View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Dartmouth Digital Commons (Dartmouth College)

Dartmouth College

Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

5-1-2017

Cryptographic transfer of sensor data from the Amulet to a
smartphone

David B. Harmon
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

b Part of the Computer Sciences Commons

Recommended Citation

Harmon, David B., "Cryptographic transfer of sensor data from the Amulet to a smartphone" (2017).
Dartmouth College Undergraduate Theses. 123.
https://digitalcommons.dartmouth.edu/senior_theses/123

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://core.ac.uk/display/337600961?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/123?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Cryptographic transfer of sensor data from the Amulet to a
smartphone

Thesis by David Harmon
Adviser: David Kotz
Dartmouth College
Dartmouth Computer Science Technical Report TR2017-826

ABSTRACT

The authenticity, confidentiality, and integrity of data streams from
wearable healthcare devices are critical to patients, researchers,
physicians, and others who depend on this data to measure the
effectiveness of treatment plans and clinical trials. Many forms
of mHealth data are highly sensitive; in the hands of unintended
parties such data may reveal indicators of a patient’s disorder, dis-
ability, or identity. Furthermore, if a malicious party tampers with
the data, it can affect the diagnosis or treatment of patients, or the
results of a research study. Although existing network protocols
leverage encryption for confidentiality and integrity, network-level
encryption does not provide end-to-end security from the device,
through the smartphone and database, to downstream data con-
sumers. In this thesis we provide a new open protocol that provides
end-to-end authentication, confidentiality, and integrity for health-
care data in such a pipeline. We present and evaluate a prototype
implementation to demonstrate this protocol’s feasibility on low-
power wearable devices, and present a case for the system’s ability
to meet critical security properties under a specific adversary model
and trust assumptions.

1 INTRODUCTION

Smart health devices — such as smartwatches or fitness bands, in-
sulin pumps, or heart-rate monitors — are becoming more common
in personal wellness, health research and treatment settings. The
authenticity, confidentiality, and integrity of data streams from
“mHealth” devices are critical to patients, researchers, physicians,
and others who depend on this data. To protect the confidentiality
of their patients or research subjects, these parties need to min-
imize risk of the disclosure or leakage of patient information to
untrusted parties or eavesdroppers. In addition, authorized data
consumers require the ability to decrypt and validate mHealth data
streams. Securing the personal health data streams emitted from
wearable devices is therefore critical to enabling these technologies
and health applications. Many of these mHealth devices are limited
in memory capacity, energy, and processor cycles and may not be
able to support traditional encryption systems.

These data-producing sensors allow the wearer to share data
with entities that can make decisions in response to the data ob-
tained. These communication specifications meet the low-power
requirements of the devices they live on, but lack the range of large-
scale wireless networks and so are often limited in range to around
50 feet. Most of these so called body-area network standards, such
as Bluetooth Low Energy (BLE), provide some security at the link
layer via methods such as channel hopping. In addition, symmetric-
key encryption at the network layer is practical for many devices,

but this protection ends when the data reaches the smartphone
that acts as a companion to the smart health device. Data can be
re-encrypted for Internet protocols such as TLS that protect the
data on the way to the database and downstream data-consumers,
but this encryption does not provide end-to-end authenticity and
integrity from the source device to the companion smartphone
application, to the database, and to end-user data consumers. Our
goal is to provide the data-consuming application some assurance
about the authenticity and integrity of the data from the mHealth
device.

Many mHealth devices use body-area wireless network protocols
to link to a smartphone that has persistent access to the Internet via
cellular or Wi-Fi networks. Our platform uses the smartphone as a
staging point for data on its way to the database from the device. The
companion smartphone application bridges the healthcare device
to a database service, and is responsible for detecting corrupted
data and reformatting data into a data format that the database can
interpret. Data sent over body-area networks need to be compressed
to meet tight bandwidth constraints and power restrictions. Once
a data point reaches the companion application it can be attached
to identifying factors such as a device ID, application ID, and a
data type ID. These identifying factors allow the data-producer to
control which data-consumers have access to what data, or subset
of data. This method could allow us to support existing database
solutions such as open mHealth by translating the data format
within the smartphone [1].

To transmute binary data into structured data types, we envision
application-specific “plugin” components built into the companion
app. These should be written by the Amulet application writers to
unpack binary data and reformat the data into a standard represen-
tation of a structured data type that downstream data-consumers
can store appropriately. The binary data can be whatever format
the Amulet application writers find most effective; the structured
format may be a standard format compatible with common data-
consuming applications. The formatted data can then be uploaded
to the database by applications we call database storage handlers.

We note above that body-area networks often include encryp-
tion at the link layer to accomplish authenticity, confidentiality,
and integrity of data in transit. Protocols such as TLS provide this
same protection to Internet messages. In our work, we trust the
smartphone with data confidentiality because we need it to be able
to translate raw data into structured data types. However, because
we do not trust the smartphone with the authenticity and integrity
of data, downstream data consumers should be able to verify the
authenticity of the data source and the integrity of the data (un-
changed from the data source). In our solution, authenticity and

integrity can be verified by the ultimate data consumer via a mes-
sage authentication code (MAC); our solution uses MACs that are
derived from the message and from a shared secret like a symmetric
key. The companion application needs to forward this value along
with the original binary data to the database, and later from the
database to the data consumer, to provide a method for verification
by downstream data consumers.

Our contributions. Our primary contribution is an efficient pro-
tocol with end-to-end authenticity, confidentiality, and integrity
between wearable devices and downstream data-consumers. We
accomplish confidentiality through the use of standard practices for
encryption in both body-area and Internet protocols to accomplish
confidentiality from attackers listening in on communications. We
use established authentication and data integrity practices such
as MACs to accomplish end-to-end authentication and integrity.
In our approach, the data consumer can verify the authenticity
and integrity of the of the original data from a healthcare device,
despite translation by a smartphone, transit through the Internet,
and storage in a database database, none of which are trusted with
data integrity or authenticity.

1.1 Organization

We begin by giving necessary background information and per-
tinent definitions in Section 2. We continue with a discussion of
related work in Section 3. We characterize the anticipated security
model on which our system is based in Section 4. We then present
our solution, especially focused on the wearable device and com-
panion application, in Section 5. We detail our implementation in
Section 6. We follow with an evaluation of the system in Section 7.
We discuss limitations to our system and interesting extensions in
Section 8, and finally conclude with Section 9.

2 BACKGROUND

Our solution is integrated into an open-source hardware and soft-
ware platform called the Amulet, a multi-application smartwatch [9].
The Amulet’s primary microcontroller is the MSP430FR5989, which
has a 16-Bit RISC Architecture and operates at a clock speed up to
16 MHz [14]. The normal supply voltage ranges from 1.8V to 3.6V,
using 100 pA/MHz in typical active mode and about 0.4 pA/MHz
in typical standby mode. It comes with 128Kb of nonvolatile FRAM
that is capable of ultra-low-power writes.

The Amulet chipset includes an AES accelerator for performing
AES-128 encryption on 128-bit data in 168 cycles that we use to
encrypt our messages and their headers [13]. It also comes stan-
dard with a hardware module for pseudorandom number generator
algorithms that can be used to generate private keys securely [14].
The AES accelerator consumes 21 pA/MHz in typical usage. The
AES code used to interact with the accelerator was based off of
the TI library of sample C code for the MSP430FR5989 microcon-
troller [15].

The MSP430 also has a hardware module to generate 16-bit Cyclic
Redundancy Check (CRC) codes that we use as a Frame Check Se-
quence (FCS) on each packet. The FCS allows the smartphone to
verify that the message was not corrupted by noise in transmission.
Our current implementation discards corrupted messages; we do

not attempt retransmission. The code we use to interact with this ac-
celerator is based on code from the MSP430FR5989 microcontroller
sample C code library [15].

We use a Hashed Message Authentication Code (HMAC) to pro-
tect the integrity and authenticity of the data from the Amulet. The
HMAC is built using a shared symmetric key, a hash algorithm,
and a payload [10]. The resilience of an HMAC to brute force is
limited by the strength of the shared symmetric key [16]. The hash
algorithm chosen as a primitive for the HMAC algorithm is substan-
tially more resistant to recent practical attacks against algorithms
such as MD5 and SHA-1. It is important to use cryptographic hash
algorithms such as the SHA-2 family to avoid possible security
pitfalls of algorithms such as MD5 and SHA-1. Thus we choose
SHA-256 as our hash algorithm.

SHA-256 takes 512-bit blocks of data as input, and outputs 256
bits. Our implementation of SHA-256 comes from the TI library of
SHA-2 code for the MSP430 series microprocessors [8]. The code is
measured to complete in 67 kilo cycles for 2 blocks of data. Input
to this function must already be in binary format in 32-bit integers.

3 RELATED WORK

Other papers have explored security holes in Bluetooth, and even
proposed practical tools to eavesdrop on live messages. Ryan and
Albazrqaoe et al. independently proposed practical methods to
eavesdrop on live messages without listening in on the pairing
process in BLE [2, 12]. These papers contribute practical methods
of sniffing previously established connections by performing traf-
fic analysis to derive connection-specific values (such as the hop
interval) that allow an adversary to intercept plaintext messages.
The methods proposed by these papers are dependent on the imple-
mentation using all bands of the BLE radio spectrum, which is not
required by the BLE specification but is generally true for many
common commercial devices.

Other prior work has proposed methods to snoop on the application-
layer encryption key exchange and expand on link-layer attacks to
intercept cipher text messages and decrypt them. Ryan established
that one can intercept shared secrets during the BLE key-exchange
procedure [12]. Ryan’s process is specific to older BLE specs; other
key-exchange protocols have been added to newer versions of the
BLE specification. All values used to build a short-term link key
are exchanged in plaintext; if you can observe them all, computing
the long-term key is a matter of brute-forcing a 6-digit PIN code,
which Ryan shows can be performed in under a second on com-
modity hardware. Armed with the link key, the attacker is capable
of independently generating the long-term key used at the start of
each session to generate a new session key for AES-CCM. If the
long-term key is known, and you observe the session-initiation
exchange, it is trivial to recompute the keys used in each session.
Even if you do not observe the session-key exchange, but have the
long-term key, then you can jam the signal and force a new session
key exchange once the session has timed out.

Das et al. propose a traffic-analysis attack as a tool to identify
fitness information (such as activity type) and to track users [4].
They show that most healthcare devices use unchanged device
addresses and, as a result, allow an observer to track the wearer.
They note that many fitness devices only periodically connect to

their paired smartphones to dump data, and at all other times are
advertising themselves, revealing the user’s location to anyone in
the advertising range, such as in a gym setting. In addition, they
found that user data traffic is tightly correlated to the intensity of the
activity type. This traffic can be used to identify an individual from
a group, since each user walks with distinct gait that is revealed by
traffic analysis.

Other papers have proposed other practical measures for in-
creased Bluetooth security. Fawaz et al. designed and implemented
BLE-Guardian, a privacy focused precaution designed to limit the
devices that can discover and connect with the protected device [5].
BLE-Guardian protects host hardware by acting in tandem. It is a
hardware module with an interface designed to allow the user to
analyze the advertising patterns of nearby devices and apply active
jamming to hide the user’s device. It then acts as an intermediary
for the protected device, alerting the user to new devices in the
area that attempt to scan the protected device. The module then
blocks non-accepted devices and advertises services on behalf of
the protected device to user-accepted devices within range.

In BLE version 4.2, security was greatly enhanced with the in-
clusion of the Diffie-Hellman key exchange protocol. This protocol
provides a significantly stronger method of device pairing and long-
term key generation [3]. Developers have shown a way to update
the firmware of specific devices to this new version [11]. They ac-
knowledge, however, that there is no way to authenticate firmware
and there are few security precautions in the installation process.

4 SECURITY MODEL

Our security and privacy goals are to maintain the confidentiality,
integrity, and authenticity of data produced by the data owner in
possession of an Amulet smartwatch for the purpose of a study or
treatment plan, and to allow a data consumer to verify the authen-
ticity and integrity of the data retrieved from a database database.
The completeness of our solution must therefore be judged in the
context of an anticipated security model. Here we next present our
adversary model, threat model, and trust model.

4.1 Adversary model

Our adversary is anyone with the intent of obtaining confidential
information produced by the Amulet apps, of tampering with that
information, or of injecting false information as if it came from the
Amulet of a specific person. We assume several capabilities and
limitations of the adversary. We assume the adversary does not
have physical access to any system component and cannot compro-
mise the hardware or software of any component. This assumption
is reasonable due to the wearable nature of the Amulet and the
personal nature of the smartphone. We assume the attacker cannot
break the cryptographic primitives that we use: SHA-256, and AES.
These primitives are computationally hard and resilient to brute-
force attacks. We assume that all cryptographic keys are generated
and shared securely so that the adversary cannot steal them during
some initialization phase. The adversary has access to the network
channels between the Amulet and the phone, and the phone and the
database. The adversary is assumed to be capable of intercepting,
changing, injecting, replaying or blocking an arbitrary subset of

messages between the Amulet and the database, or between the
database and the consumer.

4.2 Threat model

Given the capabilities of the adversary, we focus on the following
threats.

Threat to confidentiality: The adversary attempts to obtain plain-
text of a message in a data stream in order to learn sensitive infor-
mation about the Amulet owner, such as medical conditions (e.g.,
disease or treatment type), mHealth usage (e.g., types or number of
apps/devices), or other personal information deemed private (e.g.,
location or activity). The adversary may eavesdrop on the system,
including all communications between the Amulet, the connected
smartphone, the database, and data consumers, to discover sen-
sitive information from the messages. The adversary may try to
compromise the database to determine this sensitive information,
or the database itself may be adversarial.

Threat to data integrity and authenticity: The adversary attempts
to cause the companion application, database, or the data consumer,
to accept incorrect, invalid, or duplicate data by either forging
an entry that looks legitimate to the database, tampering with a
legitimate entry from the companion application, or replaying a
previously submitted entry. The adversary may inject, tamper, or
replay communications among parties.

4.3 Trust model

We make certain trust assumptions about each system component:
the Amulet, the companion smartphone application, the database,
and the data-consumer portal. All components are trusted with the
confidentiality of the data, and securely preconfigured with the
shared keys required to participate in our protocol. All components
are uncompromised, and store the data and key material securely.
The patient or research participant trusts his healthcare professional
or researcher with the confidentiality of the data and with the
responsibility to dispose of the keys and data securely at the end of
the study or treatment plan.

5 OUR APPROACH

We extend the Amulet operating system to enable its applications to
send data messages to the Amulet’s companion smartphone. Each
Amulet application produces one or more data streams, each of
which produces a series of messages, each of which has one or more
data values. Applications must include a timestamp in each mes-
sage on the data to provide the highest possible accuracy on the
time associated with a message as well as to provide some unique-
ness to each message. The system prepends several fields to form a
packet, labeled with an app ID, stream ID, format version number,
and protocol version number. The Amulet system keeps track of
unique identifiers for each app installed, allowing for simple app
ID inclusion. Each app has the ability to define up to eight data
streams specified by a stream identifier on each call to our protocol.
Applications may update the format of one or more message types;
the format specifier allows the smartphone companion application
to recognize backwards compatible messages. The last identifier is

(MESSAGE_MAX_BYTES)

M, My Frame
Fragment 0 o _
FCS(Mg) Frame # (4) | # frames (4)
App_id (5) | Stream_id (3)
HMAC(M4)
Format Version (8) HMAC(M) /v Fragment 1 L
Protocol Version (8) [— M Fragment
7 Bytes
length (7) ‘Flag W] (7 Bytes)
AES(M4) AES(M,)
Message MO

Fragment N-1

Figure 1: Structure of packets at each stage in their construction

used to identify the protocol version, allowing for backward com-
patibility by the companion application should changes be made to
the protocol. Packets are encrypted to preserve data confidentiality
of the message and the identifying fields. All packets flow from
the Amulet to the smartphone companion application through our
protocol.

Once a packet arrives at the smartphone companion application
it is decrypted, and unpacked from binary data into textual format
by an app-specific plugin. The smartphone transfers the translated
data to the database via database storage handlers that have the
required permission set. Data consumers can then retrieve data from
the database assuming they have the relevant access permission;
the details of this database and access-control policy are out of
scope of this thesis.

Confidentiality is maintained via encryption between the Amulet
and smartphone using one key, and encryption between the data-
base storage handler and the database using TLS or another key,
and between the database and data consumers using TLS or another
key. Our focus is on the first hop.

Authentication and integrity are maintained end-to-end from
the Amulet to the downstream data consumer via a message au-
thentication code, specifically an HMAC. The Amulet generates
the original HMAC over the plaintext message and sends it to the
companion application as part of a packet. The relevant key has
been previously shared with downstream data consumers who are
able to pull the reformatted data, the original binary data, and the
HMAC from the database and independently calculate and verify
the HMAC as well as the binary-text translation.

Armed with these tools, we next define our protocol for Amulet
applications to push data from wearable devices through a BLE
connection to a smartphone companion application. Amulet appli-
cations can define up to eight data streams at their discretion. If an
app wants to change the definition of a data stream, or add, remove,
or replace a data stream, then they increment the format version
number, allowing the plugins in the companion app to preserve
backwards compatibility. The OS provides the application ID and
a protocol version. The length of the message, and a reserved flag
that is not currently used, make up the last of the plaintext fields.
When an application provides a message to be sent, identifying
the stream id and format version number, the system assembles a
packet by adding the application ID and protocol version number
as shown in Figure 1.

We denote the data provided by an Amulet app mg with length L;
with the addition of a format version fv, stream id s;4, app id a;4,
protocol version pv, and reserved flag f, the system builds a string
denoted my = ajqls;qglfolpvlL|f|Imo as shown in Figure 1. Then
let mg = HMAC(Kgapac, m1)|AES(K aAEs, m1), where Kgapac is
the shared key used to generate an HMAC and K oggs is the shared
key used to encrypt data with AES. Then let m3 = FCS(mgy)|ma. At
each stage, different operations are performed on the message; in
mj the plaintext fields are prepended, in my the HMAC is calculated
from mj and my is encrypted, and finally in m3 we calculate the
FCS over my, producing the final packet P = m3. Once a packet P
is constructed, we create 7-byte fragments of the packet such that
P = fo, fi, .-, fn—1 Where n is the number of 7-byte fragments in
the packet, and fj to f,—2 are filled with data and f;—1 may only
be partially filled and is padded with trailing 0s. A frame that fits
the BLE data size of 8-bytes is constructed from each fragment and
the fragment identifiers F; = i|n — 1| f;. A depiction of each stage is
shown in Figure 1.

Two shared keys are required, one shared with the smartphone
for decryption and one shared only with the data consumer to
verify the HMAC. Before the packet is encrypted, we use Kgprac
to generate a 256-bit HMAC and prepend the higher order 128 bits
to message mj. The AES key, denoted K4gs, is used to encrypt my
using AES-ECB, resulting in my. We acknowledge the flaws in using
this block cipher mode, and with the ordering of our cryptographic
primitives, we discuss it further in section 8. Finally, a 16-bit Frame
Check Sequence (FCS) is calculated over mj and prepended to my,
forming a packet P.

As seen in Figure 1, frames are marked with the identifier of a
specific frame in a series comprising a packet. The system schedules
frames to be sent when BLE is next available. The overall System
structure is shown in Figure 2.

The Amulet radio controller is responsible for transferring data to
the smartphone companion application. The Bluetooth client on the
smartphone requests data from the Amulet at regular intervals and
delivers each frame to the companion application one at a time. The
companion application strips the frame id i and frame count n — 1
from each frame, assembles them in numeric order, and combines
each one into a single buffer as they arrive. If a frame is missing, it
discards the entire packet (support for retransmission is discussed
in Section 8). Once the smartphone companion application has
received all the frames of a packet, it recalculates the FCS and use it
to verify the FCS provided in the packet as an initial check against

Amulet

Amulet Apps e.g.
Heart Rate Monitor

Smartphone

Cloud Upload
Handler

Message, Length,
Stream ID, Format Version

i

AmuletSendMessage()

Companion
Application

Frames

Frame Queue

Hi

Figure 2: The system architecture of the protocol between
the Amulet and smartphone companion application

data corruption. Then we copy the HMAC from the packet, and
decrypt the remaining ciphertext using the previously shared key
KAEs-

Once we have the plaintext bytes making up mj, we extract the
identifying fields provided by the application and system. From
this we have the application ID, stream ID, format and protocol
versions, the length of the message, the reserved flag bit, and the
bytes comprising the message mg. Using the application ID and
stream ID, we call the plugin, passing in the message my. The result
is a structured textual representation of the data, e.g. in JSON format.
To this structure we add the binary HMAC data and the original
binary message data m translated into a textual representation, e.g.
Base64. The companion application then passes this bundle to the
database storage handler to upload to its database. The architecture
of the smartphone companion application is shown in Figure 3.

BLE T

Receiver
Data to the
Cloud

Database Upload
Frames Handler
Reformatted Data
P SR
Companion Strip F:;adys b " Companicn
Application ecryp | Defragmented Plug-in
Defragment Verify Message Applications

consumers can verify the HMAC and the binary-to-text translation,
using the previously received key Kpprac required to recalculate
the HMAC. This verification step represents the final step in the
end-to-end authentication and integrity provided by our protocol.

6 IMPLEMENTATION

The scope of our project consists of two components, the Amulet
code and the companion application code. The database upload
provider, database, and downstream data consumer are all within
the scope of our architecture but are implemented outside the scope
of this project. The main contribution of this implementation is to
build a protocol between the Amulet and smartphone companion
application that is agnostic to the database but provides a means to
authenticate data that data consumers receive from a potentially
untrusted database.

6.1 Amulet

The Amulet API is stateless, and consists of a single function for
app designers to call written in standard GNU C. It takes four
parameters: a stream identifier, a format number, version number,
and a message payload, including the length of the message, and the
application ID number. Messages provided by Amulet applications
must include a timestamp, to provide the highest possible accuracy
on the time associated with a message as well as to provide some
uniqueness to each message. The function prototype is shown in
Listing 1, and an example call is shown in Listing 2. Note that the
example call does not include the requester (app ID) field, because
it is automatically filled in by the system-call mechanism in Amulet
OS, and the Amulet C compiler.

VEX3

* Send a binary message to the companion device when

* available. The message will be copied into a queue
* of pending messages. If the queue becomes full, the
* oldest messages are overwritten by newer messages.

* @Param stream_id: the data type identifier, apps can
* emit up to 8 types

* @Param format_v: the format version of the data type
* being emitted

* @Param message: the data being emitted

* @Param length: the length of the data being emitted
* @Return can indicate simple errors such as message

* too long, invalid stream_id, connection not available.
*/

int

AmuletSendMessage (uint8_t stream_id, uint8_t format_v,
__uint8_t_array message, uint8_t requestor);

Listing 1: Amulet API function header

Figure 3: The smartphone companion application architec-
ture

Downstream data consumers can then pull data from the data-
base via means specific to each database provider. Because con-
sumers do not trust the database provider with authenticity and
integrity, the HMAC is available along with the original binary
packet received by the companion application. As a result, data

uint8_t sendmsg[15] = "This is a Test";
AmuletSendMessage (@, 1, sendmsg);

Listing 2: Amulet API sample call

During an AmuletSendMessage() call, we copy the message mg
and identifying fields into a buffer comprising m;. We use m; to
generate an HMAC with Kgyprac, which needs to be padded to the
length of the input block size of the hash algorithm resulting in K.

K™ is then XOR’d with the inner (0x36) and outer pads (0x5c) to
increase Hamming distance of the key, and resulting in K}, . and
K}, ter- To save computation time from doing this step on every
call to the protocol, we precompute these values and save them. The
high-order 128 bits of the HMAC are copied into my byte by byte
to preserve byte ordering. We use the high-order bits as a means
of reducing our transmission size, while preserving the strength of
the HMAC [6].

The HMAC makes use of the SHA-256 hashing algorithm, which
takes in 512-bit blocks and outputs 256-bit blocks. First we build
the inner buffer by concatenating the keyed inner pad with the
message and then padding it out to a multiple of 512-bits, or 64
bytes. The result of the hash is then appended to the keyed outer
pad and hashed again to produce the final HMAC. Pseudocode for
this function is shown in Algorithm 1. The SHA-256 library we use
is from the TI library of auxiliary code [15].

Algorithm 1 Compute the HMAC

. Concat the message my with K,

: Pad the resulting buffer to a multiple of the input block size
: Hash the buffer with SHA-256

. Clear the buffer

: Concat the hash with K},
. Hash the buffer with SHA-256 again to calculate the HMAC

: Copy HMAC into the message my, truncate the lower order

bits

P - NS B N T R

The plaintext message m; is then encrypted in 16-byte blocks,
and the resulting ciphertext blocks are inserted into my as they
are generated. The AES accelerator on the MSP430 takes keys of
multiple sizes; we use a 128-bit key as our Kags. Kags should
be generated and installed prior to the distribution of the Amulet
(methods for key exchange between the Amulet and smartphone
or between the Amulet and data consumer are out of the scope of
this thesis). The AES library we use implements AES-ECB. When
we encrypt a message we divide it into 16-byte blocks and copy
them into a manipulable buffer. This buffer is pushed block by block
through the AES accelerator and then the cipher text is copied into
the packet over top of the plain text.

Finally, we compute a shorter frame check sequence (FCS), used
by the smartphone to verify the message. The MSP430 has a CRC-16
hardware accelerator that uses the CRC-CCITT algorithm and takes
input in either big-endian or little-endian ordering; we use little-
endian because it is the new standard for MSP microcontrollers [13].
This algorithm specifies an initial value of 0xFFFF, so we begin
by initializing the result register with this value every time we
generate a CRC. The accelerator works by taking input blocks and
then performing operations to combine the value-so-far with the
new data. The accelerator takes either 8 or 16-bit blocks; we push
8-bit blocks into the high-order byte of the register for simplicity.
The result is copied to m3 with my, thus completing our packet.

The Amulet supports the transmission of 8-byte frames over
the BLE “heart-rate” profile; we adopt this profile for convenience.
Once the entire packet is built, it is broken into 7-byte fragments
that are copied into a frame with a 1-byte header identifying the
current frame number in the sequence and the total number of

frames, and pushed onto a ring buffer called the frame buffer. This
ring buffer is implemented as a “virtual stream” such that the put
and get pointers increase until they overrun their size limitations.
On put and get operations, we modulus the access into the buffer
with the size of the buffer to avoid buffer overflow errors [7]. This
approach has the benefit of removing the case where the buffer
could be empty or full if the put and get indices are equal to each
other; if they are equal then the buffer is full, and if they are unequal
then there is data to send. If the buffer fills before data is sent, then
older packets are overwritten. If some of the packet space is not
used and there are frames with no data, then those frames are not
created. However, in order to prevent artifacts from remaining if a
packet is overwritten partially we always increment the put index
by the maximum number of frames in a packet.

6.2 Companion Application

The companion application receives individual frames from the
Android Bluetooth device manager. As it receives each frame, it
verifies that none are missing or out of order and then strips the
frame header and copies them into a buffer representing the original
packet. Each frame indicates the total number of fragments and
the fragment number. If a frame arrives out of order then we know
that one was lost, and so we drop the fragments received so far and
wait for the next packet to begin.

Once we have a fully reconstructed packet buffer, we verify the
CRC16 by performing the same operation performed by the Amulet
on the binary buffer that we received. If the CRC16 code is not the
same then one or more frames were corrupted in transit; we drop
the buffer and wait for the next packet. After the verification step,
the CRC is stripped from the packet buffer resulting in ms.

Then the HMAC is stripped from my and set aside to be sent to
the database later. We are left with the encrypted m1; we decrypt m
using the key K 4gs and the corresponding AES decryption function.
Android uses the standard javax.crypto library that implements
AES-ECB in 128-bit mode.

Given the decrypted headers and message, we decode the binary
header into the original header fields and copy out the byte array
representing the message. The message and format specifier is
passed to the relevant app-specific parser plugin (selected by the
application and stream ID identifiers) and parsed into a structured
data format in ASCII - specifically, in a JSON serializable format —
and shared with database storage handlers. After receiving the
JSON object, the data is sent on an intent to applications who have
been given permission to listen to intents from our application,
including one or more database upload handlers.

7 EVALUATION

In this section we analyze the practicality of our implementation
in the context of the Amulet platform, then describe the security
implications in the context of our security model.

7.1 Memory

Figure 4 shows the amount of FRAM in bytes required for the
base image without our protocol, and for the same system after
the addition of our extensions. We use several constants in our
code, including the installed keys Kags and Kpprac as well as

Base Image Base Image & Protocol Difference
.rodata 8060 8432 +372
.data 240 240 0
.bss 588 1342 +754
.noinit 7306 7434 +128
Jtext 25932 29508 +3576

Figure 4: Bytes of memory used with and without our proto-
col in the Amulet image

0 10 20 30 40 50 60 70 80 90
Message Size (bytes)

Figure 5: Latency as a function of message m size

several other important variables. The .bss section, the initialized
data variable section, is over twice as large primarily because the
frame buffer, which uses 562 bytes, is stored here. The .text section
is larger particularly because of the function code to build each
packet.

7.2 Latency

We define the latency to be the time it takes for a packet to be
processed, defined as the time from the start of the Amulet API
function to the end of fragmenting a packet and pushing it to the
frame buffer. We add this time to the time it takes the companion
application to process a packet once all the frames have been re-
ceived in the companion application and to send the data intent
to database storage handlers. This definition excludes the actual
network transmission time, which is out of our control so we focus
on our computational overhead. We further define the head latency
as the minimum time to process a packet, and the tail latency as the
maximum time. The latency distribution pictured in Figure 5 shows
the scaling of latency with packet size in bytes. This outcome is due
to the nature of the AES, FCS, and SHA-256 algorithms that split
data into blocks with sizes specific to each algorithm and process
them one at a time. The maximum latency that appeared in our
measurements was 36.6ms at 79 bytes and the minimum was 29.3ms
at 14 bytes; these values signify that there are significant constant
costs in addition to scaling costs.

7.3 Throughput

Given our use of the BLE profile for a heart rate monitor, we are
allowed 8 bytes per fragment. The shortest connection interval (the
rate at which a central will ask for new data from the peripheral)
for BLE is 7.5ms. Therefore the maximum throughput is 1/.0075 =
133.33 fragments per second. The maximum number of frames for
the biggest possible message is 16, therefore there is a theoretical

cap of 8 full messages per second or 1,064 bytes per second. As
shown in Section 7.2, we are able to push frames from a 14-byte
message in 29.3ms, and a 79-byte message in 36.6ms. For a 14-byte
message we would push eight frames, and for a 79-byte message
we would push seventeen frames. For both of those sizes, and for
BLE operating at the optimal rate, we would be able to produce
a new message during the time it took to send the first message.
Therefore our protocol is not a bottleneck to throughput.

7.4 Security analysis

Given the security model outlined in Section 4, and our approach
described in Section 5, we now argue that our approach resists
threats to confidentiality, integrity, and authenticity.

Threat to confidentiality. The attacker attempts to violate confi-
dentiality by decrypting ciphertext messages or by observing pat-
terns in the ciphertext that may violate the privacy of the Amulet
owner. In our trust model, we trust the smartphone and database
database to protect the confidentiality of unencrypted data, but
need to protect confidentiality of messages in transit that can be
intercepted by an attacker. Our protocol is focused on the network
hop between the Amulet and the smartphone companion applica-
tion. Our protocol implements AES 128-bit encryption. Therefore
the legitimacy of the threat to confidentiality is the ability of an
attacker to break AES encryption, or to obtain the shared key K4gs.
We trust that K sgg has been shared between the Amulet and the
smartphone companion application securely; key exchange is out
of the scope of this thesis. We also trust that the attacker cannot
obtain K4gs through the UI or by compromising the hardware or
software of the Amulet or smartphone. Our last relevant assump-
tion is that the attacker cannot discover K ogg, or decrypt messages
via brute force. This approach implies that ciphertext messages are
safe from decryption.

Additionally, an adversary may attempt to recognize patterns
in a series of messages. Given the vulnerabilities of AES-ECB, it is
obvious when the same message is resent since both the AES and
HMAC value would be the same. This situation is unlikely because
Amulet applications are required to include a precise timestamp
with each message, but a more secure implementation of AES-CCM
is planned for future work and is described further in Section 8.

Threat to authenticity and integrity. The attacker may violate
the authenticity or integrity of data by causing the companion
application, or the data consumer, to accept incorrect, invalid, or
duplicate data by either forging an entry that looks legitimate to the
database, tampering with a legitimate entry from the companion
application, or replaying a previously submitted entry. Additionally,
the smartphone may incorrectly translate the binary data to text,
or the database may change the text form of the data. We do not
trust the smartphone or the database with the authentication and
integrity of the data, but provide end-to-end authentication and
integrity through the use of an HMAC. The strength of the HMAC
is measured by the strength of the shared secret used to create it;
we use a 128-bit key Kgarac distinct from the key used for AES
KAEs. We assume that the attacker is not capable of brute-forcing
128-bit keys, and that Kgprac was generated and distributed se-
curely. Key exchange is out of the scope of this thesis. Attackers can

change ciphertext in transit, attack the database, or the database
may act adversarial; but any changes will be detected when the
data consumer recalculates the HMAC and notices a different value
than the one provided to them. Without the shared key Kgarac, it
is not feasible for the attacker to generate valid HMACs for invalid
messages. This protects data streams from injection, and modifi-
cation. Replay attacks can be stopped by timestamps on each data
point.

8 DISCUSSION AND FUTURE WORK

Our protocol does not support frame retransmission; it just drops
packets for which any frame is missing, reordered, or corrupted.
Supporting frame acknowledgements or some sort of packet-sized
sliding window would be possible, but the ability to buffer sent
frames is limited by the Amulet’s memory restrictions. Additionally,
supporting retransmissions could leave our protocol open to more
sophisticated denial-of-service attacks and tie up resources on either
or both sides.

The Amulet implements the heart-rate measurement BLE profile
with its 8-byte frame size, limiting our throughput and increasing
the number of frames comprising a packet. This increases the risk
for frame loss or corruption; changing the profile implementation
could increase throughput and decrease risk of loss. Implementing
the BLE service profile to one with a larger size such as 20 bytes
would significantly increase our throughput and reduce such risks.

Additional shortcuts involved the transfer of data between the
companion and database storage handlers in intents rather than in
data files on the phone. Storing data on the phone as well as in the
database could data consumer portals to exist on the smartphone,
but would also require strict access requirements that are out of
the scope of this project.

The Amulet AES library implements AES-ECB; there are known
issues with using this block chain mode from the lack of pseudo-
randomness. Packets that have been captured entirely by an attacker
are vulnerable to reveal patterns in the data, or to make transmis-
sions with the same message m; obvious. Patterns in the ciphertext
could potentially reveal unintended personal information such as
usage patterns, applications used on the Amulet, or other factors.
A more secure block cipher implementation that includes a pseudo-
random initial value such as AES-CCM is highly recommended for
future work. When the block cipher implementation changes, the
order in which we compute the ciphertext and the HMAC should
be revisited.

9 CONCLUSION

In this project, we produced a secure protocol for downstream data
consumers to verify data from a BLE-enabled wearable healthcare
device like the Amulet. This ensures the consumer, the researcher,
physician, or other healthcare professional that the data they are
reviewing was in fact generated by the device that claims to be
generating it and that the data has not been changed since it was pro-
duced. We described a simple, stateless API for Amulet applications
to send data over Bluetooth to the smartphone and a framework
for application-specific plugins attached to restructure the binary
data as a structured, text-based data type such that it can be used
by the database and downstream consumers. We implemented our

protocol as an addition to the Amulet operating system and a simple
companion smartphone application built on the Android platform,
and within a larger vision including a database and a downstream
data consumer. In our evaluation we showed that the addition of
our protocol does not overwhelmingly restrict the Amulet’s limited
resources, and that our contributions protect private data from
predicted attacks. We conclude that our protocol is a practical ad-
dition to the Amulet system to provide end-to-end authentication,
confidentiality, and integrity to healthcare data produced by the
Amulet.

10 ACKNOWLEDGEMENTS

We are grateful to many for their assistance with this thesis.

Ron Peterson is an important member of the Amulet project,
and has been an asset in implementing the radio code for BLE. His
implementation of BLE using the Nrf5 SDK for the Amulet has
made this thesis possible by providing an environment in which we
can contribute our protocol. He has also been critical to the ability
to incorporate the protocol into the existing BLE radio APL

Patrick Proctor has been involved in our greater vision for this
protocol by designing and implementing a database for handling
data offloaded from the Amulet by this thesis. He has been an
important reference for helping to debug problems and provide
insight to our work.

Taylor Hardin is an immense source of knowledge on the Amulet
operating system and has helped identify locations in the firmware
source code where our protocol now lives. He also provided sig-
nificant knowledge of the Amulet debugging environment and
to debug significant blocks when they arose. He also contributed
knowledge to measuring the performance of this protocol on the
Amulet side.

Emily Greene implemented a significant portion of the greater
vision for this protocol by implementing a database upload han-
dler, a secure database, and a sample data consumer portal. She
also previously worked on BLE protocol interactions between the
Amulet and companion smartphone application; the companion
smartphone application is built from that initial work.

David Kotz is the director of the Amulet project at Dartmouth
and is responsible for perhaps the biggest contribution to this thesis.
He has given feedback and ideas for further exploration and effort
throughout the process of this thesis. His guidance allowed for
success and this thesis would not have been possible without him.

This research results from a research program at the Institute for
Security, Technology, and Society, supported by the National Sci-
ence Foundation under award numbers CNS-1314281, CNS-1314342,
CNS-1619970, and CNS-1619950. The views and conclusions con-
tained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either
expressed or implied, of the sponsor.

REFERENCES

[1] Open mhealth, 2015. Online at https://open-mhealth.org.

[2] Wahhab Albazrqaoe, Jun Huang, and Guoliang Xing. Practical Bluetooth Traffic
Sniffing: Systems and Privacy Implications. In Proceedings of the Annual Interna-
tional Conference on Mobile Systems, Applications, and Services, MobiSys, pages
333-345. ACM, 2016. DOI 10.1145/2906388.2906403.

[3] Bluetooth SIG. Security, Bluetooth Low Energy, 2017. Online at https://www.
bluetooth.com/what-is-bluetooth-technology/how-it-works/low-energy.

https://open-mhealth.org
http://dx.doi.org/10.1145/2906388.2906403
https://www.bluetooth.com/what-is-bluetooth-technology/how-it-works/low-energy
https://www.bluetooth.com/what-is-bluetooth-technology/how-it-works/low-energy

[10

[11]

[12]

[13]

[14

[15]

[16]

Aveek K. Das, Parth H. Pathak, Chen N. Chuah, and Prasant Mohapatra. Uncov-
ering Privacy Leakage in BLE Network Traffic of Wearable Fitness Trackers. In
Proceedings of the International Workshop on Mobile Computing Systems and Ap-
plications, HotMobile, pages 99-104. ACM, 2016. DOI 10.1145/2873587.2873594.
Kassem Fawaz, Kyu-Han Kim, and Kang G. Shin. Protecting Privacy of BLE
Device Users. In Proceedings of the USENIX Security Symposium, pages 1205—
1221. USENIX Association, 2016. Online at https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/fawaz.

Sheila Frankel and Scott G. Kelly. Using HMAC-SHA-256, HMAC-SHA-384, and
HMAC-SHA-512 with IPsec. Technical Report 4868, RFC Editor, Fremont, CA,
USA, May 2007. Online at http://www.rfc-editor.org/rfc/rfc4868.txt.

Fabian Giesen. Ring buffers and queues, December 2010. Online at https:
//fgiesen.wordpress.com/2010/12/14/ring-buffers-and-queues/.

Jace H. Hall. C Implementation of Cryptographic Algorithms. Texas Instruments,
Dallas, Texas, July 2013. Rev. A, Online at http://www.ti.com/lit/an/slaa547a/
slaa547a.pdf.

Josiah Hester, Travis Peters, Tianlong Yun, Ronald Peterson, Joseph Skinner,
Bhargav Golla, Kevin Storer, Steven Hearndon, Kevin Freeman, Sarah Lord,
Ryan Halter, David Kotz, and Jacob Sorber. Amulet: An Energy-Efficient, Multi-
Application Wearable Platform. In Proceedings of the ACM Conference on Embed-
ded Networked Sensor Systems (SenSys), pages 216-229. ACM, November 2016.
DOI 10.1145/2994551.2994554.

Jongsung Kim, Alex Biryukov, Bart Preneel, and Seokhie Hong. On the Security
of HMAC and NMAC Based on HAVAL, MD4, MD5, SHA-0 and SHA-1. IACR
Cryptology, 2006, 2006. Online at https://www.semanticscholar.org/paper/
On-the-Security- of-HMAC-and-NMAC-Based- on- HAVAL- MD-Kim- Biryukov/
23843d19ce3ecd348ea7ccae08fc47b3a26d50a9.

mbed IoT Device Platform. Firmware Over the Air FOTA Updates,
2017. Online at https://developer.mbed.org/teams/Bluetooth-Low-Energy/wiki/
Firmware-Over-the- Air-FOTA-Updates.

Mike Ryan. Bluetooth: With Low Energy Comes Low Security. In Pro-
ceedings of the USENIX Workshop on Offensive Technologies, Washington,
D.C., 2013. USENIX. Online at https://www.usenix.org/conference/woot13/
workshop-program/presentation/ryan.

Texas Instruments, Dallas, Texas. MSP430FR58xx, MSP430FR59xx, MSP430FR68xx,
and MSP430FR69xx Family User’s Guide, January 2017. Online at http://www.ti.
com/lit/ug/slau367m/slau367m.pdf.

Texas Instruments. MSP430FR698x(1), MSP430FR598x(1) Mixed-Signal Microcon-
trollers Rev. C, March 2017. Online at http://www.ti.com/product/MSP430FR5989/
datasheet.

Texas Instruments. MSP430FR5x8x, MSP430FR692x, MSP430FR6X7x,
MSP430FR6x8x Code Examples, August 2016. Rev. F, Online at
http://www.ti.com/product/MSP430FR5989/toolssoftware.

Sean Turner and Lily Chen. RFC 6151: Updated Security Considerations for the
MD5 Message-Digest and the HMAC-MD5 Algorithms. Internet Requests for
Comment, March 2011. Online at http://www.rfc-editor.org/rfc/rfc6151.txt.

http://dx.doi.org/10.1145/2873587.2873594
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/fawaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/fawaz
http://www.rfc-editor.org/rfc/rfc4868.txt
https://fgiesen.wordpress.com/2010/12/14/ring-buffers-and-queues/
https://fgiesen.wordpress.com/2010/12/14/ring-buffers-and-queues/
http://www.ti.com/lit/an/slaa547a/slaa547a.pdf
http://www.ti.com/lit/an/slaa547a/slaa547a.pdf
http://dx.doi.org/10.1145/2994551.2994554
https://www.semanticscholar.org/paper/On-the-Security-of-HMAC-and-NMAC-Based-on-HAVAL-MD-Kim-Biryukov/23843d19ce3ecd348ea7ccae08fc47b3a26d50a9
https://www.semanticscholar.org/paper/On-the-Security-of-HMAC-and-NMAC-Based-on-HAVAL-MD-Kim-Biryukov/23843d19ce3ecd348ea7ccae08fc47b3a26d50a9
https://www.semanticscholar.org/paper/On-the-Security-of-HMAC-and-NMAC-Based-on-HAVAL-MD-Kim-Biryukov/23843d19ce3ecd348ea7ccae08fc47b3a26d50a9
https://developer.mbed.org/teams/Bluetooth-Low-Energy/wiki/Firmware-Over-the-Air-FOTA-Updates
https://developer.mbed.org/teams/Bluetooth-Low-Energy/wiki/Firmware-Over-the-Air-FOTA-Updates
https://www.usenix.org/conference/woot13/workshop-program/presentation/ryan
https://www.usenix.org/conference/woot13/workshop-program/presentation/ryan
http://www.ti.com/lit/ug/slau367m/slau367m.pdf
http://www.ti.com/lit/ug/slau367m/slau367m.pdf
http://www.ti.com/product/MSP430FR5989/datasheet
http://www.ti.com/product/MSP430FR5989/datasheet
http://www.ti.com/product/MSP430FR5989/toolssoftware
http://www.rfc-editor.org/rfc/rfc6151.txt

	Cryptographic transfer of sensor data from the Amulet to a smartphone
	Recommended Citation

	Abstract
	1 Introduction
	1.1 Organization

	2 Background
	3 Related work
	4 Security model
	4.1 Adversary model
	4.2 Threat model
	4.3 Trust model

	5 Our approach
	6 Implementation
	6.1 Amulet
	6.2 Companion Application

	7 Evaluation
	7.1 Memory
	7.2 Latency
	7.3 Throughput
	7.4 Security analysis

	8 Discussion and future work
	9 Conclusion
	10 Acknowledgements
	References

