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Abstract

The standard binary reflected Gray code describes a seqoEintegerd) ton — 1, wheren
is a power o2, such that the binary representation of each integer indhaence differs from
the binary representation of the preceding integer in éxacte bit. In September 2016, we
presented two methods to compute binary dense Gray codes) eitend the possible values
of n to the set of all positive integers while preserving both @ray-code property such that
only one bit changes between each pair of consecutive bmanpers, and the density property
such that the sequence contains exactlystlitegers) ton — 1. The first of the two methods
produces a dense Gray code that does not have the cyclicfyapeaning that the last integer
and the first integer of the sequence do not differ in exaatly lnit. The second method, based
on the first, produces a cyclic dense Gray codeigf even. This thesis summarizes our previous
work and generalizes the methods for binary dense Gray dodadbitrary radices that may
either be a single fixed radix for all digits or mixed radicdsane each digit may be represented
in a different radix. We show how to produce a non-cyclic mdixadix dense Gray code for any
set of radices and any positive integerthat is, a permutation of the sequer@el, ..., n — 1)
such that the digit representation of each number diffesfthe digit representation of the
preceding number in only one digit, and the values of thaglitjat differ is exactlyi. To this
end, we provide a simple formula to compute each digit of e@aghber in the permutation in
constant time. Though we do not provide such a formula toigga¢he digits of a cyclic mixed-
radix dense Gray code, we do present, foequal to the product of the radices, a recursive
algorithm that computes the entire cyclic mixed-radix Geage with the density, strict Gray-
code, and modular cyclic properties: givek-tuple of mixed radices = (rx_1,rx—2,...,70),
each of the: integers in the cyclic mixed-radix Gray code differs from preceding integer—
with the first integer differing from the last integer—in grdne digit position’, and the values
of those digits differ by exactly, except for the digits of the first and last numbers, which may
also be the intege®andr; — 1. For values of: that are less than the product of the radices, we
show a list of cases for which we prove it is impossible to gateea mixed-radix dense Gray
code that has the modular Gray-code and cyclic propertiea &t of mixed radices and a
positive integen.



1-bit 2-bit 3-bit
binary reflected Gray code binary reflected Gray code birgftgated Gray code

0 00 000
1 01 001
11 011

10 010

110

111

101

100

Table 1: The first3 binary reflected Gray codes for= 2, n = 4, andn = 8.

1 Introduction

The standard binary reflected Gray code, patented by Fraal iBr1953 [5], is a sequence ofbinary
integers in the rang@ to n — 1 (or equivalently, a permutation of the integéés1,...,n — 1)) that holds
theGray-code property: each integer in the sequence differs from the precedimgértin only one bit. This
property gives rise to many powerful applications of theabyrGray code, such as finding Hamiltonian paths
alongr-dimensional hypercubes [6] and generating Dyck words topde allz-node binary trees [10].
Though exceptionally useful, Gray’s binary code allowsydol values ofn that are a power dt; Table 1
shows the firsg binary reflected Gray codes far= 2, 4, and8. Notice that each Gray code is alsglic:

the first and last numbers of each sequence preserve thecGdayproperty, differing in only one bit as the
sequence wraps around.

In our 2016 paper [3], we identified three properties of theabj Gray code that are of interest to us:
the Gray-code property and the cyclic property as we desdriiefore, and the density property, which
identifies the sequence as a permutatiof0ot, ..., n — 1). The wide success of the binary reflected Gray
code is due in part to its ability to hold all three of thesepgamies. Despite its many uses, however, the
binary reflected Gray code constraing powers of. Our paper expanded upon the possibilities ofhile
preserving the three properties we listed above.

Our first method for a dense Gray code generates a Gray codésthat cyclic but preserves den-
sity for any positive integern. For example, a non-cyclic dense Gray code dor= 7 is the se-
quenceg011, 010, 000,001, 101, 100, 110), which corresponds to the integéss2, 0, 1, 5, 4, 6). Our second
method builds upon the first and produces a cyclic dense G itr is even. Both methods are based on
the standard binary reflected Gray code and, as in the bieiected Gray code, each number in the output
sequence can be computed in a constant number of word apergiven just its index in the sequence.

After publishing our paper on binary dense Gray codes, weetliour attention to dense Gray codes for
fixed- and mixed-radix numbers. We wondered whether theseanlarger mathematical principle behind
our methods for binary dense Gray codes that could be exiettdeompute dense Gray codes for any
radices. And sure enough, there was! Not only that, but ththodewe developed for a non-cyclic mixed-
radix dense Gray code shed new light upon our previous warkldose Gray codes in binary, providing
a more intuitive way of reasoning about all dense Gray codéssamplifying beautifully to recreate the
results of our 2016 paper.

Part | of this thesis discusses Gray codes exclusively foargi numbers. It briefly introduces the
standard binary reflected Gray code [5] and discusses it&appns. Then, it covers the two methods for a



binary dense Gray code that we presented in our 2016 papsvirghhow to derive both Gray codes from
the standard binary reflected Gray code. Part Il begins aeudsion for dense Gray codes in mixed radices
and builds up to an efficient formula that we can use to compartecyclic dense Gray codes for any radices.
Within this part of the thesis, we exploit the path we took wh&covering the non-cyclic binary dense Gray
code to guide us on an analogous approach to the non-cycliedanadix dense Gray code. We find that,
like its binary counterpart, the non-cyclic mixed-radixxde Gray code is based on a reflected Gray code,
which we can easily produce using Er's recursive methodsddfixed- and mixed-radix reflected Gray
codes. By closely deconstructing Er's methods, we are aldievelop a set of formulas that calculate each
integer of the Gray code from just its ordinal index in thelgstce. From these equations, we can engineer
our simple solution for the non-cyclic mixed-radix densaytode. The last section of Part 1| demonstrates
that indeed, a simplified version of our method for a nondicyiixed-radix dense Gray code reaffirms our
results for the binary dense Gray code as stated in Part I.

Part 11l discusses cyclic mixed-radix dense Gray codes thighmodular Gray-code and cyclic proper-
ties, where, given a mixed-radix sequence of integers dntuple of mixed radices = (ry_1,7k—2, ...,
ro), each integer in the sequence differs from its precediregart—with the first integer differing from the
last integer—in only one digit positian and the values of those digits are eithendr; — 1, or they differ
by exactlyl. We first present several methods for cyclic mixed-radik@ray codes, which are where the
numbern of integers in these sequences is equal to the product oattiess in-. The methods we review
from previous literature create restrictions on the radjé r in order to guarantee the target sequence,
but this thesis introduces a new recursive procedure thadrgées a cyclic mixed-radix full Gray code for
any mixed-radix tuple:. To compute cyclic mixed-radix dense Gray codes withtegers, where is less
than the product of the radices, we introduce a graphicakttodepresent the modular Gray-code property
among integers. Then, we equate the problem of generatigglia mixed-radix dense Gray code to the
task of finding a Hamiltonian cycle in that graph. This grdpieretic approach helps us reveal several cases
where it is impossible to compute a cyclic mixed-radix de@say code for a radix tuple and sequence
lengthn.

Contributions of this thesis

In summary, the five major contributions of this thesis aréollsws:

¢ A formula for each digit of the non-cyclic binary dense Grayle for any positive integer, as given
in our earlier paper [3]. With this formula, we can generaehenumber in the non-cyclic binary
dense Gray code in constant time.

¢ An algorithm that generates a cyclic binary dense Gray codariy even number of integers. The
algorithm computes each number in constant time.

¢ A formula for each digit of the non-cyclic mixed-radix dernSeay code for any mixed-radix tuple
and positive integer less than or equal to the product of the radices.in

e Arecursive algorithm that generates each integer in thikcayixed-radix full Gray code for a mixed-
radix tupler and positive integet equal to the product of the radicesrin

¢ A list of cases where it is impossible to compute a cyclic rdixadix dense Gray code for a mixed-
radix tupler and positive integet strictly less than the product of the radices in
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Figure 1: Two possible designs for a rotary encoderfoe 8, or 3 bits. Each design shovsdifferent settings, with
the setting numbers displayed so that the more significémabe closer to the center of the circular design. Values of
the bits are represented in black and white, where blackates al and white indicates 8. (a) The design shows
the binary ordinal sequen@®0 to 111 counterclockwise from the arrowb) The design shows the binary reflected
Gray code counterclockwise from the arrow.

Part |
Gray codes in binary

We start in Section 2 with an introduction to the standardhjrreflected Gray code, including a set of
equations that calculate each integer in the Gray code fustits index in the sequence. Then, in Section 3,
we summarize our previous work [3] on Gray codes and deswithwut proof how to compute non-cyclic
dense Gray codes in binary based on the solution for a redi&xray code. (In Part Il, we will prove a more
generalized equation for computing non-cyclic dense Goaes in any radices and apply that equation to
the binary case, which will both recreate the equationggtet this part of the thesis and serve as a proof
of their correctness.)

In Section 4, the last section of this part, we show how tolegasodify our method for a non-cyclic
binary dense Gray code to generate a cyclic binary densedadg/for even-valued sequence lengths.

2 The standard binary reflected Gray code

Originally designed for use in pulse code communicatiomyGrodes have since proven their versatility
in a number of applications including rotary encoders,recmrecting codes, and mechanical puzzles such
as Towers of Hanoi. Let's examine how a Gray code can be usedhance a rotary encoder. We can
think of a rotary encoder as a dial-like interface made to mapt ofn physical settings to binary numbers
that it serializes and sends as a bit stream to a receivingputan Figure 1 shows two different design
possibilities for a rotary encoder. The one on the left cost@ight settings that encode for the binary
sequence000, 001, ..., 111), corresponding to the decimal sequefd, ..., 7), going counterclockwise.
Alternatively, the design on the right shows the eight défé settings in Gray-code order, which also
contains all the binary numbers fro®0 to 111 but with the added Gray-code and cyclic properties that
only one bit changes between any two adjacent states.

We can assume that each of the= Ign bits change independently when we jump from one setting
to the next. Notice that with the in-order binary sequeniserd is a momentary risk of reading the wrong



setting. Consider the transition from settib@l to settingl110. In this example, the two least-significant
bits change. If the two bits do not change at the same timeyrilrgended settingk00 or 111 may briefly
be in effect. Worse, if we are using the settings to definestat a finite state machine, the state that the
computer receives may momentarily be either of these twamenus readings and, as a result, the computer
might start executing the wrong set of instructions poiritetly the incorrectly-read state. The Gray-code
property obviates this problem. Therefore, a rotary enctitlt defines settings in Gray-code order will
never receive an unintended input.

Gray’s patent describes a simple recursive process thargtes the-bit binary reflected Gray code
for n = 2. Whenn = 2, the 1-bit binary reflected Gray code is simply the sequetitd). To cre-
ate the(lg n)-bit binary reflected Gray code of length wheren > 2, we start with the(lgn — 1)-bit
binary reflected Gray code of lengify2 and follow a3-step process: draw a line of reflection after the
last integer in thglgn — 1)-bit binary reflected Gray code, reflect tlign — 1)-bit Gray code over the
line, and prepend or concatendteas the leftmost bit of thea/2 numbers before the line andas the
leftmost bit of ther/2 numbers after the line. For example, to generate the 3-bérbireflected Gray
code forn = 8, imagine a line of reflection below the 2-bit binary reflec@ay code(00, 01, 11, 10) for
n = 4; reflect the sequence over that line to genef@te0l, 11, 10, 10, 11, 01, 00); and finally, prepen@
to the four numbers of the original sequence artd the four numbers of the reflected sequence, yielding
(000,001,011,010, 110,111, 101, 100).

Gray observed a method [5] to generate e value of the binary reflected Gray code f+—which
we will denoteg—in a constant number of word operations. The equation iplsign= x & |x/2], where
@ is the bitwise exclusive-or operator and is the mathematical floor operator. Thus, we simply need to
set each bit of equal to the result of XORing the corresponding bikiwvith the next most significant bit
of x, leaving the most significant bit alone. If the binary repraation ofx is x;_;x;_» - - xo, then the
binary representatiogy; _;gx—» - - - go Of g is calculated as

8k—1 = Xk—1> (l)
gi = Xi4+1Dx; fori =0,1,...,.k—2. (2)

In C code, we can denote the set of equationggas x ~ (x >> 1) , where” is the bitwise
exclusive-or (XOR) operator areb> is the bitwise right-shift operator. Assuming that bitwls®R and
right-shift both take a constant number of word operatidiman calculating from x will also take a con-
stant number of word operations.

3 The non-cyclic binary dense Gray code

Our method to generate the binary non-cyclic dense Grayfoode wheren is not a power o2, is a simple
two-step process. We start by taking the firstumbers from the binary reflected Gray code for the next
higher power of2. We then perform a bitwise XOR operation on each of those mumby the bit mask
m = |n/2] to complete the non-cyclic dense Gray code. Let us denotetthenteger of the non-cyclic
dense Gray code for asd. Table 2 then shows the stepwise generation of all sequdaneeptsd for
n=13andx =0,1,...,n — 1. Becauseé 13/2| = 6, the maskn in binary is0110.

Recall our claim that we can generatén ®(1) word operations given its index We start by defining
k = |lgn] to be the minimum number of bits needed to represent the valud, which is the highest
number we will need to compute. Then the binary reflected Gaale for the next higher power a8fmust



binary reflected non-cyclic dense decimal
ordinalx Gray codeg maskm Gray coded counterpart

0 0000 0110 0110 6
1 0001 0110 0111 7
2 0011 0110 0101 5
3 0010 0110 0100 4
4 0110 0110 0000 0
5 0111 0110 0001 1
6 0101 0110 0011 3
7 0100 0110 0010 2
8 1100 0110 1010 10
9 1101 0110 1011 11
10 1111 0110 1001 9
11 1110 0110 1000 8
12 1010 0110 1100 12
13 1011
14 1001
15 1000

Table 2: XORing each of the first = 13 numbers in the binary reflected Gray code férnumbers with the mask
m = |n/2| = 0110 produces a permutation ¢d, 1, .. ., 12) with the Gray-code property.

have sequence leng#i. Therefore, we compute theth value of the binary reflected Gray code and XOR
the result with|n /2| to generate theth value of the non-cyclic dense Gray code.

Section 2 showed how to compuge the xth number in the Gray code, i®(1) word operations,
so we now proceed to calculate using the maskn, which we denote with the binary representation
Mmy_1My_o---mo. We setm to [n/2], which has the binary representati®n;_iny_,---n;. Thus,

mr—1 = Ov (3)
m; = nj+; fori=0,1,....k—2, 4)

and therefore, the binary representatiin ;dy_, - - - do of d becomes

dg—1 = 8k—1 DMy
= Xp_1 D0 (by equations (1) and (3))
= Xk—1 )
and
di = gi®dm; (6)
= Xi+1 9D x; ®n;+1 (byequations (2) and (4)) (7)
fori = 0,1,...,k—2. InC code, we havel = x = (x >> 1) " (nh >> 1) . Since we already

assumed that bitwise XOR takes a constant number of worébpes, the process fromto d also requires
only constant number of word operations.

With more work, we can also compute the inverse of the notiecglense Gray code function. Letbe
the ordinal index where the integérappears in the non-cyclic dense Gray code. By equation @have
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Xr—1 = dr_1. To compute the remaining bits af we must first understand how to compute the inverse
of the binary reflected Gray code function, which is the catlindexx where the integeg appears in the
binary reflected Gray code. Gray [5] showed that

Xi = g1 P gr—0a®---Dg; fori=01,...,k—2.
XORing x; 41 to both sides of equation (2) gives
Xi =g Pxiy1 fori=0,1,....,k—2. (8)
XORing m; into both sides of equation (6) and subsequently applyinggon (4) gives

g = didm
= di®njy1 fori=0,1,....k—2. 9)

Finally, combining equations (8) and (9) gives, fo= 0,1, ...,k — 2,
Xi =di ®nj41 ® Xi+1 -

In C, givend, n, andk, we can compute the inverseof the intege in the non-cyclic dense Gray code,
assuming that the variables have all been declared as irigggs. The following code uses equations (5)
and (8) to compute one bit at a time, from bik — 1 down to bit0. The code places each hit into bit
position0 and then shifts it one position to the left before computirigep_y:

g=d~ (n>>1)
x = (d > (k-1) & 1;
for (i = k-2; i >= 0; i) {
X <<= 1;
X = (x> 1) " (g > 1) & 1

}

This code require®(Ig n) word operations, assuming that shifting right by at most 2 bits takes® (1)
word operations.

4 The cyclic binary dense Gray code

We can easily adapt the method for a lengthen-cyclic dense Gray code to form the cyclic dense Gray
code for2n. The method we describe here is not the same as the methodblehed in our 2016 paper,
but the intuition behind the new procedure is so obviouslyem that it subsumes the work we had done
previously. To generate the cyclic dense Gray codeiousing the new method, we take the non-cyclic
dense Gray code for and, as with the binary reflected Gray code, reflect the segueihnumbers over a
line of symmetry drawn after the last number of the sequenten, append as the rightmost bit of the
n/2 numbers before the line, and appelnds the rightmost bit of the /2 numbers below the line to form
the set of even numbef(8, 2, ...,2n — 2} and the set of odd nhumbefs, 3, ...,2n — 1} respectively. The
resulting sequence contains the numhliets 2n — 1 and is dense. We can easily see that it maintains the
Gray-code and cyclic properties since it mimics the stepwisneration of the binary reflected Gray code
for 2%. Table 3 shows this process in detail for = 26; we denote the'th number in the cyclic dense Gray
code for2n with c.



non-cyclic dense cyclic dense decimal
ordinal x Gray coded Gray coder  counterpart

0 0110 01100 12
1 0111 01110 14
2 0101 01010 10
3 0100 01000 8
4 0000 00000 0
5 0001 00010 2
6 0011 00110 6
7 0010 00100 4
8 1010 10100 20
9 1011 10110 22
10 1001 10010 18
11 1000 10000 16
12 1100 11000 24
13 11001 25
14 10001 17
15 10011 19
16 10111 23
17 10101 21
18 00101 5
19 00111 7
20 00011 3
21 00001 1
22 01001 9
23 01011 11
24 01111 15
25 01101 13

Table 3: Reflecting the non-cyclic dense Gray codefoe 13 and prependings to the original sequence aid to
the reflected sequence generates the cyclic dense Grayardlie £ 26.

In C, given any positive integer and an ordinal number in the range) to 2n — 1, we can compute the
xth integerc in the cyclic dense Gray code as follows:

if (x >= n) /l is x in the second half?
X = 2*n-1-x; Il if so, use x's reflection
d=x"(x>1)" (n>>1); [/l compute d
c =d << 1; /I left-shift by 1 to double d
if (x >= n) /I again, is x in the second half?
c |= 1; /I if so, change the least-significant bit to 1

Using our previous definition for the inverse function of tien-cyclic dense Gray code, we can easily
define an inverse function for the cyclic dense Gray code.xle¢ the ordinal index where the integer
appears in the cyclic dense Gray code. In C, we've denoteihtirese function of the integef in the non-
cyclic dense Gray code as/(d) and the modulus operator &s Then, givern and the value, which lies



in the range to 2n — 1, we can compute as follows:
c >> 1; /I right-shift ¢ to form d
inv(d);

cC % 2 == 1)
X = 2*n-1-x;

/l is ¢ in the reflected half?

d
X
if
/I if so, reflect x

~—~

10



Part Il
Non-cyclic Gray codes in fixed and mixed radices

Within this part of the thesis, we will construct a formulatltomputes each digit in the non-cyclic mixed-
radix dense Gray code. Like the binary case, fixed- and migdde dense Gray codes are based on reflected
Gray codes generated using the corresponding radicesefoher Sections 5 and 6 begin our quest for a
mixed-radix dense Gray code by presenting Er's recursivihoag4] for a fixed-radix reflected Gray code
and generalizing his methods to mixed-radix systems. Ih eathese sections, we analyze the structure of
Er's recursive method and generate formulas that directtypute each element of Er’s fixed- and mixed-
radix reflected Gray codes given just its index in the segeiemeich like the equations that Gray developed
to generate each element of his binary reflected Gray code.

With the equations for fixed- and mixed-radix dense Gray sddehand, Section 7 then builds an
intuitive formula for each element of a non-cyclic mixedlsadense Gray code and subsequently proves
its correctness. Finally, Section 8 uses generalized evhsens about dense Gray codes to circle back and
prove the binary case as described in Part I.

5 The fixed-radix reflected Gray code

Inspired by Gray’s work, Er [4] expanded the reflected Grayecm any radix > 2. His new Gray code, the
fixed-radix reflected Gray code, is a sequence of integerssepted in radix: each digit may only take on
a value betweefi andr — 1. Furthermore, Er’s fixed-radix reflected Gray code holdg#weric Gray-code
property, where each integer in a sequence of numbers ratiffers from the preceding integer in exactly
one digit. Though Er does not explicitly say so, each pairoisecutive integers in his fixed-radix reflected
Gray code not only differs in one digit, but the differencevilen the two digits that differ is exactly 1.
Thus, Er's Gray-code property can be strengthened to maksirilst Gray-code property: given any two
consecutive integers in a fixed-radix Gray code, the absdlifference between the only two differing digits
is 1.

Er's algorithm borrows much of the intuition that Gray useshgrate the binary reflected Gray code.
His 3-step recursive process contains some minor alteratiogsrieralize the procedure to radixLet us
definen = rk to be the length of the fixed-radix reflected Gray code produmeEr's method. Herek
refers to the number of digits used to represent each valtieeisequence. & = 1, the 1-digit fixed-
radix reflected Gray code is simpl9, 1,...,r — 1). If £k > 1, we can define thé — 1)-digit sequence
asIl'y_;, wherek = log, n. Then, thec-digit sequencé’ is calculated by starting with the sequenge.,
appending its reflection (call lt‘,f_l), then its copy, then its reflection, then its copy, and so wtil the
resulting sequence is of length. The intermediate sequence now hasarts,[r /2] of which are copies of
the (k — 1)-digit fixed-radix reflected Gray code atd/2| of which are reflections. Now, we prepend the
numbers), 1,...,r — 1 to ther parts of the reflected sequence we computed, assigniogthe firstn/r
numbers|] for the secona /r numbers, and so on until we've prepended 1 for the last:/r numbers. If
r is odd, then we can writE;, as

(OFk—l’ 11—‘]5_19 2Fk—19 31—‘]5_1» CR) (r - l)Fk—1> s (10)

wherexY indicates the digitwise concatenationxoWith each numbep from the sequenc¥. Notice that
since we have an odd number of subsequences, the last sahsedbat we prepend- 1 to must be a copy

11



of I',_;. Alternatively, ifr is even, the last subsequencdfis a reflection ol _;, and thus we can write
I'y as
(0T, IR 201, 3TR ....r = DTR ). (11)

Let's take an example whereis odd: r = 3 andk = 2 so that: = rk = 9. We start with thel-digit
ternary(r = 3) reflected Gray code for = 3 which is the sequencE; = (0, 1,2). First, we append
to I'; the sequencﬁ‘lR and thenl'y, giving the sequenc@, 1,2,2,1,0,0, 1,2). Notice the3 parts of the
intermediate resulto, 1, 2), (2, 1,0), and{(0, 1, 2). Tothern/r = 3 numbers in each of these subsequences,
we prepend the digitd, 1, and2 respectively to generate Er’s ternary reflected Gray code: fe= 9,
(00,01,02,12,11,10, 20,21, 22).

How do we calculate a single element frdip? Given an index such thatd < x < n, how do we
find the xth number in Er’s fixed-radix reflected Gray code? To answesdlguestions, we need to build
a stronger understanding of the reflection function. Letig & single digity; in radix r is reflected. Then,
letting R, (x;) be the reflection function applied to digit in radixr, we have

R(xi)=r—1—x;, (12)

and we say that the functioR, (x;) reflectsx; around the radix. But what if the sequence of single
digitsI'y = (0,1,...,r — 1) is reflected? In this case, we can describe the reflected mﬁé =
(r—1,r—2,...,0) as adescending sequence in contrast with the original sequehgewnhich isascending.
With these definitions in hand, we can derive an algorithmeioegate each element of the fixed-radix
reflected Gray code from its indexin the sequence. Our first step is to find the connection bentres
steps to compute a fixed-radix reflected Gray code and thesmonding steps for a fixed-radix ordinal
sequence, which is simply a sequence of numbers in incigeastier starting fron). Just as we described
Er's method for an fixed-radix reflected Gray code as a reg&istep process, we can do the same for the
ordinal sequence with one minor step change: instead afibgithek-digit fixed-radix ordinal sequence
from copies and reflections of thie — 1)-digit sequence, we build it solely from copies so that trsaiting
sequence contains digit positions that follow only the adogy pattern(0, 1,...,r — 1) and never the
descending pattertr — 1,r — 2,...,0). Let’'s walk through this process in detail. We start by deiini
n = r* to be the length of the ordinal sequence we are trying to géaeawhich we will callP;. As before,
if k = 1, then Py is simply the sequendg@®, 1,...,r — 1). Otherwisek > 1 and we can construd?, as

<0Pk_1, lPk—lePk—l73Pk—lv ey (r — l)Pk_1> s (13)

where P,._; refers to thgk — 1)-bit ordinal sequence. Notice that this equation holdsndigas of whether
r is even or odd, since we never evaluate its parity to refgct; .

Now, compare how to generaig with how to generat€&’ ;.. What can we say about the pattern of itte
digit in the fixed-radix ordinal sequence compared with theesponding digit in the fixed-radix reflected
Gray code for the digit positions= 0,1, ...,k — 1? The ordinal case is easy. From sequence (13), we
know that we must constru@®, by prepending each of the digits {0, 1,...,r — 1) to each element in
the (rk—1)-length sequenc®;_,. Let x? be a condensed notation representinglangth sequence of the
repeated digitc. Then, if we isolate the most significant digit in each numtfeP,—that is, the digits in
positionk — 1—we see that they follow exactly the pattéti* ', 17", ..., (r — 1)"*"'). Continuing this
logic recursively, we find that far= 0, 1, ..., k — 2, the digit in position always repeats th@'*!)-length
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pattern
0
1
(14)

=1

until the constructed sequence is of length
The digits in Er's fixed-radix reflected Gray code follow a Banrule. As with the fixed-radix ordinal

sequence, the most significant digitiip follows the patterr(O’k_1 , 1! s (r—l)’k_1 ). Here, however,
the recursive rules described in sequences (10) and (1értrefich alternate subsequence; therefore, the
pattern for the'th digit first takes the form of the sequence (14) and thenstékereverse, giving the new
pattern '

(1

1

M (15)

1

o'
fori = 0,1,...,k — 2. Let's describe the above pattern as having two1)-length parts: ascending
(", 17", ..., (r—1)"") and descendingr —1)"", (r—2)"",...,0""). If we denote thér’ *1)-length pattern
that digit position in T takes ag;, and pattern (14)—the+1)-length pattern that digit positianin Py
takes—a9;, then we have simply

Oi if y; iIs ascending

pR if y; is descending (16)

Vi =
For example, Table 4 shows the ternary ordinal sequencegazed with the ternary reflected Gray code
for 3 digits. We've denoted theth element of the sequentg by g.

Given aradix, let us define the fixed-radix representation of ordintd bex;_;x;_5 - - - x¢. If we take
the xth elementg from the fixed-radix sequende, and define its digit representation gs_;gx_> - - - £o»
then by equation (16), at every digit positioe= 0, 1, ..., k—1, digit g; is either an element of an ascending
sequence identical to the pattern f@r or part of a descending sequence reflecting the pattens f@learly,

g is in the ascending sequence if it lies in the first half of tie 2)-length pattern (15)—that is, iff !
fits into its index an even number of times—and is in the dedicgnsequence otherwise. Then, using the
reflection functionrR, for a single digit as given by equation (12), we have

Xi if |x/r't!] iseven,

r—1—x; otherwise. (7)

gi =

Notice that the expressidnx /r'+! | is also equivalent to dropping the rightmast 1 digits of x. This for-
mula completes our algorithm for generating tte elemeny in the sequencgy, given only the ordinatk,
the radixr, and the numbek of digits as our inputs.

13



fixed-radix reflected
ordinalx Gray codeg

000 000
001 001
002 002
010 0P
011 o1
012 01
020 020
021 021
022 022
100 22
101 21
102 120
110 110
111 11
112 12
120 102
121 101
122 100
200 200
201 201
202 202
210 2D
211 21
212 21
220 220
221 221
222 222

Table 4: The ordinal and reflected ternary sequenceskfes 3 (andn = 27). The underlined digits represent the
digits that were reflected from their values in the ordinajusnce.

6 The mixed-radix reflected Gray code

Although Er’s recursive method for a Gray code [4] was inthébr fixed radix, we can easily extend it
to compute Gray codes in mixed radices as well. Furthernaweyith the fixed-radix Gray code, we can
produce a formula that computes thb digit of thexth element of the mixed-radix Gray code given just its
ordinal indexx in the sequence and the set of mixed radices we are using.

We begin with a few guiding principles for working with numibén mixed radices. Instead of a single
radix r, we now consider &-tuple (ry_1,rx—2, ..., 7o) Of radices. With such a mixed-radix notation, we

can represent the integeido ( f-‘;& ri) — 1. Since this section will discuss products of the radices, we

use the notatiorp; = ]_[j-zo r; to refer to the product of the rightmostt- 1 radices, with the boundary
casep_; = 1. Thus, if a number has the mixed-radix representatign x;_» - - - xo, then its integer value
is Zf:& x; pi—1. In the special case that all radices are equal and repegbseiith a fixed radix-, then

pi = rit1 and the formula for the value simply beconje&_, x;ri.
Now that we have defined our mixed-radix environment, weyamgathe method to construct a mixed-
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radix reflected Gray code. Lat be the number of integers in the Gray code, so that the highiester

we will generate is1 — 1. Then, we haves = p;_;. Like Er's method, the algorithm for a mixed-radix
reflected Gray code followsZstep recursive process. If the lengtlof the radix tuple id, then thel -digit
mixed-radix reflected Gray code is simgly;, 1, ..., ro). Otherwisek > 1 and we denote thgé — 1)-digit
sequence aBy_;. Thek-digit sequencd’, is calculated by appending copies and reflections ofithe
subsequence until the sequence is of length;—a total ofr,_; appended subsequences. Finally, to each
of the subsequences, we prepend a digit in the rérige . _; — 1, assigning for the first subsequencg,

for the second subsequence, and so on until we have assigngtbr the last subsequence. If we were to
isolate digitk — 1 from I'y, we would see the pattern

(Opk—2’ 1Pk—2’ el (rk—l — 1)Pk—2) , (18)

and for digitsi = 0, 1,...,k — 2, we would see the lengthp; pattern

oPi—1
1Pi-1

(ri — Pit

(ri = 1Pt (19)

1Pi—1
0Pi—1

until the constructed sequence is of length
The digits of the mixed-radix ordinal sequence follow a $ampattern, except they do not recur-
sively reflect subsequences. Therefore, the pattern far dig- 1 in the mixed-radix ordinal sequence
is (0Pk=2 1Pk=2__ | (rp_; — 1)P%-2) as in the mixed-radix Gray code, and the pattern for digit the
mixed-radix ordinal sequence is
0Pi—1
lpi—l
(20)

(ri — Pit

fori =0,1,...,k —2.

We can view pattern (19) as having two lengthhalves: an ascending half and a descending half. Asin
the fixed-radix Gray code, if we are in the descending halfadfgrn (19) that a digit takes inI';, then we
can simply perform a reflection around radjxto get the ordinal pattern (20) for digit Table 5 shows the
ordinal and reflected Gray-code sequences for the mixed-tagle (2, 3, 4). Here, we've denoted theth
integer ofl";, asg. Notice that each descending sequence in a digit positissimply a reflection around
r; of the corresponding ascending sequence in the ordinatzolu

We end by constructing the formula to compute ttle number of the mixed-radix reflected Gray code
from x. Given ak-tuple of mixed radice$ry_1,7x_2, ..., o), we define the mixed-radix representation of
ordinal x to bex;_1xx_5 - - - xo and similarly define theth elemenfg from the mixed-radix sequendg,
to have the digit representati@n_;gx_» - -- go- By our earlier observation, for each digit positibn=
0,1,...,k — 1, the digitg; is either an element of an ascending sequence identicaktpatiern fory;,
or part of a descending sequence reflective of the pattersm; fo€learly, g; is in the ascending sequence

15



ordinalx ordinal x mixed-radix reflected

(decimal) (mixed-radix) Gray code
0 000 000
1 001 001
2 002 002
3 003 003
4 010 013
5 011 012
6 012 011
7 013 010
8 020 020
9 021 021

10 022 022
11 023 023
12 100 123
13 101 122
14 102 121
15 103 120
16 110 110
17 111 111
18 112 112
19 113 113
20 120 103
21 121 102
22 122 101
23 123 100

Table 5: The number® to 23 represented using the mixed-radix tuge3, 4), along with the reflected Gray code.

if it lies in the first half of the lengti2p; pattern (19)—that is, ip; fits into its index an even number of
times—and is in the descending sequence otherwise. Thew the reflection functiork,,; for a single
digit as given by equation (12), we have

Xi if |x/pi] iseven,

ri—1—x; otherwise. (1)

8gi =
As in the case for fixed radix, the expressijaty p; | is equivalent to dropping the rightmast 1 digits of x.
The mixed-radix reflected Gray code generated by equatibnt(@ns out to be equivalent to the sequence
generated by an algorithm in Knuth’s book [8, p. 300] for aofiess mixed-radix Gray code,” but with

the radices in reverse. Thus, running Knuth’s algorithmmgi$he ordered radix tupkeo, r1., ..., 7x—1) pro-
duces a sequence that, when read from right to left—thatis) feast-significant digit to most significant—
is exactly the sequence produced by computing equatiorf¢2 e radicesri_1, 7x—2,...,50)-

7 The non-cyclic mixed-radix dense Gray code

Having discussed the mixed-radix reflected Gray code, wenocanbuild an intuition for what is required
for an non-cyclic mixed-radix dense Gray code. As with tha-ogclic binary dense Gray code, we want
to expand the possibilities for sequence lengtb the set of all whole numbers and produce a permutation
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of the fixed-radix sequend®, 1,...,n — 1) that holds the strict Gray-code property (consecutivespaiir
integers differ in only one digit by only). Let (ry_1, rx—2, ..., ro) be thek-tuple of mixed radices we will
use to generate a Gray code. How could we go about generhtigdigit, mixed-radix dense Gray code
for n? We'll first answer this question intuitively by reasonirgpat ascending and descending patterns in
the fixed-radix reflected Gray code. From this intuition, wi# build a formula to calculate eachth value

of the mixed-radix dense Gray code for Finally, we’ll use rigorous methods to prove the algorithm
correctness.

We start with an attempt to generate a non-cyclic mixedxradinse Gray code by taking the first
integers of the mixed-radix reflected Gray code. Supposeaulices arg3, 3, 4) and we wish to produce
the dense Gray code far= 30 using these radices. Table 6 shows the fitshumbers of the mixed-radix
reflected Gray code. This approach did not work because weihaluded the mixed radix numbe2$3
and212 which correspond to the intege3$ and30, respectively, and are both out of range for our dense
Gray code. Meanwhile, we have missed the numb&dsand211, or28 and29 in decimal.

Notice that theédth digit (the rightmost digit) within the mixed-radix refed Gray code is cut off within
a descending sequence. Intuitively, if we could make theoffutoint occur outside a descending sequence,
then we would favor getting lower numbers in the generatead/@ode. To that end, if thah digit would
be cut off within a descending sequence, we reflect alilues for that digit, which either cuts off that digit
in an ascending sequence or between ascending and deggeadirences. Let us denote i@ value of
the mixed-radix dense Gray code, calculated with the mieelix tuple(ry_1, rx—2,...,70), asd. Then
Table 6 shows the correct mixed-radix dense Gray code fer30.

We now produce a formula to generate each digit of the migslikrdense Gray code, using the intuition
we gathered about cut-off points. We know that the cut-offipior theith digit occurs within a descending
sequence in the mixed-radix reflected Gray codg:ffp; | is odd. In this case, we reflect allvalues for
the ith digit of the mixed-radix reflected Gray code, as given inaipn (21). Because composing two
reflection functions gives the identity function, we can nfypequation (21) to get the following formula
for theith digit d; in the xth integerd of the mixed-radix dense Gray code:

d = X if Lx/p_ij mod2 = |n/p;| mod2, 22)
ri —1—x; otherwise.
Assuming that thé& valuesp;_1, px—a.,..., po have all been precomputed (which can be done easily in

®(k) time), we can compute each digit in the mixed-radix densey Gode in constant time.

Proof of our method for the non-cyclic mixed-radix dense Grg code

Here, we show that the digits produced by equation (22) foumlyers that give a dense Gray code. We
need to prove three properties, which we will prove in théofeing order:

e Eachk-digit number is unique.
e Eachk-digit number is in the rangeton — 1.

e The sequence obeys the strict Gray-code property, so tbhatreanber in the sequence differs from
the preceding number in exactly one digit, and the valuebeaxfd digits differ by exactly.
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ordinalx ordinal x mixed-radix reflected mixed-radix dense decimal

(decimal) (mixed-radix) Gray code Gray coded counterpart
0 000 000 003 3
1 001 001 002 2
2 002 002 001 1
3 003 003 000 0
4 010 013 010 4
5 011 012 011 5
6 012 011 012 6
7 013 010 013 7
8 020 020 023 11
9 021 021 022 10

10 022 022 021 9
11 023 023 020 8
12 100 123 120 20
13 101 122 121 21
14 102 121 122 22
15 103 120 123 23
16 110 110 113 19
17 111 111 112 18
18 112 112 111 17
19 113 113 110 16
20 120 103 100 12
21 121 102 101 13
22 122 101 102 14
23 123 100 103 15
24 200 200 203 27
25 201 201 202 26
26 202 202 201 25
27 203 203 200 24
28 210 213 210 28
29 211 212 211 29

Table 6: The firstn values of the mixed-radix reflected Gray code and the migeglikrdense Gray code for radices
(3,3,4) andrn = 30. Because théth digit (the rightmost digit) in the mixed-radix reflecteday code is cut off
within a descending sequence, the mixed-radix dense Gidg iscthe mixed-radix reflected Gray code with thke
digit reflected around, = 4.
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Lemma 1l Let x and y be whole numberssuchthat 0 < x,y < nandx # y. Let x’ and y’ be the xth
and yth values, respectively, of the mixed-radix dense Gray code whose digits are given by the formula in
equation (22). Then x” # y'.

Proof: Becausex # y, there must be some leftmost digit positignsuch thatx; # y;. As we ob-
served earlier, the valuex/ p; | equals thek — j — 1)-digit mixed-radix numbeny _xg_5 -+ x;j 41 for
radicesr = (rg—1,7k—2.....7j+1). Likewise, the valud y/p; | equals thek — j — 1)-digit mixed-radix
numberyy_ykx—2 -+ yj+1 for radicesr. By how we defined positioni, we havexy_jxx_p---xj41 =
Yk—1Yk—2 -+ Yj+1. Putting these equalities together, we have

I_X/PJJ = Xk—1Xk—2 """ Xj+1
= JYVk-1Yk—2"""Yj+1
= /il
By equation (22), therefore, we either hax/je = x; and y]/- = y; or we havexj/. =r; — 1 —x; and
yj’. =r; — 1 —y;. In either case, since; # y;, we havexj’. #+ y]’-, and sax’ # y'. [

Lemma 2 Let x be a whole number such that 0 < x < n, and let x’ be the xth value of the mixed-radix
dense Gray code whose digits are given by the formula in equation (22). Then x” < n.

Proof: Becausex # n, there must be some leftmost bit positiprwherex andrn differ. Additionally,
becauser < n, we must have; < n;. We can use this information along with the following claiompirove
our lemma:

For digit positions = j,j +1,...,k—1,we havexlf+1 =njy1.

To prove the claim, we note that we havg_;xx_p - Xj+1 = ng_1ng—y---n;+1 by the definition
of j, which impliesx;_1xp_o- - Xi+1 = Np_Ng_a---njy1 fori = j,j+1,...,k — 1. Earlier, we
noticed that for any digit positiof, the (k — £ — 1)-digit mixed-radix numbesy _;xx_, - - x71 IS equal
to |x/pg] for radices(rg—_y,rgk—2, ..., re4+1) and, similarly,ng_1ng_, ---ny4q is equal tojn/p, | for the
same radices. Therefore, we have

lx/pi]l = Xp—1Xk—2"""Xit1
= Ng—1lg—2 - "Nit1
ln/pil (23)
fori = j,j +1,...,k — 1. By equation (22) and the definition ¢f we havex;,, = x;+1 = n;4 for

digit positionsi = j, j + 1,...,k — 1, which proves the claim.
Now we return to our proof of the lemma. By the claim, we have
Xp1Xp—g " X1 = Ng—1Mf—a " Mj41 -
Furthermore, by equation (23), we have/p; | = |n/p;|. Equation (22) and;; < n; imply thatx} =
xj <nj,giving us
X' = xl/c—1xl/c—2"'xj/'+1xj/'xj/'—1 S X

_ . A /
= nk—lnk—Z"'nj-f—lxjxj—]”'x()

A

Ng—1Ng—2 " Nj+1Njnj—1---No

n.
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Thus, we have shown thatif < n, thenx’ < n. ]

Lemma 3 Let x and y be whole numberssuchthat 0 < x,y <nand y = x + 1. Let x” and y’ be the xth
and yth values, respectively, of the mixed-radix dense Gray code whose digits are given by the formula in
equation (22). Then x” and y’ differ in only one digit, and the values of those digits differ by 1.

Proof: Becausey = x + I, there must be some leftmost digit positigrsuch thatx; # y;, so that
Xf—1Xf—2 """ Xj41 = Yk—1Vk—2 '+ Yj+1. Moreover, we must have that = x; + 1 and, fori =0,1,...,
j — 1, bothx; = r; — 1 andy; = 0. In other words, we can view andy as

X = Xg—1 “t Xj41 Xj ri-i1—1 - ro—1 (24)
y = Xk—1 e xj+1 x]+l O e 0

We will examine bit positiong — 1, ..., j + 1, bit position;, and bit positiong — 1, ...,0 of x’ andy’ in
three separate cases.

e Bit positionsk —1,...,j + 1:

Because
|x/pi] = Xg—1Xk—2'**Xit1
= Yk—1Vk—2"")i+1
Ly/pil

fori =k—1,...,j + 1, equation (22) implies that

/ / / 7 / /
X1 Xk—2 " Xj41 = Vi1 Vk—2" " Vj+1 - (25)

¢ Bit position j:
Here, we havéLx/ij = Xj—1Xk—2 """ Xj41 and|_y/ij = Yk—1Yk—2 """ Yj+1. Thus, we have

|x/pji| = Xk—1Xk—2- - xj41
= JYk—1Vk—2"""Vj+1
= |/pi] -
Therefore, we either have. = x; andy; = y; = x; + 1 or we havex; =r; — 1 —x; and
yi = ri—1-y
= ri—1—=(x;+1)
= rj—2—x;.
In either case, we must have that
yi=x; 1. (26)
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e Bit positionsj — 1,...,0:
For bit positions = j — 1,...,0, equation (24) gives

Lx/piJ = Xk—1 " Xj+1 Xj rj—l_l r[+1—l ,
Ly/le = Xk—1 " Xj+41 xj+1 0 0

Therefore, we have thaty/p; | = |x/pi] + 1, and so|y/p;| and|x/p; | have different parities.
Thus, by equation (22), we either have= x; = r; —landy; =r; — 1 —y; = r; — 1 or we have
x! =r; —1—x; =0andy; = y; = 0. Either way, we have

Xy Xj g Xg = Vi1 Vi—a Vo - (27)

Combining the three cases in equations (25), (26), and @Wptetes the proof. [
Thus, we have the following theorem.

Theorem 4 Correctness of the formula for generating a mixed-radix dense Gray code

The method given by equation (22) to generate the ith digit of the mixed-radix dense Gray code of x =
0,1,...,n — 1 produces a permutation of (0, 1,...,n — 1) such that each pair of consecutive numbersin
the permutation differsin just one digit, and the values of these digits differ by exactly 1.

Proof: Immediate from Lemmas 1-3. ]

We have now proven that our method for each digit of the miastix dense Gray code works for any
positive integer:.

8 Special cases for the non-cyclic mixed-radix dense Gray de

Now, we show how to simplify equation (22) for thth digit of eachxth integer of the mixed-radix dense
Gray code to cover two special cases: when the radix is fixedlfdigit positions (all radices; are equal)
and for binary Gray codes (when that fixed radix eqaaldVe show that in the binary case, we can equate
the simplified equation (22) to the previous set of formugsand (7) we discovered and published in our
2016 paper [3]. _

In the fixed-radix case, the denominaggrin the conditional expression of equation (22) giﬂajszo i,
or r'*1 for the fixed radixr. Therefore, the following formula generates ilie digit ; in the xth integer
of the fixed-radix dense Gray code:

. ; i+1 _ i+1
di = Xi if |_x/r. J mod2 = |_n/r J mod?2 , (28)
r—1—x; otherwise.
Like the method for the mixed-radix dense Gray code, if weiassthat thek valuesr, r2, ..., r¥ have

been precomputed, then we can compute each digit of eachemwhthe fixed-radix dense Gray code in
constant time.

Observe in Table 7 how we use equation (28) to generate theyuwic mixed-radix dense Gray code
forr =3,n = 16,andk = |n/r| = 3. We've denoted theth element of the non-cyclic mixed-radix dense
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mixed-radix reflected mixed-radix dense decimal

ordinal x Gray codeg Gray coded counterpart
0 000 022 8
1 001 021 9
2 002 020 6
3 012 010 3
4 011 011 4
5 010 012 5
6 020 002 2
7 021 001 1
8 022 000 0
9 122 100 9
10 121 101 10
11 120 102 11
12 110 112 14
13 111 111 13
14 112 110 12
15 102 120 15

Table 7: Applying equation (22) for each digit of the firsé numbers of the ternary reflected Gray code outputs the
non-cyclic ternary reflected Gray code foe= 16.

Gray code ag and displayed the first elements of the fixed-radix reflected Gray code for comparigo
close examination of the two least-significant digits in tbgected Gray code shows that both digits are in
descending patterns at the cut-off. Our dense Gray code for1 6 reflects digit®) and1 of the fixed-radix
reflected Gray code to form only ascending patterns at thet mdiere the sequence is cut. We see from
the decimal counterparts that the resulting sequence eethdense: it is a permutation of the sequence
0,1,...,n—1).

We now consider when the radixs fixed at2—that is, when we want to generate a binary dense Gray
code. In this special case, equation (28) simplifies evetihéuarto equation (7). To confirm this claim,
we first notice thaf x/2/*!| gives us the binary numbet_;xx_, -+ xi+1. When we take this integer
modulo?2, we are simply determining its parity, which is given by jtis¢ single bitx; 1. Similarly, we
have|n/2/*!| mod2 = n;41. Therefore, equation (28) reduces to just

Xj ifniv1 = xi41,

/
X; = _ .
! 2—1—x; =Xx; otherwise

(29)
whereXx; denotes the logical negation of hif. We can easily see that formulas (7) and (29) are equivalent
by examining two cases foreach bi= 0,1, ...,k — 1:

e Casel: nj+1 = x;j+1. By equation (7), we have

/
X; = Xi ®DXi+1Dni+1

Xi @ Xi+1 D Xi+1

Xi s

which matches the first case in equation (29).
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e Case2: njy1 # xj+1. Here, we have

/
i = Xi D Xi+1 Dniyr

= Xi ®Xi+1 D Xi+1

X,

X

which matches the second case in equation (29).

Thus, we see that our earlier method for finding non-cycli@aby dense Gray codes is really just a special
case of the method in Section 7 for finding non-cyclic mixadix dense Gray codes.
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Part Il
Cyclic Gray codes in fixed and mixed radices

In this final part, we present methods to generate cyclic dareglix Gray codes for ang-tuple of radices
r = (rge_1,rk—2,...,ro) and any positive integer < px_;, where as beforep;, = ]_[}:0 rj, so that the
Gray code produced is a permutation of the sequéfck ...,n — 1). The task of computing a cyclic
mixed-radix Gray code is quite hard, so we will weaken ourySrade property from strict tonodular,
where each integer in the Gray code differs from the precgihiteger in only one digit position, and the
values of those digits are eith@randr; — 1, or they differ by exactlyl. For the remainder of this part, we
will use this definition of the Gray-code property to discosiged-radix sequences.

Section 9 examines existing literature on cyclic mixedx&@saray codes. Previously, all known methods
for producing a mixed-radix Gray code with the modular Geagle and cyclic properties were constrained
in two ways: first, they produce onlyll Gray codes, where = p;_;; and second, in order to guarantee
the full Gray code, they further restrict the radix tuple tdyocertain values and forms. In Section 10, we
will obviate the latter restriction and provide a recursimethod to generate a full Gray code for any tuple
of mixed radices. Although we are unable to do so for the forrestriction, we do provide in Section 11
a graph-theoretic approach to thinking about cyclic miradix non-full Gray codes or, equivalently, cyclic
mixed-radix dense Gray codes wherean be any positive integer less than or equgbio;. Following
this new line of thinking, we then build a list of cases for alinive prove it is impossible to generate a cyclic
mixed-radix dense Gray code for a particular set of radioelsaapositive integet.

9 Previous work for cyclic mixed-radix full Gray codes

Here, we compare previous attempts to generate cyclic nrixaict full Gray codes. As we mentioned in the
introduction to this part, all three methods listed in tléstion place restrictions upon the mixed-radix tuple
r = (re—1,"re—a2,...,70) in order to guarantee the cyclic property for the resultimgyGcode. We have
already seen the first of the three: Er's reflected mixedxr@day code [4]. We will use the pattern (18) that
digit k — 1 takes and the pattern (19) that diditd, . . . , k — 2 take in Er's mixed-radix sequence to show that
Er's method generates a cyclic mixed-radix full Gray codmnid only ifr;_ is even. The second algorithm
we will describe is Cohn’s method for a modular fixed-radibagrode [2], which, when generalized to
mixed radices, produces a cyclic full Gray code if and onbath radix; 1 ; is a multiple of the radix; for

i =0,1,...,k — 2. Finally, we compare Er's and Cohn’s sequences to AnanttaAtBdaiwi’s modular
Gray code [1], which combines both Er's and Cohn’s methodgetrerate a cyclic mixed-radix full Gray
code if and only if each radix has an equal or larger value tharess significant radices and all radices in
the tuple share the same patrity.

Er's mixed-radix full Gray code

Using the patterns (18) and (19) that we derived for Er’s mhisadix full Gray code in Section 6, we now
prove the single case in which Er's method generates a mocldéc full Gray code.

Theorem 5 Modular cyclicity of Er’'s mixed-radix full Gray code
Given the radix tuple (rx_1, rx—2, . . . , 7o), the pattern (18) that digit k — 1 takes and the pattern (19) that
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digits0,1,...,k — 2 take in Er's mixed-radix full Gray code produce a sequence with the modular cyclic
property if and only if r,_; iseven.

Proof:  To get the modular cyclic property, we must show that @tie and last integers generated by
pattern (18) for digitt — 1 and pattern (19) for digit, wherei = 0,1, ...,k — 2, differ in only one digit
position j, and the values of those digits are eithemndr; — 1, or they differ by onlyl. To do so, we will
examine the digit positiok — 1 and the digit position$, 1, ..., k — 2 separately.

For digit positionk — 1, which follows the lengthp,_; pattern (18), théth digit is0, and the last digit
isrr_1 — 1. Therefore, digitt — 1 is the digit that differs, and as a result, we can have the taodyclic
property only if, for the remaining digit positioris= 0, 1, ...,k — 2, theOth and last values of digit do
not differ.

We now examine those digit positions= 0, 1,...,k — 2, each of which follows the lengtbp; digit
pattern (19) until the constructed sequence has lepgth. Clearly by pattern (19), theth value of each
digit i is 0. If the modular cyclic property is to hold, then the last vabf each digit must also & This
attribute occurs only whepy_1, which is an integer multiple op;, is also an integer multiple &fp; so
that the lengthp;_; sequence being constructed cuts off exactly when patt&rfi(lishes and does not cut
off after the first half of pattern (19). Thus, we have that ; must be an integer multiple @fp;_,, and so
Pr—1/Pk—2 = rr—1 must be even. Thus, an even radjx ; is necessary to show that Er's Gray code has
the modular cyclic property.

To prove that evem;_, is also sufficient to show that Er's Gray code has the moduyleiccproperty,
consider again the digit positio®sl1, ...,k — 2. Here, we must show thatif,_; is even, therp,_, is an
integer multiple of2p; fori = 0,1,...,k — 2, and therefore, the last value of each digis 0. We first
notice that becausg;_; is an integer,_; multiple of p;_,, the radixr;_; is even, andy_; is greater
than or equal t@ by nature of being a radix, ther,_; is also an integer multiple &pj_,. Sincepy_; is
an integer multiple of p;_,, then because

Pk—2 = Tk ¥f—3"...°F Fi—1"...°1Fp
= Tk—2Tk—3-.."Ti*PDi (30)
k—2
Pillj=i+17; >
we must also have that,_ is an integer multiple o2 p; fori = 0,1,...,k — 3. Thus, having that;,_; is
even is both necessary and sufficient to show modular cgclitier's Gray code. [

Cohn’s mixed-radix full Gray code

Here, we start with Cohn’s method for a fixed-radix full Grayge [2], which guarantees a full sequence with
the modular Gray-code and cyclic properties for any fixedxradand later, we will generalize his method
to build a mixed-radix full Gray code that is cyclic for radiples of a specific form. Let be the fixed
radix, and letc be the number of digits we will compute for Cohn'’s fixed-radiray code, so that = r¥.
Then, like the digit positions in the ordinal sequencerfandrn, each digit position = 0,1,...,k —1in
Cohn's Gray code followsr; 11)-length patterns, except instead of being simple ascers#iggences, the
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ordinal ordinal Cohn’s
(decimal) (fixed-radix) Gray code

0 000 000
1 001 001
2 002 002
3 010 012
4 011 010
5 012 011
6 020 021
7 021 022
8 022 020
9 100 120
10 101 121
11 102 122
12 110 102
13 111 100
14 112 101
15 120 111
16 121 112
17 122 110
18 200 210
19 201 211
20 202 212
21 210 222
22 211 220
23 212 221
24 220 201
25 221 202
26 222 200

Table 8: Cohn'’s fixed-radix full Gray code for radix = 3. The sequence has the modular Gray-code and cyclic
properties.

digit patterns in Cohn’s sequence are of the form

(m modr)"”
((1 4 m) modr)”
(2 + m) modr)"

(r=14m) modr)"i ,

wherem is an integer offset used in conjunction with the modulusrafe to cyclically rotate the standard
ascending pattern (14) by r? positions. We can observe this pattern in Table 8, which shéahn’s
fixed-radix full Gray code for = 3 andk = 3, so thatr = rk = 27.

Cohn [2] shows how to compute each integer of his Gray code fust its ordinal index in the sequence
using matrix-vector multiplication, where the ordinal éxds ak-digit vector that is multiplied with & x k
transformation matrix to compute the corresponding integeCohn’s code. Alternatively, Sharma and
Khanna [9] provide a set of formulas that generate each dfgie xth numberx’ of Cohn’s fixed-radix
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sequence. Let have the digit representatior),_;x;_5 --- xo, and letx’ have the digit representation
X;_1Xp_p "+ Xq- Then, the formulas are as follows:

x} = (xi—xiy)modr fori =0,1,....,k—2, (32)

and each digit ok’ can be calculated in constant time.

We can easily use equations (31) and (32) of Cohn’s fixederadli Gray code to produce analogous
formulas for Cohn’s mixed-radix full Gray code for thetuple of radiceSri_1,rx—2.....79). If x’is the
xth number of Cohn’s mixed-radix full Gray code, then keepéggation (31) as before, so th;ef{t_1 =
Xr—1, then we can modify equation (32) to get

x; = (xi —xit1) modr; fori =0,1,....k—2. (33)

Table 9 shows Cohn’s mixed-radix full Gray code when we usmggns (31) and (33) to generate all digits
in the sequence. Notice that not only is the resulting secpiemodularly cyclic, but also the radix tuple
(4,4, 2) has the property that each radix is an integer multiple ofdldex that is immediately less significant.
The following theorem shows that this condition on the rawigle is both necessary and sufficient for
equations (31) and (33) to generate a mixed-radix full segeiavith the modular cyclic property.

Theorem 6 Modular cyclicity of Cohn’s mixed-radix full Gray code

Given theradix tuple (rg—1, rx—2. . . ., ro), Cohn’s mixed-radix full Gray code, produced by equations (31)
and (33) when applied to each integer in the ordinal sequence (0, 1, ..., pr_; — 1), hasthe modular cyclic
property if and only if, for each digit positioni = 0, 1, ...,k —2, theradix r; ;1 isan integer multiple of r;.

Proof: Letx’ be the solution to equations (31) and (33) whes 0, so thatx’ is theOth integer generated
in Cohn’s mixed-radix sequence. Lgtbe the solution to equations (31) and (33) when weyuse py_; —1
in place ofx, so thaty’ is the last integer generated in Cohn’s mixed-radix seqeiefithen, to get the
modular cyclic property, we must show thdtandy’ differ in only one digit positiory, and those digits are
either0 andr; — 1, or they differ by onlyl.

First, let us examine the digit representatign ,x; ,---x; of x’ whenx = 0. From equation (31),
we havex,;_1 = x;_1 =0. Then,fori =k -2,k —3,...,0, we have

/

Xx; = (x; —xj4+1) modr; (by equation (33))
= (0—0) modr; (by x = 0)
= 0,

giving 0 as the value of all the digits of .

Now, we examine the digit representat'gzyp_ly,;_2 -+- y¢ of ¥/, which is a harder problem. To calculate
each digit ofy’, we evaluate equations (31) and (33), but we replawéth y = p;_; — 1, which has the
digit representation

y = Jk- Yk—2 Yo
= rp_1—1 rpo—1 -+ rg—1 (34)
By equations (31) and (34), we hay,((e_1 = Yr_1 = re—1 — 1. Thus, digitk — 1 is the digit that differs,
and as a result, we can have the modular cyclic property @rflyrithe remaining digit¢ = 0,1, ...,k —2,
the values ofc; andy; do not differ.
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ordinal ordinal Cohn’s
(decimal) (mixed-radix) Gray code

0 000 000
1 001 001
2 010 011
3 011 010
4 020 020
5 021 021
6 030 031
7 031 030
8 100 130
9 101 131
10 110 101
11 111 100
12 120 110
13 121 111
14 130 121
15 131 120
16 200 220
17 201 221
18 210 231
19 211 230
20 220 200
21 221 201
22 230 211
23 231 210
24 300 310
25 301 311
26 310 321
27 311 320
28 320 330
29 321 331
30 330 301
31 331 300

Table 9: Cohn’s mixed-radix full Gray code for ttietuple of radice4, 4, 2). Because every radi, wherei = 1,2,
is an integer multiple of radix;_1, this sequence has the modular cyclic property.
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Anantha and
Er Cohn AlBdaiwi ours
Gray-code| strict modular modular strict
property
modular | yes, if yes, if for yes, if for yes
cyclic | ry—1 iseven i=01,....k—2, i=01,....k=2,
property r; dividesr; 41 ri+1 > r; and
ri+1 mod2 = r; mod2
formula for | yes, yes, yes, no
each digit| equation (22) equations (31) and (33) not shown

Table 10: Comparison of four different methods for a cyclic mixedixad|l Gray code: Er’s [4], Cohn’s [2], Anantha
and AlBdaiwi’s [1], and ours (Section 10).

We now examine the values of digif fori = 0, 1,...,k—2, which are given by the following equation:

yi = (yi—yi+1) modr; (by equation (33))
= ((rp—=1)—(ri+1—1)) modr; (byequation (34))
= (ri —ri+1) modr;
= —riy1 Modr; . (35)

Recall that in order for Cohn’s mixed-radix sequence to @icywe must have that; = x; = 0 for
i =0,1,...,k — 2. Therefore, by equation (35), we must have 1 modr; = 0, which occurs if and
only if there exists an integérsuch thatr; — r;-; = 0. Thus, we must have+; = ¢r;, and therefore,
ri+1 must be an integer multiple of fori = 0,1, ...,k — 2, which we have now proven is necessary and
sufficient to show that equations (31) and (33) produce asgempuwith the modular cyclic property. =

Anantha and AlBdaiwi's mixed-radix full Gray code

Now that we've seen both Er's and Cohn’s mixed-radix Grayespdve briefly mention Anantha and
AlBdaiwi’s method [1] for a mixed-radix full Gray code, whiccombines both Er's and Cohn’s meth-
ods to produce a formula that computes each digit of theinesece. Anantha and AlBdaiwi show that their
method can guarantee cyclicity if and only if each radix ia tadix tuple has an equal or larger value than
its less significant radices and all radices have the sanity fiHt

Table 10 compares each method for a cyclic mixed-radix fudlyGode discussed in this section, sum-
marizing their restrictions on the radix tuple,_,rx_»,...,70). In the table, we also include our own
recursive method for a cyclic mixed-radix full Gray code,igthwe describe and prove correct in the fol-
lowing section.

10 A recursive method for a cyclic mixed-radix full Gray code

Now that we have seen previous attempts to generate a cyotedmadix full Gray code, along with
the cases in which they do and do not work, we present a nogatgige algorithm that computes this
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target sequence for arktuple of mixed radices. Our algorithm, which we list below the procedure
RECURSIVE-CYCLIC-MIXED-RADIX-GRAY-CODE, takes three argumentét) the radix tupler = (ryp_1,
Tk—a,...,70); (2) the precomputed-tuple of valuesp = (pr—_1, pr—2...., po), Which is easy to calcu-
late in®(k) time; and(3) a most significant digit positior that the procedure will recurse on to generate
and return the final sequence @fdigit integers. In order to simplify the discussion of olgaithm’s
correctness, we now use the integgrinstead ofn to refer to the length of the sequence generated by
RECURSIVE-CYCLIC-MIXED-RADIX-GRAY-CODE(j, r, p), Since this term lends itself more easily to the
logic of our proofs.

Notice that becausgrepresents the most significant bit position that will beegated in the output Gray
code, calling the procedure with = k — 1 effectively produces the cyclic mixed-radix full Gray colde
lengthp,_;. Inthe following algorithm, we define the operafdio be the prepend or concatenation operator
between a digitz and a mixed-radix integér, so that ifb has the digit representatién_b;_, - - - bo, then
a || b has the digit representationb; _1b;_» - - - bg. Finally, although we construcesult by appending to
it, we assume that once we've returned the compleddt array, we can then index into it in the usual way
for arrays (i.e.result[i ] denotes theéth integer inresult).

RECURSIVE-CYCLIC-MIXED-RADIX-GRAY-CODE(J, 7, p)
1 initialize result to an empty list

2 ifj==
3 /I base case: compute tpg-length Gray code
4 fori =0torg—1
5 append to result
6 elsel// recursively compute thg;_;-length mixed-radix Gray code
7 prev = RECURSIVE-CYCLIC-MIXED-RADIX-GRAY-CODE(j — 1, r, p)
8 Il prev has lengthp;_;. Fill in the first p;_; values ofresult with the values irprev
9 fori =0top;j—1—1
10 append || prev[i] to result
11 /I for each value in the previous Gray code, going back to frampend to it a new
12 /I most significant digit, alternating between the digit astieg and descending,
13 /I going between 1 and — 1
14 ascending = TRUE
15 fori = p;—1 — 1 downto 0
16 if ascending
17 for{ =1tor; —1
18 append || prev[i] to result
19 else forl = r; — 1 downto 1
20 append || prev[i] to result
21 ascending = not ascending

22 return result

Table 11 shows the outpuésult when the procedure is called on the integee 2, the mixed-radix
tupler = (3,2,5), and the product-of-radices tuppe = (30, 10,5). If concatenating a single digit to
a (j — 1)-digit number takes constant time for any positive integethen the algorithm requires only
®(n) time to generate and return the cyclic mixed-radix full Gcayle forn andr. In another case, if
concatenating a single digit to(a — 1)-digit integer takes time linear to the total number of digit then
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ordinal ordinal our
(decimal) (mixed-radix) Gray code

0 000 000
1 001 001
2 002 002
3 003 003
4 004 004
5 010 014
6 011 013
7 012 012
8 013 011
9 014 010
10 100 110
11 101 210
12 102 211
13 103 111
14 104 112
15 110 212
16 111 213
17 112 113
18 113 114
19 114 214
20 200 204
21 201 104
22 202 103
23 203 203
24 204 202
25 210 102
26 211 101
27 212 201
28 213 200
29 214 100

Table 11: RECURSIVECYCLIC-MIXED-RADIX-GRAY-CODE(2, (3,2,5), (30, 10, 5)) produces our cyclic mixed-
radix full Gray code for thé-tuple of radices3, 2, 5).
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it requires®(nk) time to produce the cyclic mixed-radix full Gray code foand thek-tupler.

Proof of our method for a cyclic mixed-radix full Gray code

We will now prove that the above algorithm correctly genesate cyclic mixed-radix full Gray code for
the radix tupler = (ry_1, re—a2, .. ., ro) and the most significant bit positiogh To do so, we need to prove
several properties of the sequence returned by the prageabich we will do in the following order:

e The sequence has length.

e Each integer in the sequence hag- 1 digits.

e Each integer in the sequence is in the radge p; — 1.
e Each integer in the sequence is unique.

e The sequence obeys the strict Gray-code property, so thatreanmber in the sequence differs from
the preceding number in exactly one digit positipand the values of those digits differ by exadily

e The sequence obeys the modular cyclic property, so thatgteahd first numbers in the sequence
differ in exactly one digit, and the values of those digite aither0 andr; — 1, or they differ by
exactlyl.

We start with the basics. At the very leastt RURSIVECYCLIC-MIXED-RADIX-GRAY-CODE(/, r, p)
should return a sequence of the length that we expect, ahdrdgager in that sequence should be represented
using the number of digits that we expect. Lemmas 7 and 8 betove that our procedure fulfills these two
properties necessary for developing a cyclic mixed-radixsg¢ Gray code.

Lemma 7 RECURSIVE-CYCLIC-MIXED-RADIX-GRAY-CODE(J, r, p) produces a sequence of p; integers.

Proof:  There are only two cases to consider. The first case occurms yhke 0, So we execute lines 4-5,
which simply store store the valuéso ro — 1 as therg = po = p; integers ofresult. In the other case, we
first execute lines 9-10, which fitesult with the firstp;_; integers. Then, we enter a for-loop in line 15,
which contributes a factor gf; 1, and within this for-loop, we execute exactly one of the mfoe-loops

in lines 17-18 or 19-20. Each execution of an inner for-loppeads-; — 1 integers taesult. Therefore,
the length ofresult is given by

pi—-1+pj—1(rj—=1) = pj1(1+r;—1)
Pj—1-Tj

In both cases, the calllECURSIVE-CYCLIC-MIXED-RADIX -GRAY-CODE(/, r, p) generates a length; se-
quence. [

Lemma 8 Each integer that RECURSIVE-CYCLIC-MIXED-RADIX-GRAY-CODE(J, r, p) producesis repre-
sented with j + 1 digits.
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Proof:  This proof is by induction onj. Forj = 0,1,...,k — 1, the inductive hypothesis is that
RECURSIVECYCLIC-MIXED-RADIX-GRAY-CODE(/, r, p) produces a sequence of integers that are all rep-
resented withj + 1 digits. In the base case, whefe= 0, we execute lines 4-5, which simply create
result as a list ofl- or (j + 1)-digit integers. Otherwise, in the inductive step, we exedimes 7-21. By
the inductive hypothesis, the recursive call in line 7 nedgprev with ((; — 1) + 1)- or j-digit integers.
After the execution of line 7, whenever we build a number tpeaqul toresult, we concatenate one digit to

a number irprev, forming integers witty + 1 digits and proving the inductive step. [

Now that we've shown that RCURSIVE-CYCLIC-MIXED-RADIX-GRAY-CODE(/, r, p) generates a se-
guence of proper length, with each integer of proper digigth, we can move on to prove the harder
requirements of a cyclic mixed-radix full Gray code. In tieddwing lemmas, we use ordinal numbers
and y to index into the sequence produced by RSIVECYCLIC-MIXED-RADIX-GRAY-CODE(j, 7, p),
and we letx’ andy’ be the output valueesult[x] andresult[y], respectively.

Lemma 9 Let x beanordinal index suchthat 0 < x < p;, andlet x’ beresult[x], whereresult is generated
by RECURSIVE-CYCLIC-MIXED -RADIX-GRAY-CODE(/, r, p). Then0 < x’ < p;.

Proof: By Lemma 8, we have that’ is a(;j + 1)-digit integer. Therefore, we let thgf + 1)-digit
representations of’ and p; — 1 be the following:

/ / /

x' = X! X X/
J Jj—1 0 ’ 36
pi—1 = ri—=1 rig—1 - ro—1 , (36)
so thatx’ = {:0 x/pi—pandp; —1 = {:O(r,- — 1)pi—1. We will use induction ory, where0 <
j <k —1,toshow0 < xlf <ri—1fori =0,1,...,j. This quality will then be sufficient to prove

0<x"<p;j—1<pj.

Forj = 0,1,...,k — 1, the inductive hypothesis is that < xlf <r—1fori =0,1,...,j. In
the base case, wheje= 0, we execute lines 4-5, which append thdigit integersx’ to result such that
0 < x; < ro— 1. Otherwise, in the inductive step, we execute lines 7-21L@&yma 8, each integer prev
returned by the recursive call in line 7 hadigits. Therefore, whenever we build a numbérto append
to result, we concatenate thgh digitxj/. to a number irprev, where0 < x]/. <rj—1Dbylines 10 and 17-20.
By the inductive hypothesis, we also have< xlf <ri—1fori =0,1,...,j — 1. When we put the two
equations together, we get< xlf <ri—1fori =0,1,...,J,which proves the inductive step. ]

Lemma 10 Let x and y be ordinal indices such that 0 < x,y < p; and x # y. Let x’ and y’ be
result[x] and result[y], respectively, where RECURSIVE-CYCLIC-MIXED -RADIX -GRAY-CODE(j, r, p) gen-
eratesresult. Then x" # y’.

Proof:  This proof is by induction onj. For j = 0,1,...,k — 1, the inductive hypothesis is that
RECURSIVE-CYCLIC-MIXED-RADIX -GRAY-CODE(/, r, p) produces integers’ andy’ such that ifx # y,
thenx’ # y’. In the base case, wheje= 0, we execute lines 4-5, which append the inte@eisry — 1
just once each to our output sequemnewilt, and therefore, given any two ordinal positionsnd y such
thatx # y, we must also have’ # y’.

33



In the inductive step, we execute lines 7-21. By the indedtipothesis, the recursive call returned the
arrayprev with all values distinct. We will show that if the same digitprepended to two values frgmev,
then these two values froprev must be unequal. B is prepended, then it must have been prepended in the
for-loop of lines 9-10, and therefore, each valu@ia/[i] must be distinct. Otherwise, if two equal values
of £ > 1 are prepended in the for-loop of lines 15-21, then they masé been prepended in different
iterations of this for-loop, so that the valueiddiffers and, hence, the valuesgev[i] differ.

In all cases where we are given# y, we havex’ # y’. Therefore, we have the inductive step. =

Lemma 11 Let x and y be ordinal indices such that 0 < x,y < p; andy = x — 1. Let x" and y’
be result[x] and result[y], respectively, where RECURSIVE-CYCLIC-MIXED -RADIX -GRAY-CODE(J, 7, p)
generates result. Then x” and y’ differ in only one digit, and the values of those digits differ by only 1.

Proof:  This proof is by induction onj. Forj = 0,1,...,k — 1, the inductive hypothesis is that
RECURSIVE-CYCLIC-MIXED-RADIX-GRAY-CODE(/, r, p) produces integers’ and y’ such that ify =

x — 1, thenx’ andy’ differ in only one digit, and the values of those digits diffiy only 1. To aid our argu-
ment, we define aappend operation to be the exact instruction within the sequential algorititrwhich a
new integer is appendedtesult, so that givery = x — 1, we have that the append operation that appehds
is the one that occurs immediately before the append oparttat appends’ to result.

In the base case, whee = 0, we execute lines 4-5. Here, for every ordinal positiosuch that
y = x — 1 is also an ordinal position, the append operationfoadds thel -digit integeri to result, and
the append operation for, which occurs immediately before, adds thdigit integer,; — 1. Therefore x’
andy’ differ in only one digit, and those digits differ by only

Otherwise, in the inductive step, we execute lines 7-21. ,Nlwsve are many different variables we have
to consider to prove the inductive step. We must first analyzat section of the procedure we are in when
we append:’ andy’ to result. Are we in lines 9-10, are we in lines 14-21, or are we in lineB®Bwhen we
appendy’ and lines 14-21 when we appen® Then, within these cases, we must consider either the value
of the local variable if we are in lines 9-10, or the values of local variahleé, andascending if we are in
lines 14-21. In the following paragraphs, we examine thesmbles and prove the inductive step through
case exhaustion.

We start with the case where both the append operations’ fand y’ come from lines 9-10. Line 9
shows thati increments byl every time we append troesult, so that the value of during the append
operation forx must be exactlyy more than the value af during the precedlng append operation §or
Let us defing to be the value of during the append operation of. Then,i — 1 is the value of during the
append operation of’ and, by the inductive hypothesis, we have l}brax/[z] andprev[z — 1] differ in only
one digit, and the values of those digits differ by ohlyThus,x’ = 0 || prev[z] andy’ =0|| prev[z — 1] also
differ in only one digit, and the values of those digits al#fted by only 1.

Next, we analyze the case where the append operation’ foomes from lines 9-10 and where the
append operation fox’ comes from lines 14-21. In this case, we must have ghas the last integer
appended tgesult from lines 9-10, and’ is the first integer appended tesult from lines 14-21. By
lines 9-10, we have’ = 0 | prev[p;—; — 1], and by lines 14-21, we have tha& p;_; — 1, ascending =
TRUE, and consequently, = 1 during the append operation faf. Putting these facts together, we get
x" = 1] prev[pj—1 — 1]. Thus,x” andy’ differ only in their most significant digit, and the valuestbbse
digits differ by 1.
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The last case is the most complex: the append operations famd y’ both come from lines 14-21.
Within this section of the procedure, if the append openratifor x” and y’ come from the same inner for-
loop—that is, they both come from either lines 17-18 or lih®8s20—then because the append operation
for y’ directly precedes the one faf, we must have thatandascending are the same for both operations,
while ¢ differs by 1. Thereforeprev|i] is the same integer for both append operations, and prapghdo
prev[i] to computex’ andy’ gives two integers that differ in only their most significaigit, with the values
of those digits differing by onlyi. In the other subcase, the append operations:f@nd y’ come from
different inner for-loops—that is, one comes from lines 1§-and the other comes from lines 19-20. Here,
because one append operation directly precedes the otherust have thatandascending differ for both
operations, and furthermore, the valug df the two append operations differs by onlyLet? be the value
of i during the append operation fef. Theni — 1 is the value of during the append operation fof, and
by the inductive hypothesis, we have tlpm\/[?] andprev[?— 1] differ in only one digit, and the values of
those digits differ byl. Now, we must show that when we form the integetraindy’, the most significant
digits that we append to the integemsev[?] andprev[?— 1] do not differ. We have two cases for this most
significant digit¢. The first is if the append operation fof is the last operation executed in its instance
of the for-loop in lines 17-18, so thascending switches fromTRUE to FALSE, and the append operation
for x’ becomes the first operation executed in the following foplat lines 19-20. In this caséisr; — 1
for y’ and remains the same fof. The second case is if the append operationyfas the last operation
executed in its instance of the for-loop in lines 19-20, st dkcending switches fronFALSE to TRUE, and
the append operation far' becomes the first operation executed in the following foplat lines 17-18.
Here,£ is 1 for y’ and remains the same fof. Thus, in both cases we append the same valuetofthe
integersprev[i] andprev[i — 1] to form x’ andy’, respectively. As we noticed farev[i] andprev[i — 1],
the integersc’ andy’ must also differ in one digit, and the values of the digitd thiier must also bd.

In all cases where we are given= x — 1, we have that’ andy’ differ in one digit, and the values of
the digits that differ isl. Therefore, we have the inductive step. [

Lemma 12 Let result bethe array returned by RECURSIVE-CYCLIC-MIXED -RADIX-GRAY-CODE(j, r, p).
Then the Oth integer result[0] and the last integer result[p; — 1] differ in only one digit position i, and the
values of those digits are either 0 and r; — 1, or they differ by only 1.

Proof:  There are only two cases to consider. The first case occuns yvee 0, so we execute lines 4-5,
which append the-digit valuesO andr; — 1 asresult[0] andresult[r; — 1] = result[p; — 1], respectively.
In the other case, we execute lines 7-21. Clearly, we hesutt[0] = 0 || prev[0] by lines 9-10, and we
haveresult[p; — 1] = £ || prev[0] by lines 14-21. Let be the value of that we concatenate fwev[0] to
formresult[p; — 1]. By lines 17 and 19, we have either= 1 or ¢ = ri — 1. If we have the former, then
result[0] andresult[p; — 1] differ in only the most significant digit, and those digitéfeli by 1. Otherwise,
we have the latter, anaesult[0] andresult[p; — 1] again differ in the most significant digit, with the most
significant digit ofresult[0] equal to0 and the most significant digit @ésult[p; — 1] equal tor; — 1. [

Theorem 13 Correctness of the procedure RECURSIVE-CYCLIC -MIXED -RADIX -GRAY-CODE
The procedure RECURSIVE-CYCLIC-MIXED-RADIX-GRAY-CODE(/, (rx—1,.-.,70)s (Pk—1,--., Po)) gen-
erates a cyclic mixed-radix full Gray code for theradices (rip_1,7k—2,...,%0)-
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Proof: Lemmas 7-10 show that the procedure generates a full segjueamt Lemmas 11-12 show that
the output sequence also has the strict Gray-code and nmagalec properties. [

To complement our recursive method of generating the cyuied-radix full Gray code, we provide an
iterative algorithm that computes the same output sequastiee recursive one does when, for the former
procedure, we usg as the first argument in place gf This iterative method iterates ghinstead of
recursing on it. It also fillgesult with the completedp;-length sequence for each iteration pinstead
of returning the previous solution from a function call ahdn copying over the list elements, just as the
recursive procedure does. In this way, the iterative prometisted below is more space-efficient than its
recursive counterpart, requiring onB( pi_1) space for the single instanceratult.

ITERATIVE-CYCLIC-MIXED-RADIX-GRAY-CODE(k, r, p)

1 initialize result to an empty list
2 /I compute thepy-length Gray code

3 fori =0topy—1
4 append to result
5 /I iteratively compute the;-length mixed-radix Gray code fgr=1,....k —1
6 forj =1tok—1
7 /I for each value in the previous Gray code, going back to frampend to it a new
8 /I most significant digit, alternating between the digit astieg and descending,
9 /I going between 1 and — 1
10 ascending = TRUE
11 fori = pj—1 — 1 downto 0
12 if ascending
13 for{ =1tor; —1
14 append || result[i] to result
15 else forl{ = r; — 1 downto 1
16 append || result[i] to result
17 ascending = not ascending

18 return result

Like the recursive version of this method, this iterativgoaithm require® (n) time to generate a cyclic
mixed-radix full Gray code for andr if concatenating a single digit to the digit representabbanother
integer takes constant time regardless of the total nunflibgits. Otherwise, if concatenating a digit to the
digit representation of an integer takes time linear to ¢ta inumber of digits in the output, then the above
algorithm require® (nk) time to complete a cyclic mixed-radix full Gray code foand thek-tupler.

Having provided both a recursive and an iterative procetlurgenerate cyclic mixed-radix full Gray
codes for any tuple of mixed radices, we now move on to consigidic dense Gray codes.

11 Cyclic mixed-radix dense Gray codes as Hamiltonian cycse
Unlike what we did in Section 9 for the cyclic mixed-radix If@ray code, we are unable to provide

a polynomial-time solution for a cyclic mixed-radix densea¢s code, where, given a radix tupte =
(rk—1.rk—2....,7o) and a positive integet < pj_;, a cyclic dense Gray code is a permutation of the
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sequencd0, 1,...,n — 1) that holds the modular Gray-code and cyclic properties.sTimstead of pro-
viding a solution, this section discusses a graph-themletipproach we can use to model the cyclic dense
Gray code. The following section will use this new approazipiiove several cases ofandn for which
generating a cyclic mixed-radix dense Gray code is impéssib

We start by defining our model. Awodular Gray graph for the radix tupler and the positive inte-
gern < py_; is an undirected grap = (V, E), where|V| = n, such that each vertexe V is a unique
integer fromthe sef0, 1,...,n— 1}, andE is the set of edge@t, v) for all u, v € V, such thaiz andv hold
the modular Gray-code property—thatisandv differ in only one digit position’, and the values of those
digits are eithef andr; — 1, or they differ by onlyl. With such a graphical representation of the inte@ers
ton — 1 and the modular Gray-code property, we can equate the pnatfigenerating a cyclic mixed-radix
dense Gray code to the task of producing a Hamiltonian cyel@yele that traverses each vertex V
exactly once—in the modular Gray graph for the correspandaglices- and integer. Unfortunately, the
Hamiltonian cycle problem is NP-complete [7], and even wfite special attributes of our modular Gray
graph, we are unable to find an algorithm that takes polynidima in the worst case. Thus, the search for a
Hamiltonian cycle, and therefore a cyclic mixed-radix de@say code, is infeasible for most cases oAs
we mentioned, however, there are some special attribué¢svén can observe about modular Gray graphs,
especially for cyclic mixed-radix full Gray codes, when= p,_;. This section lists those observations,
and Section 12 will relate them to modular Gray graphs foticynixed-radix dense Gray codes, where

n < pg-1-

Modular Gray graphs for cyclic mixed-radix full Gray codes

We first examine the modular Gray graphs for cyclic mixedxddll Gray codes, since they are easy to
generate and exhibit notable patterns of symmetry. AnaatidaAlBdaiwi [1] already introduced modular
Gray graphs, which they named “multidimensional mixedxadri,” when they showed how to generate
their cyclic mixed-radix full Gray code, but they did not debe the graphs in detail. Here, we expand
upon the graphs where Anantha and AlBdaiwi left off. We draedoiar Gray graphs for different setsiof
andn = pj_1, and then we use our recursive method for a cyclic mixedxradli Gray code to visualize a
Hamiltonian cycle in that graph.

First, we consider how to construct the modular Gray graptafoyclic mixed-radix full Gray code.
Given the radix tupler = (rg_1,7x—2....,ro) and the integer = pi_;, we can easily determine the
degree of each vertaxe V in the corresponding modular Gray graph by examining eadilx ia the tuple.
The following lemma shows how.

Lemma 14 Given the radix tuple r = (rg_1, % k—2,...,70), let G = (V, E) be the modular Gray graph
for r and n = pr_;. Then, each vertex v € V has the same degree §, and each digit position i =
0,1,...,k — 1 can be mapped to a set of §; edgesincident on v such that

2 i #2,
b = { 1 otherwise , (37)
and
k—1
5= 4. (38)
i=0
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Proof: Let v be a vertex inV, and let the digit representation ofbe v;_jvg_5---vg. We will map
each digitv; in v to a set of edge&'(v;) € E such thaf E(v;)| = §;, whered; is given by equation (37).
Furthermore, we will show that the sdigvg), E(vy), ..., E(vi_p) are pairwise disjoint, which will suffice
to show equation (38).

For each digitv; in the digit representation af, let £(v;) € E contain all edgesu, v) € E such that
verticesu andv differ in only theith digit. By how the modular Gray graph is constructed, trageetwo
possible values for this vertex the integers/’ andu”, and their digit representations are

u' = Vg1 Vk— -+ Viy1 (vi+1l)ymodr; vi—g -+ vy
u” Vk—1 Vk—2 -+ Vi1 (i —1l)ymodr; vi—1 -+ vg

Now, we examine the radix to determine whether the verticesandu” are equivalent. If; is not2, then
we have(v; + 1) modr; # (v; — 1) modr;, and the vertices” andu” must be distinct. Otherwise, we
haver; = 2, so thaty; is either0 or 1, and we gefv; + 1) mod2 = (v; — 1) mod2 for both values ofb;,
implying that the vertices” andu” are the same. Thus, we have shown thiat; ) has sizeS; = 2if r; # 2
and size; = 1 otherwise—that is, we have shown equation (37). MoreowecesE (v;) comprises only
the edgesu,v) € E whereu andv differ in digit 7, it is obvious that the set&E (vg), E(v1), ..., E(Vr_1)
are pairwise disjoint. This statement proves equation. (38) [

Graph theory defines a graph where all vertices have the sagreab as as-regular graph. The
following corollary uses Lemma 14 to claim that modular Ggagiphs for cyclic full Gray codes—where
the number of vertices is inherently equal to the produpf_; of the radices—are regular.

Corollary 15 Modular Gray graphsfor cyclic mixed-radix full Gray codes are regular
Giventheradix tupler = (rp_1, "k—2,...,70), l€t b be the number of radicesin r that equal 2. Then, the
modular Gray graph for the cyclic mixed-radix full Gray code for r isa (2k — b)-regular graph. [

Figure 2 shows the modular Gray graph for the radix tupie (3, 4) and the integet = 12, along with
the Hamiltonian cycle generated by our algorithm for a @ynilixed-radix full Gray code. Notice that the
graph is4-regular, as stated in Corollary 15. As another examplayrei@ shows the modular Gray graph
for the3-tupler = (2,2, 3) and the integer = 12, which is4-regular by Corollary 15. Again, we highlight
the Hamiltonian cycle that our algorithm generates in tihépob.

12 Whenis it impossible to generate a cyclic mixed-radix dese Gray code?

We now consider modular Gray graphs of cyclic mixed-radixs#eGray codes, where, given the radix tuple

r = (rg—1,"k—2,...,r0), We haven < pr_;. We can think of such a graph as an induced subgraph of the
modular Gray graph for the same radieesvhere the subgraph is made by discarding the highest-maabe
pr—1—n vertices of the larger graph, along with their incident esig@nce we start discarding these vertices,
it might become impossible to compute a Hamiltonian cyclinwhe remaining vertices. Here, we identify
two such cases where finding a Hamiltonian cycle, or equiBlegenerating a cyclic mixed-radix dense
Gray code for a set of valugsandn, cannot be done. Theorems 16-17 describe those cases, @miin

to simplify the proofs, we assume in all three theorems thiatthe minimum number of digits required to
represent alh vertices of the graph in the radices= (ry_1,rr—2....,Fo), SO that thgk — 1)st digit of

n — 1 is always positive.
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our
Gray code

00

01

02

03

13

23

22

12

11

21

20

10

Figure 2: The modular Gray graph for a cyclic mixed-radix full Gray eddr (3,4). The edges are visibly coded:
dotted edges represent the modular Gray-code propertyebatiwo vertices: and v that differ in digit 0; solid

edges represent the modular Gray-code property betweeventioesu andv that differ in digit1; and shaded edges
represent edges included in the Hamiltonian cycle prodbgeslir algorithm for a cyclic mixed-radix full Gray code.

our

Gray code
000
001
002
012
011
010
110
111
112
102
101
100

Figure 3: The modular Gray graph for a cyclic mixed-radix full Gray eddr (2,2, 3). The edges are visibly coded:
dotted edges represent the modular Gray-code propertyebattwo vertices andv that differ in digit0; solid edges
represent the modular Gray-code property between twocestti andv that differ in either digitl or 2; and shaded

edges represent edges included in the Hamiltonian cyctiupeal by our algorithm for a cyclic mixed-radix full Gray
code.
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Theorem 16 Graphswith vertices of degree 1 are non-Hamiltonian
Let n be a positiveinteger such that n > 2, and let k be the number of digitsrequired to representn = n —1

using

theradix tuple r = (rg—1,7k—2.....ro), SO that the digit representation of 7 is ny_1nj_s -+ 7o,

where7;_; > 0. Let G bethe modular Gray graph for » and n. If n has the digit representation

n=qg00---01, (39)

where either ¢ = 1 or ¢ < rr_1 — 1, then G has no Hamiltonian cycle.

Proof:

There are two cases to consider. The first case occurs whaa the form given by equation (39),

and we havé& = 1. The second case occurs wheris of the same form ankl > 1. We will show for each
case that there exists a vertexe V with degreel, which will suffice to prove that no Hamiltonian cycle
exists inG for these forms of.

Casel: k = 1.

Suppose that has the form given by equation (39). Then, because we are the#n > 2, thel-digit
integern must be in the rang®g < n < ro — 1. Let vertexv be thel-digit integer0. By the modular
Gray graphp can have edges to only the vertideandro — 1, provided that those vertices also exist
in V. Becauser > 3, we know thatl € V, and thereforey has an edge to vertdx Sincen < rg—1,
however, we know thaty — 1 € V. Thus, vertex has degreé¢, andG has no Hamiltonian cycle.

Case2: k > 1.

Suppose that has the form given by equation (39). Let vertexben — 1, which has the digit
representatiog 0 --- 0. We will show that there is only one ed@e, v) € E that is incident or,
and the vertex differs from vertexv in digit k£ — 1.

First, we must show that for digit positions= 0, 1,...,k — 2, there are no verticas € V such
that (4, v) € E and vertices: andv differ in digit positioni. By how we construct the modular
Gray graph, we have that for each digit positios= 0, 1,...,k — 2, vertexv can have edges to the

verticesu’ andu”, whereu’ andu” have the digit representations

u' = Vg1 Vg— -+ Vi1 (vi+1)modr; vig -+ wo

= g 0 .- 0 1 0 - 0
u" = Vg Vk—a -+ Vigr (vi—lymodr; vi—; -+ vg

= g 0o --- 0 ri—1 0 - 0

provided that:’ andu’ also exist inV. Sincen — 1 has the digit representatign0 --- 0, however,
the vertices:’ andu” are larger tham — 1, and sa«” andu” cannot existin/ fori = 0,1,...,k—2.
Therefore, there are no vertices V such that we have botlx, v) € E andu andv differ in a digit
position other thak — 1.

Now, we consider the edgés, v) incident onv such thatt andv differ in digit K — 1. By how we
construct the modular Gray graph, vertegan have edges to the vertia€sandu”, whereu” andu”
have the digit representations

u = (g+1)modrg_y 0 --- 0 ,
u” = (¢q—1)modrg_; 0 --- 0
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Figure 4: Modular Gray graphs with vertices of degreeand therefore, no Hamiltonian cycle. The edges are visibly
coded: dotted edges represent the modular Gray-code pydpeween two vertices andv that differ in digit0;

and solid edges represent the modular Gray-code propesiebr two vertices andv that differ in digit1. (a) The
modular Gray graph for = (2, 3) andrn = 4, which has the digit representatiori in »; and(b) The modular Gray
graph forr = (4,3) andn = 7, which has the digit representatién in r.

provided that:’ andu” also exist inl’. We now prove that:” € V, butu’ ¢ V unlessry_; = 2,
in which case vertices’ andu” are equivalent. By the definition &, we have thay > 1. Thus,
we haveg — 1 > 0, which givesu” the digit representatiofy — 1) 0--- 0 so thatu” < n — 1 and
consequentlyy” € V.

Showing the properties of vertex is harder. When,_; > 2, then because either= 1 org <
re—1 — 1, we haveg + 1 < ri_; in both cases. Thus, the vertax has the digit representation
(g+1)0---0,sothaty’ > n — 1 and consequently, ¢ V. Otherwise, when we havg_; = 2, we
must have; = 1, and so the valué + 1) modr,_; is 0. In this case, we have that andu” have
the digit representatiof{g £ 1) mod2)0 --- 0 =00 --- 0 and are equivalent.

We have proven that whenhas the form given by equation (39), then there is only one édigjdent on
either vertex0 or vertexn — 1 in the modular Gray graph for andn; therefore,G has no Hamiltonian
cycle. [

Figure 4 illustrates two graphs, each with a vertex of dedrethat Theorem 16 describes as non-
Hamiltonian. In Figure 4(a), the numberof vertices has the form given by equation (39) wjtk= 1, and
in Figure 4(b)n has the same form but with< r,_; — 1, instead.

The following theorem lists another case where a Hamiltogiacle cannot be found.

Theorem 17 Impossibility of both cyclicity and density for some valuesof r and n
Let n be a positive integer, and let & be the number of digitsrequired to represent 7 = n — 1 using the radix

tupler = (rg—_1,rk—2,....r0), SO that the digit representation of 77 isny_ 71—, - - - g, Where ng_; > 0.
Let G be the modular Gray graph for r and n. If n isodd and r; is even for each digit position i =
0,1,...,k —2,and either r;_; isevenor ny_; < rp—; — 1, then G has no Hamiltonian cycle.

Proof:  There are only two cases to consider, and we will use comtiiadito prove that neither of these
cases can produce a Hamiltonian cycle. To do this, we wiltineeaise the following claim:

If r; is even for any digit position = 0, 1, ...,k — 1, then the number of digit changes made
in digit i as we take one trip around the Hamiltonian cycle must be even.

41



Figure 5. Ther; cycle shows all possible values of digitor equivalently, the set of integef8, 1,...,r; — 1}, in
acircle.

To prove the above claim, let us first isolate digitFigure 5 shows the; cycle representing all the possi-
bilities of digiti in a circle.

Assuming that we start from vertdx let z; be the net number of trips we make around theycle
as we take one trip around our Hamiltonian cycle. We define- 0 to mean that we madg;| net trips
clockwise, and;; < 0 to mean that we made; | net trips counterclockwise. Thege net trips around the
r; cycle account for a total gf; z; | digit changes, and sineeg is even, the net trips overall account for an
even number of digit changes. Now that we've accounted fahalnet trips around the cycle, the other
changes we made in digitmust represent trips where we ventured along one direatoon & starting point
in ther; cycle, and then came back along the opposite direction tedhee point. Each of these “detours”
must have accounted for an even number of digit changesasmttotal, all of the detours accounted for an
even number of digit changes. Therefore, all of the digiingjess that occur in digit during one trip around
the Hamiltonian cycle account for an even number of digithgfes in total. Hence, we have the claim.

Now, we return to the proof for the theorem. In the followimgptcases, we assume thais odd and;
is even for each digit positioh= 0,1, ...,k — 2.

e Casel: ry_ iseven.
Let us assume to the contrary that a Hamiltonian cycle ekis€s. By the Gray-code property, we
must maken digit changes in total during one trip around the Hamiltongycle. We are given,
however, thak is odd, and since; is even for digit positiong = 0,1,...,k — 1, we know by the
claim that each digit contributes an even number of digihgies Therefore, it is impossible to come
back to the starting vertexin n digit changes, and we cannot have a Hamiltonian cycl&.in

o Case2: np_1 <rp—1— 1.

Let us assume to the contrary that a Hamiltonian cycle eists. By the claim, we have that each
digiti = 0,1,...,k — 2 contributes an even number of digit changes. Since, < rp_1 — 1, we
cannot form the fulk_; cycle. The highest digit value that digit- 1 may take on is either;_; — 1
whenn = n;_;00--- 0, orng_; in any other case, and since both these values are lesgithan 1,
neither would hold the modular Gray-code property if it werehange t@. Thus,z;_; must be0,

and each digit change that occurs in digit 1 must be part of a detour that returns to the starting point
in ther,_; cycle, accounting for an even number of digit changes foh eletour. By the Gray-code
property, and becauseis odd, there must be an odd number of digit changes in totaiglone trip
around the Hamiltonian cycle. We can only account, howdeegn even number of digit changes in
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each digitt = 0,1,...,k — 1. Therefore, it is impossible to come back to the startingexeb in n
digit changes, and we cannot have a Hamiltonian cyct&.in

We have proven through contradiction in all cases that itripdssible to have a Hamiltonian cycle
in G if n is odd andr; is even for each digit position = 0,1,...,k — 2, and eitherr,_; is even or
Rpe—1 < rp—q1— 1. ]

Importantly, although Theorems 16-17 prove several vatfiesandn for which a Hamiltonian cycle
cannot be found, it is not an exhaustive list of these casefct, we know of at least one other such case,
which we do not explain here. There is much more still to leyout the modular Gray graphs for cyclic
mixed-radix dense Gray codes, and we should think of the&me®in this section as cases that we've found
and explained rather than a broader statement about timitgs of modular Gray graphs.
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13 Conclusions

We have now shown the five major contributions of this thesis:

¢ A formula for each digit of the non-cyclic binary dense Grayle for any positive integer, as given
in our earlier paper [3]. With this formula, we can generaehenumber in the non-cyclic binary
dense Gray code in constant time.

¢ An algorithm that generates a cyclic binary dense Gray codarfy even number of integers. The
algorithm computes each number in constant time.

¢ A formula for each digit of the non-cyclic mixed-radix dernSeay code for any mixed-radix tuple
and positive integer less than or equal to the product of the radices.in

e Arecursive algorithm that generates each integer in thikcayixed-radix full Gray code for a mixed-
radix tupler and positive integet equal to the product of the radicesrin

e A list of cases where it is impossible to compute a cyclic rdixadix dense Gray code for a mixed-
radix tupler and positive integet strictly less than the product of the radices in

We have yet to determine a digitwise formula for cyclic mixedix dense Gray codes, as we were able
to do for non-cyclic binary, cyclic binary, and non-cycliéxad-radix dense Gray codes. In our future work,
we will refocus on this goal and potentially find more casesdix tuplesr and integers for which it is
impossible to compute a cyclic mixed-radix dense Gray cdlfe.also hope to study the applications for
the dense Gray codes we have developed, as the standargreiftected Gray code and cyclic mixed-radix
dense Gray code have already proven themselves useful imbanwof computing [5, 6, 8, 10] and network
design [1] problems.
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