
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

5-1-2016

Bloon: Software and Hardware for Data Collection and Real-Time Bloon: Software and Hardware for Data Collection and Real-Time

Analysis Analysis

Jacob Z. Weiss
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Weiss, Jacob Z., "Bloon: Software and Hardware for Data Collection and Real-Time Analysis" (2016).
Dartmouth College Undergraduate Theses. 111.
https://digitalcommons.dartmouth.edu/senior_theses/111

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/111?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Bloon: Software and Hardware for Data Collection and
Real-Time Analysis

Jacob Weiss
Senior Honors Thesis

Advisors: Kristina Lynch (Physics) & Sean Smith (Computer Science)

Dartmouth Computer Science Technical Report TR2016-806

Abstract: Bloon is a powerful, user-friendly parsing and plotting utility optimized for use in
real-time applications that I wrote for the Mac. Its generalized parser is capable of handling a
wide variety of data formats. If you can define it in Bloon’s parsing language, then Bloon can
parse and plot it. Bloon’s grapher is also extremely powerful, allowing users to zoom and scroll
about millions of data points smoothly in real time. Bloon makes the difficult task of real-time
data collection and visualization a breeze.

1

Contents

1 Software 4
1.1 Other Solutions . 5
1.2 Documentation . 6

1.2.1 Main . 7
1.2.2 Parser . 8
1.2.3 Sentence . 9
1.2.4 Token Reference . 10
1.2.5 Window . 12
1.2.6 Graph . 13
1.2.7 Plot . 14

1.3 Data structures . 15
1.3.1 MrSwArray . 15
1.3.2 LinkedIndexList . 16
1.3.3 VertexArray . 18
1.3.4 ParsedSentence . 19

1.4 Algorithms . 20
1.4.1 Averaging . 20
1.4.2 Graph Bounds Calculation . 23
1.4.3 Graph Tick Mark Locations . 25
1.4.4 Closest Point . 26

1.5 Real World Uses . 28

2 Hardware 29
2.1 Specifications . 30
2.2 Real World Uses . 31
2.3 Hardware Reference . 32
2.4 Firmware API Reference . 40

BobShield() . 40
uint8_t status() . 40
void configureSweep(bool pip0, bool pip1, uint16_t delay,

uint16_t avg_num, uint16_t num_samples,
uint16_t sweep_min, uint16_t sweep_max) 40

void sweep(bool pip0, bool pip1) . 41

2

void sweepSendGet(bool pip0, bool pip1,
bool toDNT, bool toMaster,
uint16_t∗ sweep0, uint16_t∗ sweep1) 41

void dntReset() . 41
uint8_t dntBytesAvailable() . 41
void dntSendData(uint8_t∗ data, uint8_t length) 42
uint8_t dntReceiveData(uint8_t∗ data, uint8_t max) 42
uint8_t gpsSendGet(bool toDNT, bool toMaster, uint8_t∗ data) 42
void flushBufferSPI() . 43
void writeDAC(uint16_t data, bool ch0, bool ch1) 43
void readADC(bool ch0, bool ch1,

bool toDNT, bool toMaster,
uint16_t∗ ch0Data, uint16_t∗ ch1Data) 43

void setBaudDNT(BaudOptions baud) . 43
bool isReady() . 44
void waitUntilHigh() . 44
void waitUntilLow() . 44
void setLEDs(bool led0, bool led1) . 44
double ardBatteryVolts() . 44
double dntBatteryVolts() . 44
void waitForDntPower() . 45
void on() . 45
void off() . 45

2.5 NAND Flash API Reference . 46
Flash(bool enable_write, bool restart_address_counter) 46
void writeBytes(byte∗ bytes, int length) . 46
void cacheToArray() . 46
void dumpArray(uint32_t startAddress, uint32_t endAddress, int amount) 46
void dumpBeforeEnd(uint32_t numPages) . 47
uint16_t readID() . 47
void restartAddressCounter() . 47

3 Summary 48

3

1 Software

Bloon is a powerful, user-friendly parsing and plotting utility optimized for use in real-time
applications that I wrote for the Mac. Its generalized parser is capable of handling a wide variety
of data formats. If you can define it in Bloon’s parsing language, then Bloon can parse and plot
it. Bloon’s grapher is also extremely powerful, allowing users to zoom and scroll about millions of
data points smoothly in real time. Bloon makes the difficult task of real-time data collection and
visualization a breeze, and I am excited to see what people do with it!

As a scientist and engineer, the ability to visualize data is invaluable, and many excellent
software packages exist to generate graphics. However, most of these solutions are optimized for
quality. They produce beautiful graphics, but do so very slowly. This paradigm poses no problems
when the data already exists, but falls flat if applied to real-time data visualization. And there
are many situations when visualizing data in real time is vital. Problems can be caught as they
happen, instead of being noticed after the fact. Bloon attempts to tighten this feedback loop by
empowering scientists, engineers, and hobbyists alike to interact with their data as it is generated.

As can be seen in figure 1 below, Bloon is programed primarily (about 66%) in Swift. Swift
was chosen over Objective C as the primary language for this project due to its clean syntax and
fast execution time. The rest of the code base is written in C or Objective C. These languages
were only used when the application required more direct memory manipulation and management.

Language files blank comment code
Swift 66 1892 721 7630
Objective C 7 861 267 3329
C/C++ Header 12 128 118 284
C 3 26 30 138
Total: 88 2907 1136 11381

Table 1: Files and Lines of Code

4

1.1 Other Solutions

Matlab: http://www.mathworks.com/products/matlab/

Matlab is an extremely powerful tool for scientific computing and data analysis. However,
it lacks real-time capabilities built in, and although many people have tried to add these
capabilities to Matlab, the results are not ideal. Matlab produces plots that are focused on
quality, not speed, and therefore is unable to update its plots at the rate required to enable
interactivity.

Matplotlib: http://matplotlib.org/

Matplotlib is the defacto plotting library for Python. It is extremely mature and well
supported, however it also prioritizes graph quality over speed. Additionally, compared to a
compiled language, Python is not the ideal choice for data processing.

PyQtGraph: http://www.pyqtgraph.org/

PyQtGraph is an alternative graphing library for Python that puts an emphasis on performance
and is therefore better suited to real-time interactive plots. PyQtGraph is an excellent
foundation to build an interactive plotting application upon, however, due to its Python
foundation, PyQtGraph is not the ideal choice for large-scale data processing and begins to
show considerable slowdown at just a few million data points.

COSMOS: http://cosmosrb.com/

Ball Aerospace’s COSMOS is an extremely powerful tool build for real-time telemetry with
remote payloads. Although it has real-time parsing and plotting capabilites, these features
are not fast enough to be interactive and are not the focus of the software. COSMOS is
intended to be a complete telemetry solution and although it is powerful, it is also quite
difficult to set up.

MakerPlot: http://www.makerplot.com/

MakerPlot is a windows-only real-time plotter aimed at the maker community, specifically
focused on the Arduino. The program has many capabilities, including the creation of
custom dashboards containing various types of displays. The Arduino controls the plotting
software by sending ASCII commands over serial to MakerPlot. All plotting is done on
ASCII-formatted data. MakerPlot is an excellent choice for parsing and plotting simple data
coming directly from a microcontroller. However, it is (at least out of the box) unable to parse
complicated packets such as those emitted from a wireless radio. MakerPlot’s feature set is
better tailored to command, control, and monitor microcontrollers in an industrial setting
than to record and visualizing data.

5

http://www.mathworks.com/products/matlab/
http://matplotlib.org/
http://www.pyqtgraph.org/
http://cosmosrb.com/
http://www.makerplot.com/

MegunoLink: http://www.megunolink.com/

MegunoLink (Windows) provides many of the same features as COSMOS and MakerPlot
(command, control, and monitoring), but is aimed specifically at the Arduino market. It even
goes so far as to provide an Arduino library for communicating with the application, and a
drag-and-drop interface for creating custom control interfaces (like MakerPlot). However, this
software falls short in complex bandwidth-limited situations where the overhead generated
by Megunolink’s message structure and ASCII formatting is unacceptable.

Realtime Plotter: https://github.com/sebnil/RealtimePlotter

Realtime Plotter is a simple open-source project that nicely demonstrates the type of program
that most makers are currently using to plot their data. It can plot six channels of ASCII
data streaming over a serial port, and it does this quite well. However, this project does not
allow users to interact and explore the data, and is really only intended for very basic cases.
Additionally, the restricted input format limits the usefulness of such an application in more
complicated situations.

Arduino IDE: https://www.arduino.cc/en/Main/Software

For an Arduino user who just wants to quickly check that their sensor is working, the Arduino
IDE has recently been updated to include a real-time data plotter. However, like many of
the other solutions, the plotter provides no easy way of customizing the input format.

IOComp Plot Pack: http://www.iocomp.com/

IOComp Plot Pack is an extremely powerful real-time graphing utility. It’s plotting capabilities
far exceed those of Bloon. However, the basic version costs hundreds of dollars, contains no
parsing functionality, and is Windows only.

KST: https://kst-plot.kde.org/

KST is self-described as “the fastest real-time large-dataset viewing and plotting tool available,”
and it is a powerful piece of open-source software. It is capable of plotting extremely large
datasets very quickly and has some very mature data processing and analysis functions.
However, it lacks the user-definable parser and smooth graph interaction that Bloon boasts.

1.2 Documentation

This section will describe each function of Bloon by walking through each screen of the graphical
user interface, but first it will be useful to discuss Bloon’s design on a large scale. Bloon can be
thought of as being split into two parts: the Parser and the Grapher. The parser takes an input
data stream (from a file, a pipe, or a serial port) and attempts to match pieces of the stream with
predefined patterns. When a match is detected, the parser records the location and type of the

6

http://www.megunolink.com/
https://github.com/sebnil/RealtimePlotter
https://www.arduino.cc/en/Main/Software
http://www.iocomp.com/
https://kst-plot.kde.org/

pattern and then moves on. The grapher looks at these records, pulls out the data, and then plots
it in a graphical format. In order to facilitate repeated experiments where the same data may be
collected multiple times, each half of the application (Parser and Grapher) is divided again into
the configuration and the runtime. This design significantly speeds up the process of collecting and
viewing data, as the configuration file only needs to be created once by a single person which can
then be shared. Running the configuration is extremely simple. Bloon’s graphical user interface
exists to create, open, save, and run configuration files. In this document, I will describe the
graphical user interface and how it is used.

1.2.1 Main

Configuration Title

Parser Configuration

Grapher Configuration

Navigation Bar

Run Configuration

The root view of Bloon’s graphical user interface displays the three major function that a user
may wish to perform: configure the parser, configure the grapher, and run the configuration. The
name of the configuration is displayed as the window’s title. Just below this is the navigation bar.
This navigation bar lets you quickly navigate up and down the tree structure of the configuration.
As you move through a configuration, the navigation bar displays breadcrumbs. Clicking on a
breadcrumb will bring you back to that view.

Now is also a good time to note the File menu. Here you can find shortcuts to run, stop,

7

open, save, and create a new configuration file. Pressing the shift key reveals a few lesser-used
options, including the dangerous “Run No Output” option which will run the configuration file
and suppress all output files. Any data collected in this mode will not be saved to a file.

1.2.2 Parser

Serial Port Options

Output Formats

Sentence List

Add/Delete Sentences

File to Parse
Location of Output
Name of Parser

Input Selection

In Bloon, a parser takes a stream of data as input and attempts to match it to the provided
patterns (called sentences).

At the top of the parser’s configuration, you can give the parser a name. This name will be
used in the grapher, so it is a good idea to keep it short.

Clicking the magnifying glass on the right of the Save Path box lets you select the location
in which Bloon will save all its output files. A parser, unless run in the No Ouput mode described
previously, will always write the input data stream directly to a file with no modifications. The
Output Formats checkboxes control whether this parser will output a few other formats as well.
If Saves Binary is checked, then another file is created. This file will contain raw data, but only
the data that was successfully matched to a sentence. Saves Ascii creates another file, but the
data is output in a parsed Ascii format.

8

On the left, the three possible input sources are listed. It should be noted that the rest of the
program does not distinguish between the various input sources. If Parse File is selected, then
by clicking on the magnifying glass to the right, you can select a file that will be parsed.

Parse Port allows Bloon to easily parse data from a serial port. The dropdown menus to the
right of the radio button let you select the port and baud.

Parse Pipe is the most powerful input source that Bloon provides, and technically could be
the only input source provided. With Parse Pipe selected, at runtime Bloon will create a named
unix pipe at the location of the path displayed in the Parse File box. Any data piped into that
file from the unix shell will be parsed. This allows Bloon to take data directly from any source
capable of writing to stdout.

Finally, in the bottom left corner of the window you can find several buttons for creating
and deleting sentences. The + button creates a new sentence. Clicking a sentence after it has
been created will select it, at which time it can be deleted with the - button. Bloon supports
multiple selection by holding down the shift or command keys. Additionally, Bloon can duplicate
the selected sentences using the standard command-c and command-v keyboard shortcuts. The
concepts of adding, deleting, copying, and pasting are implemented in the same way throughout
the application. Bloon also supports copying and pasting elements between two configuration files.

1.2.3 Sentence

In Bloon, a sentence is a string of tokens. The order and type of the tokens determines the
format that the sentence attempts to match. At the top of the view, you can name the sentence.
The Saves Binary and Saves Ascii checkboxes work similarly to those of parsers. However, the
output files generated by a sentence will only contain data matched by this sentence, while parsers’
output files contain all of the combined output from each of its constituent sentences.

Each token has five properties: the type, the name, the number of bytes, the byte format, and
the constant value. Depending on the type of token only some of the properties are used. The
Token Type simply states the type of token. The Token Name is used to label the data. A token
without a name cannot be plotted. It is useful to leave the name of constant tokens blank so that
they do not clutter up the plotting interface. The combination of the Num Bytes property and
the token’s type determines how the parser calculates the length of the token. Clicking on the

9

byte format drop down menu lets you select the endianness and sign of the token, if it is relevant.
Finally, the Constant Value property lets you define the constant value for tokens that represent
static values.

In addition to add, delete, copy, and paste, tokens can be dragged and dropped to reorder
them, as unlike sentences which are processed in parallel, the order of the tokens in the list is
significant.

Token List

Constant Value

Num Bytes

Byte Format

Sentence Name
Output Formats

Token Type
Token Name

Add Token

Delete Token

1.2.4 Token Reference

AsciiDouble*
An ascii double token will match and parse any floating point number in an ascii
format. For example: 1.0, -2.0, 42, 15.6e-7, +42.42e+3

AsciiHex*
An ascii hex token will match and parse any hex number in an ascii format. For

10

example: AA, ABC, 012EF, FF

AsciiInt*
An ascii int token will match and parse an integer number in an ascii format. For
example: 1, +2, -3, 400, -4200

BinInt*
A binary int token will take the next N bytes of input data and parse them as if
they were a N*8 bit binary integer. Bloon supports both signed and unsigned integers
in little and big endian byte orders.

Char
A char token will match a single byte and interpret it as an ASCII character.

ConstBinInt*
A constant binary int token will match any binary integer (like a BinInt token) equal
to the provided value.

ConstChar
A constant char token will match any ascii character (like a ConstChar token) equal
to the provided value.

ConstLengthAsciiDouble*
A constant length ascii double will take the next N bytes and attempt to interpret
them as a floating point ASCII double (like the AsciiDouble token). It matches if a
correctly formatted number is found.

ConstLengthAsciiHex*
A constant length ascii hex token will take the next N bytes and attempt to interpret
them as a hexadecimal number. It matches if a correctly formatted number is found.

ConstLengthGroup
A constant length group matches its first N bytes as a binary integer (like BinInt)
taken to mean the length (in bytes) of the group. Any type of token can be put into a
constant length group, however, a parseable data token placed at the end of a constant
length group token will consume all the bytes from its current location to the end of
the constant length group and feed them to its parser.

ConstString
Matches the constant ascii string provided.

FixedLengthGroup
A fixed length group matches the next N bytes. In all other aspects, it is the same as
a constant length group.

11

Group
A group token has no purpose other than to help organize a complicated parser.

NullTerminatedString
A null terminated string will match a string until a NULL character is reached.

TerminatedString
A terminated string will match a string until the given termination character is found.

ParseableData
A parseable data token takes the rest of the bytes from a constant or fixed length
group and uses them as input into another parser. In this way, more complicated
packet structures can be parsed.

*All numbers, including integers, are stored internally as double precision floating point values.

1.2.5 Window

The plotter’s configuration, like that of the parser, is structured like a tree. However, the
plotter’s tree has a finite depth and is organized into three levels: the Window, the Graph, and the
Plot. To create a new window, simply click on the + button in the bottom left of the configuration
screen. Each window represents a graphical window that can contain graphs when Bloon is running.
The window can be named by typing in its respective box.

Window List

Add/Delete Window

12

1.2.6 Graph

Windows contain graphs. A graph is a 2-d scatter plot that visualizes data. To lay out the
window, first decide how many rows and columns the window will have and input them into the
Rows and Columns boxes. Next, create a graph by clicking the + button in the bottom left corner.
In the top right corner, there is a preview that shows the layout of the graphs in the window. Each
graph can be placed at any location in the window by modifying its x, y, width, and height.
Note that (0,0) is in the top left.

If you want to create a non-uniform layout, like the one in the figure where there are two graphs
in the second row and three in the first, you need to create a layout with six columns, the least
common multiple of three and two.

Window Title
Window Layout

Layout Visualizer

Graph List

Graph Location

Graph Title

Add/Delete Graph

13

1.2.7 Plot

Each graph can contain multiple plots. A plot is a single series of data that gets visualized
on a graph. You can set the title of the plot in the Title box, and the initial x and y ranges
can be set by editing their respective values in the top right of the display. Below those values
are several settings that manipulate the overall look of the graph as a whole. Here you can
change the color, or completely get rid of the axis, the axis labels, and the grid. You can also
change the background color of the graph. However, the most important setting is on the left hand
side where you select the x variable’s source. There are three options: Time, Index, and Variable.

When Time is selected, the x value for a data point is determined by the time that it was
parsed by the computer running Bloon. This mode is particularly useful if Bloon is going to
be running for a long time, and it is important to have an accurate representation of the time
that a data point was collected. Each unit along the x axis is equal to one second of real time
according to the computer running bloon. Zero is set to the time that Bloon begins collecting data.

When Index is selected, the x value for a data point is set to increment after each data point is
plotted. This mode is useful if you want your data to all be packed together, or if you are plotting
a data file without a dedicated time variable.

Finally, when Variable is selected, Bloon calculates both coordinates based on the provided
expressions. This allows you to create true 2-d scatterplots. Note that if multiple data values from
different sentences are being used in the same plot, Bloon chooses the data points that were parsed
closest to the same time. Therefore, plotting data like this is problematic unless it is being done
in real time.

To create a new plot, click the + in the bottom left. Give the plot a name, and then type
in the variable that should be plotted in the boxes provided. Variable names consist of the full
path from the parser to the token, and as such can get quite long. Usefully, the names will
autocomplete. Bloon can perform mathematical operations on data, an extremely useful feature for
converting sensor data into real units. This functionality is provided by the excellent open-source
GCMathParser (http://apptree.net/parser.htm) project. If Bloon detects an invalid expression, it
will highlight the box in red. Mismatched parentheses and incorrect variable names commonly
cause errors, so check them first if you have one. Each plot also has three other settings: Avg Num,
Pt Size, and Color. If Avg Num > 1, then Bloon will calculate a running gaussian average using

14

the provided window size. Pt Size simply determines the size of the points in the scatter plot,
and Color determines the color of said points.

Plot List

Add/Delete Plot

Graph Colors

Initial Window
Graph Title

X-Variable Sel

1.3 Data structures

Many of the problems that arise when dealing with large volumes of real-time data quickly and
efficiently require specialized data structures to solve. In the following section, I describe four of
the most interesting data structures that I created and the unique issues that they each address.

1.3.1 MrSwArray

The MrSwArray (Multi-Reader-Single-Writer Array) is a dynamically expanding array data
structure optimized for multithreaded use where there is a single writing thread and multiple
reading threads. The data structure supports append and get operations, but once data is written,
it cannot be modified. The data structure is optimized for high-volume writing and reading
in a real-time environment where occasional large delays due to copying data are unacceptable.
Additionally, the data structure is implemented so as not to require any synchronization between
the threads. No synchronization means no blocking, which increases performance. Writing to the
data structure takes amortized constant time, and reading can be done in constant time.

Typically, when a dynamically expanding array needs more space, it allocates enough memory

15

for the current contents plus some extra space, and then copies those contents into the new array.
However, this configuration does not satisfy this application’s needs for several reasons. First, as
the size of the array increases, the amount of time spent on each copy operation increases as well.
Although appending to an array can be done in constant amortized time, in a real-time environment
where an application must remain responsive, large time penalties (even if uncommon) can hurt
the user experience. Additionally, in a multi-threaded environment, it is difficult to determine how
long to wait before freeing the old copy of the array without additional complicated state.

The MrSwArray solves these problems by storing data in chunks and maintaining a list of said
chunks. If the chunks are large, then the list that keeps track of them is of insignificant size.
The location of an index in the array can be calculated using modulus to determine the chunk,
and integer division to determine the location inside the chunk, and is therefore (although slower
than a raw array) a constant time operation. Expanding the array involves allocating space for
more chunks and space to keep track of them. The old chunk-list then gets copied to the new
one. However, since the chunk list is orders of magnitude smaller than the data itself, the copy
operation takes a negligible amount of time and afterwards, instead of freeing the old chunk-list,
it is pushed onto another list where it is kept until the destruction of the MrSwArray. Because the
old chunk-list is not destroyed, any reader currently iterating over it will not be disrupted when the
MrSwArray needs to be expanded. Finally, the pointer to the old chunk-list is atomically replaced
with a pointer to the new one, and the length of the array is atomically updated.

1.3.2 LinkedIndexList

The LinkedIndexList is a data structure that can be used to iterate over a range of integers,
and for each integer, decide whether to skip it and return to it later, or remove it from the list.
Both creating the list and iterating over its elements take O(N) time N being the length of the list.
Both skipping and removing are done in O(1) time, so will not negatively impact the runtime of the
iteration. The LinkedIndexList does not guarantee that the indices will be visited consecutively
or in order, only that when finished, every index will have been removed from the list precisely
once. These features can be optimally implemented using a singly-linked list.

16

0 1 2 3

0 1 2 3

0 1 2 3

Current
Previous

Remove:
0 is removed

Next:
Returns 2

Figure 1: LinkedIndexList

Since upon creation, a LinkedIndexList knows how many indices it needs to contain, all of
the space for the linked nodes can be allocated in a single large packed array. This has several
benefits. First, only a single call to malloc is required to allocate the memory for any length
list. And second, since all the linked elements of the list are consecutive in memory, we avoid
the bad caching performance usually associated with linked structures. LinkedIndexLists have
an iterator associated with them that maintains a current and previous pointer, as well as a
pointer to the beginning of the allocated space so that it can be freed when the list is no longer
needed. Calling next() on a LinkedIndexList moves both the current and previous pointers
forward and then returns the index at the new current. Calling remove() moves the current

pointer forward and then links the previous node to the new current node, removing the old
current node from the loop. Notice that calling next() again will move the current pointer
foward again, skipping an element. However, because a LinkedIndexList does not guarantee
consecutive access, this is ok.

I implemented this data structure twice: first in Swift, and then in C. Figure 2 shows a profile
comparing the two implementations. The graph shows memory usage vs time. In the test, a large
LinkedIndexList was created and then iterated over. Each index was removed until the list was

17

empty. The first bump on the graph is the C implementation. The second one is the equivalent
Swift implementation. As shown in figure 2, the C implementation is both faster, and consumes
far less memory.

Figure 2: C vs Swift Performance Test

1.3.3 VertexArray

In order to utilize OpenGL most efficiently, each plot needs to store its vertices in a single
long array. VertexArray is, at its heart, a simple dynamically expandable array. Its purpose
is to, at all times and with no extra processing, provide a pointer to an array that contains a
series of points that should be plotted. It also houses the averaging algorithm described in section
1.4.1. Additionally, a VertexArray can record a separate array that contains only the points that
have been added after the most recent accessing of the array. This allows the grapher to, when
appropriate, only draw the changes instead of having to redraw the entire screen.

Additionally, the VertexArray maintains bounds for each consecutive chunk of 8192 data points.

18

This information is used in two ways. First, it is used to speed up the rendering of data points.
Before Bloon is able to draw vertices to the screen, it needs to transform them from their native
coordinate space into the coordinate space of the graph. This process can be slow. However,
because Bloon has access to the bounds of each individual chunk of vertices, it can quickly discard
entire chunks of vertices if their bounds do not intersect with those of the current graph window.
Bloon also uses these bounding boxes to speed up the nearest neighbor algorithm described in
section 1.4.4.

1.3.4 ParsedSentence

Every sentence that the parser parses needs to be stored somewhere, along with some helpful
metadata about the parsed sentence. Initially, this data was stored in a Swift object that contained
a pointer to the data object, the start and end indices of the sentence in the data object, a pointer
back to the Sentence object, the timestamp that the sentence was parsed at, two booleans for
determining the current state of the token (is it currently parsing, and is it done parsing), and a
complete dictionary that mapped the name of a token (a string) to its floating point value. Bloon
requires one of these objects for each sentence parsed. Each of these structures takes up 48 bytes
of space, plus the space needed to store a Swift dictionary. It quickly became obvious that this was
one of the biggest consumers of memory in the application. Keeping track of all of the metadata
made the implementation easier, but much of it was unnecessary.

To solve this problem, I stripped out everything non-essential from the structure and implemented
it in C. I was left with a structure that contained only the index of the sentence in the data, a single
byte to represent the state of the sentence (unparsed, parsing, and parsed), and a variable length
array of doubles, built directly into the structure to avoid an unnecessary level of indirection. All
the other parameters, it turned out, could be passed into functions when they were needed and are
now stored in the Sentence object. The Sentence object also stores a dictionary that maps keys to
the index at which they are stored in the ParsedSentence. This dictionary can be computed once,
and used every time a piece of data needs to be retrieved. This new structure takes 16 bytes, plus
8 bytes times the number of values that need to be stored for the sentence, or about 3 times less
than the previous implementation.

19

1.4 Algorithms

Bloon utilizes many algorithms to achieve its goals of real-time parsing and graphing. Below,
I present four algorithms that I am particularly proud of. I do not claim to be the first to invent
the following algorithms, but I did come up with them on my own.

1.4.1 Averaging

The ability to compute a running average is one of the simplest and most useful operations
a graphing utility should be able to do. In the real world, sensors produce noisy data, and it is
easier to interpret the data if it can first be smoothed. The simplest method of applying a moving
average to an array of data is with a box-car averaging filter, where adding a new point can be
done in constant time. An ideal filter that averages N elements should replace each element of the
array with the mean of the N nearest elements to it (N/2 to the left, and N/2 to the right). In
a real-time application, however, the N/2 elements to the right are not always available as some
have not yet been collected. So what should the graph display? Displaying nothing, by far the
easiest solution to implement, introduces a delay of N/2 data points. For large N, the delay can
become unacceptably long. The next simplest solution is to, instead of averaging equally to the
left and right, average only to the left. Unfortunately, this solution causes the average to appear
to lag behind the real data. To complicate things further, data points may not be added in the
proper order due to the relaxed nature of the LinkedIndexList. To solve these problems, I propose
the following averaging algorithm for applying a convolution to an array in real time.

20

1 // State

2 Let AvgArray be an infinite array initialized to 0.

3 Let AdjArray be an infinite array initialized to 0.

4 Let N be the size of the convolution (the number of elements to be averaged).

5 Let Window be an array containing the convolution window. The sum of the elements of Window should equal 1.

6 Let x be the new value to be appended to the running average.

7 Let Index be the x’s real index.

8
9 // Algorithm

10 let realMin = floor(Index - N / 2)

11 let max = floor(Index + N / 2.0)

12 let min = (realMin < 0) ? 0 : realMin

13
14 for i in min ..< max

15 let coefficient = Window[i - min]

16 let adj = AdjArray[i]

17 AdjArray[i] += coefficient

18 AvgArray[i] = (AvgArray[i] * adj + x * coefficient) / AdjArray[i]

To understand this algorithm, let us look at the lifetime of some index j in the AvgArray and
AdjArray. Both begin initialized to 0.

Let k0 be an index such that j − N
2 < k0 < j + N

2

Let xk0 be the value to be added
Since AdjArray[j] == 0
AvgArray[j] = xk0

AdjArray[j] = Window[j − (k0 − N
2)]

Let k1 be an index such that j − N
2 < k1 < j + N

2 and k1 6= k0

Let xk1 be the value to be added
AdjArray[j] = Window[j − (k1 − N

2)] + Window[j − (k0 − N
2)]

AvgArray[j] =
xk0 · Window[j − (k0 − N

2)] + xk1 · Window[j − (k1 − N
2)]

AdjArray[j]

At each iteration, AvgArray[j] is multiplied by whatever its current denominator is (stored in
AdjArray[j]). The new weighted value is added, and then the result is divided again to re-normalize
the average. Therefore, at each iteration, the value stored in AvgArray[j] is a valid average of the
current data that is available. Once all the empty slots around AvgArray[j] have been filled in...

AvgArray[j] =
∑j+ N

2
n=j−N

2
xn · Window[n− (j − N

2)]∑j+ N
2

n=j−N
2

Window[n− (j − N
2)]

.

But we know that the denominator equals 1 from the assumption on line 5, so...

21

AvgArray[j] =
j+ N

2∑
n=j−N

2

xn · Window[n− (j − N

2)]

...which is exactly the definition of a windowed average. Additionally, we made no assumptions
about the shape of the window, other than that its sum should be 1. Therefore, this algorithm
can be used to take a box-car average just as easily as it could take a moving gaussian average.
Bloon uses a gaussian function to create the window. Because after each addition, the average is
left in a normalized state, the algorithm produces a reasonable output even when some points are
missing, such as at the ends of the data. Appending a point takes linear time with respect to the
number of points being averaged.

Figure 3: Bloon’s averaging at work. The darker points are the un-averaged data. The brighter
line represents the calculated moving gaussian average.

22

1.4.2 Graph Bounds Calculation

Most graphing utilities are capable of automatically guessing the proper bounds for the graph.
For Bloon, this feature is mandatory, as it is likely that the data may appear somewhere far
offscreen. It is extremely important that Bloon be capable of quickly locating all of the data and
placing it inside the bounds of the window. This task can be accomplished trivially by keeping
track of the current bounding box for each plot. However, in Bloon’s intended use case where data
is noisy, it would be even better if Bloon could try to calculate a bounding box that contains only
the data that the user actually wants to see, and not the cloud of bad data that surrounds it.

To accomplish this, I implemented an algorithm that searches through the data twice (once for
each dimension) and attempts to find the tightest range that contains some given percentage of
all of the points. For example, let us say that we have a dataset of 1000 points with values from 0
to 100 and we want to find the smallest range that contains 99 percent of the points. That range
may be 0 to 99, but if the data is not evenly distributed (because the data is very noisy), then
that range could be much smaller. The algorithm that performs this calculation runs in order N
time, and the pseudo-code is presented below.

In order to compute this property of the data quickly, the data needs to be in a sorted order.
Instead of sorting the data in O(SIZE*log(SIZE)) time, Bloon calculates a histogram of the data in
O(SIZE) time. Once the histogram has been calculated, two indices march through the data: one
marking the start of the range, and one marking the end. Both indices are only ever incremented,
and as such, the algorithm operates in O(HISTOGRAM_SIZE) time. Therefore, the entire algorithm
operates in O(SIZE + HISTOGRAM_SIZE) time. HISTOGRAM_SIZE is constant and significantly
smaller than SIZE, therefore, the algorithm truly runs in O(SIZE) time.

Figure 4 below shows a graph in Bloon where there is a large cloud of noise around the good
data. Figure 5 shows the same graph after applying the automatic bounds calculation.

Figure 4: Before auto-bounds Figure 5: After auto-bounds

23

1 // State

2 Let DATA be an array of values

3 Let SIZE be length of DATA

4 Let HISTOGRAM_SIZE be the number of buckets in the histogram

5 Let PRECISION be the desired percentage of points to be enclosed

6
7 // Algorithm

8 let histogram = compute_histogram(DATA, HISTOGRAM_SIZE)

9 let minStart = 0

10 let minEnd = HISTOGRAM_SIZE

11 let start = 0

12 let end = 0

13 let points = 0

14 let isMovingEnd = true

15
16 while true

17 if (isMovingEnd)

18 if (end >= HISTOGRAM_SIZE)

19 isMovingEnd = !isMovingEnd

20 continue

21 if (points / SIZE > PRECISION)

22 if (end - start < minEnd - minStart)

23 minStart = start

24 minEnd = end

25 isMovingEnd = !isMovingEnd

26 points += histogram[end++]

27 else

28 if (points / SIZE > PRECISION)

29 if (end - start < minEnd - minStart)

30 minStart = start

31 minEnd = end

32 else

33 if (end >= HISTOGRAM_SIZE)

34 break

35 isMovingEnd = !isMovingEnd

36 points -= histogram[start++]

37 return (minStart, minEnd - minStart)

24

1.4.3 Graph Tick Mark Locations

Smooth and natural zooming and scrolling are extremely important features that allow the
user to feel more connected to the data. In order to improve the effectiveness of zooming, Bloon
dynamically places tick marks and grid lines as the user zooms. When the grid lines get too far
apart, a new one is added in between. When they get too close together, every other line is removed.

In order to accomplish this, I derived the following function that relates the width of the
window in pixels, the width of the displayed values in units, and the minimum pixels per tick
(calculated based on the length of the tick mark labels). The function is stateless and completely
deterministic. As such, tick marks will always increment by a power of two. Shown below is the
function plotted using Bloon.

unitsPerTick = .5blog0.5(widthValue)c+bdlog2(widthValue)e−log2(widthValue·minPixelsPerTick
widthPixels)c

Figure 6: The function used by Bloon to place tick marks plotted using Bloon

25

1.4.4 Closest Point

Every good graphing utility should allow the user to check the exact value of any given point.
By right-clicking on a graph, Bloon enters a mode where it highlights the closest point to the
mouse cursor and displays its value. This is excellent from a user-interface perspective. However,
from an algorithmic point of view, it presents quite a few challenges. Since Bloon does not store
its vertices in any particular order, any algorithm to find the closest vertex to a given point must
take linear time. However, when the datasets get too large, the naive implementation of such an
algorithm (a simple linear search) is too slow to provide a smooth user experience. As such, I had
to develop a better algorithm.

Although the vertices are not sorted, we do know (from VertexArray, section 1.3.3) a bounding
box for each chunk of 8192 data points. In theory, these data points could be randomly distributed
around the graph. In practice, though, this tends not to be the case. Since Bloon is optimized for
real-time plotting, chunks of data points (especially when plotted against time or index) tend to
be fairly close together. We can use the bounding boxes surrounding each chunk to quickly check
if that chunk could possibly contain a point closer than the point that we have found already.
If it might, then we have to do a linear search though that chunk of data points. If it cannot
possibly contain a point closer than one we have already seen, we can skip that chunk entirely.
The naive nearest neighbor algorithm took on average 0.0146 seconds to run on a certain graph.
After implementing the improved algorithm, the same test executed in only 0.0009 seconds, over
16 times faster! The pseudocode for this algorithm can be seen below.

Figure 7: Bloon highlighting a data point and displaying its value in the bottom left corner.

26

1 // State

2 Let CHUNK_SIZE be 8192

3 Let CHUNKS be an array of chunks. Each chunk contains CHUNK_SIZE data points.

4 Let BOUNDS be an array containing the bounding rectangle of each chunk.

5 Let CHUNK_NUM be the number of chunks.

6 Let POINT be the point that we are trying to find the nearest neighbor of.

7
8 // Algorithm

9
10 let closestPoint = {0, 0} // Initialize to anything

11 let closestDist = DOUBLE_MAX // Initialize to max double value

12
13 // First run through each chunk and compare the first point in each to the search point.

14 // This is done to compensate for the fact that when data is plotted against time, the

15 // chunks appear in a partially sorted order, with each chunk existing to the right

16 // of the previous one. Therefore, if we are searching for a point on the far right

17 // side of the graph, then since every chunk is closer than the previous one, almost

18 // every chunk needs to be searched. This completely negates any benefits of this

19 // algorithm. By quickly checking one point from each chunk, we increase the chances

20 // that the algorithm will be able to reject entire chunks of data.

21 for i in 0 ..< CHUNK_NUM

22 let test = CHUNKS[i][0] // Get the first point of each chunk

23 let dist = distanceFromPointToPoint(POINT, test)

24 if dist < closestDist

25 closestPoint = test;

26 closestDist = dist;

27
28 // Loop through each chunk again, this time to actually find the closest point

29 for i in 0 ..< CHUNK_NUM

30 let bound = BOUNDS[i]

31 // If the the circle defined with its center at POINT with a radius of closestDist

32 // intersects with the bounds of the given chunk, then that chunk may contain

33 // a point which is closer than closestPoint. Otherwise, it cannot contain a

34 // closer point, so the chunk is skipped.

35 if circleIntersectsRect(POINT, closestDist, bound)

36 for j in 0 ..< CHUNK_SIZE

37 let test = CHUNKS[i][j]

38 let dist = distanceFromPointToPoint(POINT, test);

39 if dist < closestDist

40 closestPoint = testRaw;

41 closestDist = dist;

42
43 return closestPoint

27

1.5 Real World Uses

Figure 8: Bloon being used during a Greencube balloon launch

Figure 9: Bloon being used to record data while driving up Mt. Washington

28

2 Hardware

Due to its generality, it is possible to use Bloon with almost any hardware that can generate
data. However, alongside my development of Bloon, I also developed an Arduino shield purpose-built
for collecting data, the schematics and layouts of which are shown below. The shield comes
equipped with on-board memory, an ADC, a DAC, a GPS, support for two different 900Mghz
radios, and an ATXmega coprocessor to run all these extra features without loading the Arduino.
The coprocessor on the shield runs custom firmware that communicates with the Arduino over SPI.
I also implemented an Arduino API that makes it extremely easy to write code for the Arduino
that controls the shield. The following sections include design schematics and drawings of the
shield, as well as an API reference for the Arduino library.

Figure 10: Fully Constructed Shield

29

2.1 Specifications

• Low current ±12V power supply

• High current +5V and +3.3V supplies

• MAX1147: 4ch, 14bit ADC

2ch 0-5V, 2ch 0-3.3V

• 512 Megabyte Non-Volatile NAND Flash

• Integrated Venus 638 GPS

• 900 Mghz, 1 Watt Radio

RFM DNT900 or Digi 9XTend

• 2ch 12-bit, -12V to +12V DAC

• ATXmega32e5 Coprocessor

Provides easy-to-use Arduino API

Arduino XMegaLevel Shifter Bus Switch

NAND DAC

Radio

GPSADC

Shield

Figure 11: Block Diagram of BobShield

30

2.2 Real World Uses

Figure 12: The shield built into a payload

31

2.3 Hardware Reference

A modified Sparkfun design. Originally designed by A. Weiss, M. Grusin

DAC sweeps from 0V-3.3V

For -12V-12V sweep

Gain = 24V / 3.3V = Rg/Rin = 220Ω/30Ω
Voff = 15.3V * (7.27 / 8.27) = 13.45V

2 or more stacked

ARDUINO_SHIELDGND

GND

GND

GND

GND

GND

33
k

1uF

GND

33
nH

22pF

VENUS638FLPX-L

0

GND

47
uH

47
uH

GND

GND

GND

GND

GND

GND

GND

GND

7.
6K

10
K

1K

8.2K

1K

8.2K

1500uF

1uF

1uF

10
K

180

GND

33k

XTEND-DIGI-MODEM

1k

2k

GND

GND

M02LOCK

M02LOCKSOLDERJUMPERNO

SOLDERJUMPERNO

GND

GND

GND

GND

10
k

5k
10

k
5k

GND

SOLDERJUMPERNO

GND

SOLDERJUMPERNO

ADA4084-4

ADA4084-4

ADA4084-4

ADA4084-4

ADA4084-4

G
re

en

2k

18
0

18
0

O
ra

ng
e

Ye
llo

w

Blue

1uF .01uF

.01uF1uF

.1uF.1uF

.1uF.1uF

.1uF.1uF

1k 1k

.01uf

GND10
0k

.01uF

.01uF

.0
01

uf
.0

01
uf

1uf

GND

GND GND

2k 2k

.001uf .001uf

M
01

PT
H

GND

10
0k

10
0k

10
0k

10
0k

GND

10
0k

10
0k

10
0k

GND

1uF

1uF
1uF

1uF

GND

Red

180

M02PTH

M02PTH

M02PTH

M02PTH

100uF

22uF 22uF

100uF

100uF

100uF

100uF

100uF

22uF

1uF 22uF 100uF

GND

22uF

.1uF

22uF

47uF/25V

47uF/25V

47uF/25V

47uF/25V

22uF/25V

22uF/25V
22uF

100uF

100uF22uF

180

180

GND

M02PTH

RFGND

RFGND RFGND

RFGND

HOLD# G5
WP# J8
VCC D3*2
GND K3*2CS#K7

SCKK6

SIJ7
SOG7

U1
RX
TX

D2
*D3
D4

*D5
*D6
D7
D8

*D9
*D10
*D11
D12
D13

A0
A1
A2
A3
A4
A5

VIN
RES

5V

AREF
GND
GND
GND

3.3V

PKT_DET1*2

ADC_REF 3*2

GPIO05*2
GPIO16*2
GPIO27*2
GPIO38*2

PWM09*2
PWM110*2

SLEEP/DTR11*2

ADC212*2 ADC113*2 ADC014*2

EX_SYNC15*2

DIAG_TX 16*2
DIAG_RX 17*2

/CFG18*2

VCC 19*2
GND 20*2
GND 21*2

GPIO422*2
GPIO523*2

LGND 24*2

ACT25*2

/DCD26*2

/HOST_RTS 30*2

RADIO_TXD 31*2
RADIO_RXD 32*2
/HOST_CTS 33*2

VMOD 34*2

/SS 35*2MOSI 36*2MISO 37*2SCLK 38*2

/RESET 39*2

R3

C5

L1

C6

U2

LED/GPIO07

TXD044 RXD042

PPS40

CLK41 CSN43 MISO39 MOSI38

GND10
GND11

GND19 GND15

GNDRF 21
GNDRF 22
GNDRF 24
GNDRF 25
GNDRF 27
GNDRF 28
GNDRF 29
GNDRF 31
GNDRF 33

RTC17

BTSEL9

RSTN1

RFIN 32VCC2

VBAT18

GPIO1 6REGEN36
GPIO2 5

GPIO20 14

PIO12 4

PIO14 37

PSESEL8

SDA45
SCL46

GPIO4 47GPIO3 48

GND49

PIO5 50

PIO11 51

RXD152

GPIO25 53

GPIO30 54

PIO15 55
TXD157

VCC58

GPIO28 59

GND60

GNDRF 61
GNDRF 62

GPIO6 63

GND64 GNDRF 65
GNDRF 69

GPIO22 12
GPIO23 13

GPIO29 16

R12

VCCA 2

A1 1A2 3A3 4A4 5A5 6A6 7

OE 10GND11

B614
B515
B416
B317
B218
B120

VCCB19

A7 8A8 9
B713 B812

PA0:ADC0/AC0/AREF6
PA1:ADC1:AC15
PA2:ADC2/DAC0/AC24
PA3:ADC3/DAC1/AC33

PA5:ADC5/AC531

PA7:ADC7/AC7/AC0OUT29 PA6:ADC6/AC6/AC1OUT30

PC6:OC4C/OC4DLS/RXD0/MISO/IN0/AC1OUT10 PC5:OC4B/OC4CHS/OC5B/XCK9/SCK/IN211 PC4:OC4A/OC4CLS/OC5A/SS/IN1/OUT0/EXTCLK12 PC3:OC4D/OC4BHS/TXD0/IN313 PC2:OC4C/OC4BLS/RXD0/IN014 PC1:OC4B/OC4AHS/XCK0/SCL/IN215 PC0:0C4A/OC4ALS/SDA/IN1/OUT016

PC7:OC4D/OC4DHS/TXD0/MOSI/IN3/AC0OUT9

RESET:PDICLK8
PDI:PDIDATA7

PR0:XTAL2/TOSC2/CLKOUT/EVOUT/RTCOUNT/AC1OUT20
PR1:XTAL1/TOSC1/EXTCLK/AC0OUT19

PD0:ADC8/SCA/IN1/OUT0/AREF28
PD1:ADC9/XCK0/SCL/IN227
PD2:ADC10/RXD0/IN0/OC026
PD3:ADC11/TXD0/IN3/OC125

PD5:ADC13/OC5B/XCK0/IN223 PD4:ADC12/OC5A/IN1/OUT0/CLKOUT/EVOUT24

PD6:ADC14/RXD0/IN0/RTCOUT/AC1OUT22
PD7:ADC15/TXD0/IN3/CLKOUT/EVOUT/AC0OUT21

AVCC 32

GND$1 1
GND$2 18

VCC 17

PA4:ADC4/AC42
L2

L3

+VINP$3

-VINP$1

+VOUT P$13
0V P$11

-VOUT P$9*2

3.
3V

5V9V
_U

R

12
V_

UR

9V
_U

R

3.
3V

3.
3V

3.
3V

5V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

1A3 1Y 2

1Z 1

2A5 2Y 6

2Z 7

VC
C

8
G

ND
4

5V

JP2
1 2
3 4
5 6

3.
3V

R6
R7

R8

R9

R14

R15

12
V_

UR

9V
_U

R

C8

C9

C10

R1
6

R2

VINP$5

G
ND

P$
3*

2

VOUT P$1
SENSE P$2SHDNP$4

R19

U$13
GND1
VCC2
GPO23
TX_PWR4
DI5
DO6
SHDN7
SLEEP8
CTS9
RTS10
CONFIG11

R20

R2
1

ARD1

1
2

ARD2

1
2

SJ1

SJ2

CH0 1
CH1 2
CH2 3
CH3 4

COM 9

DGND14

SHDN10
REF11
REFADJ12

AGND 13DIN17

CS18 DOUT15

SCLK19

VDD20

SSTRB16

3.
3V

YA 4
YB 7
YC 9
YD 12

I0A2
I0B5
I0C11
I0D14

I1A3
I1B6
I1C10
I1D13

VCC 16

GND 8

E 15
S 1

3.
3V

VINP$5

G
ND

P$
3*

2

VOUT P$1
SENSE P$2SHDNP$4

12
V_

UR

VINP$5

G
ND

P$
3*

2

VOUT P$1
SENSE P$2SHDNP$4

5V

5V

5V

R2
5

R2
6

R2
7

R2
8

12
V_

UR
9V

_U
R

SJ3

SJ4

IC1A
3

2
1

IC1B5

6
7

IC1C10

9
8

IC1D
12

13
14

IC1P4
11

D1
R2

4

R2
9

R3
0

D2

D3

D4

JP7

1
2
3
4
5

C2 C3

C4C11

C12C13

C14 C15

C16 C17

R1

D7

R32

D8

D5 D6

C26

R1
0

R1
3

C27

C28

C2
9

C3
0

C31

R5 R3
1

3.
3V

3.
3V

C20 C21

JP
8

R4 R1
1

R3
3

R3
4 3.

3V

R3
5

R3
6

R3
7

C22

C23
C24

C25

P$
1

P$
2

D9

R38

3.
3V

JP4

1
2
3

JP10

1
2

JP11

1
2

JP1

1
2

JP3

1
2

JP6

1
2
3

C32

C33 C34

C35

C36

C37

C38

C39

C40

C41 C42 C43

3.
3V

C44

C45

C46

C47

C48

C49

C50

C51

C52
C53

C54

C55C56

W
HI

TE

IC
EB

LU
E

R39

R40

JP5

1
2

FLASH_CS

FLASH_CS

GND

GND

DNT_TX

DNT_TX

DNT_TX

DNT_RX

DNT_RX

DNT_RX

MOSI-3.3

MOSI-3.3

MOSI-3.3

MISO-3.3

MISO-3.3

MISO-3.3

SCK-3.3

SCK-3.3

SCK-3.3

3.3V
5V

ACT

FLASH_HOLD

FLASH_HOLD

FLASH_WP

FLASH_WP

DNT_VCC

DNT_VCC

DNT_VCC
D8
D9
D10
MOSI-5
MISO-5
SCK-5

PPS

RX0

RX0

TX0

TX0

NAV

RSTN

DAC0

DAC0

DAC1

DAC1

D7 ATXM_CS

ATXM_CS

PIP1_OUT

PIP2_OUT

PDIDATA

PDIDATA

PDICLK

PDICLK

PIP1_IN

PIP1_IN

PIP2_IN

PIP2_IN

TX

TX

TX

TX

RX

RX

DNT_RST

DNT_RST

DNT_RST

DNT_SHDN

DNT_SHDN

A3
A2

A0

A0

A1

A1

ADC_CS

ADC_CS

D6

ADC_MOSI

ADC_MOSI

ADC_MISO

ADC_MISO
ADC_SCK

ADC_SCK

ATXM_DDRY

ATXM_DDRY

BS_SHDN

BS_SHDN

12V_PIP

12V_PIP

12V_PIP

-12V_PIP

-12V_PIP

-12V_PIP

BS_BAT

DNT_BAT

PIP1_COND

PIP1_COND

PIP2_COND

PIP2_COND

ADC_STRB

ADC_STRB

SPI Devices GPS

DNT

Power

Arduino PIP

Figure 13: Power Schematic

32

A modified Sparkfun design. Originally designed by A. Weiss, M. Grusin

DAC sweeps from 0V-3.3V

For -12V-12V sweep

Gain = 24V / 3.3V = Rg/Rin = 220Ω/30Ω
Voff = 15.3V * (7.27 / 8.27) = 13.45V

2 or more stacked

ARDUINO_SHIELDGND

GND

GND

GND

GND

GND

33
k

1uF

GND

33
nH

22pF

VENUS638FLPX-L

0

GND

47
uH

47
uH

GND

GND

GND

GND

GND

GND

GND

GND

7.
6K

10
K

1K

8.2K

1K

8.2K

1500uF

1uF

1uF

10
K

180

GND

33k

XTEND-DIGI-MODEM

1k

2k

GND

GND

M02LOCK

M02LOCKSOLDERJUMPERNO

SOLDERJUMPERNO

GND

GND

GND

GND

10
k

5k
10

k
5k

GND

SOLDERJUMPERNO

GND

SOLDERJUMPERNO

ADA4084-4

ADA4084-4

ADA4084-4

ADA4084-4

ADA4084-4

G
re

en

2k

18
0

18
0

O
ra

ng
e

Ye
llo

w

Blue

1uF .01uF

.01uF1uF

.1uF.1uF

.1uF.1uF

.1uF.1uF

1k 1k

.01uf

GND10
0k

.01uF

.01uF

.0
01

uf
.0

01
uf

1uf

GND

GND GND

2k 2k

.001uf .001uf

M
01

PT
H

GND

10
0k

10
0k

10
0k

10
0k

GND

10
0k

10
0k

10
0k

GND

1uF

1uF
1uF

1uF

GND

Red

180

M02PTH

M02PTH

M02PTH

M02PTH

100uF

22uF 22uF

100uF

100uF

100uF

100uF

100uF

22uF

1uF 22uF 100uF

GND

22uF

.1uF

22uF

47uF/25V

47uF/25V

47uF/25V

47uF/25V

22uF/25V

22uF/25V
22uF

100uF

100uF22uF

180

180

GND

M02PTH

RFGND

RFGND RFGND

RFGND

HOLD# G5
WP# J8
VCC D3*2
GND K3*2CS#K7

SCKK6

SIJ7
SOG7

U1
RX
TX

D2
*D3
D4

*D5
*D6
D7
D8

*D9
*D10
*D11
D12
D13

A0
A1
A2
A3
A4
A5

VIN
RES

5V

AREF
GND
GND
GND

3.3V

PKT_DET1*2

ADC_REF 3*2

GPIO05*2
GPIO16*2
GPIO27*2
GPIO38*2

PWM09*2
PWM110*2

SLEEP/DTR11*2

ADC212*2 ADC113*2 ADC014*2

EX_SYNC15*2

DIAG_TX 16*2
DIAG_RX 17*2

/CFG18*2

VCC 19*2
GND 20*2
GND 21*2

GPIO422*2
GPIO523*2

LGND 24*2

ACT25*2

/DCD26*2

/HOST_RTS 30*2

RADIO_TXD 31*2
RADIO_RXD 32*2
/HOST_CTS 33*2

VMOD 34*2

/SS 35*2MOSI 36*2MISO 37*2SCLK 38*2

/RESET 39*2

R3

C5

L1

C6

U2

LED/GPIO07

TXD044 RXD042

PPS40

CLK41 CSN43 MISO39 MOSI38

GND10
GND11

GND19 GND15

GNDRF 21
GNDRF 22
GNDRF 24
GNDRF 25
GNDRF 27
GNDRF 28
GNDRF 29
GNDRF 31
GNDRF 33

RTC17

BTSEL9

RSTN1

RFIN 32VCC2

VBAT18

GPIO1 6REGEN36
GPIO2 5

GPIO20 14

PIO12 4

PIO14 37

PSESEL8

SDA45
SCL46

GPIO4 47GPIO3 48

GND49

PIO5 50

PIO11 51

RXD152

GPIO25 53

GPIO30 54

PIO15 55
TXD157

VCC58

GPIO28 59

GND60

GNDRF 61
GNDRF 62

GPIO6 63

GND64 GNDRF 65
GNDRF 69

GPIO22 12
GPIO23 13

GPIO29 16

R12

VCCA 2

A1 1A2 3A3 4A4 5A5 6A6 7

OE 10GND11

B614
B515
B416
B317
B218
B120

VCCB19

A7 8A8 9
B713 B812

PA0:ADC0/AC0/AREF6
PA1:ADC1:AC15
PA2:ADC2/DAC0/AC24
PA3:ADC3/DAC1/AC33

PA5:ADC5/AC531

PA7:ADC7/AC7/AC0OUT29 PA6:ADC6/AC6/AC1OUT30

PC6:OC4C/OC4DLS/RXD0/MISO/IN0/AC1OUT10 PC5:OC4B/OC4CHS/OC5B/XCK9/SCK/IN211 PC4:OC4A/OC4CLS/OC5A/SS/IN1/OUT0/EXTCLK12 PC3:OC4D/OC4BHS/TXD0/IN313 PC2:OC4C/OC4BLS/RXD0/IN014 PC1:OC4B/OC4AHS/XCK0/SCL/IN215 PC0:0C4A/OC4ALS/SDA/IN1/OUT016

PC7:OC4D/OC4DHS/TXD0/MOSI/IN3/AC0OUT9

RESET:PDICLK8
PDI:PDIDATA7

PR0:XTAL2/TOSC2/CLKOUT/EVOUT/RTCOUNT/AC1OUT20
PR1:XTAL1/TOSC1/EXTCLK/AC0OUT19

PD0:ADC8/SCA/IN1/OUT0/AREF28
PD1:ADC9/XCK0/SCL/IN227
PD2:ADC10/RXD0/IN0/OC026
PD3:ADC11/TXD0/IN3/OC125

PD5:ADC13/OC5B/XCK0/IN223 PD4:ADC12/OC5A/IN1/OUT0/CLKOUT/EVOUT24

PD6:ADC14/RXD0/IN0/RTCOUT/AC1OUT22
PD7:ADC15/TXD0/IN3/CLKOUT/EVOUT/AC0OUT21

AVCC 32

GND$1 1
GND$2 18

VCC 17

PA4:ADC4/AC42

L2

L3

+VINP$3

-VINP$1

+VOUT P$13
0V P$11

-VOUT P$9*2

3.
3V

5V9V
_U

R

12
V_

UR

9V
_U

R

3.
3V

3.
3V

3.
3V

5V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

1A3 1Y 2

1Z 1

2A5 2Y 6

2Z 7

VC
C

8
G

ND
4

5V

JP2
1 2
3 4
5 6

3.
3V

R6
R7

R8

R9

R14

R15

12
V_

UR

9V
_U

R

C8

C9

C10

R1
6

R2

VINP$5

G
ND

P$
3*

2

VOUT P$1
SENSE P$2SHDNP$4

R19

U$13
GND1
VCC2
GPO23
TX_PWR4
DI5
DO6
SHDN7
SLEEP8
CTS9
RTS10
CONFIG11

R20

R2
1

ARD1

1
2

ARD2

1
2

SJ1

SJ2

CH0 1
CH1 2
CH2 3
CH3 4

COM 9

DGND14

SHDN10
REF11
REFADJ12

AGND 13DIN17

CS18 DOUT15

SCLK19

VDD20

SSTRB16

3.
3V

YA 4
YB 7
YC 9
YD 12

I0A2
I0B5
I0C11
I0D14

I1A3
I1B6
I1C10
I1D13

VCC 16

GND 8

E 15
S 1

3.
3V

VINP$5

G
ND

P$
3*

2

VOUT P$1
SENSE P$2SHDNP$4

12
V_

UR

VINP$5

G
ND

P$
3*

2

VOUT P$1
SENSE P$2SHDNP$4

5V

5V

5V

R2
5

R2
6

R2
7

R2
8

12
V_

UR
9V

_U
R

SJ3

SJ4

IC1A
3

2
1

IC1B5

6
7

IC1C10

9
8

IC1D
12

13
14

IC1P4
11

D1
R2

4

R2
9

R3
0

D2

D3

D4

JP7

1
2
3
4
5

C2 C3

C4C11

C12C13

C14 C15

C16 C17

R1

D7

R32

D8

D5 D6

C26

R1
0

R1
3

C27

C28

C2
9

C3
0

C31

R5 R3
1

3.
3V

3.
3V

C20 C21

JP
8

R4 R1
1

R3
3

R3
4 3.

3V

R3
5

R3
6

R3
7

C22

C23
C24

C25

P$
1

P$
2

D9

R38

3.
3V

JP4

1
2
3

JP10

1
2

JP11

1
2

JP1

1
2

JP3

1
2

JP6

1
2
3

C32

C33 C34

C35

C36

C37

C38

C39

C40

C41 C42 C43

3.
3V

C44

C45

C46

C47

C48

C49

C50

C51

C52
C53

C54

C55C56

W
HI

TE

IC
EB

LU
E

R39

R40

JP5

1
2

FLASH_CS

FLASH_CS

GND

GND

DNT_TX

DNT_TX

DNT_TX

DNT_RX

DNT_RX

DNT_RX

MOSI-3.3

MOSI-3.3

MOSI-3.3

MISO-3.3

MISO-3.3

MISO-3.3

SCK-3.3

SCK-3.3

SCK-3.3

3.3V
5V

ACT

FLASH_HOLD

FLASH_HOLD

FLASH_WP

FLASH_WP

DNT_VCC

DNT_VCC

DNT_VCC
D8
D9
D10
MOSI-5
MISO-5
SCK-5

PPS

RX0

RX0

TX0

TX0

NAV

RSTN

DAC0

DAC0

DAC1

DAC1

D7 ATXM_CS

ATXM_CS

PIP1_OUT

PIP2_OUT

PDIDATA

PDIDATA

PDICLK

PDICLK

PIP1_IN

PIP1_IN

PIP2_IN

PIP2_IN

TX

TX

TX

TX

RX

RX

DNT_RST

DNT_RST

DNT_RST

DNT_SHDN

DNT_SHDN

A3
A2

A0

A0

A1

A1

ADC_CS

ADC_CS

D6

ADC_MOSI

ADC_MOSI

ADC_MISO

ADC_MISO
ADC_SCK

ADC_SCK

ATXM_DDRY

ATXM_DDRY

BS_SHDN

BS_SHDN

12V_PIP

12V_PIP

12V_PIP

-12V_PIP

-12V_PIP

-12V_PIP

BS_BAT

DNT_BAT

PIP1_COND

PIP1_COND

PIP2_COND

PIP2_COND

ADC_STRB

ADC_STRB

SPI Devices GPS

DNT

Power

Arduino PIP

Figure 14: Arduino Schematic

33

A modified Sparkfun design. Originally designed by A. Weiss, M. Grusin

DAC sweeps from 0V-3.3V

For -12V-12V sweep

Gain = 24V / 3.3V = Rg/Rin = 220Ω/30Ω
Voff = 15.3V * (7.27 / 8.27) = 13.45V

2 or more stacked

ARDUINO_SHIELDGND

GND

GND

GND

GND

GND

33
k

1uF

GND

33
nH

22pF

VENUS638FLPX-L

0

GND

47
uH

47
uH

GND

GND

GND

GND

GND

GND

GND

GND
7.

6K
10

K

1K

8.2K

1K

8.2K

1500uF

1uF

1uF

10
K

180

GND

33k

XTEND-DIGI-MODEM

1k

2k

GND

GND

M02LOCK

M02LOCKSOLDERJUMPERNO

SOLDERJUMPERNO

GND

GND

GND

GND

10
k

5k
10

k
5k

GND

SOLDERJUMPERNO

GND

SOLDERJUMPERNO

ADA4084-4

ADA4084-4

ADA4084-4

ADA4084-4

ADA4084-4

G
re

en

2k

18
0

18
0

O
ra

ng
e

Ye
llo

w

Blue

1uF .01uF

.01uF1uF

.1uF.1uF

.1uF.1uF

.1uF.1uF

1k 1k

.01uf

GND10
0k

.01uF

.01uF

.0
01

uf
.0

01
uf

1uf

GND

GND GND

2k 2k

.001uf .001uf

M
01

PT
H

GND

10
0k

10
0k

10
0k

10
0k

GND

10
0k

10
0k

10
0k

GND

1uF

1uF
1uF

1uF

GND

Red

180

M02PTH

M02PTH

M02PTH

M02PTH

100uF

22uF 22uF

100uF

100uF

100uF

100uF

100uF

22uF

1uF 22uF 100uF

GND

22uF

.1uF

22uF

47uF/25V

47uF/25V

47uF/25V

47uF/25V

22uF/25V

22uF/25V
22uF

100uF

100uF22uF

180

180

GND

M02PTH

RFGND

RFGND RFGND

RFGND

HOLD# G5
WP# J8
VCC D3*2
GND K3*2CS#K7

SCKK6

SIJ7
SOG7

U1
RX
TX

D2
*D3
D4

*D5
*D6
D7
D8

*D9
*D10
*D11
D12
D13

A0
A1
A2
A3
A4
A5

VIN
RES

5V

AREF
GND
GND
GND

3.3V

PKT_DET1*2

ADC_REF 3*2

GPIO05*2
GPIO16*2
GPIO27*2
GPIO38*2

PWM09*2
PWM110*2

SLEEP/DTR11*2

ADC212*2 ADC113*2 ADC014*2

EX_SYNC15*2

DIAG_TX 16*2
DIAG_RX 17*2

/CFG18*2

VCC 19*2
GND 20*2
GND 21*2

GPIO422*2
GPIO523*2

LGND 24*2

ACT25*2

/DCD26*2

/HOST_RTS 30*2

RADIO_TXD 31*2
RADIO_RXD 32*2
/HOST_CTS 33*2

VMOD 34*2

/SS 35*2MOSI 36*2MISO 37*2SCLK 38*2

/RESET 39*2

R3

C5

L1

C6

U2

LED/GPIO07

TXD044 RXD042

PPS40

CLK41 CSN43 MISO39 MOSI38

GND10
GND11

GND19 GND15

GNDRF 21
GNDRF 22
GNDRF 24
GNDRF 25
GNDRF 27
GNDRF 28
GNDRF 29
GNDRF 31
GNDRF 33

RTC17

BTSEL9

RSTN1

RFIN 32VCC2

VBAT18

GPIO1 6REGEN36
GPIO2 5

GPIO20 14

PIO12 4

PIO14 37

PSESEL8

SDA45
SCL46

GPIO4 47GPIO3 48

GND49

PIO5 50

PIO11 51

RXD152

GPIO25 53

GPIO30 54

PIO15 55
TXD157

VCC58

GPIO28 59

GND60

GNDRF 61
GNDRF 62

GPIO6 63

GND64 GNDRF 65
GNDRF 69

GPIO22 12
GPIO23 13

GPIO29 16

R12

VCCA 2

A1 1A2 3A3 4A4 5A5 6A6 7

OE 10GND11

B614
B515
B416
B317
B218
B120

VCCB19

A7 8A8 9
B713 B812

PA0:ADC0/AC0/AREF6
PA1:ADC1:AC15
PA2:ADC2/DAC0/AC24
PA3:ADC3/DAC1/AC33

PA5:ADC5/AC531

PA7:ADC7/AC7/AC0OUT29 PA6:ADC6/AC6/AC1OUT30

PC6:OC4C/OC4DLS/RXD0/MISO/IN0/AC1OUT10 PC5:OC4B/OC4CHS/OC5B/XCK9/SCK/IN211 PC4:OC4A/OC4CLS/OC5A/SS/IN1/OUT0/EXTCLK12 PC3:OC4D/OC4BHS/TXD0/IN313 PC2:OC4C/OC4BLS/RXD0/IN014 PC1:OC4B/OC4AHS/XCK0/SCL/IN215 PC0:0C4A/OC4ALS/SDA/IN1/OUT016

PC7:OC4D/OC4DHS/TXD0/MOSI/IN3/AC0OUT9

RESET:PDICLK8
PDI:PDIDATA7

PR0:XTAL2/TOSC2/CLKOUT/EVOUT/RTCOUNT/AC1OUT20
PR1:XTAL1/TOSC1/EXTCLK/AC0OUT19

PD0:ADC8/SCA/IN1/OUT0/AREF28
PD1:ADC9/XCK0/SCL/IN227
PD2:ADC10/RXD0/IN0/OC026
PD3:ADC11/TXD0/IN3/OC125

PD5:ADC13/OC5B/XCK0/IN223 PD4:ADC12/OC5A/IN1/OUT0/CLKOUT/EVOUT24

PD6:ADC14/RXD0/IN0/RTCOUT/AC1OUT22
PD7:ADC15/TXD0/IN3/CLKOUT/EVOUT/AC0OUT21

AVCC 32

GND$1 1
GND$2 18

VCC 17

PA4:ADC4/AC42

L2

L3

+VINP$3

-VINP$1

+VOUT P$13
0V P$11

-VOUT P$9*2

3.
3V

5V9V
_U

R

12
V_

UR

9V
_U

R

3.
3V

3.
3V

3.
3V

5V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

1A3 1Y 2

1Z 1

2A5 2Y 6

2Z 7
VC

C
8

G
ND

4
5V

JP2
1 2
3 4
5 6

3.
3V

R6
R7

R8

R9

R14

R15

12
V_

UR

9V
_U

R

C8

C9

C10

R1
6

R2

VINP$5

G
ND

P$
3*

2

VOUT P$1
SENSE P$2SHDNP$4

R19

U$13
GND1
VCC2
GPO23
TX_PWR4
DI5
DO6
SHDN7
SLEEP8
CTS9
RTS10
CONFIG11

R20

R2
1

ARD1

1
2

ARD2

1
2

SJ1

SJ2

CH0 1
CH1 2
CH2 3
CH3 4

COM 9

DGND14

SHDN10
REF11
REFADJ12

AGND 13DIN17

CS18 DOUT15

SCLK19

VDD20

SSTRB16

3.
3V

YA 4
YB 7
YC 9
YD 12

I0A2
I0B5
I0C11
I0D14

I1A3
I1B6
I1C10
I1D13

VCC 16

GND 8

E 15
S 1

3.
3V

VINP$5

G
ND

P$
3*

2

VOUT P$1
SENSE P$2SHDNP$4

12
V_

UR

VINP$5

G
ND

P$
3*

2

VOUT P$1
SENSE P$2SHDNP$4

5V

5V

5V

R2
5

R2
6

R2
7

R2
8

12
V_

UR
9V

_U
R

SJ3

SJ4

IC1A
3

2
1

IC1B5

6
7

IC1C10

9
8

IC1D
12

13
14

IC1P4
11

D1
R2

4

R2
9

R3
0

D2

D3

D4

JP7

1
2
3
4
5

C2 C3

C4C11

C12C13

C14 C15

C16 C17

R1

D7

R32

D8

D5 D6

C26

R1
0

R1
3

C27

C28

C2
9

C3
0

C31

R5 R3
1

3.
3V

3.
3V

C20 C21

JP
8

R4 R1
1

R3
3

R3
4 3.

3V

R3
5

R3
6

R3
7

C22

C23
C24

C25

P$
1

P$
2

D9

R38

3.
3V

JP4

1
2
3

JP10

1
2

JP11

1
2

JP1

1
2

JP3

1
2

JP6

1
2
3

C32

C33 C34

C35

C36

C37

C38

C39

C40

C41 C42 C43

3.
3V

C44

C45

C46

C47

C48

C49

C50

C51

C52
C53

C54

C55C56
W

HI
TE

IC
EB

LU
E

R39

R40

JP5

1
2

FLASH_CS

FLASH_CS

GND

GND

DNT_TX

DNT_TX

DNT_TX

DNT_RX

DNT_RX

DNT_RX

MOSI-3.3

MOSI-3.3

MOSI-3.3

MISO-3.3

MISO-3.3

MISO-3.3

SCK-3.3

SCK-3.3

SCK-3.3

3.3V
5V

ACT

FLASH_HOLD

FLASH_HOLD

FLASH_WP

FLASH_WP

DNT_VCC

DNT_VCC

DNT_VCC
D8
D9
D10
MOSI-5
MISO-5
SCK-5

PPS

RX0

RX0

TX0

TX0

NAV

RSTN

DAC0

DAC0

DAC1

DAC1

D7 ATXM_CS

ATXM_CS

PIP1_OUT

PIP2_OUT

PDIDATA

PDIDATA

PDICLK

PDICLK

PIP1_IN

PIP1_IN

PIP2_IN

PIP2_IN

TX

TX

TX

TX

RX

RX

DNT_RST

DNT_RST

DNT_RST

DNT_SHDN

DNT_SHDN

A3
A2

A0

A0

A1

A1

ADC_CS

ADC_CS

D6

ADC_MOSI

ADC_MOSI

ADC_MISO

ADC_MISO
ADC_SCK

ADC_SCK

ATXM_DDRY

ATXM_DDRY

BS_SHDN

BS_SHDN

12V_PIP

12V_PIP

12V_PIP

-12V_PIP

-12V_PIP

-12V_PIP

BS_BAT

DNT_BAT

PIP1_COND

PIP1_COND

PIP2_COND

PIP2_COND

ADC_STRB

ADC_STRB

SPI Devices GPS

DNT

Power

Arduino PIP

Figure 15: SPI Devices & Coprocessor Schematic

34

A modified Sparkfun design. Originally designed by A. Weiss, M. Grusin

DAC sweeps from 0V-3.3V

For -12V-12V sweep

Gain = 24V / 3.3V = Rg/Rin = 220Ω/30Ω
Voff = 15.3V * (7.27 / 8.27) = 13.45V

2 or more stacked

ARDUINO_SHIELDGND

GND

GND

GND

GND

GND

33
k

1uF

GND

33
nH

22pF

VENUS638FLPX-L

0

GND

47
uH

47
uH

GND

GND

GND

GND

GND

GND

GND

GND

7.
6K

10
K

1K

8.2K

1K

8.2K

1500uF

1uF

1uF

10
K

180

GND

33k

XTEND-DIGI-MODEM

1k

2k

GND

GND

M02LOCK

M02LOCKSOLDERJUMPERNO

SOLDERJUMPERNO

GND

GND

GND

GND

10
k

5k
10

k
5k

GND

SOLDERJUMPERNO

GND

SOLDERJUMPERNO

ADA4084-4

ADA4084-4

ADA4084-4

ADA4084-4

ADA4084-4

G
re

en

2k

18
0

18
0

O
ra

ng
e

Ye
llo

w

Blue

1uF .01uF

.01uF1uF

.1uF.1uF

.1uF.1uF

.1uF.1uF

1k 1k

.01uf

GND10
0k

.01uF

.01uF

.0
01

uf
.0

01
uf

1uf

GND

GND GND

2k 2k

.001uf .001uf

M
01

PT
H

GND

10
0k

10
0k

10
0k

10
0k

GND

10
0k

10
0k

10
0k

GND

1uF

1uF
1uF

1uF

GND

Red

180

M02PTH

M02PTH

M02PTH

M02PTH

100uF

22uF 22uF

100uF

100uF

100uF

100uF

100uF

22uF

1uF 22uF 100uF

GND

22uF

.1uF

22uF

47uF/25V

47uF/25V

47uF/25V

47uF/25V

22uF/25V

22uF/25V
22uF

100uF

100uF22uF

180

180

GND

M02PTH

RFGND

RFGND RFGND

RFGND

HOLD# G5
WP# J8
VCC D3*2
GND K3*2CS#K7

SCKK6

SIJ7
SOG7

U1
RX
TX

D2
*D3
D4

*D5
*D6
D7
D8

*D9
*D10
*D11
D12
D13

A0
A1
A2
A3
A4
A5

VIN
RES

5V

AREF
GND
GND
GND

3.3V

PKT_DET1*2

ADC_REF 3*2

GPIO05*2
GPIO16*2
GPIO27*2
GPIO38*2

PWM09*2
PWM110*2

SLEEP/DTR11*2

ADC212*2 ADC113*2 ADC014*2

EX_SYNC15*2

DIAG_TX 16*2
DIAG_RX 17*2

/CFG18*2

VCC 19*2
GND 20*2
GND 21*2

GPIO422*2
GPIO523*2

LGND 24*2

ACT25*2

/DCD26*2

/HOST_RTS 30*2

RADIO_TXD 31*2
RADIO_RXD 32*2
/HOST_CTS 33*2

VMOD 34*2

/SS 35*2MOSI 36*2MISO 37*2SCLK 38*2

/RESET 39*2

R3

C5

L1

C6

U2

LED/GPIO07

TXD044 RXD042

PPS40

CLK41 CSN43 MISO39 MOSI38

GND10
GND11

GND19 GND15

GNDRF 21
GNDRF 22
GNDRF 24
GNDRF 25
GNDRF 27
GNDRF 28
GNDRF 29
GNDRF 31
GNDRF 33

RTC17

BTSEL9

RSTN1

RFIN 32VCC2

VBAT18

GPIO1 6REGEN36
GPIO2 5

GPIO20 14

PIO12 4

PIO14 37

PSESEL8

SDA45
SCL46

GPIO4 47GPIO3 48

GND49

PIO5 50

PIO11 51

RXD152

GPIO25 53

GPIO30 54

PIO15 55
TXD157

VCC58

GPIO28 59

GND60

GNDRF 61
GNDRF 62

GPIO6 63

GND64 GNDRF 65
GNDRF 69

GPIO22 12
GPIO23 13

GPIO29 16

R12

VCCA 2

A1 1A2 3A3 4A4 5A5 6A6 7

OE 10GND11

B614
B515
B416
B317
B218
B120

VCCB19

A7 8A8 9
B713 B812

PA0:ADC0/AC0/AREF6
PA1:ADC1:AC15
PA2:ADC2/DAC0/AC24
PA3:ADC3/DAC1/AC33

PA5:ADC5/AC531

PA7:ADC7/AC7/AC0OUT29 PA6:ADC6/AC6/AC1OUT30

PC6:OC4C/OC4DLS/RXD0/MISO/IN0/AC1OUT10 PC5:OC4B/OC4CHS/OC5B/XCK9/SCK/IN211 PC4:OC4A/OC4CLS/OC5A/SS/IN1/OUT0/EXTCLK12 PC3:OC4D/OC4BHS/TXD0/IN313 PC2:OC4C/OC4BLS/RXD0/IN014 PC1:OC4B/OC4AHS/XCK0/SCL/IN215 PC0:0C4A/OC4ALS/SDA/IN1/OUT016

PC7:OC4D/OC4DHS/TXD0/MOSI/IN3/AC0OUT9

RESET:PDICLK8
PDI:PDIDATA7

PR0:XTAL2/TOSC2/CLKOUT/EVOUT/RTCOUNT/AC1OUT20
PR1:XTAL1/TOSC1/EXTCLK/AC0OUT19

PD0:ADC8/SCA/IN1/OUT0/AREF28
PD1:ADC9/XCK0/SCL/IN227
PD2:ADC10/RXD0/IN0/OC026
PD3:ADC11/TXD0/IN3/OC125

PD5:ADC13/OC5B/XCK0/IN223 PD4:ADC12/OC5A/IN1/OUT0/CLKOUT/EVOUT24

PD6:ADC14/RXD0/IN0/RTCOUT/AC1OUT22
PD7:ADC15/TXD0/IN3/CLKOUT/EVOUT/AC0OUT21

AVCC 32

GND$1 1
GND$2 18

VCC 17

PA4:ADC4/AC42

L2

L3

+VINP$3

-VINP$1

+VOUT P$13
0V P$11

-VOUT P$9*2

3.
3V

5V9V
_U

R

12
V_

UR

9V
_U

R

3.
3V

3.
3V

3.
3V

5V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

1A3 1Y 2

1Z 1

2A5 2Y 6

2Z 7

VC
C

8
G

ND
4

5V

JP2
1 2
3 4
5 6

3.
3V

R6
R7

R8

R9

R14

R15

12
V_

UR

9V
_U

R

C8

C9

C10

R1
6

R2

VINP$5

G
ND

P$
3*

2

VOUT P$1
SENSE P$2SHDNP$4

R19

U$13
GND1
VCC2
GPO23
TX_PWR4
DI5
DO6
SHDN7
SLEEP8
CTS9
RTS10
CONFIG11

R20

R2
1

ARD1

1
2

ARD2

1
2

SJ1

SJ2

CH0 1
CH1 2
CH2 3
CH3 4

COM 9

DGND14

SHDN10
REF11
REFADJ12

AGND 13DIN17

CS18 DOUT15

SCLK19

VDD20

SSTRB16

3.
3V

YA 4
YB 7
YC 9
YD 12

I0A2
I0B5
I0C11
I0D14

I1A3
I1B6
I1C10
I1D13

VCC 16

GND 8

E 15
S 1

3.
3V

VINP$5

G
ND

P$
3*

2

VOUT P$1
SENSE P$2SHDNP$4

12
V_

UR

VINP$5

G
ND

P$
3*

2

VOUT P$1
SENSE P$2SHDNP$4

5V

5V

5V

R2
5

R2
6

R2
7

R2
8

12
V_

UR
9V

_U
R

SJ3

SJ4

IC1A
3

2
1

IC1B5

6
7

IC1C10

9
8

IC1D
12

13
14

IC1P4
11

D1
R2

4

R2
9

R3
0

D2

D3

D4

JP7

1
2
3
4
5

C2 C3

C4C11

C12C13

C14 C15

C16 C17

R1

D7

R32

D8

D5 D6

C26

R1
0

R1
3

C27

C28

C2
9

C3
0

C31

R5 R3
1

3.
3V

3.
3V

C20 C21

JP
8

R4 R1
1

R3
3

R3
4 3.

3V

R3
5

R3
6

R3
7

C22

C23
C24

C25

P$
1

P$
2

D9

R38

3.
3V

JP4

1
2
3

JP10

1
2

JP11

1
2

JP1

1
2

JP3

1
2

JP6

1
2
3

C32

C33 C34

C35

C36

C37

C38

C39

C40

C41 C42 C43

3.
3V

C44

C45

C46

C47

C48

C49

C50

C51

C52
C53

C54

C55C56

W
HI

TE

IC
EB

LU
E

R39

R40

JP5

1
2

FLASH_CS

FLASH_CS

GND

GND

DNT_TX

DNT_TX

DNT_TX

DNT_RX

DNT_RX

DNT_RX

MOSI-3.3

MOSI-3.3

MOSI-3.3

MISO-3.3

MISO-3.3

MISO-3.3

SCK-3.3

SCK-3.3

SCK-3.3

3.3V
5V

ACT

FLASH_HOLD

FLASH_HOLD

FLASH_WP

FLASH_WP

DNT_VCC

DNT_VCC

DNT_VCC
D8
D9
D10
MOSI-5
MISO-5
SCK-5

PPS

RX0

RX0

TX0

TX0

NAV

RSTN

DAC0

DAC0

DAC1

DAC1

D7 ATXM_CS

ATXM_CS

PIP1_OUT

PIP2_OUT

PDIDATA

PDIDATA

PDICLK

PDICLK

PIP1_IN

PIP1_IN

PIP2_IN

PIP2_IN

TX

TX

TX

TX

RX

RX

DNT_RST

DNT_RST

DNT_RST

DNT_SHDN

DNT_SHDN

A3
A2

A0

A0

A1

A1

ADC_CS

ADC_CS

D6

ADC_MOSI

ADC_MOSI

ADC_MISO

ADC_MISO
ADC_SCK

ADC_SCK

ATXM_DDRY

ATXM_DDRY

BS_SHDN

BS_SHDN

12V_PIP

12V_PIP

12V_PIP

-12V_PIP

-12V_PIP

-12V_PIP

BS_BAT

DNT_BAT

PIP1_COND

PIP1_COND

PIP2_COND

PIP2_COND

ADC_STRB

ADC_STRB

SPI Devices GPS

DNT

Power

Arduino PIP

Figure 16: Radio Schematic

35

A modified Sparkfun design. Originally designed by A. Weiss, M. Grusin

DAC sweeps from 0V-3.3V

For -12V-12V sweep

Gain = 24V / 3.3V = Rg/Rin = 220Ω/30Ω
Voff = 15.3V * (7.27 / 8.27) = 13.45V

2 or more stacked

ARDUINO_SHIELDGND

GND

GND

GND

GND

GND

33
k

1uF

GND

33
nH

22pF

VENUS638FLPX-L

0

GND

47
uH

47
uH

GND

GND

GND

GND

GND

GND

GND

GND

7.
6K

10
K

1K

8.2K

1K

8.2K

1500uF

1uF

1uF

10
K

180

GND

33k

XTEND-DIGI-MODEM

1k

2k
GND

GND

M02LOCK

M02LOCKSOLDERJUMPERNO

SOLDERJUMPERNO

GND

GND

GND

GND

10
k

5k
10

k
5k

GND

SOLDERJUMPERNO

GND

SOLDERJUMPERNO

ADA4084-4

ADA4084-4

ADA4084-4

ADA4084-4

ADA4084-4

G
re

en

2k

18
0

18
0

O
ra

ng
e

Ye
llo

w

Blue

1uF .01uF

.01uF1uF

.1uF.1uF

.1uF.1uF

.1uF.1uF

1k 1k

.01uf

GND10
0k

.01uF

.01uF

.0
01

uf
.0

01
uf

1uf

GND

GND GND

2k 2k

.001uf .001uf

M
01

PT
H

GND

10
0k

10
0k

10
0k

10
0k

GND

10
0k

10
0k

10
0k

GND

1uF

1uF
1uF

1uF

GND

Red

180

M02PTH

M02PTH

M02PTH

M02PTH

100uF

22uF 22uF

100uF

100uF

100uF

100uF

100uF

22uF

1uF 22uF 100uF

GND

22uF

.1uF

22uF

47uF/25V

47uF/25V

47uF/25V

47uF/25V

22uF/25V

22uF/25V
22uF

100uF

100uF22uF

180

180

GND

M02PTH

RFGND

RFGND RFGND

RFGND

HOLD# G5
WP# J8
VCC D3*2
GND K3*2CS#K7

SCKK6

SIJ7
SOG7

U1
RX
TX

D2
*D3
D4

*D5
*D6
D7
D8

*D9
*D10
*D11
D12
D13

A0
A1
A2
A3
A4
A5

VIN
RES

5V

AREF
GND
GND
GND

3.3V

PKT_DET1*2

ADC_REF 3*2

GPIO05*2
GPIO16*2
GPIO27*2
GPIO38*2

PWM09*2
PWM110*2

SLEEP/DTR11*2

ADC212*2 ADC113*2 ADC014*2

EX_SYNC15*2

DIAG_TX 16*2
DIAG_RX 17*2

/CFG18*2

VCC 19*2
GND 20*2
GND 21*2

GPIO422*2
GPIO523*2

LGND 24*2

ACT25*2

/DCD26*2

/HOST_RTS 30*2

RADIO_TXD 31*2
RADIO_RXD 32*2
/HOST_CTS 33*2

VMOD 34*2

/SS 35*2MOSI 36*2MISO 37*2SCLK 38*2

/RESET 39*2

R3

C5

L1

C6

U2

LED/GPIO07

TXD044 RXD042

PPS40

CLK41 CSN43 MISO39 MOSI38

GND10
GND11

GND19 GND15

GNDRF 21
GNDRF 22
GNDRF 24
GNDRF 25
GNDRF 27
GNDRF 28
GNDRF 29
GNDRF 31
GNDRF 33

RTC17

BTSEL9

RSTN1

RFIN 32VCC2

VBAT18

GPIO1 6REGEN36
GPIO2 5

GPIO20 14

PIO12 4

PIO14 37

PSESEL8

SDA45
SCL46

GPIO4 47GPIO3 48

GND49

PIO5 50

PIO11 51

RXD152

GPIO25 53

GPIO30 54

PIO15 55
TXD157

VCC58

GPIO28 59

GND60

GNDRF 61
GNDRF 62

GPIO6 63

GND64 GNDRF 65
GNDRF 69

GPIO22 12
GPIO23 13

GPIO29 16

R12

VCCA 2

A1 1A2 3A3 4A4 5A5 6A6 7

OE 10GND11

B614
B515
B416
B317
B218
B120

VCCB19

A7 8A8 9
B713 B812

PA0:ADC0/AC0/AREF6
PA1:ADC1:AC15
PA2:ADC2/DAC0/AC24
PA3:ADC3/DAC1/AC33

PA5:ADC5/AC531

PA7:ADC7/AC7/AC0OUT29 PA6:ADC6/AC6/AC1OUT30

PC6:OC4C/OC4DLS/RXD0/MISO/IN0/AC1OUT10 PC5:OC4B/OC4CHS/OC5B/XCK9/SCK/IN211 PC4:OC4A/OC4CLS/OC5A/SS/IN1/OUT0/EXTCLK12 PC3:OC4D/OC4BHS/TXD0/IN313 PC2:OC4C/OC4BLS/RXD0/IN014 PC1:OC4B/OC4AHS/XCK0/SCL/IN215 PC0:0C4A/OC4ALS/SDA/IN1/OUT016

PC7:OC4D/OC4DHS/TXD0/MOSI/IN3/AC0OUT9

RESET:PDICLK8
PDI:PDIDATA7

PR0:XTAL2/TOSC2/CLKOUT/EVOUT/RTCOUNT/AC1OUT20
PR1:XTAL1/TOSC1/EXTCLK/AC0OUT19

PD0:ADC8/SCA/IN1/OUT0/AREF28
PD1:ADC9/XCK0/SCL/IN227
PD2:ADC10/RXD0/IN0/OC026
PD3:ADC11/TXD0/IN3/OC125

PD5:ADC13/OC5B/XCK0/IN223 PD4:ADC12/OC5A/IN1/OUT0/CLKOUT/EVOUT24

PD6:ADC14/RXD0/IN0/RTCOUT/AC1OUT22
PD7:ADC15/TXD0/IN3/CLKOUT/EVOUT/AC0OUT21

AVCC 32

GND$1 1
GND$2 18

VCC 17

PA4:ADC4/AC42

L2

L3

+VINP$3

-VINP$1

+VOUT P$13
0V P$11

-VOUT P$9*2

3.
3V

5V9V
_U

R

12
V_

UR

9V
_U

R

3.
3V

3.
3V

3.
3V

5V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

1A3 1Y 2

1Z 1

2A5 2Y 6

2Z 7

VC
C

8
G

ND
4

5V

JP2
1 2
3 4
5 6

3.
3V

R6
R7

R8

R9

R14

R15

12
V_

UR

9V
_U

R

C8

C9

C10

R1
6

R2

VINP$5

G
ND

P$
3*

2

VOUT P$1
SENSE P$2SHDNP$4

R19

U$13
GND1
VCC2
GPO23
TX_PWR4
DI5
DO6
SHDN7
SLEEP8
CTS9
RTS10
CONFIG11

R20

R2
1

ARD1

1
2

ARD2

1
2

SJ1

SJ2

CH0 1
CH1 2
CH2 3
CH3 4

COM 9

DGND14

SHDN10
REF11
REFADJ12

AGND 13DIN17

CS18 DOUT15

SCLK19

VDD20

SSTRB16

3.
3V

YA 4
YB 7
YC 9
YD 12

I0A2
I0B5
I0C11
I0D14

I1A3
I1B6
I1C10
I1D13

VCC 16

GND 8

E 15
S 1

3.
3V

VINP$5

G
ND

P$
3*

2

VOUT P$1
SENSE P$2SHDNP$4

12
V_

UR

VINP$5

G
ND

P$
3*

2

VOUT P$1
SENSE P$2SHDNP$4

5V

5V

5V

R2
5

R2
6

R2
7

R2
8

12
V_

UR
9V

_U
R

SJ3

SJ4

IC1A
3

2
1

IC1B5

6
7

IC1C10

9
8

IC1D
12

13
14

IC1P4
11

D1
R2

4

R2
9

R3
0

D2

D3

D4

JP7

1
2
3
4
5

C2 C3

C4C11

C12C13

C14 C15

C16 C17

R1

D7

R32

D8

D5 D6

C26

R1
0

R1
3

C27

C28

C2
9

C3
0

C31

R5 R3
1

3.
3V

3.
3V

C20 C21

JP
8

R4 R1
1

R3
3

R3
4 3.

3V

R3
5

R3
6

R3
7

C22

C23
C24

C25

P$
1

P$
2

D9

R38

3.
3V

JP4

1
2
3

JP10

1
2

JP11

1
2

JP1

1
2

JP3

1
2

JP6

1
2
3

C32

C33 C34

C35

C36

C37

C38

C39

C40

C41 C42 C43

3.
3V

C44

C45

C46

C47

C48

C49

C50

C51

C52
C53

C54

C55C56

W
HI

TE

IC
EB

LU
E

R39

R40

JP5

1
2

FLASH_CS

FLASH_CS

GND

GND

DNT_TX

DNT_TX

DNT_TX

DNT_RX

DNT_RX

DNT_RX

MOSI-3.3

MOSI-3.3

MOSI-3.3

MISO-3.3

MISO-3.3

MISO-3.3

SCK-3.3

SCK-3.3

SCK-3.3

3.3V
5V

ACT

FLASH_HOLD

FLASH_HOLD

FLASH_WP

FLASH_WP

DNT_VCC

DNT_VCC

DNT_VCC
D8
D9
D10
MOSI-5
MISO-5
SCK-5

PPS

RX0

RX0

TX0

TX0

NAV

RSTN

DAC0

DAC0

DAC1

DAC1

D7 ATXM_CS

ATXM_CS

PIP1_OUT

PIP2_OUT

PDIDATA

PDIDATA

PDICLK

PDICLK

PIP1_IN

PIP1_IN

PIP2_IN

PIP2_IN

TX

TX

TX

TX

RX

RX

DNT_RST

DNT_RST

DNT_RST

DNT_SHDN

DNT_SHDN

A3
A2

A0

A0

A1

A1

ADC_CS

ADC_CS

D6

ADC_MOSI

ADC_MOSI

ADC_MISO

ADC_MISO
ADC_SCK

ADC_SCK

ATXM_DDRY

ATXM_DDRY

BS_SHDN

BS_SHDN

12V_PIP

12V_PIP

12V_PIP

-12V_PIP

-12V_PIP

-12V_PIP

BS_BAT

DNT_BAT

PIP1_COND

PIP1_COND

PIP2_COND

PIP2_COND

ADC_STRB

ADC_STRB

SPI Devices GPS

DNT

Power

Arduino PIP

Figure 17: PIP IO Schematic

36

A modified Sparkfun design. Originally designed by A. Weiss, M. Grusin

DAC sweeps from 0V-3.3V

For -12V-12V sweep

Gain = 24V / 3.3V = Rg/Rin = 220Ω/30Ω
Voff = 15.3V * (7.27 / 8.27) = 13.45V

2 or more stacked

ARDUINO_SHIELDGND

GND

GND

GND

GND

GND

33
k

1uF

GND

33
nH

22pF

VENUS638FLPX-L

0

GND

47
uH

47
uH

GND

GND

GND

GND

GND

GND

GND

GND

7.
6K

10
K

1K

8.2K

1K

8.2K

1500uF

1uF

1uF

10
K

180

GND

33k

XTEND-DIGI-MODEM

1k

2k

GND

GND

M02LOCK

M02LOCKSOLDERJUMPERNO

SOLDERJUMPERNO

GND

GND

GND

GND

10
k

5k
10

k
5k

GND

SOLDERJUMPERNO

GND

SOLDERJUMPERNO

ADA4084-4

ADA4084-4

ADA4084-4

ADA4084-4

ADA4084-4

G
re

en

2k

18
0

18
0

O
ra

ng
e

Ye
llo

w

Blue

1uF .01uF

.01uF1uF

.1uF.1uF

.1uF.1uF

.1uF.1uF

1k 1k

.01uf

GND10
0k

.01uF

.01uF

.0
01

uf
.0

01
uf

1uf

GND

GND GND

2k 2k

.001uf .001uf

M
01

PT
H

GND

10
0k

10
0k

10
0k

10
0k

GND

10
0k

10
0k

10
0k

GND

1uF

1uF
1uF

1uF

GND

Red

180

M02PTH

M02PTH

M02PTH

M02PTH

100uF

22uF 22uF

100uF

100uF

100uF

100uF

100uF

22uF

1uF 22uF 100uF

GND

22uF

.1uF

22uF

47uF/25V

47uF/25V

47uF/25V

47uF/25V

22uF/25V

22uF/25V
22uF

100uF

100uF22uF

180

180

GND

M02PTH

RFGND

RFGND RFGND

RFGND

HOLD# G5
WP# J8
VCC D3*2
GND K3*2CS#K7

SCKK6

SIJ7
SOG7

U1
RX
TX

D2
*D3
D4

*D5
*D6
D7
D8

*D9
*D10
*D11
D12
D13

A0
A1
A2
A3
A4
A5

VIN
RES

5V

AREF
GND
GND
GND

3.3V

PKT_DET1*2

ADC_REF 3*2

GPIO05*2
GPIO16*2
GPIO27*2
GPIO38*2

PWM09*2
PWM110*2

SLEEP/DTR11*2

ADC212*2 ADC113*2 ADC014*2

EX_SYNC15*2

DIAG_TX 16*2
DIAG_RX 17*2

/CFG18*2

VCC 19*2
GND 20*2
GND 21*2

GPIO422*2
GPIO523*2

LGND 24*2

ACT25*2

/DCD26*2

/HOST_RTS 30*2

RADIO_TXD 31*2
RADIO_RXD 32*2
/HOST_CTS 33*2

VMOD 34*2

/SS 35*2MOSI 36*2MISO 37*2SCLK 38*2

/RESET 39*2

R3

C5

L1

C6

U2

LED/GPIO07

TXD044 RXD042

PPS40

CLK41 CSN43 MISO39 MOSI38

GND10
GND11

GND19 GND15

GNDRF 21
GNDRF 22
GNDRF 24
GNDRF 25
GNDRF 27
GNDRF 28
GNDRF 29
GNDRF 31
GNDRF 33

RTC17

BTSEL9

RSTN1

RFIN 32VCC2

VBAT18

GPIO1 6REGEN36
GPIO2 5

GPIO20 14

PIO12 4

PIO14 37

PSESEL8

SDA45
SCL46

GPIO4 47GPIO3 48

GND49

PIO5 50

PIO11 51

RXD152

GPIO25 53

GPIO30 54

PIO15 55
TXD157

VCC58

GPIO28 59

GND60

GNDRF 61
GNDRF 62

GPIO6 63

GND64 GNDRF 65
GNDRF 69

GPIO22 12
GPIO23 13

GPIO29 16

R12

VCCA 2

A1 1A2 3A3 4A4 5A5 6A6 7

OE 10GND11

B614
B515
B416
B317
B218
B120

VCCB19

A7 8A8 9
B713 B812

PA0:ADC0/AC0/AREF6
PA1:ADC1:AC15
PA2:ADC2/DAC0/AC24
PA3:ADC3/DAC1/AC33

PA5:ADC5/AC531

PA7:ADC7/AC7/AC0OUT29 PA6:ADC6/AC6/AC1OUT30

PC6:OC4C/OC4DLS/RXD0/MISO/IN0/AC1OUT10 PC5:OC4B/OC4CHS/OC5B/XCK9/SCK/IN211 PC4:OC4A/OC4CLS/OC5A/SS/IN1/OUT0/EXTCLK12 PC3:OC4D/OC4BHS/TXD0/IN313 PC2:OC4C/OC4BLS/RXD0/IN014 PC1:OC4B/OC4AHS/XCK0/SCL/IN215 PC0:0C4A/OC4ALS/SDA/IN1/OUT016

PC7:OC4D/OC4DHS/TXD0/MOSI/IN3/AC0OUT9

RESET:PDICLK8
PDI:PDIDATA7

PR0:XTAL2/TOSC2/CLKOUT/EVOUT/RTCOUNT/AC1OUT20
PR1:XTAL1/TOSC1/EXTCLK/AC0OUT19

PD0:ADC8/SCA/IN1/OUT0/AREF28
PD1:ADC9/XCK0/SCL/IN227
PD2:ADC10/RXD0/IN0/OC026
PD3:ADC11/TXD0/IN3/OC125

PD5:ADC13/OC5B/XCK0/IN223 PD4:ADC12/OC5A/IN1/OUT0/CLKOUT/EVOUT24

PD6:ADC14/RXD0/IN0/RTCOUT/AC1OUT22
PD7:ADC15/TXD0/IN3/CLKOUT/EVOUT/AC0OUT21

AVCC 32

GND$1 1
GND$2 18

VCC 17

PA4:ADC4/AC42

L2

L3

+VINP$3

-VINP$1

+VOUT P$13
0V P$11

-VOUT P$9*2

3.
3V

5V9V
_U

R

12
V_

UR

9V
_U

R

3.
3V

3.
3V

3.
3V

5V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

1A3 1Y 2

1Z 1

2A5 2Y 6

2Z 7

VC
C

8
G

ND
4

5V

JP2
1 2
3 4
5 6

3.
3V

R6
R7

R8

R9

R14

R15

12
V_

UR

9V
_U

R

C8

C9

C10

R1
6

R2

VINP$5

G
ND

P$
3*

2

VOUT P$1
SENSE P$2SHDNP$4

R19

U$13
GND1
VCC2
GPO23
TX_PWR4
DI5
DO6
SHDN7
SLEEP8
CTS9
RTS10
CONFIG11

R20

R2
1

ARD1

1
2

ARD2

1
2

SJ1

SJ2

CH0 1
CH1 2
CH2 3
CH3 4

COM 9

DGND14

SHDN10
REF11
REFADJ12

AGND 13DIN17

CS18 DOUT15

SCLK19

VDD20

SSTRB16

3.
3V

YA 4
YB 7
YC 9
YD 12

I0A2
I0B5
I0C11
I0D14

I1A3
I1B6
I1C10
I1D13

VCC 16

GND 8

E 15
S 1

3.
3V

VINP$5

G
ND

P$
3*

2

VOUT P$1
SENSE P$2SHDNP$4

12
V_

UR

VINP$5

G
ND

P$
3*

2

VOUT P$1
SENSE P$2SHDNP$4

5V

5V

5V

R2
5

R2
6

R2
7

R2
8

12
V_

UR
9V

_U
R

SJ3

SJ4

IC1A
3

2
1

IC1B5

6
7

IC1C10

9
8

IC1D
12

13
14

IC1P4
11

D1
R2

4

R2
9

R3
0

D2

D3

D4

JP7

1
2
3
4
5

C2 C3

C4C11

C12C13

C14 C15

C16 C17

R1
D7

R32

D8

D5 D6

C26

R1
0

R1
3

C27

C28

C2
9

C3
0

C31

R5 R3
1

3.
3V

3.
3V

C20 C21

JP
8

R4 R1
1

R3
3

R3
4 3.

3V

R3
5

R3
6

R3
7

C22

C23
C24

C25

P$
1

P$
2

D9

R38

3.
3V

JP4

1
2
3

JP10

1
2

JP11

1
2

JP1

1
2

JP3

1
2

JP6

1
2
3

C32

C33 C34

C35

C36

C37

C38

C39

C40

C41 C42 C43

3.
3V

C44

C45

C46

C47

C48

C49

C50

C51

C52
C53

C54

C55C56

W
HI

TE

IC
EB

LU
E

R39

R40

JP5

1
2

FLASH_CS

FLASH_CS

GND

GND

DNT_TX

DNT_TX

DNT_TX

DNT_RX

DNT_RX

DNT_RX

MOSI-3.3

MOSI-3.3

MOSI-3.3

MISO-3.3

MISO-3.3

MISO-3.3

SCK-3.3

SCK-3.3

SCK-3.3

3.3V
5V

ACT

FLASH_HOLD

FLASH_HOLD

FLASH_WP

FLASH_WP

DNT_VCC

DNT_VCC

DNT_VCC
D8
D9
D10
MOSI-5
MISO-5
SCK-5

PPS

RX0

RX0

TX0

TX0

NAV

RSTN

DAC0

DAC0

DAC1

DAC1

D7 ATXM_CS

ATXM_CS

PIP1_OUT

PIP2_OUT

PDIDATA

PDIDATA

PDICLK

PDICLK

PIP1_IN

PIP1_IN

PIP2_IN

PIP2_IN

TX

TX

TX

TX

RX

RX

DNT_RST

DNT_RST

DNT_RST

DNT_SHDN

DNT_SHDN

A3
A2

A0

A0

A1

A1

ADC_CS

ADC_CS

D6

ADC_MOSI

ADC_MOSI

ADC_MISO

ADC_MISO
ADC_SCK

ADC_SCK

ATXM_DDRY

ATXM_DDRY

BS_SHDN

BS_SHDN

12V_PIP

12V_PIP

12V_PIP

-12V_PIP

-12V_PIP

-12V_PIP

BS_BAT

DNT_BAT

PIP1_COND

PIP1_COND

PIP2_COND

PIP2_COND

ADC_STRB

ADC_STRB

SPI Devices GPS

DNT

Power

Arduino PIP

Figure 18: GPS Schematic

37

Figure 19: Top layout

38

Figure 20: Bottom Tayout

39

2.4 Firmware API Reference

BobShield()

Constructs and initializes a BobShield object. The shield is powered off and back on in
order to initialize it to a known state.

uint8_t status()

Return The status bitmask.

Returns the current status of the BobShield as a single byte of flags. Currently
unimplemented.

void configureSweep(bool pip0, bool pip1, uint16_t delay,

uint16_t avg_num, uint16_t num_samples,

uint16_t sweep_min, uint16_t sweep_max)

pip0 Whether or not the configuration should be applied to pip0.

pip1 Whether or not the configuration should be applied to pip1.

delay The delay between stepping the DAC and reading the ADC.

avg_num The number of samples to average per step.

num_samples The number of steps to take in the sweep.

sweep_min The starting value for the sweep.

sweep_max The ending value for the sweep.

Configures the parameters of a sweep measurement. During a sweep, the DAC output is
stepped from sweep_min to sweep_max in increments of sweep_max−sweep_min

num_samples−1 . After setting
the DAC, it delays for a time period proportional to delay and then samples the ADC
avg_num times, averaging the results. The resulting measurements are stored for later
retrieval.

40

void sweep(bool pip0, bool pip1)

pip0 Should sweep pip 0.

pip1 Should sweep pip 1.

Performs the sweep configured by configureSweep. During the sweep, the Arduino will
not be able to communicate with the coprocessor.

void sweepSendGet(bool pip0, bool pip1,

bool toDNT, bool toMaster,

uint16_t∗ sweep0, uint16_t∗ sweep1)

pip0 Should get pip0 data

pip1 Should get pip1 data

toDNT Send the data directly to the radio.

toMaster Send the data directly to the SPI master.

sweep0 A pointer to an array to return pip0 data to.

sweep1 A pointer to an array to return pip1 data to

Retrieves the sweep data from the coprocessor.

void dntReset()

Resets the DNT radio by powering it off, waiting for several seconds, and then powering
it back on. This call will block until power has been restored to the radio.

uint8_t dntBytesAvailable()

Return The number of bytes in the receive buffer.

Returns the number of bytes that are waiting in the coprocessor’s receive buffer.

41

void dntSendData(uint8_t∗ data, uint8_t length)

data The data to send.

length The length (in bytes) of data.

Sends length bytes of data over the radio.

uint8_t dntReceiveData(uint8_t∗ data, uint8_t max)

data A pointer to an array to store the received data.

max The most bytes you are willing to accept.

Return The number of bytes actually received.

Retrieves at most max bytes of data from the radio and stores it into the given data

buffer. If more than max bytes have been buffered, then only max bytes will be retrieved
(the rest can be acquired with a future call to dntReceiveData). If fewer than max bytes
have been buffered, then all are stored in data. The number of bytes actually received
is returned. The returned value is always less than or equal to max.

uint8_t gpsSendGet(bool toDNT, bool toMaster, uint8_t∗ data)

toDNT Should send the data to the radio.

toMaster Should return the data to the arduino.

data The buffer that the data is returned in (if toMaster = true).

Return The number of bytes returned in the buffer.

The shield gets data from the GPS and buffers it once per second. Calling gpsSendGet
will take that buffer and send it to the radio and/or the Arduino. If no GPS data has
been buffered, then the function returns 0.

42

void flushBufferSPI()

Writes a bunch of 0x00 bytes to the SPI buffer to effectively reset the coprocessor into a
known state.

void writeDAC(uint16_t data, bool ch0, bool ch1)

data The 12-bit value to write

ch0 Should write this value to ch0.

ch1 Should write this data to ch1.

Writes a given value to the DAC. The output op-amp is inverted, so a large data will
produce somewhere around -12V, and a small value will produce +12V.

void readADC(bool ch0, bool ch1,

bool toDNT, bool toMaster,

uint16_t∗ ch0Data, uint16_t∗ ch1Data)

ch0 Should read the ch0 of the ADC.

ch1 Should read ch1 of the ADC.

toDNT Should send the data over the radio.

toMaster Should return the data to the Arduino.

ch0Data The 14-bit ADC reading of CH0.

ch1Data The 14-bit ADC reading of CH1.

Takes and returns a reading from the MAX1147 ADC.

void setBaudDNT(BaudOptions baud)

baud The choice of baud as defined by the BaudOptions enum.

Sets the baud between the coprocessor and the radio.

43

bool isReady()

Return Whether or not the shield is not busy.

Returns true if the shield is ready to communicate with the Arduino.

void waitUntilHigh()

Waits until the DDRY line from the coprocessor to the arduino goes high.

void waitUntilLow()

Waits until the DDRY line from the coprocessor to the arduino goes low.

void setLEDs(bool led0, bool led1)

led0 The state of LED0.

led1 The state of LED1.

Sets the states of the two user definable LED’s on the shield.

double ardBatteryVolts()

Return The current voltage level of the Arduino’s battery.

Reads the current voltage of the Arduino’s battery. The measurment is returned in
volts.

double dntBatteryVolts()

Return The current voltage level of the radio’s battery.

Reads the current voltage of the radio’s battery. The measurment is returned in volts.

44

void waitForDntPower()

Waits for the radio to be powered on.

void on()

Turns the shield on by enabling its regulator.

void off()

Turns the shield of by disabling its regulator.

45

2.5 NAND Flash API Reference

Flash(bool enable_write, bool restart_address_counter)

enable_write True to enable writing to the memory.

restart_address_counter True to restart the address counter.

Initializes the flash logging device.

void writeBytes(byte∗ bytes, int length)

bytes The data to write.

length The length of the data in bytes.

Writes length bytes of bytes to the flash device. If the cache gets filled up, then it is
automatically transfered to the main array.

void cacheToArray()

Manually move the cached data into the main array.

void dumpArray(uint32_t startAddress, uint32_t endAddress, int amount)

startAddress Where to start dumping the data from.

endAddress Where to stop dumping data.

amount The dumber of bytes per page to dump.

Dumps the amount bytes from each page in the range [startAddress, endAddress).

46

void dumpBeforeEnd(uint32_t numPages)

numPages The number of pages to dump.

Dumps from the numPages most recently written to pages.

uint16_t readID()

Return The ID of the flash device.

Reads the ID of the NAND Flash device. If the device is functioning, the ID should be
11314.

void restartAddressCounter()

Restarts the address counter.

47

3 Summary

Bloon is Mac application that wraps a configurable real-time parser and an interactive real-time
plotter in an easy to use graphical user interface. To find more information about Bloon, including
some screencasts demoing its features, visit http://www.bloonapp.com.

References
[1] Matlab, http://www.mathworks.com/products/matlab/

[2] Matplotlib, http://matplotlib.org/

[3] PyQtGraph, http://www.pyqtgraph.org/

[4] COSMOS, http://cosmosrb.com/

[5] MakerPlot, http://www.makerplot.com/

[6] MegunoLink, http://www.megunolink.com/

[7] Realtime Plotter, https://github.com/sebnil/RealtimePlotter

[8] Arduino IDE, https://www.arduino.cc/en/Main/Software

[9] IOComp Plot Pack, http://www.iocomp.com/

[10] KST, https://kst-plot.kde.org/

48

http://www.bloonapp.com

	Bloon: Software and Hardware for Data Collection and Real-Time Analysis
	Recommended Citation

	Software
	Other Solutions
	Documentation
	Main
	Parser
	Sentence
	Token Reference
	Window
	Graph
	Plot

	Data structures
	MrSwArray
	LinkedIndexList
	VertexArray
	ParsedSentence

	Algorithms
	Averaging
	Graph Bounds Calculation
	Graph Tick Mark Locations
	Closest Point

	Real World Uses

	Hardware
	Specifications
	Real World Uses
	Hardware Reference
	Firmware API Reference
	BobShield()
	uint8_t status()
	void configureSweep(bool pip0, bool pip1, uint16_t delay, uint16_t avg_num, uint16_t num_samples, uint16_t sweep_min, uint16_t sweep_max)
	void sweep(bool pip0, bool pip1)
	void sweepSendGet(bool pip0, bool pip1, bool toDNT, bool toMaster, uint16_t sweep0, uint16_t sweep1)
	void dntReset()
	uint8_t dntBytesAvailable()
	void dntSendData(uint8_t data, uint8_t length)
	uint8_t dntReceiveData(uint8_t data, uint8_t max)
	uint8_t gpsSendGet(bool toDNT, bool toMaster, uint8_t data)
	void flushBufferSPI()
	void writeDAC(uint16_t data, bool ch0, bool ch1)
	void readADC(bool ch0, bool ch1, bool toDNT, bool toMaster, uint16_t ch0Data, uint16_t ch1Data)
	void setBaudDNT(BaudOptions baud)
	bool isReady()
	void waitUntilHigh()
	void waitUntilLow()
	void setLEDs(bool led0, bool led1)
	double ardBatteryVolts()
	double dntBatteryVolts()
	void waitForDntPower()
	void on()
	void off()

	NAND Flash API Reference
	Flash(bool enable_write, bool restart_address_counter)
	void writeBytes(byte bytes, int length)
	void cacheToArray()
	void dumpArray(uint32_t startAddress, uint32_t endAddress, int amount)
	void dumpBeforeEnd(uint32_t numPages)
	uint16_t readID()
	void restartAddressCounter()

	Summary

