View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Dartmouth Digital Commons (Dartmouth College)

Dartmouth College

Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

5-31-2018

IPv6 Security Issues in Linux and FreeBSD Kernels: A 20-year
Retrospective

Jack R. Cardwell
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

b Part of the Computer Sciences Commons

Recommended Citation

Cardwell, Jack R., "IPv6 Security Issues in Linux and FreeBSD Kernels: A 20-year Retrospective" (2018).
Dartmouth College Undergraduate Theses. 128.
https://digitalcommons.dartmouth.edu/senior_theses/128

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://core.ac.uk/display/337600966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/128?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

DARTMOUTH COLLEGE COMPUTER SCIENCE
TECHNICAL REPORT TR2018-843

IPv6 Security Issues in Linux
and FreeBSD Kernels: A
20-Year Retrospective

Jack Cardwell

Advisor:
Sergey Bratus

May 31, 2018

Abstract

Although IPv6 was introduced in 1998, its adoption didn’t begin to take
off until 2012. Furthermore, its vulnerabilities haven’t received as much at-
tention as those of IPv4. As such, there is potential to exploit these vulner-
abilities. With the amount of IPv6 traffic rapidly increasing, these exploits
present real-world consequences. This paper aims to re-evaluate the security
of TPv6 stack implementations in FreeBSD and Linux kernels, specifically
FreeBSD 11.1 and Ubuntu Linux 4.13. It contributes to the literature in
three ways. We first reproduce ten vulnerabilities from existing research to
determine whether known bugs have been patched. Then, we examine two,
new vulnerabilities in IPv6 extension headers and options. Not only does
this paper demonstrate the vulnerabilities in the kernels’ implementations,
but it also aims to show where these parser differentials likely originate in
the kernel’s source code. Our hope is that the fuzzing cases from this paper
can be built into an automatic fuzzing framework that will facilitate the dis-
covery of new vulnerabilities and ensure the security of this protocol moving
forward.

1 Introduction

Internet Protocol Version 6 was developed and introduced by the Internet
Engineering Task Force (IETF) in 1998 to replace the existing protocol, ver-
sion 4 [1]. Primarily, it responded to the shrinking IPv4 address space that
was still available, expanding the address size from 32 bits to 128 bits. RFC
2460 also provides three other rationales for the development of IPv6: the
simplification of IP headers, the improvement of support for options and ex-
tensions, and finally the capability to label packet flows [1]. The IETF writes
that early adopters of IPv6 address space may have been influenced by the
relatively cheaper cost of a gradual IPv6 deployment, when compared to the
enormous costs of a rapid deployment when IPv4 space eventually becomes
depleted. The same report states that an IPv4 address was near its max
projected cost in 2017 and that the cost of maintaining the stability of an
[Pv4 address was also rising, given the relative complexity of [Pv4 headers
2].

IPv6 headers represent a dramatic shift away from those of their prede-
cessor, shifting many of the IPv4 header fields into extension headers and
options. This likely happened due to errors in handling IPv4 options, some
of which were officially decremented in RFC6814 [3]. Furthermore, IPv6 did
away with broadcast addresses, as in IPv4. Instead, it switched to a sys-
tem of multicast, unicast, and anycast addresses. Along with this change,
[Pv6 also switched from Address Resolution Protocol (ARP) to Neighbor
Discovery Protocol (NDP) to accomplish address resolution. This change
is especially significant because it switched responsibility of network config-
uration to ICMPv6. In order to facilitate the transition between versions,
some providers have implemented dual IPv4/IPv6 stacks, which was deemed
best practice by RFC 6540 [5]. Additionally, tunneling IPv6 traffic over IPv4
connections has become prevalent [4]. While these have eased the transi-
tion from IPv4 to IPv6, this traffic will eventually switch to IPv6, further
increasing the need for its stability.

1.1 Security Concerns

Since [Pv6 was introduced in 1998, the IPv6 header has been researched and
some vulnerabilities have been documented. Figure 1 shows a graph of all
documented vulnerabilities in the Common Vulnerabilities and Exposures

(CVE) database, categorized by year.! These vulnerabilities were found by
running a keyword search for ipv6. There are two reasons why the number
of vulnerabilities may fluctuate with time. First, researchers may become
better at discovering new attacks. Second, the kernel source code may be
evolving, opening up new areas of the code to attack. The bars in Figure
1 represent the lines of code in the FreeBSD netinet6 and the Linux ipv6
directories. The graph shows that there is no clear relationship between the
size of the kernel code and the number of vulnerabilities found in each year.

Reported IPv6 Vulnerabilities Relative to Lines of IPv6 Kernel Code

55000 70

@
S

50000

«
S

45000

IS
S

[—FreeBSD Lines

EZXAlinuxLines

Lines of Code
w
&

40000
=i of Vulnerabilities

Number of CVE Reports

N
S

35000

30000 H 0

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Year

o
5]

Figure 1: Reported IPv6 Vulnerabilities Relative to Lines of IPv6 Kernel
Code

This section aims to identify the known vulnerabilities and summarize
the existing research that has been done on both the Linux and FreeBSD
kernels.

Router and Neighbor Discovery Attacks

In order to configure a new appliance with an IPv6 address, the machine
must first obtain a unique address in the network. This step must be taken
regardless if the device is manually configured, stateless auto-configured, or

Thttp://cve.mitre.org

stateful auto-configured. Neighbor Discovery Protocol (NDP) is used to ac-
complish this. Specifically, when a device first joins a network, it sends out
a Neighbor Solicitation message with the requested IPv6 address to all other
nodes on the same network. This exploit was documented in CVE-2008-2476
and Lecigne et al. [7] [6]. The authors demonstrate that this protocol is eas-
ily exploitable. Simply by sniffing on the network and responding to each
Neighbor Solicitation message with a spoofed Neighbor Advertisement, no
new hosts can gain access to the network. Lecigne and Neville-Neil demon-
strate this vulnerability in FreeBSD in their 2006 paper, but the same logic
should hold in Linux [6].

Neighbor Advertisements are also susceptible to a similar attack that
overwrites the cache that maps each neighbor to its link-layer address. An
attacker can spoof a Neighbor Advertisement message with the override flag
set in the packet. So long as the packet includes a valid link-layer address,
this packet can overwrite the victim’s cache, such that all packets sent to
the spoofed source address are directed to the attacker’s link-layer address,
instead of the intended destination’s link-layer address. This attack was
previously carried out on Windows machines, as documented in CVE-2007-
1532 [8].

Because of the host’s ability to independently configure itself, Router
Advertisements fall victim to the same sort of logic. An attacker can sit
on a network, sniffing for valid Router Solicitation packets from other hosts.
When the attacker detects a Router Solicitation packet, it can respond with
its own address, such that it sits in the middle of all packets from the vic-
tim. Furthermore, the attacker could cause a denial of service if it inserts a
non-existent router address. However, without any recirculation of these mal-
formed packets, these attacks are only effective for a certain period of time,
until the victim’s routing table times out sends a new Router Solicitation
message.

ICMPv6 Attacks in IPv6

Internet Control Message Protocol Version 6 (ICMPv6) functions very sim-
ilarly to its IPv4 counterpart, often used to send error messages between
hosts to configure a connection. Lecigne et al. 2006 detail some of the ways
to manipulate these messages in order to exploit the IP stream [6]. These
attacks are effective because RFC1122 states that all TCP connections must
act on ICMP error messages passed up from the IP layer [9].

The first way that I[CMPv6 can be used maliciously is to shrink the Maxi-
mum Transfer Unit (MTU) of a connection in order to slow the traffic between
two hosts. This is easily achieved by sending an ICMPv6 Too Big Message
from the attacker to the victim. This attack was documented by Gont in his
internet draft [10]. Per RFC 2460, all MTUs must be a size of 1280 octets or
higher within an ICMPv6 Too Big packet [1]. Otherwise, the packet should
be discarded. These ICMPv6 Too Big packets are used during the Path
MTU discovery process to determine how large a packet can be when sent
to a node, which is well documented in RFC 1981 [11]. Previous research
has sought to verify whether kernels properly verify MTU and whether the
results are as expected. If the victim did not verify the MTU, the attacker
could slow traffic and potentially cause a DoS. According to CVE-2008-3530,
both FreeBSD and NetBSD were previously vulnerable to this type of attack
[12].

In addition to slowing down a connection between two hosts, ICMPv6
messages can be used in such a way to terminate the same connection. Specif-
ically, an attacker can insert an ICMPv6 Destination Unreachable message
with a number of different options. There are many reasons why a spoofed
ICMPv6 Destination Unreachable message may stand out as unusual to the
end node, but not all kernels check these cases. Gont discusses these cases
in his internet draft “ICMP Attacks Against TCP” [10]. For instance, it
wouldn’t make much sense if a TCP connection is in the CONNECTED
state and the victim receives a Destination Unreachable message, with a
Protocol Unreachable option. Lecigne et. al 2006 verify that FreeBSD is
not vulnerable to this attack, but it is possible that Ubuntu Linux 4.13 or
versions of FreeBSD, past 11.1, are susceptible [6].

Spoofed Router Advertisements are one way to sit in the middle of a
connection, but ICMPv6 offers another way to achieve the same outcome.
An attacker can start by sniffing for any traffic on an interface. When it
sees some traffic between two connections, it can send an ICMPv6 Redirect
message, informing the victim that it needs to update its routing table with
the address specified in the message. If the attacker uses its own link-layer
address and the victim trusts the message, then the attacker can view all
traffic that is sent from the victim. This vulnerability, along with many of
these systemic vulnerabilities, may not be easily patched, short of ignoring
ICMPv6 Redirect messages. RFC 4301 states that each kernel’s implementa-
tion must be configurable, such that some of these messages can be ignored
[13]. However, this configuration could degrade services, such as prohibiting

5

the discovery of the best route for a message.

Other Attacks

There are a few other parser attacks that have been explored, which do not
quite fit into the above categories. The first attack is perhaps the most well-
known hack on a network stack: the Ping of Death. This attack fragments
an I[CMPv6 Echo Request that, when chained together, is larger than the
maximum size of an IP packet, 65535 bytes. Because this packet is frag-
mented, each individual packet in the sequence would appear legitimate to
the kernel. If the victim’s stack does not properly check fragment lengths
before reassembly, this attack could overwrite the receive buffer or cause the
kernel itself to crash.

Another attack that has been widely discussed, the Rose Attack, revolves
around sending fragments of a packet in an attempt to overwhelm the victim’s
receive buffer. To accomplish this attack in IPv6, one must make use of the
Fragment Extension header. When a valid message is fragmented and sent,
the receiving stack saves the packets into a buffer and waits until all pieces
of the message are present before reassembling them. In doing so, the stack
may allocate memory for fragments that it has not yet received, but expects
to see, based on the sequence numbers. The Rose Attack consists of sending
a number of fragments with different sequence numbers, such that there are
many gaps left in the packet that might be allocated for. Theoretically when
enough of these packets are sent, the victim will reject all other traffic because
its receive buffer is full [6]. Therefore, by simply controlling which packets
are sent, an attacker could cause a DoS. Lecigne et. al show that FreeBSD
is not vulnerable to this attack, but the results could differ in newer versions
of the kernel or in Linux [6]. This paper replicates these tests in order to
determine whether the systemic vulnerabilities have been patched.

2 Contributions of this Paper

This paper contributes to the current literature in three primary ways. First,
this paper will re-evaluate the vulnerabilities that were discussed in the pre-
vious section. By testing known vulnerabilities, this paper shows whether
bugs discovered roughly twelve years ago in Lecigne et. al 2006 have been
patched in FreeBSD 11.1 and Ubuntu Linux 4.13. The results could also

change because networks are now faster, which makes it more difficult to
insert packets before the true network responses reach their destinations.

Next, this paper furthers the study in this field by considering a number
of new parser differentials. Specifically, this paper presents two malformed
packets that are handled differently by the FreeBSD and Linux kernels. By
presenting these parser differentials, this paper offers a tool to profile a vic-
tim’s network stack, based on a number of different edge cases. These parser
differentials could also be used to evade network intrusion detection systems
(NIDs). Through these two methods, this paper offers a glimpse into the
state of IPv6 implementation in two popular network stacks. The findings of
this paper are summarized in Table 1. Rows 1-10 of Table 1 are attacks that
are replicated from existing literature, while rows 11 and 12 are new tests,
unique to this thesis.

This paper finally contributes to the literature by providing rationale for
an automatic IP stack fuzzer. We draw the distinction that an automatic
fuzzer is able to interpret stack’s responses and adapt new packets, inde-
pendent of any human interaction, while an automated fuzzer still requires
human intervention. Many fuzzers exist, such as American Fuzzy Lop (AFL)
and The Hacker’s Choice toolkit, but these programs often rely on a default
set of rules or are not completely automatic.? ® Other implementations rely
on randomly shifting bits in a IP header. In this sense, the existing pro-
grams are unintelligent and could waste time testing senseless cases. This
paper suggests that there are intelligent ways to fuzz a network stack that
could uncover new vulnerabilities and enhance the security of the network
stack.

3 Packages and Tools

This project made use of many different packages and tools in order to test
the two different network stacks. Most fundamentally, this project depends
on running the two different kernels. Oracle’s VirtualBox was used as an
environment to test the kernels’ responses to these malformed packets in an
internal network. One drawback to this approach is that the internal virtual
network lacks the middlemen such as firewalls that could impact the delivery

2http:/ /lcamtuf.coredump.cx/afl/
Shttps://github.com/vanhauser-the/thc-ipv6

of a packet to the end node. However, since the goal of this paper is to
investigate the behavior at the end node, this downside is not significant.

Three virtual machine images were created for the VirtualBox environ-
ment. The first machine, the source of all malformed packets in this setup,
was running Ubuntu Linux 4.8.0. The two victims’ machines, whose stacks
were being fuzzed, ran FreeBSD 11.1 and Ubuntu Linux 4.13. All of these
virtual images were created from source code, such that the network stack
could eventually be traced with the same source code.

Packet creation was facilitated through the usage of Scapy, a Python-built
module that extended its library to handle IPv6 packets in 2012. * This
package saved countless lines of code and allowed the project to focus on the
packets’ contents, instead of the packets’ raw bytes. The Scapy library was
run over Python 2.7.12 on the Linux host machine. Tepdump and Wireshark
were also installed on this machine in order to track responses to the packets
being sent from the fuzzer. Finally, all fuzzing scripts are publicly available
on GitHub. °

On the victim’s side of the connection, there were a few software de-
pendencies required in order to track the kernel’s response to the packet.
These packages allow one to profile the kernel stack, visualizing how far into
the stack a malformed packet travels, before it is discarded, if at all. For
FreeBSD, dtrace was used. Dtrace is a dynamic tracer developed by a Bren-
dan Gregg and a few software developers at Sun Microsystems. ¢ On Linux,
kprobe was used, in place of dtrace. Kprobe allows the user to insert trace-
points within the kernel code. 7 For instance, one could trace the kernel
function ip6_input() and follow the children calls, using this library.

4 Methodology

As mentioned in the previous section, this experiment depended on three
different virtual machines running on an internal network. To begin this
experiment, it was necessary to record a baseline response from both the
FreeBSD 11.1 and the Ubuntu Linux 4.13 kernels. The purpose of this was
twofold: first, it verified connectivity between hosts on the network; second,

4https:/ /scapy.net

Shttps://github.com /jcardwell /ExploitScripts
Chttp://dtrace.org/blogs/
"https://www.kernel.org/doc/Documentation /kprobes.txt

it showed the “normal” path of a packet through each kernel’s source code.
The baseline packet in this setup was an IPv6 packet with an ICMPv6 Echo
Request that was sent to both the Linux and the FreeBSD kernels. Ping
requests were well-suited for this purpose because all correctly formed, out-
bound packets should receive a response, provided there is no loss in the
network. Because this experiment ran on an internal network with no packet
loss, any unseen response can be attributed to a victim’s failure to process
the inbound packet.

Before sending any packets, the tracing utilities were configured to track
kernel calls from ip6_input(), as well as any sub-calls that originate from
children of this function. Output from both kprobe and dtrace was re-routed
to a file for further investigation after the packets had been received. These
tracers were enabled just before sending the packet of interest and disabled
shortly after this packet had been sent, such that no other traffic would be
collected for analysis. Once the tracing was set up, Wireshark was run on the
attacker’s machine. This verified that the correct packet was sent and was
an easy way to monitor whether the victim responded to the packet. Once
the baseline test was conducted with a correctly formed packet, a number of
different edge cases were tested. All of the scripts for the following attacks
were inspired by tools from The Hacker’s Choice.®

4.1 Tests of Systemic Vulnerabilities

All ten attacks described in this section are replicated from existing literature
to see if the responses to these attacks have changed since the release of
Lecigne et. al in 2006.

Neighbor Solicitation

This attack sniffs the network for any Neighbor Solicitation messages that
would be sent when a new host is trying to bring up an interface with a
certain address. Whenever a machine attempts to use a certain address,
it must verify that this address isn’'t yet taken on the network. When the
program encounters a Neighbor Solicitation message, it forges and sends a
Neighbor Advertisement message with the address in question set as the
source. While this vulnerability does not involve any malformed packets, it

8https://github.com /vanhauser-the/thc-ipv6

checks whether or not the victim can detect and handle spoofed messages.
If the victim processes and accepts the Neighbor Advertisement, this exploit
could cause a Denial of Service.

Neighbor Discovery Protocol

This attack sends a stream of Neighbor Advertisements to the network, with
the override flag set and an optional extension header—ICMPv6 Neighbor
Discovery Option Destination Link Local Address. The hope of this attack is
that these override flags will cause the victim to overwrite its neighbor cache
with the attacker’s link-local address, in place of the destination’s actual
link-local address. Thus, all traffic for another target from the victim would
be improperly sent to the attacker, instead of the intended target.

Router Advertisement

When a machine sends a packet to a destination, it looks to see which routers
are available to transport the packet. Some of this information is cached in a
routing table that is updated periodically with router advertisements. This
process was designed in RFC 8106 [14]. When no routing information is
available to a host or if a route times out, a node might send out a Router
Solicitation message, asking for a way to send its packets. This attack takes
advantage of these messages by sniffing for them and responding to them
with a spoofed Router Advertisement response. This was a similar attack to
that described in CVE-2011-2393 [15]. In these packets, the attack sets the
override bit and sets the router lifetime to the maximum permitted value in
the Scapy library (9000 seconds). These measures guarantee that the exploit
has the maximum effect, if the packet penetrates the victim’s stack.

MTU Poisoning

Under IPv6, routers and other middleware are not permitted to fragment a
packet. Rather, the size of a packet must be determined at either end of
a connection. This size is referred to as the path Maximum Transmission
Unit (MTU). When a connection first begins, a host will send a packet of
a certain size to the receiver. If the receiver can handle the length of the
packet, no error occurs and the packet is processed. However, if the receiver
can’t handle a message of a certain size, then the receiver sends back an
ICMPv6 Packet Too Big message. If a host receives this message, it is forced

10

fragment the packet “into a series of fragments each with a size less than or
equal to the path MTU” [16]. According to the current standard, all nodes
on a network must support a minimum MTU of 1280 bytes [1]. This attack
exploits this connection by sniffing for traffic on a network and responding
to any connection with a Packet Too Big message that contains a very small
MTU. CVE-2015-8215 describes this attack [17]. In this experiment, an
MTU of 800 bytes was used. If the victim were to process this packet and
accept the MTU, it would slow the connection because more packets must
be sent and processed. Therefore, this attack carries the potential to cause a
Denial of Service. By the proposed standard, “if a node receives an ICMPv6
Packet Too Big message reporting a next-hop MTU that is less than the IPv6
minimum length MTU, it must discard it” [16].

Destination Unreachable

This attack is another way to potentially cause a Denial of Service in a more
direct manner than the MTU poisoning method. When transporting a packet
on the network, if a router detects no path to the destination, that machine
will send an ICMPv6 Destination Unreachable method back to the source
of the packet [18]. This test case sniffs the network for any traffic coming
through a machine and responds to all traffic with an ICMPv6 Destination
Unreachable message. To set up this test, the Linux and FreeBSD victims
began to ping a different node on the internal network before the script was
run. If the kernel were susceptible to this attack, the pings would return an
error which would be visible in the terminal of the victim’s machine. This
test was influenced by the vulnerability reported in CVE-2005-0068 [19].

Redirection

FreeBSD and Linux kernels could be susceptible to a man in the middle attack
that utilizes ICMPv6 Neighbor Discovery Redirect messages. This attack
listens to all traffic on a network and responds to every packet with a redirect
message that attempts to redirect messages to a user-specified address. If the
attacker uses his own address, then he could potentially listen to all traffic
in a connection. A kernel may not comprehensively check these redirect
messages, such that it unnecessarily redirects messages to an attacker, in
place of a valid router. This attack has been successful in Cisco systems
according to CVE-2014-2144, but it has yet to be reported in FreeBSD or

11

Linux [20].

Ping of Death

This attack creates a packet of random data that, when aligned as one packet,
is above the legal transport size for IPv6 (65535 octets). Then, it fragments
this data and attempts to send these packets to the victim. If the FreeBSD
or Linux stack mishandles the length of these fragments and attempts to
reassemble them, there is potential for the stack to crash or for the buffer to
overflow.

New Rose Attack

Just like the previous test, this attack attempts to expose kernels that mis-
handle fragments. Within each IPv6 Extension Header Fragment, there is a
field for offset, which states where in the sequence of the whole packet the
fragment exists. In correctly formed packets, an offset should equal the pre-
vious offset plus the length of the previous packet. In this way, the receiving
stack can reassemble the packet. This attack sends packets with random off-
sets that do not line up, such that the receiver’s buffer could fill up waiting
for unseen packets to show up. Therefore, the receiver’s stack could crash or
could stop listening to incoming traffic.

Land Attack

This attack targets the transport layer, specifically TCP, that is embedded
in the IPv6 connection. It creates a number of SYN packets that set both the
source and the destination address as the victim’s address. It also specifies
two random ports to try on the victim’s machine: one is set as the source
part; the other, as the destination port. Therefore, if this packet were to
be processed, the victim would send SYN and SYN-ACK packets between
two of its own ports. In order to avoid classification as a duplicate packet,
the sequence number of the SYN packet was randomized. This attack could
cause a denial of service, if the victim treats the packets as valid and thus
can’t take on anymore TCP connections.

12

Source Smurfing

This attack represents an attempt to cause a DoS on the receiver, by over-
whelming it with traffic. This attack makes use of a simple ICMPv6 Echo
Request Packet that is sent to the victim. The source address is set as a
multicast address for all nodes on a network. In a large network with thou-
sands of nodes, the large number of responses may be enough to overwhelm
the victim, if not just to slow down its response rate. Numerous RFCs have
specified that Echo Request packets with a multicast source should be dis-
carded, but some stacks may have disregarded this warning [1]. This attack
could be repeatedly carried out to generate more traffic on the network, but
this script only sends out one ICMPv6 Echo Request message.

4.2 Tests of Parser Vulnerabilities

The previous tests focus on systemic vulnerabilities that are not caused by
malformed packets, but instead by logical errors in how packets are processed.
This section discusses malformed packets that manage to escape detection
and are processed by the victim. While the intents of the previous exploits
are often clear—DoS or Man-in-the-Middle—this section discusses how the
packets are mishandled, but doesn’t focus on how they could be used to
attack a kernel. In some of these cases, a network intrusion device (NID)
would disregard a packet as nonsense, believing that the receiver wouldn’t
accept it. However, as this section shows, the receiver’s response could differ
from what the NID anticipates allowing for undetected packet insertion in a
connection.

These vulnerabilities were uncovered by examining the source code of
each kernel. After conducting a code review, two areas seemed vulnerable:
extension header processing and options processing within these extension
headers. When IPv6 first became the standard, extension headers were de-
fined by a looser set of guidelines. RFC 7045 was published as an update for
RFC 2460 in order to provide more standards on how these extension head-
ers should be implemented and processed [21] [1]. Perhaps due to this delay
in standards, the FreeBSD and Linux kernels were slow to evolve and error
handling of extension headers and options became vulnerable. Two different
methodologies were used to find these parser vulnerabilities. First, an auto-
mated fuzzer randomized combinations of extension headers and options and
sent them to the victims. Then, after reviewing the responses to these fuzzed

13

packets, certain packets were manually crafted. Two parser differentials were
discovered through this process that have not been documented in previous
research.

Chained Extension Headers

The IPv6 standard does not state how many extension headers can be in a
packet, so long as these extension headers are examined in series [21]. Because
of this implementation, a kernel may be unaware of how many extension
headers must be processed and could misallocate memory. This attack chains
one-hundred destination options extension headers together between an IPv6
header and an ICMPv6 Echo Request, as shown in Figure 2.

Destination Destination ICMPv6
IPv6 Header > Dpriull; Ednensiou e (97 more tl.I'lleS) B Dpﬁu]l;se;fdx:lencinu e Echo Request
eader r

Figure 2: Packet Diagram of Chained Extension Headers

The bytes of this test packet are shown in Figure 3, where one of the
Destination Options Extension Header is framed.

14

ff ff ff ff ff ff ©8
280 8@ B3 28 3c 480 20
22 a2 o9 o8 e 81 _28

20 29 V0 28 @Y 2| 3c Ve 21 V4 P00 00 00 _8a |3c
21 84 082 08 08 a8 c @8

21 84 @8 a8 88 88 32c
21 24 20 28 @@ V8 3c
21 84 20 28 0@ 88 3c
21 24 20 28 @@ V8 3c
21 84 29 V8 V8 88 3c
21 84 @28 a8 88 88 32c
21 84 22 a8 8@ @8 3c
21 24 20 28 @@ V8 3c
21 24 20 28 @@ V8 3c
21 24 20 28 @@ V8 3c
21 84 @28 a8 88 88 32c
21 84 @8 a8 88 88 32c
21 24 20 28 @@ V8 3c
21 84 22 a8 88 8e 3c
21 24 20 28 @@ V8 3c
21 84 29 V8 V8 88 3c
21 84 @28 a8 88 88 32c
21 84 22 a8 2@ @8 3c
21 84 @8 a8 88 88 32c
21 24 20 28 @@ V8 3c
21 24 20 28 @@ V8 3c
21 84 @28 a8 88 88 32c
21 84 @8 a8 88 88 32c
21 84 @28 a8 88 88 32c
21 84 22 a8 88 8e 3c
21 24 20 28 @@ V8 3c
21 84 29 V8 V8 88 3c
21 84 @9 a8 a8 88 32c
21l 84 29 8 V0 B8 3c
21 84 @8 a8 88 88 32c
21 24 20 28 @@ V8 3c
21 24 20 28 @@ V8 3c
21 24 20 28 @@ V8 3c
21 84 20 08 0@ 88 3c
21 84 @28 a8 88 88 32c
21 84 22 a8 88 8e 3c
21 24 29 28 @@ V8 3c
21 84 22 a8 8@ @8 3c
21 24 20 28 @@ V8 3c
21l 84 29 8 V0 B8 3c
21 84 @8 a8 88 88 32c
21 24 20 28 @@ V8 3c
21 84 @8 a8 88 88 32c
21 24 20 28 @@ V8 3c
21 84 20 08 0@ 88 3c
21 84 @28 a8 88 88 32c
21 84 22 o8 a8 88 32c
21 84 @8 a8 88 88 32c
21 a4 @2 o8 2@ e Be

a2 27 @9 32 3f 86 dd 6@
a1 2d b8 2@ 2@ T1 81 @8
[Bd b 08 & T1 81 a0

21 84 298 08 @8 B8 3c
aa 21 84 98 08 @8 88 3c
a2 21 24 20 2@ V@ B8 3c
[51%] 21 P4 28 080 @8 Ve 3c
a2 21 24 20 2@ V@ B8 3c
(5 15] 21 V4 28 980 @8 V8 3c
aa 21 84 98 08 @8 88 3c
a2 21 24 28 e @8 88 3c
aa 21 24 290 2@ V@ B8 3c
a2 21 24 20 2@ V@ B8 3c
a2 21 24 280 2@ V@ B8 3c
aa 21 84 98 08 @8 88 3c
aa 21 84 98 08 @8 88 3c
aa 21 24 20 2@ @@ B8 3c
ae 21 24 08 a8 @8 88 3c
a2 21 24 20 2@ V@ B8 3c
(5 15] 21 V4 28 980 @8 V8 3c
aa 21 84 98 08 @8 88 3c
a2 21 24 2@ e @8 88 3c
aa 21 84 28 08 @8 88 3c
a2 21 24 20 2@ V@ B8 3c
a2 21 24 280 2@ V@ B8 3c
aa 21 84 98 08 @8 88 3c
aa 21 84 9@ 08 @8 88 3c
aa 21 84 98 08 @8 88 3c
ae 21 24 08 a8 @8 88 3c
a2 21 24 20 2@ V@ B8 3c
(5 15] 21 V4 28 980 @8 V8 3c
aa 21 84 2@ 08 @8 88 3c
(5 15] 21 V4 20 0@ @8 V8 3c
aa 21 84 28 08 @8 88 3c
a2 21 24 20 2@ V@ B8 3c
aa 21 24 290 2@ V@ B8 3c
a2 21 24 20 2@ V@ B8 3c
aa 21 P4 08 08 @8 V8 3c
aa 21 84 98 08 @8 88 3c
ae 21 24 08 a8 @8 88 3c
aa 21 24 290 2@ Y@ B8 3c
a2 21 24 28 e @8 88 3c
a2 21 24 20 2@ V@ B8 3c
(5 15] 21 V4 20 0@ @8 V8 3c
aa 21 84 28 08 @8 88 3c
aa 21 24 20 2@ @@ B8 3c
aa 21 84 98 08 @8 88 3c
a2 21 24 20 2@ V@ B8 3c
aa 21 P4 08 08 @8 V8 3c
aa 21 84 98 08 @8 88 3c
ae 21 24 2@ a2 8 88 3c
aa 21 84 08 08 @8 88 3a
ae 42 449 0@ e 299 e

Figure 3: Raw Bytes of Chained Extension Headers

Bad Extension Header Option Length

Destination Options and Hop-by-Hop Extension Headers have an option field
that can include a number of different options. One of these options, PadN,
sets “two or more octets of padding into the options area of a header” [1].
This attack sets this option length field to 255 octets, but doesn’t include any
option data. Therefore, this test examines whether the kernel can successfully
parse options within the extension headers. The packet diagram in Figure
4 depicts this structure, while Figure 5 shows the bytes of the packet itself,
with the option length field framed. Figure 6 shows the format of a IPv6

Extension Header Option, as defined by RFC2460 [1].

15

Hop-by-Hop ICMPv6 Echo
i Options Extension _ ,
IPv6 Header | — Header Request
PadN Option
Option Length:
253 octets

Figure 4: Packet Diagram of Bad Option Length

ff ff ff ff ff ff 08 00 27 09 32 3f 86 dd 60 00
00 00 00 10 00 40 20 01 od b8 00 00 f1 01 00 00
00 00 00 00 00 01 20 01 od b8 00 00 f1 01 00 00
00 00 00 00 00 02 3a 00 01 @1 02 00 00 80 00
42 44 00 00 00 00

Figure 5: Raw Bytes of Bad Option Length

s

| Option Type | Opt Data Len | Option Data
ttt—ttbetetot bttt bbbt — — - - — - - —

Option Type 8-bit identifier of the type of option.

Opt Data Len 8-bit unsigned integer. Length of the Option
Data field of this option, in octets.

Option Data Variable-length field. Option-Type-specific
data.

Figure 6: TLV options (RFC 2460)

16

5 Results

Table 1 provides an overview of all of the results discovered in this paper.

Table 1: Results

. Land Attack

not vulnerable

Attack FreeBSD Linux
Systemic Vulnerabilities

1. Neighbor Solicitation vulnerable vulnerable

2. Neighbor Discovery Protocol | vulnerable vulnerable

3. Router Advertisement vulnerable vulnerable

4. MTU Poisoning not vulnerable | not vulnerable
5. Destination Unreachable not vulnerable | not vulnerable
6. Redirection not vulnerable | not vulnerable
7. Ping of Death not vulnerable | not vulnerable
8. New Rose not vulnerable | not vulnerable
9

not vulnerable

10. Source Smurfing

not vulnerable

not vulnerable

Parser Differentials

11. Chained Extension Headers

not vulnerable

vulnerable

vulnerable

not vulnerable

12. Extension Headers Options

Each row in the table refers to one of the test cases that were tried in
this experiment. Tests 1-10 were performed in previous papers on earlier ver-
sions of the kernels. Despite previous research’s revelation of these systemic
vulnerabilities, these results show that vulnerabilities still exist in Neigh-
bor Solicitation, Neighbor Discovery Protocol, and Router Advertisements
in both Ubuntu Linux 4.13 and FreeBSD 11.1. These vulnerabilities cannot
be traced back to specific points in the kernel code, but are rather inherent
in some configurations for the kernel. For instance, a node should update its
routing table when it receives a router advertisement, so that it can find the
fastest way for its packets to reach their destinations. When this feature is
enabled, attackers can exploit it because there is currently no way to verify
whether a Router Advertisement is forged, short of sending traffic with the
router and hoping for a reply. With the current code, the only way to avoid
this vulnerability is to configure the kernel to ignore Router Advertisements.

17

Tests 11 and 12 were a unique contribution of this paper that differed from
the aforementioned tests. Specifically, they expose two parser differentials in
the handling of IPv6 extension headers and options that are due to certain
lines in the kernel source code. Using dtrace and kprobe allowed us to isolate
where these vulnerabilities likely occur.

5.1 Chained Extension Headers
FreeBSD

FreeBSD does not respond to this malformed packet with the chained Des-
tination Options Extension Headers, as shown in Figure 7. Other types of
extension headers were also tried, but they yielded the same result. Dtrace
was run with ip6_input() set as the breakpoint. Output, available in Ap-
pendix A.1, shows that this packet didn’t make it into the network stack
very far, before being discarded by the kernel.

root@:”/THESIS # tcpdump
cpdump: wverbose output suppressed, use -v or -vwy for full protocol decode
listening on em®, link-type EN1OMB (Ethernet), capture size 262144 bytes
16:16:06.140274 IP6 2001:db8:0:f1601::1 > 2001:db8:0:f101::2: DSTOPT DSTOPT DSTOP
DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT
STOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTO
PT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT
DSTOPT DSTOPT DSTOFT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DST)
OPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT)
DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DS
OPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOP
DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPFT D
[STOFT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT ICHMP6, echo request, seq O, length 8
C
1 packet captured
1 packet received by filter
D packets dropped by kernel
root@:~,THESIS # []

Figure 7: FreeBSD tcpdump output, in response to chained extension headers

Linux

Linux is vulnerable to processing this malformed packet. When the Linux
kernel receives an ICMPv6 Echo Request with one-hundred Destination Op-
tions Extension Headers, it responds with an ICMPv6 Echo Reply, shown in
Figure 8. It also responded to different types of chained extension headers

18

with the same number in series, with the exception of the Hop-by-Hop Ex-
tension Header. By RFC 7045, there can only be one Hop-by-Hop Extension
header in a packet and it must come immediately after the main IPv6 header
[21].

root@osboxes:~/THESIS# tcpdump
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
115ten1ng on enpOs3, link-type EN10MB (Ethernet), capture size 262144 bytes
: .897872 IP6 osboxes > fe80::a00:27ff:fe09:323f: ICMP6, neighbor solicitation, who has fe80::a00:2
:323f, length 32
.899064 IP6 feB80::a00:27ff:fe09:323f > osboxes: ICMP6, neighbor advertisement, tgt is fe80::a00:2
:323f, length 24
.023573 IP6 osboxes.42172 > fe80::a00:27ff:fe09:323f.hostmon: Flags [S], seq 3630443014, win 2880
TS val 3872699007 ecr 0O
16:53:05.023784 IP6 feB80::a00:27ff:fe@9:323f.hostmon > osboxes.42172: Flags [R.], seq 0, ack 3630443015,
in 0, length @
16:53:05.710753 IP6 2001:db8:0:f101::1 > osboxes: DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT
DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT
DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT
DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT
DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT
DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT
DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT DSTOPT
DSTOPT DSTOPT ICMP6, echo request, seq @, length
16:53:05.710802 IP6 osboxes > 2001:db8:0: f101 B3lg
T 1: , seq 2675961366, win 28800, opt

ions [mss 1440,sackoK, TS val 2311489842 ecr 0,nop, wscale 7], length o
16:53:05.834834 IP6 2001:db8:0:F101::1. hostmon > osboxes.59830: Flags [R.], seq 0, ack 2675961367, win 0,
length ©

e

8 packets captured

8 packets received by filter

0 packets dropped by kernel

Figure 8: Linux tcpdump output, in response to chained extension headers

This is a clear instance of a parser differential between the FreeBSD and
Linux kernels. The Linux kernel doesn’t seem to limit the number of headers
it examines in ip6_input(). Examining the output from kprobe in Appendix
A2 shows that the packet makes it through all the system calls without error.
Specifically, ip6_input_finish() calls on ipv6_destopt_rcv() one-hundred times
and then finishes by responding to the ICMPv6 Echo Request.

Looking at the kernel function, ip6_input_finish(), in Appendix A.3, one
can see that the Linux kernel passes off the headers to a handler without
considering how many headers are in the packet. The case resubmit_final in
line 22 seems to get hit in every iteration and the handler in line 61 of the
function makes the call to ipv6_destopt_rcv() that parses the IPv6 Destination
Options Extension Header.

19

5.2 Bad Extension Header Option Length
FreeBSD

The FreeBSD kernel does respond to this packet with an ICMPv6 Echo
Reply, as shown in Figure 9. Therefore, FreeBSD does not correctly verify
the validity of these options. Appendix A.4 shows the output of dtrace, which
confirms that the packet makes it through the network stack.

root@: 7 /THESIS # tcpdump

cpdump: verbose output suppressed, use -v or -ww for full protocol decode
listening on em®, link-type EN1OMB (Ethernet), capture size 262144 bytes
21:20:13.809663 IP6 2001:4b8:0:f101::1 > Z2001:db8:0:f101::2: HBH ICHP6, echo req
iest, seq O, length 8

21:20:13.809702 IP6 Z2001:4dbB:0:f101::2 > Z001:db8:0:f101::1: ICHMP6, echo reply,

seq @, length 8
C

2 packets captured

2 packets received by filter
D packets dropped by kernel
root@:~THESIS #]

Figure 9: FreeBSD tcpdump output, in response to bad option length

The call to process the option within the IPv6 Hop-by-Hop Extension
Header must occur in the call ip6_process_hopopts(). In the code listed in
Appendix A.5, line 29 shows that the code only verifies that the packet is
not too small to be a valid option. It does not verify that the packet is the
right size because it doesn’t consider an upper bound.

Linux

Linux does not respond to this malformed packet, as shown in Figure 10.
During the testing process, kprobe didn’'t even trigger with a breakpoint
at ip6_input(), meaning that the packet was discarded upstream. Kprobe
was reconfigured to trigger at ip6_recv(). The output from kprobe, available
in Appendix A.6, confirms that this packet was discarded, somewhere in
ip6_parse_hopopts().

20

root@osboxes:~/THESIS# tcpdump
3 verbose output suppressed, use -v or -vv for full protocol decode
=

440, sa(kOk T) val 2339013008 ecr nop,wscale 71, Iength
22:04:58.877305 IP6 2001 db8:0:f101::2.hostmon > osboxes.37516: Flags [R.], seq 0, ack 3669723463, win 0,
length ©
22:04:59.070883 IP6 osboxes.59840 > 2001:db8:0:f101::1.hostmon: Flags [S], seq 3483064970, win 28800, opt
ions [mss 1440,sackOK,TS val 2330203080 ecr ©,nop,wscale 7], length @
22:04:59.071111 IP6 2001:db8:0:f101::1.hostmon > osboxes.59840: Flags [R.], seq 0, ack 3483064971, win O,
length @
e
5 packets captured
5 packets received by filter
0 packets dropped by kernel

Figure 10: Linux tcpdump output, in response to bad option length

Code from ipv6_rcv(), available in Appendix A.7, shows where the call is
made to ipv6_parse_hopopts(). If an error occurred in this function, which
most likely happened, ipv6_recv() would drop the packet.

Appendix A.8 contains the code for ipv6_parse_hopopts(). In this code,
it is clear to see that the Linux kernel does check the length of the options
packet against the actual size of the option. Specifically, Line 22 of the code
in Appendix A.8 shows that the function makes a call to ip6_parse_tlv().
Appendix A.9 shows that this function does properly check the length of a
PadN option in lines 30-47. Because the malformed packet had an option
length of 255 octets, line 37 identifies the packet as bad, such that it is
discarded in ipv6_recv().

6 Future Work

While this paper demonstrated that previously known vulnerabilities persist
and introduced two new parser differentials, there is significant work yet to
be done. There are two areas where this work could be built upon. First,
one could attempt to patch the vulnerabilities that were discussed in the
previous sections. However, some of the vulnerabilities, such as the systemic
ones, may not have an easy fix because they are borne from logical missteps
and not from processing errors. In these instances, the solution may be to
make specific IPv6 features configurable. Turning off select features, however,
is not optimal. More research must be done on how to address these systemic
vulnerabilities.

On the other hand, the parser differentials described in sections 5.11 and

21

5.12 have a more direct solution. In the case of chained extension headers,
destination options must only appear twice in a sequence of extension head-
ers. Therefore, while Ubuntu Linux 4.13 mis-implemented the standard, it
could be easily patched by inserting a line of code that tracks the number
of extension headers it receives. A line of code could also effectively patch
FreeBSD 11.1, in the case of the bad option length. In addition to examin-
ing how to handle the systemic vulnerabilities, future work should patch the
source code and publish a more stable release.

The second way in which this research can be furthered is to develop an
automatic fuzzing framework. Ideally, this framework would be intelligent
in how it generates test cases and efficient in testing only meaningful cases.
This is a challenging task because it is essential for the fuzzer to be run from
a single machine and there is no easy way to integrate a feedback loop on
one machine. This feedback loop would need to monitor the effectiveness of
a malformed packet at penetrating the victim’s stack on one machine, which
is provided by current tracers. With current technology, however, a fuzzer
can’t access the output of a tracer, like dtrace and kprobe, which is on the
victim’s machine. If future research developed a new generation of fuzzers,
it would facilitate and improve the testing of new kernels.

7 Conclusion

This paper built on the existing literature by re-evaluating known vulner-
abilities from ten years ago, as well as offering up the discovery of two,
new parser differentials. Despite the multitude of different releases of the
FreeBSD kernels and Linux kernels since IPv6 was released, there are a num-
ber of alarming vulnerabilities in FreeBSD 11.1 and Ubuntu Linux 4.13 that
could be used in damaging exploits. For instance, if a network intrusion de-
tection (NID) marks a packet as invalid because it has a bad option length
value, but the FreeBSD kernel accepts it, this packet could be used to insert
malicious code that evades detection [22]. IPv6 is not fully tested, so there
must be a number of parser differentials that haven’t yet been discovered and
could be exploited in the future. With the current tools and testing frame-
works, it is difficult for those that patch the kernels to keep up with the pace
of discovery of new vulnerabilities. As the amount of IPv6 traffic rises, it is
paramount that researchers both patch existing vulnerabilities and develop
improved testing frameworks in order to ensure the security and stability of

22

[Pv6 moving forward.

8 Acknowledgements

This paper reflects the work of many individuals at Dartmouth. I would like
to especially thank my advisor, Professor Sergey Bratus, for his wisdom and
guidance throughout the past year. His course, Computer Networks, first
sparked my interest in network security last spring. I am incredibly grateful
for his willingness to help me explore the field.

I would also like to thank Michael Millian and Prashant Anantharaman
for helping me revise this paper. They provided valuable insight on how to
best present these findings. Additionally, Michael helped me to develop a
script that scraped the CVE database for vulnerability reports. Finally, I
would like to thank Professor Devin Balkcom, Professor Sean Smith, and
Professor Xia Zhou for serving on my defense committee and for their feed-
back on this work.

23

References

[1] S. Deering and R. Hinden, ”Internet Protocol, Version 6 (IPv6) Specifi-
cation,” RFC 2460 (Draft Standard), IETF, December 1998.

2] G. Jean-Malbuisson, ”State of IPv6 Deployment 2017.,” Internet Society,
2017.

[3] C. Pignataro and F. Gont, ”Formally Deprecating Some IPv4 Options,”
RFC6814 (Proposed Standard), IETF, November 2012.

[4] J. Ullrich, K. Krombholz, H. Hobel, A. Dabrowski, and E. Weippl, "IPv6
Security: Attacks and Countermeasures in a Nutshell,” SBA Research,
August 2014.

[5] W. George, C. Donley, C. Lijenstolpe, and L. Howard, "IPv6 Support
Required for All IP-Capable Nodes,” RFC6540 (Best Current Practice),
IETF, April 2012.

(6] C. Lecigne and G. Neville-Neil, ”Walking Through the FreeBSD IPv6
Stack,” FreeBSD, August 2006.

[7] Cve.mitre.org. (2018). CVE-CVE-2008-2476. [online] Available at:
https://cve.mitre.org/cgi-bin-cvename.cgi’name=CVE-2008-2476 [Ac-
cessed 15 Jan. 2018].

[8] Cve.mitre.org. (2018). CVE-CVE-2007-1532. J[online] Available at:
https://cve.mitre.org/cgi-bin-cvename.cgi’name=CVE-2007-1532 [Ac-
cessed 20 Jan. 2018].

9] R. Braden, "Requirements for Internet Hosts - Communication Layers,”
RFC1122 (Internet Standard), IETF, October 1989.

24

[10] F. Gont, "ICMP attacks against TCP,” (Internet Draft), IETF, October
2006.

[11] J. McCann, S. Deering, and J. Mogul, "Path MTU Discovery for TP
version 6,” RFC1981 (Draft Standard), IETF, August 1996.

[12] Cve.mitre.org. (2018). CVE-CVE-2008-3530. [online] Available at:
https://cve.mitre.org/cgi-bin-cvename.cgi’name=CVE-2008-3530 [Ac-
cessed 20 Jan. 2018].

[13] S. Kent and K. Seo, ”Security Architecture for the Internet Protocol,”
RFC4301 (Proposed Standard), IETF, December 2005.

[14] J. Jeong, S. Park, L. Beloeil, and S. Madanapalli, "IPv6 Router Adver-
tisement Options for DNS Configuration,” RFC8106 (Proposed Standard),
IETF, March 2017.

[15] Cve.mitre.org. (2018). CVE-CVE-2011-2393. [online] Available at:
https://cve.mitre.org/cgi-bin-cvename.cgi’name=CVE-2011-2393 [Ac-
cessed 22 Jan. 2018].

[16] J. McCann, S. Deering, J. Mogul, and R. Hinden, ”"Path MTU discovery
for IP version 6,” RFC8201 (Internet Standard), IETF, July 2017.

[17] Cve.mitre.org. (2018). CVE-CVE-2015-8215. [online] Available at:
https://cve.mitre.org/cgi-bin-cvename.cgi’name=CVE-2015-8215 [Ac-
cessed 08 Jan. 2018].

[18] F. Gont, "ICMP Attacks Against TCP,” RFC5927 (Informational),
IETF, July 2010.

[19] Cve.mitre.org. (2018). CVE-CVE-2005-0068. [online] Available at:
https://cve.mitre.org/cgi-bin-cvename.cgi’name=CVE-2005-0068 [Ac-
cessed 02 Jan. 2018].

[20] Cve.mitre.org. (2018). CVE-CVE-2014-2144. [online] Available at:
https://cve.mitre.org/cgi-bin-cvename.cgi’name=CVE-2014-2144 [Ac-
cessed 08 Jan. 2018].

[21] B. Carpenter and S. Jiang, " Transmission and Processing of IPv6 Ex-
tension Headers,” RFC7045 (Proposed Standard), IETF, December 2013.

25

[22] M. Handley, V. Paxon, and C. Kreibich, ”"Network Intrusion Detec-
tion: Evasion, Traffic Normalization, and End-To-End Protocol Seman-
tics,” USENIX, August 2001.

26

Appendix
A.l

dtrace output of FreeBSD response to a chained extension header

CPU FUNCTION
0 -> ip6_input
ipsec6_capability
<- ipsec6_capability
-> in6_clearscope
<- in6_clearscope
-> in6_clearscope
<- in6_clearscope
-> in6_setscope
<- in6_setscope
-> in6_setscope
<- in6_setscope
-> in6ifa_ifwithaddr
-> _rm_rlock

(e}
|
v

<- _rm_rlock
-> _rm_runlock
<- _rm_runlock
<- in6ifa_ifwithaddr **% AT THIS POINT THE KERNEL
-> m_freem **% HAS MARKED THE PACKET AS INVALID
-> mb_free_ext
-> uma_zfree_arg
-> mb_dtor_pack
-> m_tag_delete_chain
<- m_tag_delete_chain
-> uma_zone_exhausted_nolock
<- uma_zone_exhausted_nolock
<- mb_dtor_pack
-> critical_enter
<- critical_enter
-> critical_exit
<- critical_exit
<- uma_zfree_arg
<- mb_free_ext
<- m_freem

QO OOV OO DOV OO

27

A.2

kprobe output of Linux response to a chained extension header

tracer: function_graph
#
CPU DURATION
| I I
0) | ip6_input() {
0) | ip6_input_finish() {
0) 0.218 us | raw6_local_deliver();
0) / ipv6_destopt_rcv() {
0) 0.166 us / ip6_parse_tlv();
/

0) 0.718 us }

———————————————— 99 more times -——-—————————-—--—

**x*x KERNEL FINISHES PROCESSING DESTINATION OPTIONS EXTENSION HEADERS HERE

**xx AND PASSES THE PACKET ALONG

FUNCTION CALLS

/

0) | raw6_local_deliver() {

0) 0.153 us / _raw_read_lock();

0) 0.302 us | __raw_v6_lookup();

0) / skb_clone() {

0) 0.109 us | kmem_cache_alloc();

0) | __skb_clone() {

0) 0.160 us / __copy_skb_header();

0) 0.638 us | }

0) 1.673 us |

0) / rawv6_rcv() {

0) 0.062 us / csum_ipv6_magic();

0) / __skb_checksum_complete() {
0) / skb_checksum() {

0) | __skb_checksum() {

0) / csum_partial() {

0) 0.128 us | do_csum();

0) 0.623 us | }

0) 1.230 us / }

0) 1.687 us | }

0) 2.363 us | }

0) 0.053 us | dst_release();

0) / sock_queue_rcv_skb() {

0) / sk_filter_trim_cap() {

0) I security_sock_rcv_skb() {
0) 0.056 us | apparmor_socket_sock_rcv_skb();

28

0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)

+ + + +

+ + + + +

0.850

(o]

[$,]

© N O

.410

.063
.110

.061

.382
.111
.215

.129
.849

.357
.040
.785
0.

070

us
us

us
us

us

us
us
us

us
us

us
us
us
us

13.120 us
13.515 us
14.577 us
15.332 us
0.060 us

16.368
17.173
18.722
20.962
25.658

us
us
us
us
us

0.054 us
30.018 us

0.042 us

0.043 us
0.300 us
0.564 us

}

}
}
}

}

sock_queue_rcv_skb() {
_raw_spin_lock_irgsave();
_raw_spin_unlock_irqrestore();
sock_def_readable() {
__wake_up_sync_key() {
_raw_spin_lock_irgsave();
__wake_up_common() {
pollwake() {
default_wake_function() {
try_to_wake_up() {
_raw_spin_lock_irgsave();
_raw_spin_lock();
update_rq_clock();
ttwu_do_activate() {
activate_task() {
enqueue_task_fair();
}
ttwu_do_wakeup () {
check_preempt_curr();
}
}

_raw_spin_unlock_irqrestore();

}
}
}
}
_raw_spin_unlock_irqrestore();
}
}

__raw_v6_lookup();

}

icmpv6_rev() {
csum_ipv6_magic();

__skb_
skb_

}

checksum_complete() {
checksum() {
skb_checksum() {
csum_partial() {
do_csum() ;

}

29

0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)

0.880

S

S ©

R O O O O

o

S © O O O = OO

OO NO O

.138

.196
.115
.326

.040
. 045

.055
. 041
.044
.042
.130

.050

.071

.054

.157
.421

.102
.419
.070
.080

.040
. 044
.545
.040

.041
.285
.260
.526
.042
.344

us
us

us
us
us

us
us

us
us
us
us
us

us

us

us

us
us

us
us
us
us

us
us
us
us

us
us
us
us
us
us

—_——— — — — — — — — e — e e s — — — -

}
}
icmpv6_echo_reply () {
make_kuid () ;
security_skb_classify_flow();
_raw_spin_trylock();
ip6_dst_lookup() {
ip6_dst_lookup_tail() {
ip6_route_output_flags() {
__ipv6_addr_type();
__ipv6_addr_type();
fib6_rule_lookup() {
13mdev_update_flow() {
dev_get_by_index_rcu();
13mdev_master_ifindex_rcu();
dev_get_by_index_rcu();
13mdev_master_ifindex_rcu();
}
fib_rules_lookup() {
fib6_rule_match();
fib6_rule_action() {
fib6_get_table();
ip6_pol_route_output() {
ip6_pol_route() {
_raw_read_lock_bh();
fib6_lookup() {
fib6_lookup_1();
}
find_match() {
rt6_check_expired();
rt6_score_route();
}
fib6_backtrack();
find_match() {
rt6_check_expired();
rt6_score_route();
}
fib6_backtrack();
_raw_read_unlock_bh() {
__local_bh_enable_ip();
}
}
}
dst_release();

}

30

0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)

+ + + + +

0.119 us

0.106 us

0.041 us

0.348 us
0.615 us

0.041 us
.054 us
.687 us

S O

.042 us
.287 us
.613 us
.868 us
.447 us
.095 us
10.265 us
11.882 us
12.660 us
12.960 us
13.287 us
0.198 us
0.164 us

W NNOO

(o]

0.127 us
0.595 us

0.140 us

.171 us
.889 us
.233 us
.495 us
.868 us
.264 us

WNO R OO

—_——— — — — — — — — e — e — e — — -

fib6_rule_match();
fib6_rule_action() {
fib6_get_table();
ip6_pol_route_output() {
ip6_pol_route() {
_raw_read_lock_bh();
fib6_lookup() {
£ib6_lookup_1();
}
find_match() {
rt6_check_expired();
rt6_score_route();
}
_raw_read_unlock_bh() {
__local_bh_enable_ip();
}
}
}
}
fib6_rule_suppress();
}
}
}
}
}
xfrm_lookup();
ip6_dst_hoplimit();
ip6_append_data() {
ip6_setup_cork() {
ip6_mtu();
}
__1ip6_append_data.isra.39() {
sock_alloc_send_skb() {
sock_alloc_send_pskb() {
alloc_skb_with_frags() {
__alloc_skb() {
kmem_cache_alloc_node();
__kmalloc_reserve.isra.40() {
__kmalloc_node_track_caller() {
kmalloc_slab();
}
}
ksize();

}

}

31

0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)

O 01 O IO

S O

QO O O OO

S O

.060
.037
.509
.042
.630
.853

.076
.324
.041

.041

.340
.661

.045
.318
.330

.047

.046

. 045
.449
.045
.395
.045
.040

.040

.293

.680

.040

. 148

us
us
us
us
us
us

us
us
us

us

us
us

us
us
us

us

us

us
us
us
us
us
us

us

us

us

us

us

—_——— — — — — — — — e — e — e — — -

skb_set_owner_w();
}
}
skb_put () ;
}
}
icmpv6_push_pending_ frames() {
csum_partial() {
do_csum() ;
}
csum_ipv6_magic();
ip6_push_pending_ frames() {
__ip6_make_skb() {
skb_push();
__get_hash_from_flowi6() {
flow_hash_from_keys();
}
ip6_cork_release.isra.38() {
dst_release();
}
}
ip6_send_skb() {
ip6_local_out() {
__ip6_local_out();
ip6_output () {
ip6_finish_output() {
ip6_mtu();
ip6_finish_output2() {
_neigh_create() {
__kmalloc(O) {
kmalloc_slab();

}
init_timer_key();
ndisc_constructor();
_raw_write_lock_bh();
ndisc_hash();
_raw_write_unlock_bh() {
__local_bh_enable_ip();
}
}
neigh_resolve_output() {
_neigh_event_send() {
_raw_write_lock_bh();
neigh_add_timer() {
mod_timer();

32

=)
N~
= O O O

0
0

0) 2.
0) + 76.989 us
0) ! 225.749 us
0) ! 226.466 us

0) + 39.855
0) + 40.494
0) + 40.869
0) + 41.542
0) + 41.875
0) + 44.796
0) + 46.048

.049
.529
.071
.350

.092
.489
598

0) 1.500 us

0) 0.224 us
0) + 28.565 us
0) 1.003 us
0) + 31.052 us
0) 0.067 us
0) + 33.956 us
0) + 34.344 us
0) 0.052 us

us
us
us
us
us
us
us

0) 0.054 us
0) 0.051 us
0) + 71.245 us

us
us
us
us

us
us
us

}

neigh_probe() {
skb_clone();
ndisc_solicit();
kfree_skb();

}

__local_bh_enable_ip();

}

}
__local_bh_enable_ip();

dst_release();
__local_bh_enable_ip();
}
kfree_skb() {
skb_release_all() {
skb_release_head_state() {
dst_release();
}
skb_release_data();
}
kfree_skbmem() {
kmem_cache_free();

}

A.3

ip6_input_finish() from Linux kernel code

1 static

: {

struct sk_buff xskb)

int

ip6_input_finish (struct net *net, struct sock x*sk,

33

3 const struct inet6_protocol xipprot;
4 struct inet6_dev xidev;

5 unsigned int nhoff;

6 int nexthdr;

7 bool raw;

8 bool have_final = false;

10 /%

11 x* Parse extension headers

12 * /

1 rcu-read_lock () ;

15 resubmit :

16 idev = ip6_dst_idev (skb_dst(skb));

17 if (!pskb_pull(skb, skb_transport_offset (skb)))
18 goto discard;

19 nhoff = IPGCB(Skb)—>nhoff;

20 nexthdr = skb_network_header (skb) [nhoff];

22 resubmit_final: *xxx CODE SEEMS TO HIT THIS POINT EVERY TIME

25 raw = rawb6_local_deliver (skb, nexthdr);

21 ipprot = rcu_dereference (inet6_protos[nexthdr]) ;

25 if (ipprot) {

26 int ret;

27

28 if (have_final) {

29 if (!(ipprot—>flags & INET6_.PROTO_FINAL)) {

30 /* Once we’ve seen a final protocol don’t

31 x allow encapsulation on any non—final

32 x ones. This allows foo in UDP encapsulation
33 * to work.

34 */

35 goto discard;

36 }

37 } else if (ipprot—>flags & INET6_.PROTO_FINAL) {
38 const struct ipv6hdr xhdr;

39

40 /* Only do this once for first final protocol x/
11 have_final = true;

12

43 /* Free reference early: we don’t need it any more,
44 and it may hold ip_conntrack module loaded
45 indefinitely . =/

46 nf_reset (skb);

34

skb_postpull_rcsum (skb, skb_network_header (skb),
skb_network_header_len (skb));

hdr = ipv6_hdr(skb);

if (ipv6_addr_is_multicast(&hdr—>daddr) &&
lipv6_chk_mcast_addr (skb—>dev, &hdr—>daddr,
&hdr—>saddr) &
lipv6_is_mld (skb, nexthdr, skb_network_header_len (skb)

))

goto discard;

if (!(ipprot—>flags & INET6_ PROTONOPOLICY) &&
!xfrm6_policy_check (NULL, XFRM POLICYIN, skb))
goto discard ;
sxx% HANDLER THAT GETS HIT FOR EACH EXTENSION HEADER s
ret = ipprot—>handler (skb);
if (ret > 0) {
if (ipprot—>flags & INET6_PROTO_FINAL) {
/* Not an extension header, most likely UDP
* encapsulation. Use return value as nexthdr
* protocol not nhoff (which presumably is
* not set by handler).
*/
nexthdr = ret;
goto resubmit_final;

} else {

goto resubmit ;
}
} else if (ret = 0) {
_IP6_INC_STATS (net, idev, IPSTATS-MIB.INDELIVERS) ;
¥

} oelse {
if (lraw) {
if (xfrm6_policy_check (NULL, XFRM_POLICY.IN, skb)) {
_IP6_INC_STATS (net, idev,
IPSTATS MIBINUNKNOWNPROTOS) ;
icmpv6_send (skb, ICMPV6 PARAMPROB,
ICMPV6_UNK NEXTHDR, nhoff);
}

kfree_skb (skb);

1 oelse {
_IP6_INC_STATS (net, idev, IPSTATS_MIB_INDELIVERS) ;
consume_skb (skb) ;

}
}

rcu_read_unlock () ;

35

92 return 0;

93

94 discard :

95 __IP6_.INC_STATS (net, idev, IPSTATSMIB_INDISCARDS) ;
96 rcu_read_unlock () ;

o7 kfree_skb (skb);

98 return 0;

A4
dtrace output of FreeBSD response to a bad option length

CPU FUNCTION
-> ip6_input
-> ipsec6_capability
<- ipsec6_capability
-> in6_clearscope
<- in6_clearscope
-> in6_clearscope
<- in6_clearscope
-> in6_setscope
<- in6_setscope
-> in6_setscope
<- in6_setscope
-> in6ifa_ifwithaddr
-> _rm_rlock

(e}

<- _rm_rlock
-> bcmp
bcmp
-> ifa_ref
<- ifa_ref
-> _rm_runlock
<- _rm_runlock
<- in6ifa_ifwithaddr
-> ifa_free
<- ifa_free
-> ip6_process_hopopts
<- 1ip6_process_hopopts
-> ipsec6_input
-> ipsec6_in_reject
-> ipsec6_getpolicy
-> ipsec_getpcbpolicy
<- ipsec_getpcbpolicy

[eleleleleNolelNoeloleBole oo ool ool ol ool el e N X "o e
A
|

36

-> key_havesp

<- key_havesp

-> key_addref

<- key_addref
<- ipsec6_getpolicy
-> ipsec_in_reject
<- ipsec_in_reject
-> key_freesp
<- key_freesp

<- ipsec6_in_reject
<- ipsec6_input

(elelelBeleNolelNolelNellol

k%

*

AT THIS POINT THE KERNEL HAS PROCESSED THE ENTIRE IP HEADER ***

-> icmp6_input
-> in6_cksum
-> in6_cksum_partial
-> in6_getscope
<- in6_getscope
-> in6_getscope
<- in6_getscope
<- in6_cksum_partial
-> m_copym
-> uma_zalloc_arg
-> critical_enter
<- critical_enter
-> critical_exit
<- critical_exit
-> mb_ctor_mbuf
-> m_pkthdr_init
-> bzero
<- bzero
-> mac_mbuf_init
<- mac_mbuf_init
<- mb_ctor_mbuf
<- uma_zalloc_arg
-> m_tag_delete_chain
<- m_tag_delete_chain
-> m_tag_copy_chain
<- m_tag_copy_chain
<- m_copym
-> uma_zalloc_arg
-> critical_enter
<- critical_enter

QO OOV OV DOV OO

-> critical_exit

37

ool ool eBolelolelNoloBeloBelolo ool ool ool o el e N heneneeno ool e Neolle oo e el o)

<- critical_exit
-> mb_ctor_mbuf
-> m_pkthdr_init
-> bzero
<- bzero
-> mac_mbuf_init
<- mac_mbuf_init
<- mb_ctor_mbuf
<- uma_zalloc_arg
-> m_move_pkthdr
-> m_tag_delete_chain
<- m_tag_delete_chain
<- m_move_pkthdr
-> bcopy
<- bcopy
-> bcopy
<- bcopy
-> m_adj
<- m_adj
-> icmp6_reflect
-> in6ifa_ifwithaddr
-> _rm_rlock
<- _rm_rlock
-> bcmp
<- bcmp
-> ifa_ref
<- ifa_ref
-> _rm_runlock
<- _rm_runlock
<- in6ifa_ifwithaddr
-> ifa_free
<- ifa_free
-> in6_cksum
-> in6_cksum_partial
-> in6_getscope
<- in6_getscope
-> in6_getscope
<- in6_getscope
<- in6_cksum_partial
-> ip6_output
-> ipsec6_output
—-> ipsec6_common_output
-> ipsec6_checkpolicy
-> ipsec6_getpolicy
-> ipsec_getpcbpolicy

38

ool ool eBolelolelNoloBeloBelolo ool ool ool o el e N heneneeno ool e Neolle oo e el o)

<- ipsec_getpcbpolicy
-> key_havesp
<- key_havesp
-> key_addref
<- key_addref
<- ipsec6_getpolicy
-> key_freesp
<- key_freesp
<- ipsec6_checkpolicy
<- ipsec6_common_output
-> bzero
<- bzero
-> bzero
<- bzero
-> bzero
<- bzero
-> in6_selectroute_fib
-> selectroute
-> bzero
<- bzero
-> in6_rtallocl
-> rtallocl_fib
-> __rw_rlock
<- __rw_rlock
-> rn_match
<- rn_match
-> _rw_runlock_cookie
<- _rw_runlock_cookie
<- rtallocl_f£fib
<- selectroute
<- in6_selectroute_fib
-> in6_setscope
<- in6_setscope
-> bzero
<- bzero
-> sa6_recoverscope
<- sa6_recoverscope
-> in6_setscope
<- in6_setscope
-> bzero
<- bzero
-> sa6_recoverscope
<- sa6_recoverscope
-> ip6_calcmtu
-> bzero

39

ool ool eBolelolelNoloBeloBelolo ool ool ool o el e N heneneeno ool e Neolle oo e el o)

<- bzero
-> tcp_hc_getmtu
-> tcp_hc_lookup
<- tcp_hc_lookup
<- tcp_hc_getmtu
ip6_calcmtu
in6_clearscope
in6_clearscope
in6_clearscope
in6_clearscope
in6_ifawithifp
-> in6_addrscope
<- 1in6_addrscope
-> __rw_rlock
<- __rw_rlock
-> in6_addrscope
<- in6_addrscope
-> in6_addrscope
<- in6_addrscope
-> ifa_ref
<- ifa_ref
-> _rw_runlock_cookie
<- _rw_runlock_cookie
in6_ifawithifp
ifa_free
ifa_free
nd6_output_ifp
-> mac_netinet6_nd6_send
<- mac_netinet6_nd6_send
-> ether_output
-> mac_ifnet_check_transmit
<- mac_ifnet_check_transmit
-> nd6_resolve
-> __rw_rlock
<- __rw_rlock
-> bzero
<- bzero
-> in6_lltable_lookup
-> bcmp
<- bcmp
<- in6_lltable_lookup
-> bcopy
<- bcopy
-> _rw_runlock_cookie
<- _rw_runlock_cookie

40

ool ool eBolelolelNoloBeloBelolo ool ool ool o el e N heneneeno ool e Neolle oo e el o)

<- nd6_resolve

->nm
->

_prepend

uma_zalloc_arg
-> critical_enter
<- critical_enter
-> critical_exit
<- critical_exit
-> mb_ctor_mbuf
-> m_pkthdr_init
-> bzero
<- bzero
-> mac_mbuf_init
<- mac_mbuf_init
<- mb_ctor_mbuf
<- uma_zalloc_arg
-> m_tag_delete_chain
<- m_tag_delete_chain
m_prepend
memcpy
memcpy
if_transmit
-> lem_start
-> if_getsoftc
<- if_getsoftc
-> if_getdrvflags
<- if_getdrvflags
-> lem_start_locked
-> if_getsoftc
<- if_getsoftc
-> if_getdrvflags
<- if_getdrvflags
-> if_sendq_empty
<- if_sendq_empty
-> if_dequeue
<- if_dequeue
—-> bus_dmamap_load_mbuf_sg
-> _bus_dmamap_load_buffer
-> bounce_bus_dmamap_load_buffer
-> pmap_kextract
<- pmap_kextract
<- bounce_bus_dmamap_load_buffer
-> _bus_dmamap_load_buffer
-> bounce_bus_dmamap_load_buffer
-> pmap_kextract
<- pmap_kextract

41

ool ool eBolelolelNoloBeloBelolo ool ool ool o el e N heneneeno ool e Neolle oo e el o)

<- bounce_bus_dmamap_load_buffer
—-> _bus_dmamap_complete
-> bounce_bus_dmamap_complete
<- bounce_bus_dmamap_complete
<- bus_dmamap_load_mbuf_sg
-> if_etherbpfmtap
-> bpf_mtap
-> m_length
<- m_length
-> __rw_rlock
<- __rw_rlock
-> bpf_filter
-> bzero
<- bzero
<- bpf_filter
-> _rw_runlock_cookie
<- _rw_runlock_cookie
<- bpf_mtap
-> if_sendq_empty
<- if_sendq_empty
<- lem_start_locked
<- lem_start
<- if_transmit
<- ether_output
-> rtfree
<- rtfree
<- ip6_output
<- icmp6_reflect
-> bzero
<- bzero
-> sa6_recoverscope
<- sa6_recoverscope
-> __rw_rlock

<- __rw_rlock
-> __rw_rlock
<- __rw_rlock

-> _rw_runlock_cookie
<- _rw_runlock_cookie
-> _rw_runlock_cookie
<- _rw_runlock_cookie
-> m_freem

-> mb_free_ext

<- mb_free_ext
<- m_freem

<- icmp6_input

42

ool ool eBolelolelNoloBeloBelolo ool ool ool o el e N heneneeno ool e Neolle oo e el o)

-> ip6_input
ipsec6_capability
ipsec6_capability
in6_clearscope
in6_clearscope
in6_clearscope
in6_clearscope
in6_setscope
in6_setscope
in6_setscope
in6_setscope
in6ifa_ifwithaddr

-> _rm_rlock

<- _rm_rlock

-> bcmp

<- bcmp

-> ifa_ref

<- ifa_ref

-> _rm_runlock

<- _rm_runlock
in6ifa_ifwithaddr
ifa_free
ifa_free
ipsec6_input

-> ipsec6_in_reject

—-> ipsec6_getpolicy

43

ipsec_getpcbpolicy
ipsec_getpcbpolicy
key_havesp
key_havesp
key_addref
key_addref

ipsec6_getpolicy
ipsec_in_reject
ipsec_in_reject
key_freesp
key_freesp
<- ipsec6_in_reject
<- ipsec6_input
-> icmp6_input
-> in6_cksum

-> in6_cksum_partial

->
<-
->

in6_getscope
in6_getscope
in6_getscope

ool ool eBolelolelNoloBeloBelolo ool ool ool o el e N heneneeno ool e Neolle oo e el o)

44

<- in6_getscope

<- in6_cksum_partial
-> m_copym

-> uma_zalloc_arg

<_

<-m
->n

critical_enter
critical_enter
critical_exit
critical_exit
mb_ctor_mbuf
-> m_pkthdr_init

-> bzero

<- bzero

-> mac_mbuf_init

<- mac_mbuf_init
<- mb_ctor_mbuf
uma_zalloc_arg
m_tag_delete_chain
m_tag_delete_chain
m_tag_copy_chain
m_tag_copy_chain

_copym

d6_na_input

bzero

bzero

in6_setscope
in6_setscope
nd6_option_init

-> bzero

<- bzero
nd6_option_init
nd6_options
nd6_options
in6ifa_ifpwithaddr
-> __rw_rlock

<- __rw_rlock

-> bcmp

<- bcmp

-> bcmp

<- bcmp

-> _rw_runlock_cookie
<- _rw_runlock_cookie
in6ifa_ifpwithaddr
__rw_rlock
__rw_rlock
nd6_lookup

ool ool eBolelolelNoloBeloBelolo ool ool ool o el e N heneneeno ool e Neolle oo e el o)

45

-> bzero
<- bzero
-> in6_lltable_lookup
-> bcmp
<- bcmp
<- in6_lltable_lookup
nd6_lookup
_rw_runlock_cookie
_rw_runlock_cookie
nd6_llinfo_setstate
-> nd6_1llinfo_settimer_locked
-> callout_reset_sbt_on
-> callout_when
<- callout_when
-> callout_lock
-> spinlock_enter
-> critical_enter
<- critical_enter
<- callout_lock
-> callout_cc_add
<- callout_cc_add
-> spinlock_exit
-> critical_exit
<- critical_exit
<- spinlock_exit
<- callout_reset_sbt_on
<- nd6_1llinfo_settimer_locked
<- nd6_1llinfo_setstate
-> m_freem
-> mb_free_ext
<- mb_free_ext
<- m_freem
nd6_na_input
bzero
bzero
sa6_recoverscope
sa6_recoverscope
__rw_rlock
__rw_rlock
__rw_rlock
__rw_rlock
_rw_runlock_cookie
_rw_runlock_cookie
_rw_runlock_cookie
_rw_runlock_cookie

-> m_freem
-> mb_free_ext
-> uma_zfree_arg
-> mb_dtor_pack
-> m_tag_delete_chain
<- m_tag_delete_chain
-> uma_zone_exhausted_nolock
<- uma_zone_exhausted_nolock
<- mb_dtor_pack
-> critical_enter
<- critical_enter
-> critical_exit
<- critical_exit
<- uma_zfree_arg
-> uma_zfree_arg
-> mb_dtor_mbuf
<- mb_dtor_mbuf
-> critical_enter
<- critical_enter
-> critical_exit
<- critical_exit
<- uma_zfree_arg
<- m_freem
<- icmp6_input

QO QDO VOV OOV O O

A.5

ip6_process_hopopts() from FreeBSD kernel source code
/%
*

Search header for all Hop—by—hop options and process each

option .

« This function is separate from ip6_hopopts_input () in order
to

* handle a case where the sending node itself process its hop—
by—hop

x options header. In such a case, the function is called from
ip6_output ().

* The function assumes that hbh header is located right after
the IPv6 header

x (RFC2460 p7), opthead is pointer into data content in m, and
opthead to

46

9

T ¥

~

NONONON NN NN
0 S w >

x opthead + hbhlen is located in contiguous memory region .

ip6_process_hopopts(struct mbuf *xm, u_-int8_t xopthead, int

hbhlen ,
u_int32_t srtalertp, u_-int32_t =xplenp)

struct ip6_hdr xip6;

int optlen = 0;

u_int8_t *opt = opthead;
u_intl6_t rtalert_val;
u_int32_t jumboplen;

const int erroff = sizeof(struct ip6_-hdr) + sizeof(struct
ip6_hbh) ;
for (; hbhlen > 0; hbhlen —= optlen, opt += optlen) {

switch (*xopt) {

case IP60OPT_PADI1:
optlen = 1;
break ;

case IP6OPT_PADN:

x++x OPTION LENGTH VERIFICATION HAPPENS HERE xxx
if (hbhlen < IP6OPT MINLEN) {

IP6STAT_INC(ip6s_-toosmall);

goto bad;
}
optlen = x(opt + 1) + 2;
break ;

case IP6OPT_ROUTER_ALERT':
/* XXX may need check for alignment =/
if (hbhlen < IP6GOPTRTALERTLEN) ({
IP6STAT_INC(ip6s_toosmall);
goto bad;
}
if (x(opt + 1) != IP6OPTRTALERTLEN — 2) {
/x XXX stat x/
icmp6_error (m, ICMP6 PARAM PROB,
ICMP6_ PARAMPROB_HEADER,
erroff + opt + 1 — opthead);
return (—1);
}
optlen = IP6OPT RTALERT_LEN;

becopy ((caddr_t) (opt + 2), (caddr_t)&rtalert_val , 2);

xrtalertp = ntohs(rtalert_val);
break ;

47

N4 N -
C = W N

ot

90

92
93
94
95

96

case IP60OPT_JUMBO:

#if 1

/* XXX may need check for alignment x*/
if (hbhlen < IP6OPT_JUMBO_LEN) {
IP6STAT_INC(ip6s_toosmall);
goto bad;

if (s(opt + 1) != IPGOPT.JUMBOLEN — 2) {
/% XXX stat x/
icmp6_error (m, ICMP6_.PARAM PROB,
ICMP6_ PARAMPROB_HEADER,
erroff + opt + 1 — opthead);
return (—1);

}
optlen = IP60OPT_JUMBO_LEN;

/%
* IPv6 packets that have non 0 payload length
* must not contain a jumbo payload option.
*
/
ip6 = mtod(m, struct ip6_hdr x);
if (ip6—ip6_plen) {
IP6STAT INC(ip6s_badoptions);
icmp6_error (m, ICMP6 PARAM PROB,
ICMP6_ PARAMPROB_HEADER,
erroff + opt — opthead);
return (—1);

}
/%

* We may see jumbolen in unaligned location , so
x we’'d need to perform bcopy ().

/

bcopy (opt + 2, &jumboplen, sizeof (jumboplen));
jumboplen = (u_-int32_t)htonl(jumboplen) ;

% if there are multiple jumbo payload options,

* #plenp will be non—zero and the packet will be
* rejected .

* the behavior may need some debate in ipngwg —
* multiple options does not make sense, however,
* there’s no explicit mention in specification .
*/

f

(#plenp != 0) {

48

97 IP6STAT INC(ip6s_badoptions);

08 icmp6_error (m, ICMP6_ PARAM PROB,
99 ICMP6 PARAMPROB_HEADER,

100 erroff + opt + 2 — opthead);
101 return (—1);

102 }

w;#endﬁ

104

105 /*

106 * jumbo payload length must be larger than 65535.
107 */

108 if (jumboplen <= IPV6 MAXPACKET) ({

109 IP6STAT_INC (ip6s_badoptions);
110 icmp6_error (m, ICMP6_ PARAM PROB,

111 ICMP6_ PARAMPROB_HEADER,

112 erroff + opt + 2 — opthead);
113 return (—1);

114 }

115 *plenp = jumboplen;

116

117 break ;

118 default : /* unknown option x/
119 if (hbhlen < IP6OPT MINLEN) {
120 IP6STAT_INC(ip6s_-toosmall);

121 goto bad;

122 }

123 optlen = ip6_unknown_opt (opt, m,
124 erroff + opt — opthead);

125 if (optlen = —1)

126 return (—1);

127 optlen 4= 2;

128 break;

129 }

130 }

132 return (0);

134 bad 5
135 m_freem (m)
136 return (—1

)

49

A.6

kprobe output of Linux response to a bad option length

tracer: function_graph
#
CPU DURATION FUNCTION CALLS
| | / | | | /
0) | ipv6_rcv() {
0) / ipv6_parse_hopopts() {
%* PROCESSES LENGTH HERE *
0) / ip6_parse_tiv() {
0) | kfree_skb() {
0) | skb_release_all() {
0) 0.109 us | skb_release_head_state();
0) | skb_release_data() {
0) | skb_free_head() {
0) 0.683 us / page_frag_free();
0) 1.214 us / }
0) 1.669 us | }
0) 2.694 us / }
0) | kfree_skbmem() {
0) 0.203 us | kmem_cache_free();
0) 0.716 us / *}
0) 4.180 us | }
0) 4.677 us I }
0) 5.303 us / F
0) 7.340 us [
A.7

Excerpt from ip_recv() from Linux kernel source code

2 \ *
3 x from ipv6_recv () from ip6_input.c

X

\

5 if (hdr—>nexthdr = NEXTHDRHOP) {
6 if (ipv6_parse_hopopts(skb) < 0) { #xx CHECK MADE HERE s xx
7 _IP6_INC_STATS (net, idev, IPSTATS MIBINHDRERRORS) ;
8 rcu_read_unlock () ;
9 return NET_RX_DROP;

10 }

50

11 }

A.8

ipv6_parse_hopopts() from Linux kernel source code

1 int ipv6_parse_hopopts(struct sk_buff xskb)
2 {

struct inet6_skb_parm xopt = IP6CB(skb);

5 / %
6 *« skb_network_header(skb) is equal to skb—>data, and
7 * skb_network_header_len (skb) is always equal to

8 * sizeof (struct ipv6hdr) by definition of

9 x hop—by—hop options.

10 * /

1 if (!pskb_may_pull(skb, sizeof(struct ipv6hdr) + 8) ||
12 I'pskb_may_pull (skb, (sizeof(struct ipv6hdr) +

13 ((skb_transport_header (skb)[1] + 1) << 3)))) {
14 kfree_skb (skb);

15 return —1;

16 }

15 opt—>flags |= IP6SKB.HOPBYHOP;
0 x*xx CHECKING FOR LENGTH HERE xxx

2 if (ip6-parse_tlv (tlvprochopopt_lst, skb)) {

23 skb—>transport_header += (skb_transport_header (skb)[1] + 1)
<< 3;
24 opt = IP6CB(skb);
25 opt—>nhoff = sizeof(struct ipv6hdr);
26 return 1;
27 }
28 return —1;
29 }
A9

ip6_parse_tlv() from Linux kernel source code

> /* Parse tlv encoded option header (hop—by—hop or destination)

*/

o1

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32

35
36
37
38
39
40
41
42
43
45

46

static bool ip6_-parse_tlv(const struct tlvtype_proc sprocs,

{

struct sk_buff xskb)

const struct tlvtype_proc xcurr;

const unsigned char *nh = skb_network_header (skb);
int off = skb_network_header_len (skb);

int len = (skb_transport_header(skb)[1] + 1) << 3;
int padlen = 0;

if (skb_transport_offset(skb) + len > skb_headlen (skb))
goto bad;

off += 2;
len —= 2;

while (len > 0) {
int optlen = nh[off + 1] + 2;
int 1i;

switch (nh[off]) {
case IPV6_TLV_PADI1:
optlen = 1;
padlen++;
if (padlen > 7)
goto bad;
break;

case IPV6_.TLV_PADN: x++x CHECKS LENGTHS HERE s
/* RFC 2460 states that the purpose of PadN is
* to align the containing header to multiples
x* of 8. 7 is therefore the highest valid value.
* See also RFC 4942, Section 2.1.9.5.

*
/

padlen += optlen;
if (padlen > 7)

goto bad;
/* RFC 4942 recommends receiving hosts to
* actively check PadN payload to contain
* only zeroes.

*/
for (i = 2; 1 < optlen; i++) {

if (nh[off + i] != 0)

goto bad;

52

a7 break ;

48

49 default: /+« Other TLV code so scan list x/
50 if (optlen > len)

51 goto bad;

52 for (curr = procs; curr—>type >= 0; curr++) {
53 if (curr—>type = nh[off]) {

54 /* type specific length/alignment

55 checks will be performed in the
56 func (). =/

57 if (curr—>func(skb, off) = false)
58 return false;

59 break;

60 }
61 1

62 if (curr—>type < 0) {

63 if (ip6_tlvopt_unknown (skb, off) = 0)
64 return false;

65 }

66 padlen = 0;

67 break ;

68 }

69 off 4= optlen;

70 len —= optlen;

}

if (len = 0)
return true;
bad:
kfree_skb (skb);
return false;

1

N

PRI S BN S T
ot ' w J

o

~ ~

00 ~
—

53

	IPv6 Security Issues in Linux and FreeBSD Kernels: A 20-year Retrospective
	Recommended Citation

	Introduction
	Security Concerns

	Contributions of this Paper
	Packages and Tools
	Methodology
	Tests of Systemic Vulnerabilities
	Tests of Parser Vulnerabilities

	Results
	Chained Extension Headers
	Bad Extension Header Option Length

	Future Work
	Conclusion
	Acknowledgements

