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Abstract

People can recognize the context of a scene with just a brief glance. Visual information such as color,
objects and their properties, and texture are all important in correctly determining the type of scene (e.g.
indoors versus outdoors). Although these properties are all useful, it is unclear which features of an image
play a more important role in the task of scene recognition. To this aim, we compare and contrast a
state-of-the-art neural network and GIST model with human performance on the task of classifying images
as indoors or outdoors. We analyze the impact of image manipulations, such as blurring and scrambling,
on computational models of scene recognition and human perception. We then create and analyze a
measure of local-global information to represent how each perceptual system relies on local and global
image features. Finally, we train a variety of neural networks on degraded images to attempt to build a
neural network that emulates human performance on both classificaton accuracies and this local-global
measure.

1 Introduction

Scene recognition is a difficult and important task in
both biological and computer vision. However, in the
domain of computer vision research, comparatively
little emphasis has been placed on scene recognition,
despite its potential utility for providing context for
many visual tasks, including object recognition [38].
Objects rarely occur in isolation and the general con-
text in which they appear may be helpful in recogniz-
ing certain objects. Indeed, in people, scene recogni-
tion probably occurs in parallel with object detection
and both tasks influence each other [10]. Moreover,
scene recognition may be important in enabling peo-
ple to interpret their environment, which affects sub-
sequent behavior and how stimuli such as the objects
in the scene are perceived [6] [3]. For this reason,
we look at scene recognition in human and machine
vision to study how both people and computational
systems perform this complex task.

If image information is systematically degraded,
can computer vision models infer the lost visual in-
formation as well as people can? Studying which fea-
tures are important for human beings may help us
improve the robustness and invariances of deep con-
volutional neural networks trained to perform scene
recognition.

To remove or enhance either local or global im-
age properties, images can be manipulated to contain
more of one feature than another. To eliminate global
information, we can segment an image into various
blocks of different sizes and scramble those blocks to
different regions of the image. It has been shown
that jumbling an image decreases object recognition,
likely by limiting contextual information available to
the perceiver [3]. The spatial layout of the image,

such as its navigabiliity and openness, is lost but, de-
pending on the size of the blocks, much of the local
information about objects is preserved. Likewise, we
can remove local information but preserve global in-
formation by adding noise or blurring an image. With
these techniques, objects become harder to discern
but the spatial layout of the scene remains intact. In
order to determine if people use more local or global
information when they perform this scene recognition
task, we can measure their performance on classify-
ing the type of scene depicted in degraded images.
This will create a causal link between the perception
of the scene and the image features available.

2 Human Scene Recognition

The human visual pathway has a hierarchichal struc-
ture, where low-level features are computed first and
higher-level conceptual details are computed later on.
First, low-level vision is responsible for the extraction
of low-level features, such as depth, color, and texture
as well as representing certain surfaces and edges [17].
Then, higher-level vision is responsible for mapping
these low-level features to meaning, such as recog-
nition of conceptual scenes and objects [12]. Given
this hierarchical structure, the question of what fea-
tures scene recognition relies on arises. It may be
the case that scene recognition depends on the detec-
tion of objects in those scenes or, on the contrary, it
may be that people can recognize scenes without first
determining which objects are in the scene. Scene
identification research has mainly focused on the time
course of interdependent visual tasks and the features
in scenes that play a role in scene recognition.

Human scene recognition was first studied mainly
by looking at how quickly people can recognize a
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scene. In one study, researchers asked people to iden-
tify a target scene in a slideshow of images, where
each image was presented for 113 ms [25] [26]. When
a verbal description of the target scene was displayed
before the sequence of images was presented, people
were as accurate at selecting the target image as when
they had seen the target image beforehand. This sug-
gests that the context of a scene can be understood
within 113 ms. At 500 ms, people are nearly per-
fect at recognizing if a given scene is indoors or out-
doors. At shorter presentation times, however, people
were more likely to categorize scenes as outdoors than
indoors, suggesting a slight bias for outdoor scenes
when stimuli are presented only briefly [8].

Other human scene recognition research has looked
at the role of objects in performing scene recognition.
It was commonly thought that objects in an image
played a role in identifying the overall context, or
scene class, of an image. In one study, it was proposed
that objects are responsible for activating a schema
of the scene which would then lead to more advanced
scene recognition [2] (see [12] and [10] for a review of
this view). This view treats objects as the building
blocks of recognition tasks and suggests that objects
are recognized before scenes.

An opposing view, the scene-centered view, treats
the scene as a whole as the building block for complex
recognition tasks. Rather than recognizing the ob-
jects first, people get an overall sense of the scene and
then either use the context of the scene to identify the
objects within the scene, or perform scene and object
recognition in parallel. In conditions where objects
are not easily identifiable, such as low frequency im-
ages or images with sparse contours, people can still
accurately perform scene recognition [21] [13]. This
suggests that scene identity may be computed before
or in parallel with object identity.

2.1 Reliance on Local and Global Fea-
tures

Scene recognition in people has also been looked at
in the context of scene information, ranging from lo-
cal to global information. In the literature, it is as-
sumed that both the local and global properties of
a scene are important in enabling people to perform
contextual scene recognition [28] [19]. An image’s lo-
cal properties include the objects in the image as well
as their features, such as line orientation, color, and
texture. Support for local processing comes from the
way the human visual system is setup to perform vi-

sual processing. One study looked at EEG data of
people observing visual scenes to find that the ear-
liest components in EEG signals that are related to
recognition have an onset of 150-300 ms. There are
other EEG signals that are measured after 130 ms
from the onset of the visual stimulus and these signals
correlate to low-level visual features in the image [14].
Since low-level features are processed before higher-
level features that correspond to the layout of the
scene, and scene recognition itself is a rapid process,
it seems that low-level features could be more indica-
tive of scene category. Although, low-level features
are processed first, it is not clear from this study how
these low-level features influence scene recognition,
since there are other factors that seem to influence
visual recognition more directly (those that come af-
ter 150 ms).

Another study looked at the role of texture in scene
recognition [28]. Researchers conducted a perceptual
study and built a computational model tuned to tex-
tural features in images to determine if their models
could be a good measure of people’s performance on
the perceptual study. They found that, when sub-
jects are presented with images for only a brief pe-
riod of time (less than 100 ms), the texture model
mimics human performance. This suggests that low-
level features such as texture could be important in
understanding the gist of a scene. Another study on
local image features identified the role of color as be-
ing important when it is diagnostic of scene category
[20]. Researchers found that when color is not rel-
evant in identifying an image’s scene category, then
subjects do not have a delayed response in identify-
ing abnormally colored images. However, when color
is pertinent (such as in a desert scene), then sub-
jects were much slower to identify images presented
as abnormally colored. These studies suggest that lo-
cal information, such as object color and texture, do
play an important role in scene recognition.

Although local information seems important in
scene classification, when local information in one
patch of an image contradicts local information in
another patch, people have difficulties performing
scene recognition. In one study, researchers observed
that the spatial configuration of objects is important
in detecting objects. If two objects are present in
isolation, then subjects have no trouble identifying
those objects. However, when the objects are put to-
gether and improperly spaced (based on a subject’s
expectations), then it takes much longer to recog-
nize those objects. Likewise, when ambiguous objects
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are placed with clearly recognized objects, then the
ambiguous objects are more quickly and accurately
identified than when they are placed next to other
ambiguous objects [1]. These results suggest that the
global representation of objects in a scene may also
be important in identifying the context of a scene, or
other objects within the scene.

It seems likely that while local properties may be
important in quick scene categorization, more accu-
rate categorization is done through a combination of
local and global properties. An image’s global prop-
erties include the openness, navigability, concealment
of objects, depth, and expansion within the image
[10] as well as the spatial layout and construction
of the objects within the scene [23]. Openness repre-
sents the spatial enclosement of the scene. A crowded
room, for example, would be relatively less open than
a field since there are many objects obstructing the
field of view of a bystander looking at the scene. Nav-
igability corresponds to the ease at which one could
move through the scene. High levels of concealment
indicate that many objects are hidden within the
scene. The depth of a scene refers to the size of the
space; a single room would have a small depth while
a mountain range would have a very large depth. In
sum, these properties refer to how objects in a scene
are held together and how one may interact with the
scene. They do not measure what types of objects
are in the scene and what properties those objects
possess.

Global properties have been shown to be very use-
ful in scene categorization. In one study, researchers
had participants rank images along seven scales that
measured global properties (these scales were open-
ness, expansion, mean depth, navigability, temper-
ature, transience, and concealment). After ranking
these images, a different set of participants was asked
to map each image to a scene category. It was hypoth-
esized that images from different scenes that were
close together on the seven dimensions of global prop-
erties would be confused for each other more often
than images that were farther apart [10]. Researchers
confirmed this hypothesis, which suggests that global
image information is important, and may be primary,
in scene recognition.

Another study addressed the importance of the
background of an image in performing object recog-
nition. When an object is presented with a coher-
ent background (so the context is expected), object
detection is easier. However, when that same ob-
ject is presented with an incoherent background, per-

formance on the object recognition task dropped by
around ten percent [5]. Although they studied the
effects of global information on object detection, it
seems that understanding the context of the scene
aids in object detection. This means that scene infor-
mation may be captured before object information.

Other studies found that people can learn the
global features of a scene without being aware of the
local features. However, the opposite, being aware of
objects without understanding the context of those
objects is more difficult [18]. Whether human vision
utilizes more local or global visual processing is an
important question. If people rely on global process-
ing for scene categorizaiton, then this suggests that
people get an overall sense of the scene before they di-
rect their attention to individual objects in the scene.
If local information is more important in scene cate-
gorization, then it seems that both object and scene
information are captured in parallel.

3 Scene Recognition in Ma-
chine Vision

3.1 Reliance on Local/Global Fea-
tures

Determining which features are important for the hu-
man visual system to perform scene recognition may
help us improve the performance of scene recognition
computational models. There have been many at-
tempts at building computational scene recognition
systems in both classical machine learning and deep
learning. Some of these classical approaches calculate
a combination of local and global information and use
this to ground their higher level scene categorization.

The GIST model [22] is a classical machine learn-
ing approach to scene recognition. It converts each
image in the training set into a pre-determined fea-
ture vector and uses this feature vector to train a
classifier. The GIST model computes a feature vec-
tor based on low-level features in each image, termed
the “spatial envelope”, which represents the “natu-
ralness, openness, roughness, expansion, ruggedness”
of the scene, similar to the seven global dimensions
explained above. These dimensions are found to de-
scribe the variation in most scene images and thus
have been shown to be successful in building a classi-
fier trained for scene recognition. For example, natu-
ral scenes can be distinguished from man-made scenes
based on the absence of sharp horizontal and verti-
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cal lines and the presence of grainy texture. Likewise,
scenes with a horizon line are usually very open, while
scenes without horizon lines and with many smaller
lines throughout are usually enclosed. Rugged scenes
usually obscure the horizon line and contain many
contours. Computing these features can help map
an image along dimensions of ruggedness, openness,
naturalness, and expansion. Then, a classifier can
learn how these features relate to scene classes and
use these dimensions to predict an image’s class. The
GIST model successfully classified 82% of indoor and
outdoor scenes, which suggests that these global fea-
tures are indicative of an image’s indoor or outdoor
class.

Another model looked at the role of local informa-
tion in scene classification [35]. Researchers investi-
gated the individual object classes that compose each
scene type. For example, the scene class “forest” can
be thought of as composed of various objects, such
as the sky, water, grass, trunks, foliage, etc. Each
scene class contains a different percentage of each
object. By computing prototypical representations
of each scene class and which object components are
especially discriminant for a scene class, an image can
be mapped to a scene class based on its proximity to
different prototypical representations. By looking at
the percentage of the image composed of each type of
object, this model looks at local, object-based infor-
mation rather than the spatial relationships of those
objects. It was found that this model has a classifi-
cation accuracy of 90% when objects were annotated
before classification and 67% when objects were an-
notated using machine learning.

Other local property-based scene classification
methods include looking at line orientation to dif-
ferentiate between city and landscape scenes. City
scenes contain many vertical lines representing build-
ings while landscape scenes lack such vertical orien-
tation [9]. Analyzing the orientation of similar tex-
tures in a scene can lead to classification properties
that distinguish two scene categories. Other local-
based models look at the role of texture, color, and
frequency to perform indoor-outdoor scene classifca-
tion [31]. A model that computed these features in
subcomponents of an image and then stacked these
features performed the best with a classification ac-
curacy of 90% on the indoor-outdoor classification
task.

Both local- and global-based computational mod-
els perform similarly on the indoor-outdoor classifica-
tion task. It has also been noted that many existing

computational models are either exclusively trained
at classifying outdoor scene classes or biased toward
outdoor scene classes [27]. This may be because there
has not been a large indoor scene class database. De-
spite machine vision systems’ strong performance on
the indoor-outdoor classification task, they are not
yet as accurate as people.

3.2 Deep Convolutional Neural Net-
works

Neural networks improve upon these single layer clas-
sification models by adding several non-linearities to
compute new features before performing classifica-
tion. For images, convolutional neural networks uti-
lize the layout of the image and compute different
features for each patch of an image in order to cre-
ate a part-based representation of the image. Each
unit in a convolutional neural network responds to
pixels in a small region of the input image, known
as the receptive field. It has been shown that each
unit in a convolutional neural network can be trained
to respond to different features in the receptive field,
depending on the values of the parameters in the fil-
ter associated with that unit. This information can
be used by neurons deeper in the network to deter-
mine if the image has certain shapes or objects. By
building up multiple layers, neural networks create a
more complex representation of the image that can
be useful for scene recognition.

Deep convolutional neural networks have reached a
performance level on many visual tasks that is com-
parable to or exceeds human performance. Convo-
lutional neural networks perform comparably to hu-
mans on tasks such as facial recognition and hand-
written digit recognition [32] [30] [37]. They have also
passed human performance on some object recogni-
tion tasks [11]. However, it does not seem that neu-
ral networks are as robust as people when it comes
to interpreting new images. In one study, a state-of-
the-art face detection system was fooled by adding
eyeglass frames to the faces. The neural network was
unable to correctly identify these faces when there
was an external accessory in the image [29].

A state-of-the-art scene neural network trained
on scene recognition currently achieves accuracies of
around 95% on intact images on the indoor/out-
door classification task [40]. This network, AlexNet
trained on the Places database, is trained on 205
scene classes and achieves a classification accuracy of
56.2% on this database. Since neural networks have
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surpassed many of the traditional machine learning
solutions to vision tasks and have been designed with
the human brain in mind, it seems promising to look
at convolutional neural networks when examining any
visual task.

4 Comparisons Between Hu-
man and Computer Vision

Three previous studies have looked at human and
computer performance on scene recognition of jum-
bled images [4], [36] [24]. In one study, the au-
thors found that human performance on recognizing
jumbled images falls as the blocksize of the jumbled
patches in the image decreases [4]. Using 14 compu-
tational models built for both scene and object classi-
fication, they measured various models’ performances
on classifying images scrambled into 6x6 pixel block-
sizes. All computational models are trained as one-
vs-all support vector machines utilizing different fea-
ture vectors. They used multiple scene categories for
indoor and outdoor scenes. They found that the best
computational models perform similarly to people on
outdoor images but most of their computational mod-
els perform worse on indoor images than on outdoor
images. This was interpreted as indicating that the
models used in the paper utilize more global infor-
mation than local information, since indoor images
have more objects and less global properties than do
outdoor images.

In Vogel et. al, the authors tested multiple im-
age manipulation methods and compared them to
both a local and global computational model [36].
For their perceptual study, they asked people to clas-
sify scrambled, greyscale, and blurred images into the
following five scene categories: coasts, rivers/lakes,
forests, plains and mountains. They found that blur-
ring and scrambling produce a similar drop overall
in human performance but that different scene cat-
egories are affected in different ways. For example,
rivers/lakes may require more global information to
be correctly classified and so blurring affects perfor-
mance less than scrambling.

The authors then created two computational mod-
els, one based on local information and the other
based on global information, to determine which per-
forms better and mimics human performance more.
The semantic model, based on local information, di-
vides images into 10x10 grids which are classified
into one of nine concept classes. The frequency of

each concept class is counted and stored in a concept
occurence vector. A prototypical concept occurence
vector is created for each of the five scene classes and
each image is classified based on its minimum dis-
tance to each of the prototypical concept occurence
vectors. For their global computational model, they
utilize the computational gist model based on the
work of Torralba et. al [33]. They found that the lo-
cal semantic modelling approach performs better and
nearly as well as human beings but their computa-
tional gist model is trained on 50 images per category,
which may limit the strength of their conclusions.

In the third study, researchers compared a
majority-vote computational model with people’s
performance on classifying degraded images [24]. Im-
ages were presented in one of three conditions: jum-
bled, jumbled with a random subset of blocks blacked
out, and jumbled with blocks removed from the im-
age (so that the effective size of each remaining block
increased). People are better at classifying images in
the 3rd condition then they are at classifying either
jumbled images, or jumbled images with blacked out
blocks, presumably because each block is enlarged in
the 3rd condition so more information can be attained
from the image. They then built a bag-of-words
majority-vote computational model. This model de-
scribes each block in a jumbled image by computing
the average RGB and HSV value in each 2x2 square
of the block and recording these values to create a 120
dimensional feature vector. They then use k-means
clustering to cluster each image in the training set
to one of 500 code words. Each block in the test
set is mapped to a code word and then they utilize a
weighted majority-vote system to determine the class
of the entire image. This model performed similarly
to people on an outdoor dataset and worse than peo-
ple on an indoor dataset, suggesting that their model
could be an accurate representation of how people
leverage local information. However, because images
(both intact and jumbled) that are classified incor-
rectly by a large portion of people taking the survey
are removed from analysis, it may not be true that
the computational model exactly mirrors human per-
formance. It may just be that the remaining images
were less ambiguous.

While these three studies utilize computer mod-
els to determine if local or global information is im-
portant in recognizing the context of an image, they
did not use neural networks for their computer vision
algorithms. In the past few years, neural networks
have revolutionized the field of computer vision and
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quickly overtaken other methods to become the cur-
rent state-of-the-art for many difficult visual tasks.
Because neural networks are very successful in image
processing, we hope that by using neural networks
to process distorted images, we will be able to learn
more about how humans process information or how
the human visual process system may be lacking (if
the computer algorithm performs better than human
beings). Neural networks were inspired by and share
many similar properties as the human brain. It has
been suggested that we can use neural networks to
study how visual processing works in people [15] [7].
Some researchers have shown that convolutional neu-
ral networks can predict neuronal firing in inferior
temporal cortex as well as the overall neuronal firing
code [39]. Having a more robust and similar model of
the human visual system will hopefully tell us more
about the unique failures and successes of visual pro-
cessing in people and how visual information is used
to motivate specific visual tasks.

5 Overview of the Paper

In order to investigate what types of visual informa-
tion are important for people and computers to per-
form scene recognition, we used various degradation
methods to determine how removing certain image
features affects scene classification. In Experiment
One, we compare the accuracy of a pre-trained neural
network and the GIST desciptor model with people
on the indoor-outdoor scene identification task. We
also train a neural network specifically for the indoor-
outdoor scene recognition task. In Experiment Two,
we reduce the outdoor bias of the neural network so
that has a bias similar to people. In Experiment
Three, we create and analyze a measure to compare
local and global performance of each perceptual sys-
tem on blurred and scrambled images. In Experiment
Four, we train neural networks on degraded images
to try and achieve similar classification results and
local-and global-featural dependencies as people.

6 Methods

6.1 Image Selection and Manipulation

To ensure that the people in our perceptual study and
computational models see a wide variety of images,
it is necessary to pick a representative set of indoor
and outdoor images that reflects the information and
variance inherent in the two categories. To do this,

we picked a diverse set of indoor and outdoor image
categories from the Places dataset [40]. The Places
dataset is a state-of-the-art image dataset with 205
scene categories containing nearly 2.5 million images.
From this dataset, we chose 10 indoor and 10 outdoor
categories and picked 10 random images from each of
these categories in order to create a dataset of 200
images - 100 indoor and 100 outdoor images.

The indoor and outdoor scene classes are superor-
dinate, meaning that they are almost mutually ex-
clusive and exhaustive of all scene categories [34].
For indoor categories, we picked bedroom, classroom,
dining room, kitchen, living room, lobby, museum, of-
fice, restaurant, and supermarket as our representa-
tive image categories. Our outdoor categories were
coast, forest path, highway, mountain, skyscraper,
valley, seacliff, river, residential neighborhood, and
snowfield. These image categories capture a wide
variance of the indoor and outdoor categories. The
outdoor categories selected contain both outdoor nat-
ural scenes and outdoor manmade scenes. The indoor
categories include a diverse representation of com-
monly observed indoor settings. These decisions were
supported by others who looked at indoor and out-
door image classification tasks [16] [36] [34]. Each
image is 256x256 pixels. Images were chosen from
the validation set in the Places dataset, and are not
used in training any of the neural networks we men-
tion.

To process these images, we performed the follow-
ing image degradation techniques: scrambling, blur-
ring, grayscaling, adding noise, and reversing colors.
An example outdoor image and its 35 different rep-
resentations are shown in Figures 1-5.

For each image, we scrambled the pixels in block-
sizes of 2, 4, 8, 16, 32, 64, and 128 pixels. The block-
size indicates the width and height of each square in
the scrambled image. We broke up each image into
blocks and then each block was mapped to a random
location in the image. We scrambled images both
with and without a grid marking each block of the
image. For images with a grid, the gridline was cho-
sen to be the average color of each image, in order
to limit the effect of the grid on the image’s average
brightness and color. The grid was also added to the
original, unscrambled images as a control condition
to determine how much the presence of a grid in the
image affects scene recognition for different percep-
tual systems.

To blur the image, we used a 2D Gaussian smooth-
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Figure 1: Intact images with a grid overlaid. The top-left image is the intact image without any manipulation.
Grids of blocksizes of 2, 4, 8, 16, 32, 64, and 128 were added to the image. Grids were chosen to be the
average color of the image.

Figure 2: Scrambled images both with and without a grid. Blocksizes used are 2, 4, 8, 16, 32, 64, and 128
pixels.
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Figure 3: Degraded images blurred by a Gaussian smoothing kernel. Kernel with standard deviations of 2,
4, 8, 16, 32, 64, and 128. Images are shown in order of least blurry (standard deviation of 2) to most blurry
(standard deviation of 128).

Figure 4: Degraded images with noised added. P values of 0.2, 0.4, 0.6, and 0.8 were used to determine how
much noise to add to the image. Images are shown in order from least noise added to most noise added.

Figure 5: Degraded images by color. The image on the left is greyscale and the image on the right is the
complementary color scheme of the intact image.

9



ing kernel 1. For our experiments, we used kernels
with standard deviations of 2, 4, 8, 16, 32, 64, and
128 pixels to math the blocksizes in the scrambled
images. Replication padding was used.

To add noise, we created a uniformly distributed
noise matrix with values drawn independently from
0 to 1 of size 256x256x3. We refactored the original
image to have pixel values between 0 and 1. Then,
we defined a percent variable p which determines the
extent to which noise will be added to the image. For
each pixel location (i, j) in the new image, the pixel
value is determined by Equation 1. We used values
of 0.2, 0.4, 0.6, and 0.8 for p to create 4 noisy images.
nim, im, and r denote the new image, original image,
and noise image, respectively.

nim(i, j) = (1 − p) ∗ im(i, j) + p ∗ r(i, j) (1)

For greyscale degradation, we converted each RGB
image into a simple greyscale image. For each pixel
value in an image, we created the new greyscale im-
age by taking the R, G, and B pixel values for pixel
location (i, j) in the image and computing the new
value by Equation 2. For creating the complement
image, we subtracted each pixel value from 255, the
maximum pixel intensity (see 3). The new image be-
comes the color complement of the original image
- white pixels become black, reddish pixels become
green, and so on. These manipulations were used to
measure the importance of color on the classification
task.

nim(i, j) = 0.2989 ∗R(i, j) + 0.5870 ∗G(i, j)

+0.1140 ∗B(i, j)
(2)

nim = 255 − im (3)

After these manipulations, each of the 200 images
had 35 versions, 14 of which were scrambled versions
with and with out a grid, 7 of which were blurred
images, 4 of which were noisy images, 2 for greyscale
and complementary color patterns, 7 for the origi-
nal image with a grid, and 1 for the original image
without any degradations.

6.2 Perceptual Study

To collect human scene classification performance on
the test set, we created a Qualtrics survey which

1In Experiment Three, we discuss another blurring tech-
nique used to compare classification performance on blurring
and scrambling degradation techniques. For Experiments 1-2,
we use the blurring method discussed here.

Figure 6: Depiction of the question text.

we posted to Amazon Mechanical Turk. The survey
showed 204 images. 200 images were from the test
set shown in a random order. Each image was shown
exactly once and its exact occurence (whether it was
blurred, scrambled, etc.) was chosen randomly. Four
images were included as catch trials. These images
were easily identifiable, intact images. Participants
who missed a catch trial had their results discarded
from the analysis. Participants were paid $2.75 for
their participation. We obtained results from 222
people and threw out results from 16 people either
for missing one of the catch trials or completing the
survey multiple times. In total, there were 206 uti-
lizable responses. An example question is shown in
Figure 6. The study procedure was approved by the
institutional review board at Dartmouth College.

6.3 GIST Classifier

To compare the results collected from the perceptual
study to computational approaches, we use two types
of models: a GIST descriptor model and a convolu-
tional neural network. Using Oliva et. al’s feature
extractor for the GIST description, we trained a sup-
port vector machine and a linear discriminant clas-
sifier using training images from the Places dataset
[22]. Linear discriminant analysis (LDA) computes a
linear decision boundary between the indoor and out-
door image classes. For this reason, it may not be as
accurate as other classifiers which can compute non-
linear decision boundaries. It generally is easier to
train and much more computationally efficient then
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non-linear classifiers but may not achieve the same
accuracy. It is also less prone to overfitting the train-
ing set since there are not enough parameters (one
per feature) to learn the noise in the data. Support
vector machines (SVMs) can compute non-linear de-
cision boundaries by increasing the dimensionality of
the input data and then computing a linear decision
boundary on this new data. For this reason, they can
be more accurate than simple linear decision bound-
aries.

For our purposes, we trained each classifier on 250
random imges from each of the 205 image categories
for a total of 51250 training images. We computed a
GIST descriptor vector (with 512 features) for each
image in the training set and used the image’s indoor
or outdoor category as its label. We also computed
a GIST descriptor for each of the 7000 images in the
image test set in order to compute classification ac-
curacies for these LDA and SVM GIST models.

6.4 Neural Network

Table 1: This table shows the neural network archi-
tecture used throughout the paper. Each convolu-
tional and fully connected layer is followed by a rec-
tifying nonlinearity. The final layer contains 205 neu-
rons and is used to compute the class probabilities,
using a softmax objective function.

Layer Name Size

Data 227x227x3
Conv1 96 11x11 filters of stride 4, pad 0
Norm1
Pool1 3x3 filters of stride 2
Conv2 256 5x5 filters of stride 1, pad 2
Norm2
Pool2 3x3 filters of stride 2
Conv3 384 3x3 filters of stride 1, pad 1
Conv4 384 3x3 filters of stride 1, pad 1
Conv5 256 3x3 filters at stride 1, pad 1
Pool3 3x3 filters of stride 2
FC6 4096 neurons
FC7 4096 neurons
FC8 205 neurons (class scores)

We used a pretrained deep convolutional neural
network, Places205-AlexNet, which is a version of
AlexNet trained on the 205 scene categories in the
Places database. Places205-AlexNet’s architecture is
described in Table 1. The 256x256 images are down-

scaled to 227x227. The input is then fed through a se-
ries of convolution, pooling, and normalization layers.
The pooling layers implement maximum pooling and
downscale the output size to reduce the number of
parameters. The normalization layers refactor the in-
put features so that the inputs into each non-linearity
are zero-centered and have unit-variance. This en-
sures that each epoch of training operates on features
with the same distribution and statistics. Finally,
there are 3 fully connected layers; he last of which
computes class scores for 1000 classes (in the case of
AlexNet). For Places205-AlexNet, the final layer is a
fully connected layer with 205 neurons that produce
a 205-dimensional vector containing the class scores
for the 205 classes in the Places database.

We implemented this neural network architecture
with both 205 classes and two classes correspond-
ing to just indoor and outdoor images. For the net-
work with a final layer of 205 outputs, we used the
authors’ [40] mapping of each scene category to in-
door/outdoor to get the true label for the image. We
used both top-1 and top-5 categorization for the net-
work trained on 205 scene classes to determine the
indoor or outdoor class of the image. For top-5 cat-
egorization, we took the 5 most likely scene classes
and counted how many were outdoor or indoor. The
true label was then taken to be the class (outdoor/in-
door) with the most representatives in the top-5. For
top-1 classification, we took the most likely scene
class, converted it to an indoor/outdoor label, and
returned this value as the true label. For neural net-
works trained with a final layer of 2 outputs, the true
label is taken to be the most likely class (with no
additional computations).

Training and testing are implemented through the
Caffe neural network library. All neural networks are
trained with the parameters shown in Table 2. A
softmax loss layer was added to the neural network
to compute the learning objective. The results from
different training strategies are discussed below.

Table 2: Neural network training parameters

Parameter Value

Regularization L2
Weight Decay 0.0005
Momentum 0.9

Learning Rate Strategy step
Base Learning Rate 0.01

Gamma 0.1
Step size 100000
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6.5 Calculating Bias

In addition to computing classification accuracy, we
also calculated d-prime and criterion statistics to get
a measure of how biased a perceptual system is. All
calculations are done with respect to indoor images
as the signal and outdoor images as the noise. We
used the hits, misses, false alarms, and correct rejec-
tions to calculate these statistics. A hit is defined
as a correct classifcation of an indoor image. If a
system classifies an indoor image as an outdoor im-
age, then that counts as a miss. Conversely, a false
alarm occurs when an outdoor image is classified as
an indoor image. A correct rejection means the sys-
tem classified an outdoor image correctly. Using this
terminology, we calculated d-prime and criterion as
follows.

The hit rate (hr) and false alarm rate (fa rate) are
calculated as in Equations 4 and 5, where fas denoted
false alarms and crs denotes correct rejections. Then
d-prime and criterion are calculated based on Equa-
tions 6 and 7. The function Z represents the the
inverse of the cumulative distribution function of the
Gaussian distribution.

hr =
hits

hits + misses
(4)

fa rate =
fas

fas + crs
(5)

d-prime = Z(hr) − Z(fa rate) (6)

criterion = −Z(hr) + Z(fa rate)

2
(7)

The d-prime index measures how sensitive the sys-
tem is to noise. A higher d-prime indicates that the
signal in the images can be more readily detected.
The criterion index provides a measure of how biased
the system is to the two image classes. A high nega-
tive criterion value indicates a high rate of both false
alarms and hits, which suggests the system is only
picking one class. In contrast, a high positive crite-
rion value indicates that the system is more prone
to picking the opposite class (in this case outdoor).
A near-zero criterion value implies that there is no
strong bias in the system.

7 Experiment One - Percep-
tual Study and Computa-
tional Performance

In this section, we present the classification results
from the perceptual study, the pre-trained neural net-
work, and the SVM GIST classifier on the test set.
The SVM GIST classifier proved to be better than
the LDA classifier on our test set so we omit the
LDA classifier from our analysis (the plots for the
LDA are shown in the appendix). We show plots
of percent correct, d-prime and criterion statistics.
The d-prime and criterion statistics are plotted with
respect to the indoor images as the signal and the
outdoor images as the noise.

Section 7.1 analyzes each of the three models’ per-
formances on different degradation techniques. Sec-
tion 7.2 contains the results from training AlexNet
for the task we are interested in (indoor versus out-
door image classification). This is done by replacing
the final layer of 205 units with a layer that contains
2 units and running the training on the Places205-
database, with each of the 205 classes converted to
an indoor or outdoor label.

7.1 Overall Performance

The pre-trained neural network’s top-5 performance
on the original images is 98.5%. This is slightly less
than human performance but better than the SVM
model, which achieves an accuracy of 85%. The neu-
ral network and people achieve similar classification
accuracies for low-level degradations but the neural
network seems to be negatively affected by manipu-
lations more than people are.

Figure 7 shows performance of each perceptual sys-
tem on various degradation techniques. Figures 8 and
9 display the d-prime and criterion statistics respec-
tively for these systems. Points farther to the right
on the x-axis indicate stronger degradation levels.

Panel 7.A shows the performance on intact images
with a grid overlaid. While people’s classification ac-
curacy is relatively stable no matter the blocksize
of the grid on the image, the computational mod-
els experience a dropoff as the blocksizes get smaller
and smaller. Most noticeably, once blocksizes reach
around 16x16 pixels, both the neural network’s and
the SVM’s performances drop. The d-prime and cri-
terion statistics (in Panels 8.A and 9.A) indicate that
most visual systems are biased to classifying these
degraded images as outdoor, with people being the
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Figure 7: Percent correct by image manipulation for several perceptual systems - a neural network, a GIST
SVM model, and human subjects. The x-axis is oriented such that low-level/no manipulations are on the
left and higher-level manipulations are on the right. In Panel F, O stands for original images, G for greyscale
images, and C for complementary images. The black horizontal line in each plot represents chance.
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Figure 8: D-prime statistics for the neural network model, GIST SVM model, and human subjects on
various image manipulations. Values closer to 0 indicate a low sensitivity, whereas higher values indicate
high sensitivity.
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Figure 9: Criterion statistics for the neural network, GIST SVM model, and human subjects on various
image manipulations. High positive values indicate an outdoor bias whereas high negative values indicate
an indoor bias. The black horizontal line indicates no bias (value 0).
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least biased and the SVM gist model being the most
biased.

For blurry images, Panel 7.B shows the classifica-
tion results, with the left most point being intact,
unblurred images and the right most point being the
highest blur level. As expected, performance drops
as the blur level increases. Suprisingly, however, both
computational models’ classification accuracies reach
chance very quickly. On the contrary, human subjects
classify all levels of blurred images above chance. It is
interesting to see that the bias of the computational
models toward outdoor images is very apparent with
blurred images, with almost all images being classi-
fied as outdoors when blur levels are high (Panel 9.B).
For the SVM GIST model, at mid-level blurring, the
model has an indoor bias but at higher-blur levels, it
has the same bias as the neural network.

Panel 7.C shows the performance for noisy images.
Most of the same trends can be observed here as with
blurry images. The SVM GIST model’s classifica-
tion accuracy drops off very quickly as images be-
come more degraded. The neural network maintains
its near-human level performance but as degradations
get stronger, its performance also approaches chance.
The same bias toward outdoor images can be seen in
Panel 9.C. People’s performance only shows a sub-
stantial decrease for the most noisy images, which
indicates that humans are remarkable at interpreting
noisy images.

The results for scrambled images are displayed in
Panels 7.D and 7.E. The neural network has a sim-
ilar performance to people until blocksizes get lower
than 64 pixels when the neural network’s performance
drops below human performance. At smaller block-
sizes, less than 4 pixels, the neural network, the
SVM GIST model, and human subjects all perform
at roughly chance levels. However, people are only
slightly biased toward outdoor images while the neu-
ral network and support vector machine are very bi-
ased toward outdoor images (Panels 9.D and 9.E).
It is also noticeable that at medium scramble levels,
the neural network and SVM are biased toward in-
door images.

The effect of adding a grid to scrambled images
can be measured by comparing the two plots. For
people, it seems that scrambling an image without a
grid increases performance. The grid could be hid-
ing pixels that are important for classification, which
could account for this slight decrease in performance.
The grid makes color information disappear (such as
the variance in color in the image since the grid is

the average color), especially at smaller blocksizes,
so the classification task becomes harder for people.
Likewise, for both computational models, the grid
negatively impacts classification performance. By
hiding relevant pixel information and creating sharp
edges, there is less useful image information on which
to ground classification. This results in slightly de-
creased performance with a grid.

Panel 7.F displays the results from the color ma-
nipulations. All perceptual systems experience a
slight drop in performance with complementary im-
ages, but almost no effect on classification accuracy
with greyscale images. It is also clear that the neu-
ral network and GIST SVM model are slightly bi-
ased toward outdoor images when classifying com-
plementary images (see Panel 9.F). Although there
is a slight bias for classifying images as outdoor, it
is not nearly as strong as for the other degradation
techniques. The neural network also has a very slight
bias toward indoor, complementary images.

7.2 Retraining AlexNet on the In-
door/Outdoor Image Classifica-
tion Task

Next, we removed the final fully connected layer with
205 units of AlexNet and replaced it with a fully con-
nected layer with 2 units in order to build a neu-
ral network trained specifically for the indoor ver-
sus outdoor classification task. The other parts of
the AlexNet architecture were not changed. We ran
training from scratch, using the same training set and
validation set as AlexNet trained on the Places205
database. The data was relabelled to correspond to
the indoor versus outdoor classification task. The
network was trained for 350000 iterations.

Table 3 shows a comparison between the pre-
trained neural network and our neural network
trained at the indoor versus outdoor classification
task. The number next to the manipulation tech-
nique indicates the blocksize in the case of original
and scrambled, the standard deviation for the Gaus-
sian filter in the case of blurred images, and the
noise level for the noisy images. The neural networks
achieved similar accuracies on most manipulations,
with the pre-trained neural network marginally out-
performing the indoor versus outdoor neural network
for some degradations. Plots that display the percent
correct, criterion, and d-prime statistics for people,
the pre-trained neural network, and the indoor/out-
door neural network can be seen in the Appendix in
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Figures 22 - 24. These figures demonstrate that both
types of neural networks achieve similar classification
performance and have similar biases toward outdoor
images.

8 Experiment Two - Attempt-
ing to Eliminate the Neural
Network Bias

One problem with the Places database for the task
of indoor/outdoor scene recognition is that there are
more outdoor scene categories than indoor scene cat-
egories. Out of the 205 scene categories, 69 of them
are indoor and 136 of them are outdoor. This means
that the neural network sees more outdoor images
than indoor images while being trained, which may
account for the bias toward classifying scenes as out-
doors. Another possibility is that because we use the
top-5 scene classes to determine if an image is indoors
or outdoors, it may just be the case that the neural
network has a higher baseline probability of picking
an outdoor scene. Since there are more outdoor scene
categories, if we look at the top-5 categories for each
image, then it is expected that there will be more
outdoor scene categories.

To remedy this issue, we tried a number of poten-
tial solutions. The first included using top-1 rather
than top-5 accuracy to determine if an image is in-
door or outdoor. We converted each of the 205
scene categories to either indoor or outdoor (using
a mapping provided by the authors of the Places
database) and selected the scene category with the
highest probability. Table 4 shows the percent accu-
racies for top-5 and top-1 results using the pre-trained
Places205-AlexNet. Overall, a drop in performance
is noticed when we move to top-1 classification. It is
still true that performance on heavily distorted im-
ages is around 50%. Performance for heavily scram-
bled images falls below 50%. This indicates that the
network is not exclusively classifying heavily scram-
bled images as outdoors (which was the case with the
top-5 network), since it is getting some of the outdoor
images wrong.

We also looked at the criterion statistics for the
top-1 neural network. Figure 10 reveals that the bias
for outdoor images still exists. The criterion for the
top-1 neural network is a few points lower than the
2-class neural network but the behavior and shape of
the curve is the same. For scrambled images, how-
ever, the criterion drop belows 0, indicating a bias

for indoor images with large blocksizes. This mirrors
the behavior of the SVM computational gist model.
This could be because the neural network needs to
be biased to predict an indoor scene category in or-
der to have high top-5 classification accuracy on in-
door vs. outdoor tasks, but it still selects more out-
door categories in general. However, it does not seem
that we’ve made a more indoor-biased neural network
since at high blur, noise, and scramble levels, there is
still a tendency to classify all images as outdoors.

The second potential solution was to train a neural
network using an equal number of indoor and outdoor
images. Out of the 2,448,872 images in the Places
database, 728,143 of them are indoor. We trained a
new neural network on the indoor/outdoor classifica-
tion task (2 units in the final fully connected layer)
using a training set with 728,143 indoor and outdoor
images for a total of 1,456,286 images. We did this
by selecting all images in indoor scene categories and
grouping all outdoor images in a list and randomly
picking the first 728,143 images. If there is not an
inherent bias with the neural network architecture
toward outdoor images then this change should pro-
duce a less biased classification model. However, it
may be that heavily degraded images have more in
common with image features in outdoor classes (e.g.
one overarching color, grainy texture, etc.), and this
makes it hard to detect indoor features in a degraded
image.

After running the newly trained neural network on
the test set, we obtained the criterion results shown
in Figure 10 (Figure 11 compares the classification
accuracy of this neural network with results collected
from the perceptual study and the network trained in
Experiment One). While the neural network trained
on an equal number of indoor and outdoor images
has the same outdoor bias for blurred images (the
criterion is positive and follows the criterion line for
the original network), it seems that the reverse is true
for scrambled images at middle-range blocksizes. The
criterion becomes negative for mid-level distortions.
However, the neural network has as strong an out-
door bias as the original networks for very scrambled
images (2 pixel blocksizes). For noisy and original
images with a grid, this type of neural network has
less bias than the top-1 and original neural network.
Although, the network seems less biased toward out-
door images, it still does not mimic the behavior of
people, who have very little bias for either indoor or
outdoor images.

Looking at the Figure 11, it is also interesting to
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Table 3: Pre-trained Neural Network (Places205-AlexNet) vs. Our Trained Neural Network on the in-
door/outdoor classification task. Each value is a percentage of images answered correctly for the various
types of image manipulations and levels of degradation.

Pre-
trained
NN

Our
NN

Pre-
trained
NN

Our
NN

Original 98.5 97.5 Blurred-2 93 95

Grid-2 67.5 82 Blurred-4 87 92.5

Grid-4 62.5 69 Blurred-8 52 64.5

Grid-8 72 78 Blurred-16 50 50

Grid-16 85.5 90.5 Blurred-32 50.5 50

Grid-32 97 96 Blurred-64 50 50

Grid-64 98.5 96.5 Blurred-128 50.5 50

Grid-128 98.5 97 Noisy-0.2 95.5 92.5

Scrambled-2 50 49.5 Noisy-0.4 72.5 65.5

Scrambled-4 53 50 Noisy-0.6 53 50

Scrambled-8 58 71.5 Noisy-0.8 50 49.5

Scrambled-16 74.5 77 Grayscale 97.5 95.5

Scrambled-32 85.5 80.5 Complement 91 87

Scrambled-64 93 92.5

Scrambled-128 98 96.5

Table 4: Top 5 pre-trained neural network vs. top 1 pre-trained neural network. Each value is a percentage
of images answered correctly.

Top 5 Top 1 Top 5 Top 1

Original 98.5 96 Blurred-2 93 93.5

Original-2 67.5 70 Blurred-4 87 89.5

Original-4 62.5 62 Blurred-8 52 50.5

Original-8 72 74.5 Blurred-16 50 50

Original-16 85.5 79.5 Blurred-32 50.5 50

Original-32 97 86.5 Blurred-64 50 50

Original-64 98.5 95.5 Blurred-128 50.5 50

Original-128 98.5 97.5 Noisy-0.2 95.5 92.5

Scrambled-2 50 57 Noisy-0.4 72.5 73.5

Scrambled-4 53 67 Noisy-0.6 53 59.5

Scrambled-8 58 75.5 Noisy-0.8 50 50.5

Scrambled-16 74.5 72.5 Grayscale 97.5 97

Scrambled-32 85.5 81 Complement 91 80.5

Scrambled-64 93 90.5

Scrambled-128 98 95
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note that this neural network performs more similarly
to people for some manipulation techniques. Adding
a grid to an image has a much smaller effect on clas-
sification accuracy than it did on the previous neural
networks (Panel 11.A). Similarly, blurring and adding
noise to an image do not have as big an effect on clas-
sification accuracy. However, scrambling an image
seems to keep performance the same, or worsen it at
some blocksizes. This suggests that reducing certain
biases in the neural network will bring classification
accuracy of degraded images closer to people.

In order to obtain a result that more closely re-
sembles people, it is necessary to figure out how to
train out this bias. Although humans are slightly
biased toward outdoor images as well (humans clas-
sified 22,033 images as outdoor vs. 19,367 images as
indoor in the Qualtrics survey), they are not prone
to the same level of biases as computational models.
A summary of criterion statistics can be seen in Fig-
ure 12. Although we have reduced the outdoor bias
with the neural network trained on an equal number
of indoor and outdoor images, it is still obvious that
humans are the least biased and other systems may
still be biased in the other direction (toward indoor
images), a behavior not observed in the perceptual
study.

9 Experiment Three - Local vs.
Global Computations

In order to determine if a perceptual system utilizes
more local or global information, we created a new fil-
ter that allows us to compare performance on blurred
and scrambled images. Blurred images degrade local
information, while scrambled images degrade global
information. If we can match each level of degrada-
tion for both blurred and scrambled images, then we
can come up with a systematic way to compare per-
formance on these two image manipulations. We then
reran the perceptual study using this new blurring
filter and collected results from our computational
models to determine how big of an impact local and
global information play in scene recognition for dif-
ferent perceptual systems.

9.1 Methods

For the new blur filter, we created a mapping between
the blocksizes in the scrambled images to blur levels
in the blurry images. If an image is scrambled into a

blocksize x, then the maximum spatial frequency sf
(in cycles/block) is computed as in Equation 8.

sf = x/2 (8)

Hence, the entire contiguous spatial frequency of the
scrambled image with blocksize x is no more than sf ,
the maximal block frequency. In order to represent
blurred images along this scale, we created a 5-th
order low pass Butterworth filter to filter images in
the frequency domain. To filter images, we broke each
image into its red, green and blue image components.
Then, we took the Fourier transform of each color
component to compute the frequency domain of the
image. We convolved the frequency domain of the
image with a 5-th order Butterworth filter. Finally,
we converted the image back into the spatial domain
to create a blurred image.

Examples of one set of blurred images (in order of
most blurry to least blurry) produced by this pro-
cess are shown in Figure 13. Frequency cutoffs were
chosen to correspond to the blocksizes in the scram-
bled images from the above equation (but in units
of cycles/image). This way, we can compare classi-
fication accuracy for blurred images with accuracy
for scrambled images in order to determine how local
or global features affect different perceptual systems.
Figure 25 in the Appendix illustrate the filters in the
Fourier domain for each of the frequency cutoffs.

If a perceptual system utilizes more global features
in performing classification, then it is expected that
it would classify blurred images, which possess more
global information, more accurately than scrambled
images since the spatial, global relations of the scene
remain intact. If, on the contrary, a perceptual
system is heavily affected by local features, than it
should be able to classify more scrambled images cor-
rectly than blurred images, since scrambled images
maintain local information such as properties of the
objects in the image.

To determine if a perceptual system is more local or
global we define a Difference Index between classifi-
cation performance on scrambled and blurred images.
For a given classification accuracy on blurred images
b and an accuracy on scrambled images s, we define
the Difference Index as follows:

Difference Index = b− s (9)

We expect more global visual systems to have Dif-
ference Index values above 0 and local perceptual sys-
tems to have Difference Index values below 0.
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Figure 10: Comparison of the biases of three neural networks. The blue neural network is the Indoor/Outdoor
network from Experiment one, the green network is the top-1 205 class neural network, and the red line
indicates the new Indoor/Outdoor neural network trained on an equal number of indoor and outdoor images.
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Figure 11: Plot of human results and two neural networks - the Indoor/Outdoor network from Experiment
One, and a new neural network trained on an equal number of indoor and outdoor images.
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Figure 12: Average Criterion Values for people and various neural networks. People have the lowest bias
toward outdoor images, followed by the neural network trained in Experiment Two on an equal number of
indoor and outdoor images.

Figure 13: 6 exemplars of each blurred image (blurred by a 5-th order Butterworth filter with cutoff fre-
quencies of 2, 4, 8, 16, 32, and 64 cycles/image. The right-most image has the highest cutoff frequency and
left-most has the lowest cutoff frequency.
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To test people on these new blurred images, we con-
ducted a second perceptual study. This study had the
same setup, questions and test set as the first study
except we tested people on 13 manipulations for each
image, rather than 35: 6 for the new blurred images
(with frequency cutoffs set as 2, 4, 8, 16, 32, and 64),
6 scrambled images (without a grid, with blocksizes
of 4, 8, 16, 32, 64, and 128), and the original, intact
images. The survey showed 204 images, 4 catch tri-
als and 200 images from the test set. We analyzed
results from 170 participants.

9.2 Results

The results (using the Difference Index) for the hu-
man visual system are shown in Figure 14.A. The
top panel shows the accuracy values for classifying
both scrambled and blurred images while the bottom
panel shows the Difference Index at each degradation
level. While low-level degradations produce little-to-
no difference in local or global image performance,
mid-level and higher distortions seem to favor global
visual processing. Eliminating more spatial frequen-
cies in blurred images and having small blocksizes
results in slightly better performance for blurred im-
ages, indicating that global features are more impor-
tant in determining the image’s class. These results
suggest that at low-level manipulations, both local
and global image properties play a role in determin-
ing the contextual features of the image. However,
as local and global information are both heavily de-
graded, humans can more accurately classify images
with global image properties than with local image
properties. This suggests that global features may
be used more by the human visual system in scene
recognition, especially when most image information
is unavailable.

The neural network’s local versus global informa-
tion is shown in Column 14.B. The neural network re-
lies mostly on global information for mid-level degra-
dations as it achieves higher classification accuracies
on blurred images than scrambled images. Its Differ-
ence Index is positive for most degradations, indicat-
ing the neural network is more negatively affected by
global manipulations than local. However, at the sec-
ond most degraded point, the neural network’s Dif-
ference Index falls below 0, meaning that the net-
work is less robust to blurred images, a local image
manipulation. This makes sense because a convolu-
tional neural network looks at patches in the image
and learns features from those patches. As long as
there are patches in the image that are big enough

to possess pertinent visual features, which scram-
bled images (with a blocksize of 8 pixels) still have,
then the convolutional network will be able to deter-
mine the features in the patch. The most degraded
point (blocksizes of 4 pixels) may posses less visual
information in each patch than do blurred images at
the same degradation level, which could account for
why the network’s Difference Index is positive at that
point. There seems to be a point at which removing
more global information reduces performance then
the equivalent removal of local information.

One similarity between the neural network model
and the human visual system is that both systems
start off responding more to global information than
to local information. With large blocksizes and high
frequency cutoffs, both systems are better at classi-
fying blurred images. This indicates that the overall
features of the scene, such as openness and depth, are
more useful than the local, object-based features of
the scene. When patches get so small that local ob-
ject information becomes harder to identify, then peo-
ple have a strong preference for global features, which
suggests that people are more capable of identifying
the context of the scene just from global features,
but they have an easier time when there are also lo-
cal features. The neural network, however, is more
affected by local manipulations (signalling a negative
Difference Index) at high levels of image degradation.

The SVM GIST model (seen in Column 14.C) has
both positive and negative Difference Index values
depending on the degradation level. At low-levels
of degradation, the GIST model is more affected by
global manipulations than local. This is intuitive
since the GIST model is created to compute fea-
ture vectors that relate global relationships in the im-
age. However, at most other points, the GIST model
can more accurately classify scrambled images than
blurred images. This suggests that the GIST model
may be using more local information. The reason
for this could be that the GIST model uses local im-
age features to create an overall global representation
of the image. Since the GIST model uses line ori-
entations to create a feature vector, it may be that
blurred images degrade line orientations enough to
make it difficult for the model to produce this global
representation. Scrambled images, however, keep line
orientations intact so that the GIST model can make
these computations more accurately from what little
information is available.
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Figure 14: Local-Global Difference Index Measures for people, the neural network, and GIST model. The
top three panels show classification acccuracies on blurred and scrambled images. The bottom three panels
show the Difference Index for each of the perceptual systems.
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10 Experiment Four - Training
on Degraded Images

To make the neural network perform similarly to peo-
ple, it may help to train on degraded images. To re-
ally mimic human behavior, the network must be as
robust and invariant to image manipulations as peo-
ple are. People have a much more vivid and robust
visual experience than do neural networks. People
can see visual scenes in all types of conditions that
affect how distorted their visual field is. In this ex-
periment, we train many neural networks, changing
which degradations each network is trained on, and
evaluate how this affects the neural network perfor-
mance on the various degradation methods. The goal
is to build the past visual experiene of the neural net-
work so that it can be more robust to various degra-
dations.

10.1 Methods

We trained each neural network by adding a custom
layer in Caffe after the input layer. Each image in the
batch currently being trained on is manipulated and
the number of images in the batch is increased by a
factor of how many degradation levels there are. For
example, for a batch size of 32 images and using the
scrambling distortion technique which has 7 levels of
degradation, we increase the batch size by a factor
of 8 to 256 images in the batch. This larger batch
is then fed into the first convolutional layer of the
network. During backpropagation, nothing needs to
be done on this new input layer. For testing, this
layer is removed and we tested on the same test set
as has been used in previous sections of this paper.

10.2 Training on Scrambled Images

In this subsection, we present the results for train-
ing a 2-class neural network using the entire Places
database, but adding gridded, scrambled with and
without a grid as well as the intact images to the
training set. The network was trained for 350,000 it-
erations. Figure 16 displays a comparison of the accu-
racies between the neural network trained on regular
data and the neural network trained on the degraded
images, as well as the results from the perceptual
study.

As can be seen in Figure 15 this neural network be-
comes more reliant on local properties. Because the
patches in a scrambled image still contain local ob-

ject information, this is what the network can learn in
order to classify these degraded images. Thus, global
properties become less relevant and the neural net-
work learns more local properties, resulting in a neg-
ative difference index.

10.3 Training on Noisy Images

Here, we trained a 2-class neural network using the
entire Places database, but adding 4 noisy exemplars
per each image. The network shown has been trained
from scratch for 350,000 iterations. Figure 17 shows
the results for a neural network trained on regular
data, a neural network trained on regular and noisy
data, and for people. The new neural network trained
on degraded, noisy images performs overall much bet-
ter at mid- and high-levels of degradation. This sug-
gests that the neural network is more robust to noisy
images. The original neural network was classifying
these images around chance, choosing outdoor for all
images. However, for noise levels of 0.2, the neural
networks both achieve around the same classification
accuracy.

As can be seen in Figure 15 this neural network
has gotten more global, when looking at the Differ-
ence Index (which only takes into account blurred and
scrambled images, not noisy images). Since adding
noise to an image preserves global information, such
as depth and openness in the scene, training on more
noisy images would allow the neural network to learn
these global features moreso than it learns local fea-
tures, which are degraded. So, this result is expected
even if the neural network was not explicitly trained
on blurred images.

10.4 Training on Blurred Images

In this subsection, we trained the 2-class version
of AlexNet on the Places database, including the
blurred images from Experiment Three above (with
the Butterworth filter). This neural network was
trained from scratch for 170,000 iterations. Already,
it is apparent that the network is classifying blurred
images at a higher rate (see Figure 18). The network
is getting closer to mirroring human performance.
Also, the network is attuned to more global infor-
mation, as it maintains a positive difference index
(Figure 15). When images are blurred, objects and
their properties are obscured by the blurring filter.
Hence, the network has to learn overall features of
the two image classes, which makes it more global in
general.
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Figure 15
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Figure 16: Percent accuracy for neural network trained on regular data, regular, scrambled (with and without
a grid), and original images with a grid, and human results
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Figure 17: Percent accuracy for neural network trained on regular data, regular and noisy data, and human
results
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Figure 18: Percent accuracy for a neural network trained on regular data, a neural network trained on regular
and blurry data, and human results
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11 Discussion and Conclusion

In this paper, we looked at the role of local and global
image information in classifying scenes as indoors or
outdoors. It has been shown in previous work that
both local and global image information are neces-
sary for people to accurately interpret scene informa-
tion, but that global information is perhaps collected
and interpreted first. It has also been shown that
classical machine learning techniques that respond to
either local or global information can be used to mir-
ror human performance on scene recognition tasks.
In this paper, we compared a state-of-the-art neural
network, whose design is inspired by the architecture
of the human brain, to people’s performance on an
image classification task. We created an index and a
mapping between locally and globally degraded im-
ages to determine if a given perceptual system is more
local or global.

The results in Experiment One illustrate that both
local and global information are important for peo-
ple and machine vision to perform the indoor ver-
sus outdoor scene recognition task. For all types of
perceptual systems, performance on the task falls as
images become more and more degraded, no matter
if those degradations methods reduce local or global
information. People, however, are the most robust
to degraded visual information, suggesting that they
can recover lost or pertinent visual information from
what is given to them. Neural networks and the GIST
Descriptor model have more trouble recovering this
information.

We also noticed that these computational algor-
thims have an extreme bias for selecting the outdoor
image class, while people only have a slight bias for
classifying images as outdoor. Intuitively, this makes
sense as very blurred images have one overarching
color and texture, similarly to outdoor images. In-
door images, on the contrary, posses many colors and
textures as they contain many objects. This may
indicate that object information may be relevant in
helping machines and humans pick out indoor images
but more global properties such as color and texture
are more pertinent in picking out outdoor images.

In Experiment Two, we looked at ways to eliminate
this bias in the case of neural networks. While the
bias toward outdoor images was reduced by training
on an equal number of indoor and outdoor images, in
some cases the network became more biased toward
indoor images. This does not replicate human perfor-
mance, but it did make the neural network’s average
bias statistic closer to that of people.

To further compare neural networks to people,
we created an index measure, in Experiment Three,
called the Difference Index, in order to calculate how
local or global a given perceptual system is. While
people are better at classifying blurred images than
they are with scrambled images, the neural network
varies in how well it classifies each type of image. At
higher degradation levels, the neural network is af-
fected more by local information and does better at
classifying scrambled images than blurred images. In
order to build a computational replica of the human
visual system, it is necessary to create a neural net-
work that more closely mirrors the Difference Index
for human beings, so that performance on degraded
images is similar. One area to look at for improving
the neural network is the blurring filter. While most
of our Butterworth filters attenuated half the ampli-
tude at the frequency cutoffs, the two smallest cutoffs
were at a little less than half. It may be interesting to
test different filter orders and different types of filters
to try and get a closer matching between blurred and
scrambled images.

In Experiment Four, we looked to see if neural net-
works can be trained to be able to recover the lost
visual information. In the case of training on scram-
bled images, the new neural network surpassed hu-
man performance on more degraded blocksizes. It is
unclear if these neural networks trained on manipu-
lated images are learning new features that may cor-
respond to local or global image features, or if they
are just being tuned to where information may lie in
the image. For example, scrambled images are jum-
bled up at known points depending on the blocksize.
The neural network can ignore the relation of these
blocks to one another and just capture information in
each block, possibly having representations for cap-
turing information in blocks of different sizes. If this
is true, then it would still be the case that the neural
network is learning local image features.

In the case of blurred and noisy images, which are
global manipulations, the neural network does not
need to compute filters for different areas in the im-
age since the relationship among patches in the image
will remain, but instead learns new filters to capture
different features. These features may correspond to
more global features which could explain how it per-
forms better at classifying these globally distorted im-
ages than the normal neural network.

Further studies that can be conducted to try and
build a neural network model that resembles the hu-
man visual system include changing the architecture
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of the neural network. It is possible that neural net-
works can be built to possess either a more globally-
respondent or more locally-respondent architecture,
based on the size of the filters in the convolutional
layer and the number of convolutional layers and fully
connected layers. Changing the AlexNet architecture
to resemble a more global or more local architecture
may lead to interesting results that further corrobo-
rates or rejects the similarity of neural networks to
the human brain.

In general, there are many interesting questions in
the realm of human perception and scene recognition.
While neural networks are approaching human per-
formance, they are still not as robust. It seems that
human beings can take a scene with missing informa-
tion and extract this missing information from their
experience and past knowledge of how visual scenes
are supposed to look. Neural networks, however, per-
form scene classifcation by learning features in a large
set of images that help them perform this task. One
area to look to solve this problem may be recurrent
neural networks for scene recognition, which do have
a time-dependent representation.

For human beings, it is still unclear how top-down
encoding of past experiences affects visual processing
of scenes with missing information. A closer look at
the brain while people process degraded images may
reveal how this process works and what exactly is
needed to make up a scene with degraded informa-
tion.
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13 Appendix

Figures 19 - 21 demonstrate the results from run-
ning Experiment One on the GIST LDA model rather
than the GIST SVM model. Figures 22 - 24 show the
plots for comparing results from the perceptual study,
the pre-trained Places205-AlexNet, and our neural
network trained for the indoor/outdoor classification
task. Table 5 compares the pre-trained AlexNet with
our results from training AlexNet on 205 scene classes
in Places205.
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Figure 19: Percent correct by image manipulation for several perceptual systems - a neural network, a GIST
LDA model, and human subjects. The x-axis is oriented such that low-level/no manipulations are on the left
and higher-level manipulations are on the right. In Panel F, O stands for original images, G for greyscale
images, and C for complementary images. The black horizontal line in each plot represents chance.
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Figure 20: D-prime statistics for the neural network model, GIST LDA model, and human subjects on
various image manipulations. Values closer to 0 indicate a strong bias, as a d-prime value of 0 implies that
the hit rate is equal to the false alarm rate. In Panel F, O stands for original images, G for greyscale images,
and C for complementary images.
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Figure 21: Criterion statistics for the neural network, GIST LDA model, and human subjects on various
image manipulations. High positive values indicate an outdoor bias whereas high negative values indicate
an indoor bias. The black horizontal line indicates no bias (value 0).
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Figure 22: Percent accuracy by image distortion of several perceptual systems - a pre-trained neural network
for 205 scene classes, a neural network trained specifically for the indoor/outdoor classification task, and
human subjects
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Figure 23: D-prime statistics of the pre-trained neural network, indoor/outdoor neural network, and human
subjects on various distortion methods. Values closer to 0 indicate a strong bias, as a d-prime value of 0
implies that the hit rate is equal to the false alarm rate.
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Figure 24: Criterion statistics of the pre-trained neural nentwork, the indoor/outdoor neural network, and
human subjects on various distortion methods. High positive values indicate an outdoor bias whereas high
negative values indicate an indoor bias.
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Figure 25: Butterworth Filter Behaviors for different frequency cutoffs
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Table 5: Pre-trained Neural Network vs. Our Trained Neural Network (both with 205 scene classes). Each
value is a percentage of images answered correctly.

Pre-
trained
NN

Our
NN

Pre-
trained
NN

Our
NN

Original 98.5 99 Blurred-2 93 96.5

Grid-2 67.5 75 Blurred-4 87 81.5

Grid-4 62.5 83.5 Blurred-8 52 56.5

Grid-8 72 89.5 Blurred-16 50 50.5

Grid-16 85.5 90.5 Blurred-32 50.5 50

Grid-32 97 88 Blurred-64 50 50.5

Grid-64 98.5 97.5 Blurred-128 50.5 50

Grid-128 98.5 99 Noisy-0.2 95.5 95

Scrambled-2 50 52 Noisy-0.4 72.5 70

Scrambled-4 53 59 Noisy-0.6 53 51.5

Scrambled-8 58 60 Noisy-0.8 50 50

Scrambled-16 74.5 68 Grayscale 97.5 96.5

Scrambled-32 85.5 76 Complement 91 84.5

Scrambled-64 93 91.5

Scrambled-128 98 98
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