio for training. Evaluation dataset consists of 10 seconds long audio
segments from 15 acoustic scenes, where each acoustic scene has 108 segments totalling 18 minutes
of audio. Results of the classification on DCASE2014 can be seen in Table 3

Table 3: Evaluation of the audio features on DCASE2014 [19] dataset. "VGG-like" is a baseline
performance of our sound extractor architecture trained on DCASE2014 without AVTS pretraining.

Method Pretraining dataset # of training
examples Accuracy

SoundNet [8] Flickr-SoundNet 2M+ 88%
L3 Net [9] Flickr-SoundNet 2M+ 93%
VGG-like None 4.6K 72%

AVTS features Kinetics 230K 91%
AVTS features AudioSet 1.8M 93%
AVTS features Flickr-SoundNet 2M+ 94%

3.2.1 Experimental procedure

In order to evaluate our performance, we train a multiclass one-vs-all linear SVM on the features
extracted from conv_5 layer of our audio subnetwork without fine-tuning. For each five-second clip
of the ESC-50 dataset, we extract 10 equally spaced two-second subclips, while for the 6⇥ longer
DCASE clips we extract 60 two-second subclips, and report the final clip score as the average over
scores of its subclips.

3.2.2 Results and discussion

Our results in the audio domain show that our pretraining method is able to learn strong audio
representations even on relatively small datasets, and that the representations learned with our method
outperform our randomly initialized audio network trained on the training portion of ESC50 and
DCASE2014 datasets (see "VGG-like" in Tables 2 and 3). Our best result not only outperforms
other self-supervised benchmarks but also marginally surpasses human recognition benchmark on
ESC50 [18]. Additionally, we have found that by using filter banks as an audio input improves our
performance compared to MFCC features used by Chung [11] (71.9% on ESC50 when pretrained on
Kinetics compared to 76.7% with filter banks). Furthermore, using filter bank features allows for
a fairly consistent training of our model — something we were not able to achieve with raw audio
signals as proposed by Aytar et al. [8].

7



3.3 Evaluation of AVTS video features

In this section, we evaluate the strength of the video features learned by our video subnetwork. We
fine tune the network on smaller datasets and compare the results with the same network architecture
trained from scratch, as well as with the models trained on a fully supervised action recognition task
on Kinetics. Rather than set state-of-the-art performance, we aim to persuade the reader that our
pretraining does not only beat random initialization, but it also tracks more than just the appearance,
which is one way of explaining the on-average larger difference between the clip and video accuracy
for the self-supervised system. The discussion of the experimental procedure can be found in section
3.3.1.

First, we evaluate our pretraining by fine-tuning the best video model on UCF101 action recognition
dataset [21]. UCF101 is an “action recognition dataset of realistic action videos, collected from
YouTube, having 101 action categories” [21]. The dataset contains 13,320 videos in 101 balanced
classes with variable camera movement, object occlusions, background noise, etc. We use standard
train/test splits as defined by the authors. Results can be found in Table 4.

We also evaluate the strength of our features on HMDB51 [22] dataset. It contains 6,849 labelled clips
collected from various public databases, divided into 51 action categories, each category containing
at least 101 clips. We use standard train/val/test split as defined by the authors. Results can be found
in Table 5.

3.3.1 Experimental procedure

In order to obtain the following results, we load the weights of the video subnetwork belonging to the
model that achieved the best performance on the AVTS task. Next, we truncate the fully connected
layer of the MCx architecture with one with appropriate size for the dataset in question. The learning
rate is reduced by a factor of 10 from the learning rate that is optimal for the action-recognition task
and the network is fine-tuned for 30 epochs.

Table 4: Evaluation of spatiotemporal features learned through AVTS after fine tuning on UCF101
[21] dataset. We report clip and video level accuracies of the baseline models trained from scratch,
models pretrained on Kinetics[4] dataset with action categorization labels as an upper bound, and
models using our proposed method. Additionally, we compare them to the current state of the art.

Video Network
Architecture Pretraining Dataset Pretraining

Supervision Method Clip@1 Video@1

MC2 None NA 42.60% 67.23 %
MC3 None NA 44.28% 69.11 %

MC2 Kinetics self-supervised 56.11% 83.57%
MC3 Kinetics self-supervised 58.62% 85.84%

MC2 Kinetics fully supervised 67.48% 87.85%
MC3 Kinetics fully supervised 71.58% 90.53%

I3D - two stream [7] Imagenet + Kinetics fully-supervised / 98.00%
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Table 5: Evaluation of spatiotemporal features learned through AVTS after fine tuning on HMDB51
[22] dataset. We report clip and video level accuracies of the baseline models trained from scratch,
models pretrained on Kinetics[4] dataset with action categorization labels as an upper bound, and
models using our proposed method. Additionally, we compare them to the current state of the art.

Video Network
Architecture Pretraining Dataset Pretraining

Supervision Method Clip@1 Video@1

MC2 None NA 18.21% 41.21%
MC3 None NA 18.77% 43.86%

MC2 Kinetics self-supervised 25.21% 54.26%
MC3 Kinetics self-supervised 26.89% 56.91%

MC2 Kinetics fully-supervised 40.32% 61.99%
MC3 Kinetics fully-supervised 45.81% 66.84%

I3D - two stream [7] Imagenet + Kinetics fully-supervised / 80.70%

3.3.2 Results and discussion

Using self-supervision in this way, we have been able to learn very strong visual representations using
our pretraining method, which our results clearly convey. The highlights of our results, however, are
the increase in performance between clip and video level predictions, as well as the boost we receive
from self-supervised pretraining.

On both datasets, our system is closer to the fully supervised upper bound in the video level predictions
than it is on the clip level. We attribute this performance gain to the fact that our network seemed to
learn features that are more related to the relationship of sound and motion in addition to semantics.
This intuition arises from looking at numerous visualizations, such as CAM activations in Figure 4 —
for instance, the player’s head only moves when it turns marginally, or swimmer’s body is only lit up
while he is actively splashing. While only qualitative, this type of patterns, where the activations are
higher around the moving objects that make a sound, appear time and time again.

On both datasets, our pretraining provides a significant boost over a network trained from scratch
(+16.7% on UCF101 and +13.0% on HMDB51 for MC3). As expected, making use of Kinetics
action labels yields further boost, but the performance gaps are not too large, and may potentially
be bridged by making use of a larger pretraining dataset since no manual cost is involved for our
procedure.

Figure 4: Sound and movement localization can be achieved by looking at grad-CAM activations
overlay over video frames, with threshold applied to avoid random noise at low intensity. An
interesting note is that the subject’s head does not show up activated until it marginally moves in the
frame.

3.4 Multisensory extension of action recognition

Following the example of Owens et al. [12] we combine our learned features and use them in
conjunction in order to obtain a result on action recognition. Similar to AVC task, we concatenate
audio and visual features and add two fully connected layers (512, 512; 512, output class number), and
then fine-tune the entire system. In only 20 epochs we achieved the same level of performance as we
did with our video stream only, and after fine-tuning for 30 epochs, our model was performing more
than a random chance better (see Table 6 for comparison with other self-supervised and multisensory
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methods). We suspect that even better results can be achieved with more sophisticated fusion methods
and larger pretraining datasets.

Table 6: Comparison of self-supervised models on UCF-101 [21]. Fully supervised state-of-the-art is
at the bottom.

Model Accuracy

Purushwalkam et al. [23] 55.4%
Owens et al. (vision only) [12] 77.6%
Ours (vision only) 85.8%

Owens et al. (multisensory) [12] 82.1%
Ours (multisensory) 87.0%

4 Conclusion

We have shown that optimizing the correspondence of audio-visual representations can be used to learn
powerful representation in both audio and video domains. Our audio representations were powerful
even when trained on a relatively small dataset, such as Kinetics, and surpassed all self-supervised
methods on different scene classification benchmarks. Similarly, using additional information from
audio allowed for a powerful initialization for action recognition task on videos, setting respectable
results on both UCF101 and HMDB51 benchmarks and setting the state-of-the-art for self-supervised
methods. Finally, we show that training with a temporal aspect is crucial for a success on downstream
tasks with a temporal domain (such as video). This can be seen in our summary Table 7, where we
can clearly evaluate the performance benefit of features trained with spatiotemporal features over
the single-frame approach of L3Net [9]. Furthermore, the table shows the implications of AVTS
performance on other downstream tasks, and the importance of curriculum learning.

Table 7: Implications of AVTS performance on the quality of the features. All models are pretrained
on Kinetics unless otherwise noted.

Method AVTS ESC501 DCASE20141 HMDB51 UCF101

AVTS - curriculum 78% 82% 94% 57% 86%
AVTS - combined 69% 71% 89% 46% 77%

L3 Net [9] 74% 79% 93% 40.2%2 72.3%2

Our network seems to learn more than just semantics, and we argue that what it learns are aspects
of motion, that are informed not by action labels but by the innate correspondence to audio. This,
we believe is an inspiring new frontier of research, as it shows that we can augment the datasets that
already exist, create larger datasets, and set a strong benchmark for what comes ahead. We hope that
the ability to easily use this multisensory information in a classification setting indicates that we are
on the right track in pursuit of improving video understanding.
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