
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

6-1-2017

OpenCollab: A Blockchain Based Protocol to Incentivize Open OpenCollab: A Blockchain Based Protocol to Incentivize Open

Source Software Development Source Software Development

Yondon Fu
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Fu, Yondon, "OpenCollab: A Blockchain Based Protocol to Incentivize Open Source Software
Development" (2017). Dartmouth College Undergraduate Theses. 126.
https://digitalcommons.dartmouth.edu/senior_theses/126

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337600964?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/126?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

OpenCollab:
A Blockchain Based Protocol to Incentivize

Open Source Software Development

Yondon Fu

June 1, 2017

Dartmouth Computer Science Technical Report TR2017-831

Abstract

Open source software is one of the fundamental building blocks of today’s
technology dependent society and is relied upon by parties ranging from
large technology corporations to individual hobbyist developers. The open
question left for technologists is how to make open source software projects
more sustainable.

The rise of decentralized networks of self-organizing, self-coordinating
users incentivized by valuable cryptographic tokens enabled by Ethereum
smart contracts creates the possibility of a system with embedded economics
for open source software development that aligns the incentives of all parties.
We present two contributions that can serve as building blocks for a poten-
tially better solution to open source software sustainability: a command line
tool that enables a decentralized Git workflow without the need for a central-
ized service like Github and a proof-of-concept blockchain based protocol for
incentivizing open source software development using a cryptographic token.
Both contributions are implemented using Ethereum smart contracts.

1

Acknowledgements

The contributions of this thesis were supported and influenced by a number
of people. I would like to thank my thesis advisor Professor Sergey Bratus
for encouraging me to follow my interests and research cryptocurrencies and
blockchains. Professor Bratus provided valuable insights into the security
concerns of system design. Thank you to my thesis committee members Pro-
fessor Sean Smith and Professor Charles Palmer for taking the time to listen
to and critique my contributions; Meredith Patterson from Mautinoa Tech-
nologies for providing insights from her open source software development
experiencies and Doug Petkanics and Eric Tang from the Livepeer project
for providing feedback on the OpenCollab protocol design.

2

1 Introduction

In today’s software dependent society, open source software is everywhere.
Parties ranging from large technology corporations like Google to individual
hobbyist developers use open source software as the building blocks of their
own projects. Tools that a developer once had to build from scratch are now
widely available for anyone to use for free on websites like Github. Not only
can anyone easily use these software packages, but anyone can also freely
access, inspect and alter the source code, tailoring it for his or her own
specialized needs.

The implications of democratized access to quality software is wide rang-
ing. The open source web framework Ruby on Rails not only powers popular
applications such as Twitter and Github that millions of people rely on ev-
eryday, but it also made web application development accessible to a broader
audience by abstracting away the details of composing together components
such as HTTP request handling, database querying and templating. Given
the importance of open source software, the task at hand for technologists
is to figure out how to make open source software projects sustainable such
that organizations and individuals in the future can continue to rely on them
in the future.

The sustainability of an open source software project is tied to project
health and support. Project health is determined by how actively and ad-
equately project developers communicate with users such that the project
addresses the needs of the community. Project support is determined by
the availability of financial and technical resources to develop a project[17].
A sustainable open source software project needs to be both healthy and
supported.

A healthy and supported project optimizes the use of developer time and
attention, the scarcest resources in open source software projects. Communi-
cation between developers and users in a healthy project informs developers
of community needs and issues to focus their time and attention on. Avail-
ability of financial and technical resources in a supported project ensures de-
velopers are free to allocate all of their time and attention on project issues.
Consequently, in a healthy and supported project, developers can properly
allocate their time and attention according to community needs.

If project developers fail to properly allocate their time and attention,
users might leave a project in search of alternatives that better suit their
needs. Canonical, the company behind the Linux operating system Ubuntu,

3

created fragmentation in the Linux community when it shipped a new ver-
sion of Ubuntu with the Unity interface rather than the standard GNOME
interface[9]. Canonical’s failure to properly poll for user opinion and allo-
cate developer time and attention accordingly ultimately hurt the Ubuntu
project.

1.1 Models for Open Source Software Sustainability

A number of models for open source software sustainability exist today, but
the applicability of a model depends on the nature of the open source software
project in question and the particular needs of the project.

Bug bounty platforms such as HackerOne connect projects with cyber-
security experts that find code vulnerabilities in exchange for monetary re-
wards[23]. While these platforms can improve the quality of a project’s code-
base, they primarily benefit company backed projects rather than community
supported open source software projects. Companies have the financial re-
sources to offer monetary rewards to cybersecurity experts. The same may
not hold true for community backed open source software projects. As a
result, project support is not fully addressed. Furthermore, bug bounty plat-
forms help projects resolve vulnerabilities, but do not help projects resolve
feature requests and determine a project roadmap. Consequently, project
health is not fully addressed.

Company led maintenance of open source software projects is another
model for open source software sustainability. This model is practiced by
companies like Facebook with the React Javascript library and RedHat with
the RedHat enterprise distribution of Linux[30, 31]. Since Facebook and
RedHat both lead the maintenance of their respective open source software
projects, the projects are supported by the resources of their backing com-
panies. As a result, project support is addressed. However, since company
employed developers are the primary maintainers of these projects, it is pos-
sible for project health to be compromised such that project developers only
cater to the needs of the backing companies, but not to the needs of the rest
of the project community. Due to this possibility, this model does not fully
address project health.

Another model for open source software sustainability is a general bounty
system for project issues such as the one operated by the website Boun-
tysource[7]. In these systems, users can attach monetary bounties to project
issues that are rewarded to contributors that successfully resolve issues.

4

While these bounty systems may help projects attract more contributors,
they do not take into account the incentives of maintainers. The work done
by maintainers to review and merge in code is just as crucial as the work
done by contributors. Consequently, general bounty systems only partially
help with project support.

Bounty systems do not necessarily help with project health. Although
in some cases, multiple users placing bounties on an issue might signal the
importance the community places on that particular issue, it is also possi-
ble for individuals to place large bounties on issues that would serve their
own short-term needs, but negatively impact project’s longer term quality.
Such a possibility can place a burden on developers of filtering signal from
noise and also introduces the possibility of collusion - a contributor might
share a large bounty if a maintainer agrees to merge it into the codebase
even if the contributed code is of poor quality. As a result, bounty systems
can actualy hamper communication between developers and users leading to
unmet community needs. Additionally, bounty systems can encourage drive
by contributions characterized by bounty hunters resolving issues with code
that does not take into account the rest of the codebase, thereby leading to
the emergence of bugs. Adding any form of financial compensation to open
source software projects needs to align the incentives of all parties involved or
else perverse incentives might arise leading to malicious behavior that harms
the quality of the project.

Lastly, bounty systems operated by websites like Bountysource rely on
a centralized entity to facilitate transactions. This reliance on a centralized
entity not only results in a central point of failure, but can actually be more
costly for users. For example, although users can freely transact within
the bounty system, Bountysource charges a 10% withdrawal fee if a user
wants to cash out. As a result, users choose between giving up a portion
of their monetary rewards and giving up the numerous opportunies to use
their monetary rewards for their own benefit outside the bounty system.
This withdrawal fee discourages users from leaving the system which benefits
Bountysource, but harms users.

1.2 Cryptocurrencies and Blockchains

The advent of cryptocurrencies and blockchains introduce a new decentral-
ized paradigm for social systems. Cryptocurrencies are digital assets that
rely on cryptography to secure transactions. In general, when we use the

5

term cryptocurrencies, we describe decentralized cryptocurrencies managed
by a distributed network of computers as opposed to fiat currencies that are
managed by a central bank. Blockchains are the underlying technology that
make these cryptocurrencies possible. These data structures establish the
state of a system, whether it be a currency system or otherwise, without
placing trust in a single entity.

Blockchains can not only enable the creation of a bounty system that is
not managed by a single entity, but also allows for the creation of a system
with more complex rules that potentially offer economic support in a way that
aligns the incentives of all parties involved. With blockchains, developers can
embed a set of rules for updating system state directly into software. Instead
of trusting a centralized entity to enforce the rules, users know that the
software will enforce the rules since it is programmed to determinstically
execute and respond to a predetermined set of instructions. In a centralized
paradigm, systems rely on central entities for coordination and organization.
In a decentralized paradigm, systems are formed by a distributed network
of self-coordinating and self-organizing users that follow a common software
protocol powered by a blockchain. Protocols can economically incentivize
certain actions by rewarding users with protocol native cryptocurrencies if
conditions established in the protocol rule set are fulfilled.

Communities around open source software projects currently rely on cen-
tralized services to coordinate and collaborate. Furthermore, adding mone-
tary rewards to a project in a way that aligns interests of all parties is not
only difficult, but also adds middlemen and transaction costs to the system.
Cryptocurrencies and blockchains can be the building blocks for a potentially
better system.

1.3 Contributions

The primary contributions of this thesis are the following:

• A command line tool that enables a decentralized Git workflow for
developing open source software without relying on a centralized service
like Github as described in Section 3. The code is available open source
at https://github.com/yondonfu/opencollab-cli.

• A proof-of-concept blockchain based protocol to incentivize open source
software development as described in Section 4. The code for the set

6

https://github.com/yondonfu/opencollab-cli

of smart contracts implementing the protocol is available open source
at https://github.com/yondonfu/opencollab.

The motivation behind these contributions is to push the discussion on
how to improve open source software sustainability. In particular, these
contributions are attempts to answer the following questions relating to open
source software sustainability:

• How can developers poll for user opinion on issue priorization for a
project?

• How can a project attract regular contributors?

• How can maintainers be incentivized to carefully review and merge pull
requests such that the quality of a project is upheld?

A detailed description of these contributions can be found in Sections 3
and 4.

7

https://github.com/yondonfu/opencollab

2 Background

Cryptographic tokens and blockchains (more specifically Ethereum) serve as
the foundation of the contributions for this thesis. A more detailed discussion
of blockchains can be found in Section 5.

2.1 Cryptographic Tokens

Although Bitcoin is often referred to as a cryptocurrency, it is also com-
monly classified as a cryptographic token. We make this differentiation in
terminology to highlight the difference in usage that is associated with each
term. Both terms share the common definition of a digital asset secured
by cryptography that be transferred without the permission of its original
issuer. Cryptocurrencies are primarily associated with being mediums of ex-
change and stores of value. While cryptographic tokens can also serve these
roles, they also offer utility in that they provide the holder access to a useful
service. Bitcoin was the first cryptographic token and it allowed holders to
access and write to a global and immutable decentralized database by creat-
ing transactions. Cryptographic tokens can be compared to paid API keys
that are redeemable for a service and that can be freely traded without the
permission of the original API key issuer[33]. In the remaining sections of
this thesis, we will use the term tokens to refer to cryptographic tokens with
the properties highlighted above.

Token systems rely on underlying blockchains to provide a decentralized
database that contains records of token ownership. Ownership of a token
is defined by ownership of the private key referenced by a record with the
associated public key in the blockchain. The absence of a centralized in-
termediary enforcing the ownership of tokens allows token holders to freely
transfer their tokens to other parties. The ability to freely trade tokens and
the ability to use tokens to access a service gives tokens a floating price on
the open market[33]. Thus, when integrated into a protocol, tokens can serve
as an economic mechanism that aligns the incentives of network users. Indi-
viduals purchase tokens on the open market to access a useful service offered
by the protocol. Purchasers become token holders that stand to benefit if the
token rises in value. These early adopters increase interest in the protocol
by actively using the service provided or building additional applications and
services on top of it. Increased protocol interest leads to increased demand
for tokens so that users can access the service offered by the protocol. The

8

result is token value appreciation and a new wave of token holders that are
financially incentivized to increase the value of the protocol[28].

A key observation of these token powered protocols is that token holders
and protocol users are the same group of individuals. Consequently, the
incentives of the users are aligned such that they all want to see the value of
their token holdings increase.

2.2 Ethereum

Token powered protocols can be built in a number of ways. As mentioned
previously, Bitcoin is an example of a token that powers the Bitcoin pro-
tocol which offers users peer to peer value transfer as a service. The key
component of a token system is the underlying blockchain that it relies on.
Individuals can choose to create an entirely new blockchain to support their
token systems. Alternatively, they can build their token systems on existing
blockchains such as the Bitcoin blockchain. Although token systems such as
Counterparty have been built on top of the Bitcoin blockchain, the Bitcoin
blockchain and its limited built-in scripting language does not provide devel-
opers with a lot flexibility and expressiveness when designing the mechanics
of their token systems[15].

Ethereum is a blockchain designed for general computation and offers a
built-in Turing complete programming language that is more flexible and
expressive than the Bitcoin scripting language allowing users to write so
called smart contracts [11]. These smart contracts can define the rules and
state associated with a token powered protocol. Users of token powered
protocols interact with the smart contract and trust the automatic enforced
execution of the smart contract code which is secured by the underlying
Ethereum blockchain. Interest in token powered protocols have given rise to
a community developed standard for tokens built on top of Ethereum called
ERC20[40].

Although security focused members of the computer science community
have expressed a fair amount of concern about the viability of Ethereum as a
blockchain used for smart contracts due to the large attack surface presented
by its Turing complete programming language, the stark reality is that the
Ethereum developer ecosystem is the most active of any other blockchain
ecosystem. Furthermore, various members of the community are actively
researching methods to better secure the Ethereum network including formal
verification, proof-of-stake as an alternative consensus algorithm to proof-

9

of-work and smart contract programming languages with stronger security
guarantees. Consequently, with these points in mind we decided to build the
OpenCollab protocol on Ethereum.

10

3 Decentralized Git Workflow

Git is a distributed version control system that is commonly used in a cen-
tralized workflow. Developers often work using a local Git repository and
coordinate with other developers by pushing their changes to a remote Git
repository that is either hosted by a trusted third party or self-hosted. While
developers are free to host their own remote Git repositories, it is far more
common to rely on a web service such as Github to handle hosting. Github
abstracts away the complexities of repository hosting and also offers devel-
opers additional featues that are not native to Git such as access control,
issue tracking and a pull request system. Developers use a remote protocol
such as HTTP, SSH or Git (packaged with the VCS) to communicate with
and transfer data to the remote repository hosted on Github[20]. Ease of
use and collaboration features have solidified Github as a crucial developer
productivity tool. However, a centralized workflow centered around Github
also has a number of downsides. If a user relies on Github, the user also relies
on all of Github’s dependencies. The failure of a dependency resulting from
a cyberattack can render Github’s services and any hosted code unavailable
for a period of time[18]. Furthermore, any additional repository features such
as payments and governance mechanisms around project direction cannot be
directly integrated into a repository because Github ultimately controls the
remote repository. As long as Github is used as a centralized service to co-
ordinate and collaborate on a project, these features can only be integrated
into a project if Github chooses to implement them. Consequently, there
is potential value in a decentralized Git workflow that does not rely on a
centralized service like Github to coordinate and collaborate on projects.

3.1 Mango

Past work to enable a decentralized Git workflow includes Alex Beregszaszi’s
Mango, a remote protocol for Git that uses Ethereum smart contracts for
remote repository access control and stores Git objects in decentralized con-
tent addressable storage networks[5]. The smart contract associated with a
repository maintains a whitelisted set of Ethereum addresses that can push
changes to the repository. Although Mango is storage solution agonistic, it
is best served by a decentralized content addressable solution and the initial
implementation uses the Interplanetary File System (IPFS), a peer-to-peer
distributed file system[4]. Git objects are serialized and uploaded to IPFS

11

which returns the content hash for the objects. Since Git uses the SHA1
hash algorithm, while IPFS is hash algorithm agnostic, a snapshot map-
ping of Git SHA1 object hashes to IPFS object hashes is also uploaded to
IPFS[6]. These IPFS snapshot hashes and Git references are then stored
in an Ethereum smart contract. The smart contract address is used as an
identifier for the repository. Using a command line tool, users can push to
and clone a remote repository using the smart contract address associated
with a repository.

3.2 OpenCollab-CLI and Extensions to Mango

In order for the Mango protocol to support a decentralized Git workflow that
is comparable in productivity capabilities to a centralized Git workflow using
Github, it needs to offer issue tracking and a pull request system. As a part of
our contributions, we extended the original Mango protocol implementation
by modifying the MangoRepo smart contract to support CRUD operations
for issues and pull requests. We developed the OpenCollab-CLI command
line which allows users to manage issues and pull requests for a repository in a
terminal. The command line tool uses Swarm, a distributed storage platform
and Ethereum ecosystem service, rather than IPFS as a decentralized storage
solution[34]. However, similar to the original Mango protocol, our protocol
extensions are also storage solution agnostic.

OpenCollab-CLI can be used to push to and clone a remote repository
using the smart contract address associated with a repository as depicted in
Figures 1 and 2.

Issue contents are uploaded to Swarm which returns the hash for the
contents. The Swarm hash is then stored in the smart contract for the
repository and mapped to an integer identifier. When using the command
line tool, retrieving the contents of an issue consists of querying the smart
contract with the issue identifier and then querying Swarm using the Swarm
hash corresponding to the issue identifier. The process of creating an issue
using OpenCollab-CLI is depicted in Figure 3.

Users can create a pull request with a two step process. First, they need
to fork the project. The command line tool can be used to fork a project
locally. In the project fork, users can initialize a new Mango repository, make
relevant changes and push to the smart contract address associated with the
repository fork. After pushing a project fork, users can use the command
line tool to create a new pull request that references an issue identifier and

12

Figure 1: Pushing to a remote repository using the Mango remote protocol
and OpenCollab-CLI

Figure 2: Cloning a remote repository using the Mango remote protocol and
OpenCollab-CLI

13

Figure 3: Creating issues using OpenCollab-CLI

the contract address for the repository fork. The process of opening a pull
request using OpenCollab-CLI is depicted in Figure 4.

A project maintainer can merge a pull request with a two step process.
Maintainers can locally clone a repository fork using the contract address
referenced in a pull request. The command line tool can be used to locally
merge a repository fork into the main repository. Then, maintainers can
push the merged changes to the contract address associated with the main
repository as long as their Ethereum address is whitelisted by the repository
contract. The process of merging a pull request using OpenCollab-CLI is
depicted in Figure 5.

OpenCollab-CLI can serve as tool for constructing protocols for open
source software projects that offer additional features such as payments and
governance mechanisms for project direction. The OpenCollab protocol is
one such protocol that we describe in Section 4.

3.3 Future Work

The OpenCollab-CLI command line tool along with our extensions to the
Mango protocol enable a decentralized Git workflow that not only obviates
the need for a centralized service like Github to coordinate and collaborate
for projects, but also creates the possibility of directly integrating features
such as payments and governance mechanisms directly into a repository at
the protocol level. These contributions serve as neccessary foundation for
the OpenCollab blockchain based protocol which is described in the next

14

Figure 4: Creating pull requests using OpenCollab-CLI

Figure 5: Merging pull requests using OpenCollab-CLI

15

Figure 6: The technology stack underlying the OpenCollab protocol. The
layers representing the contributions of this thesis are highlighted

16

section. At the moment, the OpenCollab-CLI command line tool and the
OpenCollab protocol are separate. Future work would include upgrading
OpenCollab-CLI to be compatible with the OpenCollab protocol.

17

4 OpenCollab Protocol

The OpenCollab protocol is implemented by a set of Ethereum smart con-
tracts. By building on the Ethereum platform, we can rely on security prop-
erties of the underlying Ethereum blockchain. With the details of consensus
and security abstracted away, the OpenCollab protocol focuses on defining
secure economic incentives and rules that encourage open source software
sustainability.

4.1 Protocol Roles

• Voters: participate in governance voting by depositing tokens.

• Curators: curate project issues by staking tokens.

• Contributors: open pull requests to resolve issues by staking tokens.

• Maintainers: review and merge pull requests for issues by staking
tokens.

4.2 OpenCollab Token

The OpenCollab token (OCT) powers the OpenCollab protocol. The value
offered by the token is influence over an open source software project. Fur-
thermore, the token serves the following purposes in the protocol:

• Used in deposits for token holders that choose to participate as voters
in protocol governance.

• Used in a staking mechanism for issue curation. Curators stake tokens
to signal the importance they place on an issue.

• Used in a staking mechanism for opening pull requests. Contributors
stake a certain number of tokens when opening a pull request. If a con-
tributor’s pull request is closed without being merged in to the project,
the contributor’s staked tokens are destroyed. The possibility of los-
ing staked tokens discourages contributors from opening pull requests
unless they are confident about the quality of their contributions.

18

• Used in a staking mechanism for merging pull requests. Maintainers
stake a certain number of tokens when they initiate a merge. Before a
merge is finalized, a token holder can challenge a maintainer’s merge
to start a voting round. If token holders decide to veto a maintainer’s
merge, the maintainer’s staked tokens are destroyed. The possibility
of losing staked tokens discrourages maintainers from merging pull re-
quests that do not benefit a project. The challenge and voting process
for a merge is described in more detail in Section 4.6.

Since OCT is neccessary to perform actions in an open source software
project and can be freely traded on the open market, it will have a floating
price on the open market. The price of OCT will reflect interest in and desire
to influence a project.

An initial allocation of tokens will be distributed so that the various
protocol roles can be fulfilled by token holders. A project creator can initialize
an OpenCollab repository and mint a certain amount of tokens for the initial
allocation. The initial allocation might be done using a token crowdsale
or by disbursement at the discretion of the project creator. The protocol
currently does not dictate how to properly use funds accumulated from a
token crowdsale.

OCT is an ERC20 token and is divisble by 1018. When a repository using
the OpenCollab protocol is created, a smart contract is created governing a
OCT that is specific to that particular repository. As a result, there can be
many repository specific versions of OCT.

4.3 Governance Voting

Token holders can elect to participate in governance voting by depositing
voterDeposit tokens. At the moment governance voting only takes place
for challenged pull request merges which is described in Section 4.6, but in
the future it can be used for other protocol decisions. One use case might
be to vote on adding maintainers to a project. Another use case might be to
vote on the proper usage of funds accumulated by a project during a token
crowdsale. Token holders have an incentive to be voters because they can
earn rewards. The deposits of voters on the winning side of a vote increase
by voterRewardPercentage. At the same time, the deposits of voters
on the losing side of a vote decrease by voterPenaltyPercentage.

19

4.4 Curating Issues

Curators stake a number of tokens to an issue to signal the importance that
they place on the issue. Since curators lock up their tokens for a period of
time when they stake tokens to an issue, they have limited curation power.
Since curators take on the risk of a fall in token value, they have skin in
the game[36]. If curators signal importance for bad issues, developers poorly
allocate their time and attention. If developers do not properly allocate
their time and attention on resolving issues that would improve the quality
of a project, the community might lose interest and less people would desire
influence over the project leading to a fall in token value. Consequently,
curators have an incentive to signal importance for issues that accurately
reflect the needs of the community. As well curated issues are resolved, the
value of the token would increase thereby benefiting curators. Contributors
and maintainers are attracted to token staked issues because the token reward
associated with resolving these issues is proportional to the amount of tokens
staked to the issue.

4.5 Opening Pull Requests

Contributors open pull requests by calling openPullRequest(issueId,
contractFork) and staking contributorStake tokens, where con-
tributorStake is a repository parameter.

If a contributor’s pull request is successfully merged by a maintainer, the
contributor receives a portion of the issue’s token reward. The portion can
be calculated as reward - (reward ∗ maintainerPercentage).

If a contributor’s pull request is closed without being merged into the
project, the contributor’s contributorStake staked tokens are destroyed.
The possibility of losing tokens discourages a potential contributor from
flooding a project with pull requests of subpar quality which relieves some of
the burden on maintainers of filtering high quality pull requests from poor
quality pull requests.

4.6 Merging Pull Requests

Maintainers merge pull requests by staking maintainerStake tokens, where
maintainerStake is a repository parameter.

20

Figure 7: Curating, opening pull requests and merging unchallenged pull
requests

If a maintainer wants to merge a pull request, it calls initMergePull-
Request(pullRequestId) to signal an intent to merge a particular pull
request and starts a challenge period. During this period, any token holder
can challenge the maintainer by calling challenge(maintainer) and stak-
ing challengerStake tokens.

If a maintainer is not challenged during the challenge period, it can call
mergePullRequest(pullRequestId). A successful call to mergePull-
Request(pullRequestId) mints a number of new tokens proportional to
the number of tokens staked to the resolved issue. The maintainer receives
a portion of the issues’s token reward which can be calculated as reward ∗
maintainerPercentage. The protocol flow for an unchallenged merge is
depicted in Figure 7.

If a maintainer is challenged during the challenge period, a voting period
begins. Voting takes place using a two step commit and reveal protocol first
formalized by Brassard, Chaum and Crepeau[8]. During the commit step,
voters with a minimum voterDeposit deposit in the smart contract vote
to uphold or veto a maintainer’s merge by calling commitVote(hash) with
the cryptographic hash of their vote and a secret phrase. A vote to uphold
is a 1 and a vote to veto is a 2. The secret phrase can be any random string
only known to the voter. The value of the vote is secure from an adversary

21

as long as only the voter knows the secret phrase used when generating the
hash. We use the SHA3 keccak256 hash function since it is used internally
by Ethereum.

During the reveal step, voters reveal the values of their votes by submit-
ting the concatenation of their vote and secret phrase used in the commit
step by calling revealVote(vote). The smart contract verifies that the
submitted vote corresponds with the committed hash and tallies up votes as
voters reveal them. Finally, anyone can call voteResult() which compares
the number of uphold and veto votes. The value that receives the majority of
vote (≥ 50%) wins. Voters on the losing side of the vote are penalized such
that voterPenaltyPercentage is deducted from their deposits. Voters
on the winning side of the vote are rewarded such that voterRewardPer-
centage is added to their deposits.

If a maintainer’s merge decision is upheld, the maintainer is able to call
mergePullRequest(pullRequestId) to finalize the merge. The chal-
lenger’s challengerStake staked tokens are destroyed and the maintainer
can claim his portion of the issue token reward. The protocol flow for an
upheld challenged merge is depicted in Figure 8.

If a maintainer’s merge decision is vetoed, the challenger’s staked tokens
are returned and the maintainer’s maintainerStake tokens are destroyed
and is removed from the maintainer set for the repository. Consequently,
the former maintainer would not only lose the staked tokens, but also the
economic value of future issue token rewards. The possibility of losing tokens
and maintainer status serves to encourage maintainer to only merge pull
requests that ensure the quality of the project. The protocol flow for a
vetoed challenged merge is depicted in Figure 9.

4.7 Amortisation of Work

Each computation step taken by an Ethereum smart contract costs a certain
amount of gas, an internal accounting unit. As a result, when writing smart
contracts, it is important to keep gas costs in mind. One of the most costly
programming constructs that can be included in a smart contract is a loop
over a large array of elements. If the array of elements can become arbitrarily
large, the gas cost of iterating over the array can also become arbitrarily large.

In the OpenCollab protocol, voters are penalized or rewarded after a
voting round depending on whether they were on the winning or losing side
of the vote. A simple and naive way of performing the accounting for these

22

Figure 8: Upholding a challenged merge

23

Figure 9: Vetoing a challenged merge

24

// vr = l a t e s t vot ing round
for (u int256 i = 0 ; i < vo t e r s . l ength ; i++) {

i f (vr . votes [vo t e r s [i]] . voteValue == VoteValue . None) {
// Voter absta ined
// Pena l i z e voter

} else {
i f (vr . r e s u l t == vr . votes [vo t e r s [i]] . voteValue) {

// Voter on winning s i d e
// Reward voter

} else {
// Voter on l o s i n g s i d e
// Pena l i z e voter

}
}

Figure 10: Calculating penalties and rewards for all voters in voteResult()

penalties and rewards would be to loop through all voters and check if they
were on the winning or losing side of the most recent vote. This accounting
can be done at the end of the voteResult() function as described in Figure
10.

However, the size of the voters array can become arbitrarily large as more
token holders put down deposits to participate in governance voting. As
the voters array grows in size, the gas cost of performing the accounting for
penalties and rewards after a vote will grow as well. Accounting for penalties
and rewards in such a way will eventually become too expensive.

A common design pattern used in smart contracts to avoid massive gas
costs in single function calls is amortisation of work[24]. We can break up the
work being done over other operations. In the OpenCollab protocol, rather
than updating voter deposits with penalties and rewards after every vote, we
introduce a voterCheckIn() function as described in Figure 11.

The function updates a voter deposit with penalties and rewards for all
voting rounds that occured since the last voting round that the voter checked
in to. Voters can only withdraw their deposits if they have checked in to
the latest voting round. Voters are incentivized to call voterCheckIn()
frequently because otherwise the gas cost of the function increases with the
number of voting rounds that the voter has not checked in. As a result, the
work of calculating penalties and rewards for votes is distributed across all
voters and we avoid large gas costs associated with single function calls.

25

for (u int256 i = startRound ; i < rounds . l ength ; i++) {
i f (rounds [i] . votes [msg . sender] . voteValue == VoteValue . None) {

// Voter absta ined
// Pena l i z e voter

} else {
i f (rounds [i] . r e s u l t == rounds [i] . vote s [msg . sender] . voteValue) {

// Voter on winning s i d e
// Reward voter

} else {
// Voter on l o s i n g s i d e
// Pena l i z e voter

}
}

}

Figure 11: Amorisation of work - voters calculate their own penalties and
rewards in voterCheckIn()

4.8 Future Work

The OpenCollab protocol is a proof-of-concept protocol exploring the inte-
gration of aligned economic incentives in an open source software project
using a token powered protocol. At the moment, the set of smart contracts
have only been tested using a local Ethereum node and do not optimize
gas usage. Next steps would include deployment to an Ethereum test net-
work and refactoring the contracts such that they can be deployed without
exceeding the block gas limits in the test network.

Future work would also include formal validation of the protocol de-
scribed. This formal validation process would be composed of two com-
ponents: formal verification of smart contract behavior and a formal game-
theoretic analysis of protocol economics.

Formal verification of Ethereum smart contract behavior is an active area
of research. Although Ethereum smart contracts are subject to the halting
problem due to the use of a Turing complete programming language, there is a
subset of smart contracts that will provably halt and programmers can design
their smart contracts to fall within that subset[37]. Furthermore, existing
tools such as Oyente, a symbolic execution tool, can already find a number
of potential security bugs in smart contracts, thereby preventing incorrect
contract behavior[26]. The development of safer higher level programming
languages such as Viper with stronger type systems and provable termination

26

can also improve the effectiveness of static code analyzers[39]. These projects
can provide the backbone for formal methods of verifying smart contract
behavior.

Formal game-theoretic analysis of protocol economics is a new and emerg-
ing area of research. The design of the OpenCollab protocol assumes rational
economic actors that will behave honestly as long as they stand to suffer
larger economic losses when behaving dishonestly than when behaving hon-
estly or stand to reap larger economic rewards when behaving honestly than
when behaving dishonestly. The OpenCollab protocol includes a number of
protocol staking parameters that define the required amount of tokens for
performing certain actions. A formal game-theoretic analysis of the Open-
Collab protocol might include proofs demonstrating the safety of the protocol
as long as these protocol staking parameters are fine tuned accordingly.

Though formal verification of smart contract behavior and formal game-
theoretic analysis of protocol economics are crucial components of validating
the OpenCollab protocol, they are out of the scope of this particular thesis
so we leave them as areas for future research.

27

5 Related Work

Although cryptocurrencies and blockchains have only recently captured the
attention of academics and business people, the technical foundations of these
systems actually have a longer history. Cryptocurrencies and blockchains
use ideas from past work by computer science researchers in the areas of
distributed consensus, electronic money and digital time-stamping. Addi-
tionally, as types of distributed systems, the deployment of cryptocurrencies
and blockchains in a public setting and on a large scale provide interesting
insights particularly when viewed in the context of past distributed consensus
research.

5.1 Distributed Consensus

The reliability of a distributed system depends on system proccesses to reach
consensus on particular values. A distributed system can be viewed as a repli-
cated state machine consisting of a state machine replicated across multiple
processes. The replication of state across many processes creates a level of
redundancy that can protect a system against failure due to a single faulty
individual component. The replicated state machine uses a deterministic
state transition function to map a set of inputs and the current state to
a new state[32]. State transitions are atomic such that they either occur
completely or do not occur at all, consistent such that they must be valid
mappings of inputs and the current state to a new state and durable such
that once they occur, state is permanently updated. Thus, we can consider
state transition function inputs as transactions[21].

Although a distributed system can protect against failure due to a single
faulty individual component, it remains vulnerable to multiple process faults
that prevent the system from achieving consensus on a particular value due
to incorrect process behavior. Process faults come in a different varieties, but
two common types are fail-stop faults, where processes crash and other proc-
cesses can detect the failure, and Byzantine faults, where processes exhibit
arbitrary and potentially malicious behavior[32]. In comparison to solutions
for fail-stop faults, solutions for Byzantine faults require additional complex-
ity because faulty Byzantine processes can transmit conflicting information
to other processes that might not be immediately detected. Lamport et al.
initially presented Byzantine fault tolerance using the Byzantine Generals
Problem, in which a number of Byzantine generals attempt to coordinate

28

an attack on an enemy city in the presence of potentially traitorous gener-
als. The traitorous generals can be characterized as Byzantine processes in
a computing context.[25].

Lamport et al. offered a few solutions to the Byzantine Generals Prob-
lem, one involving oral messages requiring at least 3f + 1 generals given f
traitorous generals, and another involving messages with unforgeably signa-
tures that allows an arbitrary number of traitorous generals. However, due
to an assumption that the absence of messages can always be detected, these
solutions are only applicable to synchronous environments. In synchronous
environments, system designers can make assumptions about the maximum
delay of network messages, but in asynchronous environments, system design-
ers cannot make any assumptions about network delays[10]. In asynchronous
environments, an adversary might have the power to schedule network mes-
sages. Consequently, the solutions of Lamport et al. would not be sufficient
in an asynchronous environment because there is no guarantee of detecting
the absence of messages.

The FLP impossibility proof states that distributed consensus in an asyn-
chronous environment with deterministic processes is impossible if a single
process can crash[19]. However, the proof does not preclude distributed
consensus in asynchronous environments with certain weak synchronous as-
sumptions or with randomization. One example of a Byzantine fault tolerant
consensus algorithm that uses weak synchronous assumptions by tweaking
a timeout parameter is Practical Byzantine Fault Tolerance (PBFT) which
offers system resilience as long as there are at least 3f + 1 total processes
given f Byzantine processes[13]. A number of computer science researchers
have also explored Byzantine fault tolerant consensus algorithms using ran-
domization. Ben-Or offered one such algorithm that involves processes using
a register that is probabilistically set to either 0 or 1 to decide on a binary
value. The algorithm works with probability eventually reaching 1, but also
requires at least 5f+1 total processes given f Byzantine processes[3]. We will
observe in Section 5.4 that certain cryptocurrency systems and blockchains
use a combination of weak synchronous assumptions and randomization to
achieve Byzantine fault tolerant distributed consensus in asynchronous envi-
ronments.

29

5.2 Electronic Money

The advent of the Internet and the mainstream adoption of computing de-
vices encouraged the development of many forms of electronic money by
recording balances electronically on devices.

In 1983, David Chaum introduced a cryptographic protocol for anony-
mous payments using blind signatures. In Chaum’s protocol, a bank uses
its private key to sign blinded tokens and payees accept signed tokens by
clearing a signed token with the bank[14]. The authenticity of tokens can be
guaranteed by verifying the bank’s signature on tokens with the bank’s pub-
lic key. The bank also does not know the identity of a payer when clearing
a signed token sent by a payee because the token was blinded to obfuscate
the amount and sender when the bank originally signed the token. Chaum
applied this protocol in his DigiCash project.

One of the flaws of DigiCash is that users must present tokens to the
bank for verification or else they are vulnerable to double spending attacks
since electronic messages can easily be duplicated[12]. Furthermore, reliance
on the bank creates a bottleneck for system throughput and a central point
of failure. If a bank’s private key is compromised, an attacker can use the
bank’s private key to create counterfeit tokens.

Easily duplicated electronic messages leave electronic money systems vul-
nerable to denial of service attacks. As a solution, Adam Back proposed using
hashcash, a easily verifiable, but difficult to compute cost function to mint
tokens. The cost function or proof-of-work is based on finding partial hash
collisions on the k-bit string 0k, for which the fastest known algorithm is
brute force meaning users must perform a certain amount of work in terms
of computing cycles to mint tokens[1]. A proof-of-work requirement discour-
ages electronic message duplication by making message creation costly.

Nick Szabo highlighted the utility of proof-of-work for electronic money in
his bit gold protocol. The protocol uses a proof of work function to compute a
string of bits that is timestamped in a distributed property title registry[35].
Users can verify owernship of a string of bits in the title registry. In con-
trast with DigiCash, bit gold allows valuable bits to be created, transferred
and stored without depending on a trusted third party. However, a system
implementing such a protocol was never implemented in practice.

30

5.3 Digital Time-Stamping

Widespread digitization of all types of documents brought many benefits to
society, but also introduced the question of how to prove the existence and
time of creation or change of a digital document.

In 1991, Haber and Stornetta presented a time-stamping method for dig-
ital documents that consisted of certificates cryptographically signed by a
time-stamping service. The certificates contain the hash of the document as
well as linking information from a previous certificate which includes a hash
of the previous certificate’s linking information[22]. The result is a hash
linked chain of certificates that prevents the faking of time-stamps.

Bayer, Haber and Stornetta extended this time-stamping method using
merkle trees. In the original time-stamping method, verification of a docu-
ment timestamp can require at most N steps by following the chain links to
a time-stamp certificate that is trustworthy[2]. Instead of linking N hashes
of documents, the hash values can be stored in a merkle tree. Participants
can record the hashes of their own documents and the sibling hash values
along the path from the document hash to the root of the merkle tree. Con-
sequently, verification can be done in at most lgN steps by presenting the
document hash and the lgN hashes on the path to the root. This modified
time-stamping approach reduces storage requirements and verification time.

5.4 Blockchains

Blockchains combine learnings from past work in distributed consensus, elec-
tronic money and digital time-stamping. A blockchain is a type of distributed
system with two key defining characteristics. The first characteristic is that
transactions are grouped into blocks. A common optimization reminiscient
of Bayer, Haber and Stronetta’s digital time-stamping method using merkle
trees is to store the root of a merkle tree that contains transactions in the
block header. This optimization allows clients to easily verify transactions
solely using the merkle roots of transactions in downloaded block headers
without storing all the actual transactions. The second characteristic is that
blocks are linked by cryptographic hashes. As demonstrated by Haber and
Stornetta’s work with hash linked digital timestamps, a hash linked chain of
blocks prevents tampering of blocks unless an adversary has majority con-
trol of the system such that it can rewrite the entire hash linked chain. The
result is a distributed ledger that is not controlled or managed by a central

31

entity powered by a network of connected computers that use a consensus
mechanism to reach agreement over shared data[38].

5.5 Bitcoin

The first blockchain was the Bitcoin blockchain[29] powering the Bitcoin
cryptocurrency system. Unlike traditional distributed systems, Bitcoin is de-
ployed in a public setting without any participation permissions and publicly
known process identities. These conditions leave distributed systems vulner-
able to Sybil attacks consisting of an adversary using multiple identities to
influence consensus decisions[16]. Additionally, as a global cryptocurrency
system, Bitcoin operates over the public internet, an asynchronous environ-
ment.

Bitcoin achieves Byzantine fault tolerant distributed consensus in an pub-
lic, adversarial and asynchronous environment using randomization in the
form of a proof-of-work consensus algorithm. Proof-of-work is based on solv-
ing moderately hard cryptographic puzzles in order to prevent computa-
tionally bounded adversaries from claiming many identites in the system[27].
More specifically, Bitcoin’s proof-of-work algorithm is based on Adam Back’s
hashcash cost function. A subset of Bitcoin nodes, the processes of the dis-
tributed system, solve partial hash collisions to append blocks of transactions
to the Bitcoin blockchain and update the state of the system. These nodes are
commonly known as miners. This type of consensus algorithm has become
commonly known as eventually consistent Nakamoto consensus[41]. Bitcoin
can achieve consensus as long as an adversary does not control more than
half of the total computing power. Phrased in terms of Byzantine fault toler-
ance, Bitcoin can achieve consensus as long as less than f computing power
is Byzantine of 2f + 1 total computing power.

Bitcoin also complements this consensus algorithm with economic rewards
to incentivize miners to secure and maintain the Bitcoin blockchain. The
first transaction in a new block mints new economically valuable tokens, the
Bitcoin cryptocurrency, that is rewarded to the miner that successfully solved
a partial hash collision and added the new block[29]. As a result, miners are
economically motivated to behave honestly. It is important to also note that
a number of flaws in Bitcoin have been discovered over the years, but a
discussion of these flaws is outside the scope of this thesis and will be left for
outside research.

32

5.6 Ethereum

Vitalik Buterin developed Ethereum as a solution to leverage the distributed
consensus capabilities of blockchains to create decentralized applications.
Ethereum is a blockchain with built-in Turing complete programming lan-
guage that allow users to write so called smart contracts that define arbi-
trary state transition functions[11]. Nodes in the Ethereum network run the
Ethereum Virtual Machine (EVM). The value proposition of smart contracts
is the ability to define arbitrary rules and agreements in a self-enforcing and
self-executing program. As a result, participants in a protocol or network can
trust the automatic enforced execution of code in the smart contract rather
than trust some centralized entity.

The native cryptocurrency of Ethereum is Ether. Similar to the Bitcoin
cryptocurrency, Ether can be used as a medium of exchange and store of
value. Additionally, Ether is used to pay for the computational steps taken
by Ethereum smart contracts which are metered by an internal accounting
unit called gas.

Similar to Bitcoin, Ethereum uses a proof-of-work consensus algorithm.
However, the core Ethereum developers have announced plans to move to-
ward a proof-of-stake consensus algorithm in the future that would instead
rely on cryptocurrency holders as validators to append new blocks to the
Ethereum blockchain, incentivizing good behavior by rewarding honest val-
idators and discouraging bad behavior by penalizing dishonest validators[42].

The role of Ethereum in the contributions for this thesis is discussed in
more detail in Section 2.

33

6 Conclusion

Cryptocurrencies and blockchains provide the foundation for systems pow-
ered by self-organizing and self-coordinating networks of economically incen-
tivized individuals. We built the OpenCollab-CLI command line tool and the
OpenCollab protocol to leverage these building blocks with the goal of de-
signing a sustainable open source software system that aligns the incentives
of all parties involved. Ethereum provided a base blockchain layer such that
we could take advantage of its underlying trust properties and infrastruc-
ture. Consequently, we focused on writing smart contract code that defines
rules that incentivize open source software project community members to
collaborate in improving project quality and sustainability.

We hope that at the very least the contributions of this thesis can push
the discussion around open source software sustainability forward and en-
courage other open source software community members to experiment with
new approaches of maintaining healthy and supported open source software
projects. The world stands to benefit tremendously if any of these experi-
ments are successful.

34

References

[1] Adam Back. Hashcash - A Denial of Service Counter-Measure.
http://www.hashcash.org/papers/hashcash.pdf. Accessed: 2017-4-29.
2002.

[2] Dave Bayer, Stuart Haber., and W. Scott Stornetta.
“Improving the Efficiency and Reliability of Digital Time-Stamping”.
In: Sequences II: Methods in Communication, Security and Computer
Science. 1993, pp. 329–334.

[3] Michael Ben-Or. “Another Advantage of Free Choice (Extended
Abstract): Completely Asynchronous Agreement Protocols”.
In: Proceedings of the Second Annual ACM Symposium on Principles
of Distributed Computing. 1983, pp. 27–30.

[4] Juan Benet.
IPFS - Content Addressed, Versioned, P2P File System (DRAFT 3).
https://github.com/ipfs/papers/blob/master/ipfs-cap2pfs/ipfs-p2p-
file-system.pdf.

[5] Alex Beregszaszi. Mango: Git, completely decentralized.
https://github.com/axic/mango/. Accessed: 2017-04-24.

[6] Alex Beregszaszi. Mango Specification.
https://github.com/axic/mango/blob/master/TECH.md.
Accessed: 2017-05-13.

[7] Bounty Source: Support for Open-Source Software.
https://www.bountysource.com/. Accessed: 2017-04-24.

[8] Gilles Brassard, David Chaum, and Claude Crepeau.
“Minimum Disclosure Proofs of Knowledge”.
In: Journal of Computer and System Sciences 37 (1988), pp. 156–189.

[9] Jon Brodkin.
Ubuntu Unity is dead: Desktop will switch back to GNOME next year.
https://arstechnica.co.uk/information-technology/2017/04/ubuntu-
unity-is-dead-back-to-gnome/.
2017.

[10] Ethan Buchman.
“Tendermint: Byzantine Fault Tolerance in the Age of Blockchains”.
MA thesis. The University of Guelph, 2016.

35

https://github.com/ipfs/papers/blob/master/ipfs-cap2pfs/ipfs-p2p-file-system.pdf
https://github.com/ipfs/papers/blob/master/ipfs-cap2pfs/ipfs-p2p-file-system.pdf
https://github.com/axic/mango/
https://github.com/axic/mango/blob/master/TECH.md

[11] Vitalik Buterin. Ethereum White Paper: A Next-Generation Smart
Contract and Decentralized Application Platform.
https://github.com/ethereum/wiki/wiki/White-Paper. 2013.

[12] L. Jean Camp, Marvin Sirbu, and J.D. Tygar.
“Token and Notational Money in Electronic Commerce”. In:
Proceedings of the 1st USENIX Workshop on Electronic Commerce.
1995, pp. 1–12.

[13] Miguel Castro and Barbara Liskov.
“Practical Byzantine Fault Tolerance and Proactive Recovery”. In:
ACM Transactions on Computer Systems 20.4 (2002), pp. 398–461.

[14] David Chaum. “Blind Signatures for Untraceable Payments”. In:
Advances in Cryptology: Proceedings of Crypto 82. Springer US, 1983,
pp. 199–203.

[15] Counterparty. https://counterparty.io/. Accessed: 2017-5-27.

[16] John R. Douceur. “The Sybil Attack”. In: Proceedings of 1st
International Workshop on Peer-to-Peer Systems (IPTPS). 2002,
pp. 251–260.

[17] Nadia Eghbal. What success really looks like in open source.
https://medium.com/@nayafia/what-success-really-looks-like-in-open-
source-2dd1facaf91c.
2016.

[18] Darrell Etherington.
Large DDoS attacks cause outages at Twitter, Spotify, and other sites.
https://techcrunch.com/2016/10/21/many-sites-including-twitter-
and-spotify-suffering-outage/. Accessed: 2017-05-13. 2016.

[19] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson.
“Impossibility of Distributed Consensus With One Faulty Process”.
In: Journal of the ACM 32.2 (1985), pp. 374–382.

[20] Git on the Server - The Protocols.
https://git-scm.com/book/en/v2/Git-on-the-Server-The-Protocols.
Accessed: 2017-04-24.

[21] Jim Gray.
“The Transaction Concept: Virtues and Limitations (Invited Paper)”.
In: Proceedings of the Seventh International Conference on Very
Large Data Bases. Vol. 7. 1981, pp. 144–154.

36

https://techcrunch.com/2016/10/21/many-sites-including-twitter-and-spotify-suffering-outage/
https://techcrunch.com/2016/10/21/many-sites-including-twitter-and-spotify-suffering-outage/
https://git-scm.com/book/en/v2/Git-on-the-Server-The-Protocols

[22] Stuart Haber and W. Scott Stornetta.
“How to time-stamp a digital document”.
In: Journal of Cryptology 3.2 (1991), pp. 9–111.

[23] HackerOne: The Vulnerability Coordination and Bug Bounty
Platform. https://www.hackerone.com/. Accessed: 2017-5-27.

[24] Nick Johnson. Dividend-Bearing Tokens on Ethereum.
https://medium.com/@weka/dividend-bearing-tokens-on-ethereum-
42d01c710657. Accessed: 2017-05-13.
2017.

[25] Leslie Lamport, Robert Shostak, and Marshall Pease.
“The Byzantine Generals Problem”. In: ACM Transactions on
Programming Languages and Systems 4.3 (1982), pp. 382–401.

[26] Loi Luu et al. “Making Smart Contracts Smarter”.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’16. 2016, pp. 254–269.

[27] Andrew Miller and Joseph J. LaViola Jr. Anonymous Byzantine
Consensus from Moderately-Hard Puzzles: A Model for Bitcoin.
Tech. rep. 2014.

[28] Joel Monegro. Fat Protocols. http://www.usv.com/blog/fat-protocols.
Accessed: 2017-5-27. 2016.

[29] Satoshi. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
https://bitcoin.org/bitcoin.pdf. 2008.

[30] React: A Javascript Library for Building User Interfaces.
https://facebook.github.io/react/. Accessed: 2017-5-27.

[31] RedHat: The World’s Open Source Leader.
https://www.redhat.com/en. Accessed: 2017-5-27.

[32] Fred B. Schneider. “Implementing Fault-Tolerant Services Using the
State Machine Approach: A Tutorial”.
In: ACM Computing Surveys (CSUR) 22.11 (1990), pp. 299–319.

[33] Balaji S. Srinivasan. Thoughts on Tokens.
https://medium.com/@balajis/thoughts-on-tokens-436109aabcbe.
Accessed: 2017-5-27. 2017.

37

[34] Swarm: Serverless Hosting Incentivised Peer-To-Peer Storage and
Content Distribution.
http://swarm-gateways.net/bzz:/theswarm.eth/.
Accessed: 2017-05-13.

[35] Nick Szabo. Bit gold.
http://unenumerated.blogspot.com/2005/12/bit-gold.html.
Accessed: 2017-4-29. 2008.

[36] Nassim N. Taleb and Constantine Sandis. “The Skin In The Game
Heuristic for Protection Against Tail Events”.
In: Review of Behavioral Economics 1 (2014), pp. 1–21.

[37] Alan M. Turing. “On Computable Numbers, with an Application to
the Entscheidungsproblem”.
In: Proceedings of the London Mathematical Society. Vol. s2-42. 1.
1937, pp. 230–265.

[38] Peter Van Valkenburgh. What is ”Blockchain” anyway?
https://coincenter.org/entry/what-is-blockchain-anyway. 2017.

[39] Viper: New Experimental Programming Language.
https://github.com/ethereum/viper. Accessed: 2017-5-28.

[40] Fabian Vogelsteller. ERC: Token Standard.
https://github.com/ethereum/EIPs/issues/20. Accessed: 2017-4-28.

[41] Dominic Williams. Byzantine Consensus Suitable for Decentralized
Networks Using Cryptographic Randomness.
https://drive.google.com/file/d/0B9a1K-
U2gZ2KN3pYSXF6bXF0QTg/view.
Accessed: 2017-5-27.

[42] Vlad Zamfir. Introducing Casper ”the Friendly Ghost”.
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-
ghost/. Accessed: 2017-5-27.
2015.

38

http://swarm-gateways.net/bzz:/theswarm.eth/

	OpenCollab: A Blockchain Based Protocol to Incentivize Open Source Software Development
	Recommended Citation

	Introduction
	Models for Open Source Software Sustainability
	Cryptocurrencies and Blockchains
	Contributions

	Background
	Cryptographic Tokens
	Ethereum

	Decentralized Git Workflow
	Mango
	OpenCollab-CLI and Extensions to Mango
	Future Work

	OpenCollab Protocol
	Protocol Roles
	OpenCollab Token
	Governance Voting
	Curating Issues
	Opening Pull Requests
	Merging Pull Requests
	Amortisation of Work
	Future Work

	Related Work
	Distributed Consensus
	Electronic Money
	Digital Time-Stamping
	Blockchains
	Bitcoin
	Ethereum

	Conclusion

